HWPQ: Hessian-free Weight Pruning-Quantization For LLM Compression
And Acceleration

Anonymous ACL submission

Abstract

Large Language Models (LLMs) have achieved
remarkable success across numerous domains.
However, the high time complexity of exist-
ing pruning and quantization methods signif-
icantly hinders their effective deployment on
resource-constrained consumer or edge devices.
In this study, we propose a novel Hessian-free
Weight Pruning-Quantization (HWPQ) method.
HWPQ eliminates the need for computation-
ally intensive Hessian matrix calculations by
introducing a contribution-based weight met-
ric, which evaluates the importance of weights
without relying on second-order derivatives.
Additionally, we employ the Exponentially
Weighted Moving Average (EWMA) technique
to bypass weight sorting, enabling the selec-
tion of weights that contribute most to LLM
accuracy and further reducing time complex-
ity. Our approach is extended to support 2:4
structured sparsity pruning, facilitating efficient
execution on modern hardware accelerators.
Experimental results demonstrate that HWPQ
significantly enhances the compression perfor-
mance of LLaMA2. Compared to state-of-
the-art quantization and pruning frameworks,
HWPQ achieves average speedups of 5.97 x
(up to 20.75x) in quantization time and 12.29 x
(up to 56.02x) in pruning time, while largely
preserving model accuracy. Furthermore, we
observe a 1.50x inference speedup compared
to the baseline.

1 Introduction

Recent years have witnessed an explosive growth
in the capabilities of Large Language Models
(LLMs). However, this advancement comes at the
cost of exponentially growing model sizes, lead-
ing to substantial monetary and energy costs (Zhao
et al., 2023). Consequently, there have been grow-
ing efforts to reduce these costs through model
compression, with pruning and quantization emerg-
ing as the two most popular approaches. Pruning
removes network weights by setting them to zero,

while quantization reduces the precision of neural
network weights during storage and computation.
A key finding is that these two widely used meth-
ods are not orthogonal and exhibit a convergent
trend (van Baalen et al., 2020; Hu et al., 2021;
Schaefer et al., 2023).

Despite impressive progress, compression re-
mains a labor-intensive process. Pruning and
quantization are typically performed indepen-
dently, and many methods require Recovery Fine-
Tuning (RFT) to maintain performance post-
compression (van der Ouderaa et al., 2024), ren-
dering the entire process computationally expen-
sive and difficult to scale. Current mainstream ap-
proaches circumvent the need for RFT by leverag-
ing Hessian matrix computations (Frantar et al.,
2022; Frantar and Alistarh, 2022; Fang et al.,
2023; Sawmya et al., 2024). Although these meth-
ods exhibit mathematical elegance, their practi-
cal implementation faces significant computational
challenges. Specifically, computing second-order
derivatives across all network weights generates
a massive Hessian matrix, whose dimensionality
scales quadratically with the number of parameters,
resulting in prohibitive computational complexity.
In real-world deployment scenarios, resource limi-
tations and stringent time constraints often hinder
the effective implementation of quantization and
pruning strategies. Moreover, the emergence of
advanced GPU architectures highlights the need
for structured hardware-aware pruning methodolo-
gies that achieve genuine performance acceleration
while maintaining computational efficiency (Tang
et al., 2022; Xia et al., 2024; Lu et al., 2022; Liu
et al., 2017). This underscores the importance of
advancing pruning methods for the 2:4 sparse for-
mat.

In this study, we propose HWPQ, a novel com-
pression method designed to circumvent the high
computational complexity associated with Hessian
matrix and its inverse calculations by developing

OpenBookQA

Hellaswag

0//9
~ Wanda
SparseGPT
—— HWPQ
Baseline_FP16

—— HWPQ_FP8

Lambada

WinoGrande

Figure 1: HWPQ achieves better compression in less
time

an alternative algorithm. We anticipate that our
method will advance future research in domains
where Hessian matrix computations are critical.
First, our observations indicate that identifying
weights with minimal loss contribution depends
more on their relative importance than on absolute
values. Consequently, HWPQ replaces Hessian
matrix computations by constructing a numerically
preserved sequence as contribution-oriented weight
metrics, derived from a series of loss values. Addi-
tionally, we introduce the Exponentially Weighted
Moving Average (EWMA) method, borrowed from
the Transmission Control Protocol (TCP), to re-
place traditional sorting methods, further reduc-
ing computational complexity. Moreover, we ex-
tend this approach to support 2:4 structured sparsity
pruning. By eliminating inverse quantization op-
erations and incorporating efficient execution ker-
nels, we achieve a more streamlined and efficient
computational process. As shown in Figure 1, our
method demonstrates exceptional compression per-
formance, achieving state-of-the-art results. The
key contributions of our work are summarized as
follows:

* We propose a computationally efficient weight
metric that eliminates costly Hessian matrix
calculations, reducing the time complexity
from O(n?) to O(n) while preserving model
accuracy. This advancement achieves signifi-
cant speedups: 4.88 x faster quantization than
AutoGPTQ, 2.82 x faster than AutoAWQ, and
10.21x faster than SpQR. For model prun-
ing, our method achieves an average speedup
of 43.75x over SparseGPT and 12.29x over
Wanda. When extended to 2:4 sparsity, further
acceleration is achieved.

* We develop an innovative mixed pruning-
quantization approach using FP8 precision,
dynamically identifying and removing model
weights based on their impact magnitude.
This unified framework enables simultaneous
pruning and quantization, significantly stream-

lining the compression process.

* We implement dequantization-free inference
in FP8 precision, optimized for Tensor Cores
with 2:4 sparsity support. This optimiza-
tion delivers significant performance improve-
ments, achieving 1.50x speedup on Attention
layers and 1.60x on MLP layers in LLaMA2-
7B, while reducing dequantization overhead
by over 80

2 Motivation & Relate Work
2.1 Motivation

Post-training compression has become a widely
used technique, initially developed and extensively
applied in quantization research (Banner et al.,
2019; Zhao et al., 2019; Nagel et al., 2020). Re-
cently, it has been successfully adapted to network
pruning, demonstrating promising results (Kwon
et al., 2022; Fu et al., 2022; Sun et al., 2023). Com-
mon methods include magnitude-based (Gale et al.,
2019), first-order (Kurtic et al., 2022), and second-
order (Sanh et al., 2020) pruning approaches.
Among these approaches, Hessian-based meth-
ods, which compute the second-order derivatives
of weights, have demonstrated exceptional perfor-
mance in preserving model accuracy without re-
quiring retraining. However, current mainstream
approaches still require hundreds of seconds to
sparsify a 2.7B model, even on high-performance
GPUs. For a 175B Transformer model, processing
time increases linearly, reaching hundreds of hours.
This substantial time requirement significantly de-
lays the deployment of personalized models, high-
lighting the challenges of scaling post-training com-
pression to extremely large models. The primary

bottleneckzlies in constructing the Hessian matrix
H = [GE] , which has a time complexity of
8w1-8wj
O(n3). Therefore, this work focuses on develop-
ing a novel compression approach that bypasses
the high computational cost of the Hessian ma-
trix and its inverse while closely approximating
its accuracy-preserving performance, achieving a
balance between runtime efficiency and precision,

and enabling scalability to very large models.

2.2 Related Work

The most fundamental sparsification approach is
magnitude-based pruning, which achieves sparsity
by setting the smallest weights to zero (Han et al.,

2015; Zhu and Gupta, 2017). Although these meth-
ods scale well, they often cause significant perfor-
mance degradation in LLMs (Frantar and Alistarh,
2023; Harma et al., 2024). To improve sparsifica-
tion, researchers proposed the Optimal Brain Sur-
geon (OBS) method (Hassibi et al., 1993), which
innovatively uses the inverse of the Hessian matrix
to update unpruned weights, thereby compensat-
ing for errors caused by weight removal. However,
OBS faces computational bottlenecks in practical
applications - calculating and storing the inverse
Hessian matrix is computationally infeasible for
models with millions of parameters. To address
this challenge, recent research has proposed two
improvement approaches: one approximates the
inverse Hessian matrix calculation, such as the
WoodFisher method (Singh and Alistarh, 2020);
the other performs layerwise pruning, known as Op-
timal Brain Compression (OBC) (Frantar and Alis-
tarh, 2022). While these methods perform well on
medium-scale networks, they struggle with larger
language models (Frantar et al., 2022).

GPTQ (Frantar et al., 2022) addresses this
issue by quantizing weight matrices using a
grouping scheme and compensating updates to
all yet-unquantized weights in the next col-
umn of that group through the Hessian matrix.
SparseGPT (Frantar and Alistarh, 2023) applies
the same pruning idea and uses unstructured and
semi-structured pruning to simplify large language
models, while Sparse Expansion (Sawmya et al.,
2024) improves inference efficiency by computing
a separate Hessian matrix for each input cluster
to allow specialists to specialize, then using the
SparseGPT pruning algorithm with that matrix to
prune the expert weight matrices. Wanda (Sun
et al., 2024) simplified this idea by using only the
diagonal of the Hessian.

Simultaneously, to achieve tangible speed im-
provements in practical applications, there has been
arowing recognition of the need to apply pruning in
a structured and hardware-compatible manner (San-
tacroce et al., 2023; Ma et al., 2023a; Li et al.,
2023; Xia et al., 2024). This approach is typically
followed by additional training (or fine-tuning) to
restore any diminished performance. For exam-
ple, the LLM-pruner (Ma et al., 2023b) eliminates
specific connection structures within LLMs prior
to further training. Similarly, the Large Language
Model Surgeon (van der Ouderaa et al., 2024) in-
terleaves recovery fine-tuning with pruning.

3 The HWPQ Method
3.1 Contribution-Oriented Weight Metrics

Our objective is to identify weights that make min-
imal contributions to the loss function, such that
their removal would not substantially affect the
model’s output. In this regard, our main focus lies
in analyzing the relative importance of different
weights rather than their absolute values, an aspect
that has been largely neglected in previous research.
Previous studies have quantified the influence of
individual weights on the variation of E by pre-
cisely computing their contributions through the
Hessian matrix. The supplementary term in the
loss function is expressed as follows:

1 w?
=35 31 (H
2 Hyq
When applied to quantization, the expression
becomes:

L_

2

A crucial issue arises from the fact that the ma-
trix (2X X) is not positive definite, as its determi-
nant is zero, meaning it does not possess an inverse.
To address this, we introduce a small perturbation
term, denoted as:

H=2XX"+) diag2XX")I (3)

Where I represents the identity matrix. This
ensures that matrix operations can be performed
safely. When using PyTorch, numerical methods
are used for matrix computation, and due to errors
in floating-point calculations, 2X X " can result in
matrices with extremely large values, leading to
instability. By incorporating these small perturba-
tions, we achieve stability in numerical computa-
tions with almost zero overhead.

However, computing Aw and L for every weight
can be computationally expensive. The time com-
plexity of quantization primarily lies in comput-
ing the inverse matrix H !, which typically has
a complexity of O(n?). Even with the capabil-
ity to compute Hessian matrices for each row
in parallel, the total time complexity remains at
O(n) + O((-)) = O(n?).

To reduce the overall time complexity, the key
is to avoid the computation of H and H~'. Our

goal is not to obtain the exact value of L for each
weight at this stage, but rather to construct a nu-
merically stable sequence as contribution-oriented
weight metrics and to derive numerical characteris-
tics among a series of L values (such as magnitudes,
variance, and averages).

Denoting Z z? as S, in Formula 3 that we

1

constructed, Hyy = 2(9@2 + —S). Noticed that
n

H;q is independent of z, H;q can actually be

25
written as det <2X0X0T + I) , where X is
n

the original X without the ¢'" element. Since

H*
H*l — a9
W = det(m) M
2
HY = 2(—5)”‘2(§ + 8 —a?)
qaq n n q @
det(H) = 2(§)"*1(§ +59)
T n
Thus, we can express Hq_q1 as:
S
— 4+ S — x2 S 2 S — 2
Hy =g =~ 2;(T;i S)xq) ©)
=(=+9) "
n - n
Then, we can simplify further:
H,! _ nS +n?(S — x2) S
1—a2/S 25(S +nS) S — a2
, 1 ©
- n ‘ 1 + n
C2(14n) S—ax2 25(1+n)

In LLMs, n is sufficiently large(e.g., 4096 in
LLaMAZ2-7B), ensuring S >> :L‘Z. Therefore, we

~ 2 : .
can approximate S — 7 ~ S, leading to:

H,}! N n?+n
1—a2/S 2S(1+n)
-1
qaq
1—a2/S
constant. Since we are concerned with the com-
parative magnitudes of values rather than the exact
value of each L, we replace H_' with (1 — 332 /S)

to avoid computations involving the Hessian matrix.
Thus, we compute L as follows:

=C @)

Now we observe that approaches a

1 wg ®)

L=-— 4 _
21—-22/8

Where S represents the sum of all xf for every

In this formulation, the Hessian matrix is no
longer needed. To determine which weights should
be removed, we can simply sort the L values of
all weights and eliminate those with the smallest
L values. As we demonstrated earlier, smaller L
values indicate that the removal of those weights
will have a minor effect on the loss function. The
time complexity of computing all L values is O(n),
while the cost of the most common sorting algo-
rithms is O(n log n), thus reducing the overall time
complexity to O(nlogn). It is worth noting that
we perform this operation simultaneously across
different rows, where n represents the number of
weights in a row.

3.2 EWMA Adaption

To further reduce the time complexity, our next
objective is to find an alternative method to replace
sorting, allowing us to assess where a particular L
value stands among all L values.

The Exponentially Weighted Moving Average
(EWMA) is a technique used for estimating the
mean and variance of a sequence of data points.
In the context of Transmission Control Protocol
(TCP), it is employed to estimate the round-trip
time (RTT) of a connection (Paxson et al., 2011).

In the practical implementation of TCP, the
EWMA method exhibits strong adaptability by dy-
namically estimating the mean and L1-mean norm
error of the recent RTT over time. We apply this
method to evaluate L. For each row, we treat the
weights as a sequential list.

First, after calculating .S as outlined in Step 1
of Figure 2 (Algorithm 1, line 1), we initialize a
tensor state for each weight in a row. This tensor
state consists of the following components: the dy-
namically updated .S, the estimated mean (denoted
as est), and the L1 mean norm error (denoted as
dev). Subsequently, following Step 2 of Figure 2
(Algorithm 1, line 4), we sequentially compute a
series of L; values. If L; satisfies the condition
L < est — la x dev (Algorithm 1, line 8), we
consider its contribution to the loss function to be
minimal and prune it; otherwise, we symmetrically
quantize it to FP8 format, as shown in Step 3 of
Figure 2 (Algorithm 1, lines 9 and 12).

Next, we update the tensor state according to the
procedure outlined in Table 1, as illustrated in Step
4 of Figure 2 (Algorithm 1, lines 10, 13, 16, and
17), until all weights in the row are compressed.
Throughout this process, the overall time complex-
ity is reduced to O(n), demonstrating that we can

State Updating Method
est +— (1 —a)est+al; Ly
dev < (1 — B)dev + B |est — L] 0
—z? (if d -
g < S — z7 (if pruned) 2?201 (%2

— S+ (v? — 2?) (if quanted)

Table 1: The method for tensor state update. Parameter
«, (3 and la can be tuned for different level of sparsity.
v; is the quantized value of x;.

weights in a row as a sequential

%

n-1

rows processed in parallel

****** parallel computing

1 w?
. . S= w? | Li=c———
Linear weight | i Y 21-x%/s
| =0 '
! @ preprocess @) Determining importance
Dataset :
|
state update
S cst Ko <9% ------ Li < est - la* dev
tensor state table 1
: 1 . -
calculation process \ @ Puring or Quantization
1
1
v

------ data update

Figure 2: Our design of novel hybrid pruning and quan-
tization method, using EWMA criteria.
evaluate the contribution of each weight to the loss
function and quantize the model to sparse FP8 in
linear time.

The Full Algorithm. Finally, we present the full
pseudocode for HWPQ in Algorithm 1, including
the optimizations discussed above.

3.3 2:4 Sparsification

To achieve efficient computation of structured
sparse matrices on dedicated accelerators (Tang
et al., 2022; Liu et al., 2023), our pruning method
supports hardware-friendly structured sparsity. In
implementation, we adopt fine-grained selection
to support the 2:4 structured sparsity pattern. By
leveraging Tensor Cores’ native support for this pat-
tern, we partition each row of weights into groups
of four and identify the two smallest weights in
each group through five-way comparison on aver-
age. This approach maintains the time complexity
of pruning and quantization at O(n) while achiev-
ing weight structured sparsity without introducing
additional overhead, enabling a 2 x improvement
in inference throughput.

4 Intergration of HWPQ into Taichi
framework

HWPQ significantly reduces LLMs size. How-
ever, during inference, many frameworks acquire
de-quantized weights by multiplying a scaling fac-
tor (floating-point) with quantized integers (Lin

Initial Value Algorithm 1 The HWPQ algorithm. We prune the

matrix W to sp% sparsity
IIlpllti Wnrow Xncols Xl xns SP
Parameter: o, 5, la
Olltpllti Cn'rowxncol

I: LetS = 3" (2?),dev =0

2: Parallel calculation for each row

3: fori:=0,1,....n—1do
w?
5 if i == 0 then
6 est = Lo
7: end if
8: if L; < est — la X dev then
9: w; =0 //Puring
10: S=8—w?
11: else
12: v; = FP8(w;) //Quantization
13: S =84 (v —w?)
14: wi = v;
15: end if

16: est=(1—a)est+al;

17 dev = (1— B)dev + S |est — L]

18: C; = Ww;

19: end for

20: return Chrowxncol

et al., 2023; Lee et al., 2023). This process in-
evitably leads to extra time and memory overhead.

To solve this problem, we improved the oper-
ator on the Taichi framework. During inference
procedure, the input activation is quantized into
FP8. In the Attention mechanism, the linear layers
generating the query, key, and value, as well as the
MLP, are replaced with FP8 precision, while other
components retain FP16 precision. Within Tensor
Cores, FP8 matrix operations and accumulations
are performed with FP16 bit-width. The computa-
tions following the linear layers, often Root Mean
Square Normalization (RMSNorm), are not linear
layers, and FP16 can conveniently utilize existing
operators. Finally, when the resultant output is fed
into the subsequent linear layer, we re-quantize it
to FP8.

Since the numerical format we use for quan-
tization is fully consistent with the one used in
hardware computations, we can directly utilize the
quantized weights. In other words, we can deliver
the weights directly to GPUs without transforming
them again. This avoids redundant dequantization
and enhances performance by leveraging the high
throughput of FP8 computations on GPUs.

S Experiments
5.1 Experimental setup

Models. We evaluate two model families: Pythia
and LLaMA(including LLaMA2 and LLaMA3).
Pythia is a collection of models focused on LLM
interpretability, developed as a variant of GPT-

[AutoGPTQ [] AutoAWQ [[] spQR 7] HwPQ

5.56

A

attn.q attn.k attn.v attn.o

mip.gate mip.up mip.down avelv'age

Layer

Figure 3: Comparative time analysis of compression across attention and perception layers in LLaMA2-7B model

on a single RTX 4090 GPU

NeoX. LLaMA represents a series of open-source
pre-trained models, with LLaMA3 being the latest
iteration.

Datasets. We evaluate pruning and quantiza-
tion using zero-shot perplexity (PPL) on Wiki-
Text2 (Merity et al., 2016). For task-agnostic
performance, we adopt LLaMA’s evaluation ap-
proach, testing on OpenCompass (Contributors,
2023) and Lm-evaluation-harness (Gao et al., 2024)
benchmarks. These benchmarks offer a com-
prehensive assessment for LLMs. The datasets
encompassed in this assessment are as follows:
ARC(Easy and Challenge) (Boratko et al., 2018),
WinoGrande (Sakaguchi et al., 2021), PIQA (Bisk
et al., 2020), HellaSwag (Zellers et al., 2019) and
OpenbookQA (Mihaylov et al., 2018).

5.2 Evaluation of HWPQ Algorithm

Efficiency: The HWPQ algorithm provides a sig-
nificant speedup. Our performance improvements
stem from two primary factors. First, we have made
an algorithmic advancement. The O(n) algorithm
offers remarkable scalability for pruning and quan-
tization LLMs, allowing us to efficiently evaluate
the importance of each weight without substan-
tially increasing time consumption as the model
size grows. Second, we have developed customized
GPU operators using Taichi. Because the parame-
ter matrix’s rows are independent, we fully exploit
row-wise vector parallelism to enhance pruning
and quantization efficiency on GPUs.

Our experiments systematically demonstrate
that compared with the state-of-the-art quanti-
zation methods such as AutoGPTQ, AutoAWQ,
and SpQR (detailed in Figure 3), the average
speedup reaches 4.88 x (up to 10.49x), 2.82x (up
to 4.23x), and 10.21x (up to 20.75x), respec-
tively. When compared to pruning methods like
SparseGPT and Wanda (detailed in Table 2), the av-
erage speedups reach 43.75x and 12.29 %, respec-
tively. The primary overhead in our approach stems

from the just-in-time (JIT) compilation of kernel
functions, which introduces a cold-start delay oc-
curring only during the initial pruning-quantization
phase. This characteristic makes our algorithm par-
ticularly advantageous for LLMs, where the con-
tinuous growth in model size necessitates more
efficient methodologies for assessing weight con-
tributions to final outputs. The HWPQ method,
with its O(n) pruning-quantization time complex-
ity, effectively addresses this challenge, offering a
scalable solution for modern LLMs.

Accuracy: Zero-shot performance in
LLaMAZ2-7B. We conducted comprehensive
fine-grained pruning experiments on the LLaMA2-
7B model, systematically evaluating pruning
ratios ranging from 10% to 50%, including
structured 2:4 structured pruning configurations.
Model performance was rigorously assessed
using the Lm-evaluation-harness framework. As
detailed in Table 2, our experimental results
demonstrate that a model with a 20% pruning
ratio successfully maintains 99.4% of the baseline
model’s performance without requiring any
post-training. Remarkably, even at a 50% pruning
ratio, the model retains 91.57% of its original
performance. A comprehensive comparative anal-
ysis demonstrates that although our method may
exhibit slightly inferior performance compared
to well-established approaches such as Wanda
and SparseGPT (which rely on computationally
intensive Hessian matrix calculations) under
certain pruning ratios, the performance gap
remains negligible. More importantly, our method
consistently achieves significantly faster pruning
speeds across all pruning ratios, demonstrating
its superior computational efficiency. These
results validate the efficacy of HWPQ in enabling
efficient model compression without the need for
training data, delivering exceptional results in
dramatically less time. To further substantiate the
generalizability of our approach, we replicated the

Pruning Ratio Method ‘ Latency(s)] ‘ WikiText2] ‘ ARC_c ARC_e WinoGrande PIQA HellaSwag OpenbookQA Average?T
0% LLaMA2-7B | _ | 9.36 | 4351 71.54 70.48 78.94 76.13 44.00 64.10
magnitude 243 9.54 43.94 71.88 70.63 78.23 76.04 45.20 64.32
SparseGPT 371.83 10.44 43.86 71.42 70.24 77.52 76.19 42.40 63.60
10% Wanda 103.32 9.38 44.11 71.54 70.63 76.12 78.78 45.00 64.36
HWPQ (ours) 9.55 9.88 44.02 71.62 70.53 76.73 78.80 4431 64.33
magnitude 2.30 10.00 44.54 70.24 69.69 78.40 75.55 44.20 63.77
SparseGPT 371.34 9.56 43.60 70.79 69.53 78.29 76.12 45.20 63.92
20% Wanda 103.51 9.57 44.03 7142 69.29 78.24 76.04 44.80 63.97
HWPQ (ours) 9.37 9.67 43.42 70.33 69.37 78.31 76.01 44.88 63.72
magnitude 2.76 11.40 42.83 69.57 68.90 77.58 73.73 42.20 62.46
SparseGPT 357.03 9.86 43.68 70.07 69.13 78.07 75.17 44.20 63.38
30% Wanda 100.04 9.90 44.11 70.37 69.29 78.29 75.30 45.00 63.72
HWPQ (ours) 9.12 10.02 4391 70.01 69.11 78.04 75.22 45.01 63.55
magnitude 2.28 15.49 39.25 64.01 65.66 75.63 69.83 40.20 59.09
SparseGPT 357.03 9.39 43.83 69.69 69.13 78.84 73.15 45.40 63.34
40% Wanda 100.04 10.55 42.75 69.14 68.74 77.91 73.55 43.00 62.51
HWPQ (ours) 8.62 10.34 42.84 69.01 68.09 78.01 7391 42.69 62.43
magnitude 2.29 44.37 36.77 53.78 59.74 70.73 60.88 36.20 53.01
SparseGPT 361.29 7.91 39.33 66.65 66.61 76.44 68.84 39.40 59.54
50% Wanda 108.96 8.01 39.59 64.85 65.90 76.61 69.96 38.40 59.21
HWPQ (ours) 7.85 8.23 38.40 67.32 65.27 75.14 67.18 38.90 58.70
magnitude 14.99 120.90 30.12 48.86 59.58 68.77 56.30 34.01 49.60
SparseGPT 410.10 17.30 32.34 53.57 63.93 69.21 55.64 34.80 51.58
50%(2:4) Wanda 114.26 20.49 30.55 53.45 62.19 70.35 56.17 35.40 51.35
HWPQ (ours) 7.73 18.21 3242 56.48 64.01 71.00 61.72 34.60 53.37

Table 2: Zero-shot performance of the pruned LLaMA2-7B. “Pruning Ratio” refers to the proportion of parameters
removed relative to the original number of parameters. “Latency(s)” indicates represents the time overhead required
for overall model pruning (excluding communication time such as loading to GPU). “Average” is calculated among
six classification datasets. Bold indicates the best performance at the same compression rate; However, note that for
Latency(s), it represents the best performance excluding the cost associated with magnitude.

0.002 0.002 0.002 0.002
L sequence L sequence

est (estimated mean) dev (estimated L1-mean norm)
real mean — real dev

0.000

v v v + 0.000 v v v
0 1000 2000 3000 4000 0 1000 2000 3000

(a)-1 est jitter variation in mlp.gate (b)-1 est jitter variation in mlp.up

~ 0.000 v v v ~ 0.000 v v v v
4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000

(a)-2 dev jitter variation in mlp.gate (b)-2 dev jitter variation in mlp.up

Figure 4: Statistical magnitude detection of L with EWMA method in LLaMA2-7B MLP blocks. z axis presents
the sequence number of each weight, and y axis presents the numerical values. Ideal algorithms should show est

approaches real mean and dev approaches real dev.
experiments on two additional model architectures:
Pythia-2.8B and LLaMA3.1-8B. The consistent
performance outcomes across these diverse models
provide compelling evidence for the effectiveness
and universal applicability of the HWPQ method
in various model architectures.

Reliability: HWPQ adapts to weight changes
and approaches global expectations. In Figure 4,
we demonstrate how our HWPQ method consis-
tently and accurately predicts the mean and varia-
tions of weights. As the weight sequence length-
ens, HWPQ exhibits improved responsiveness and
faster convergence. By adjusting the smoothing fac-
tors (c, 3, and la), we can fine-tune the algorithm’s
responsiveness and stability to align with specific
network characteristics. This capability enables us
to determine whether the current row weight signif-
icantly impacts the final output, thereby deciding

whether to prune or quantize it.

The data presented in Figure 4, derived from a
layer of LLaMA2-7B, indicate that we can con-
sistently approach the global weight mean shortly
after an initial startup period. For the results in Fig-
ure 4, we set « = 0.125, 8 = 0.125, and la = 4,
which is consistent with RFC 6298 (Paxson et al.,
2011). This configuration remains robust even as
the parameters undergo significant changes, with
fluctuations staying relatively small. Our predic-
tions consistently vary between the global variance
and the global L1-mean norm, showing a pattern
similar to the predicted mean. The experiments also
show that the method maintains its effectiveness
as the model weight length increases, showcasing
high scalability and validating the feasibility of our
introduced EWMA approach as a viable alternative
to traditional sorting methods. We also conducted

race-high ceval siqa race-middle
35 35 55 35
float16
—o— {p8
, 307~~~ original 30 50 1 301
g s =Syl 0 o~
3 Y R~ e e e —
254 ~e-— 254 454 &= 0 251 e ey
/,/'\ -t A
20 T T T T — 201+ T T T T — 40— T T T T 20+ T T T T T
05 06 07 08 09 nop 05 06 07 08 09 nop 05 06 07 08 09 nop 05 06 07 08 09 nop

pruning level pruning level

pruning level pruning level

Figure 5: An evaluation using OpenCompass on the wikitext2 dataset with LLaMA2-7B at various sparsity levels
shows that FP8 operators have a negligible impact on inference accuracy compared to FP16. Similar results were

observed with Pythia-2.8B.

60 T — 2 —
/ in_t / in_t
3 de t 3 de_t
40 3 re_t [re_t

Latency (ms)
Latency (ms)
—

N
o

0 T
Triton FP16 Triton FP8
(b) MLP block latency

0 T
Triton FP16 Triton FP8
(a) Attention layer latency

Latency (ms)

—
©
o
-
%3
1=}

—] I FP16 [FP16
150 1 FP8 % 120 1] = FP8
120 £ ol
90 § -

T AR R

6011 2
30 EELRE
0 0

sdpa sdpa'_qu mip
(d) Inference on SDPA Attention layer

attn attn_gkv m’\p
(c) Inference on basic Attention layer

Figure 6: (a, b) In well-optimized frameworks, dequantization constitutes the majority of the time consumed in
processing a linear layer. where in_t, de_t, and re_t represent inference time, dequantization time, and requantization
time respectively. (c, d) FP8 demonstrates significant potential for acceleration.

the same experiments on the Pythia-2.8B model,
achieving equally strong performance and further
validating the generalizability of HWPQ.

5.3 Evaluation of FPS8 transformers

Accuracy: Minimal impact when substituting
linear layers with FP8 precision. In Figure 5, we
present a comparative analysis of the evaluation
scores for the LLaMA2-7B model, utilizing FP8
linear layers at varying sparsity levels, against the
scores achieved by the original FP16 model. Our
findings indicate that the evaluation scores between
the FP8 and FP16 precision models are generally
comparable. This similarity in performance un-
derscores the potential for inference acceleration
through the adoption of FP8 precision in linear lay-
ers. Our approach demonstrates not only consistent
accuracy with LLaMA?2 but also exhibits strong
performance robustness on Pythia, particularly for
certain datasets.

Efficiency: The adoption of FP8 operators sig-
nificantly reduces latency in linear blocks, with
requantization introducing only minimal over-
head. The advantages of employing FP8 over FP16
for linear layer computations are clearly demon-
strated. On Tensor Cores, data can be processed in
FP8 and accumulated in FP16, producing a result
tensor in FP16 format. Although requantizing this
result tensor back to FP8 for the next layer may
introduce slight precision loss and additional over-
head, our experiments reveal that even basic trun-
cation quantization to FP8 maintains acceptable ac-
curacy levels. The requantization overhead consti-
tutes merely 10% of the total processing time. This

is a notable improvement over traditional methods,
where dequantization can consume over 50% of
the total time, as illustrated in Figure 6 (a) and (b).

Figure 6 compares cuBLAS FP8 and FP16 la-
tency in PyTorch. In the original attention net-
work (Vaswani, 2017), the query, key, and value
computations achieve a 2.53 x speedup, while the
MLP block achieves a 1.77x speedup. Similarly,
in scaled dot-product attention (SDPA), we achieve
2.76x and 2.13x speedups, respectively. These
results highlight the efficiency gains achieved with
FPS8, underscoring its potential for accelerating
deep learning computations while maintaining ac-
curacy.

6 Conclusion

In this paper, we propose Hessian-free Weight
Pruning-Quantization method, a hardware-friendly
approach for low-bit weight-only quantization of
LLMs. The core innovation of our study is the
development of a novel Hessian-free LLM prun-
ing and quantization method, which significantly
reduces time complexity from O(n3) to O(n) com-
pared to mainstream algorithms. This theoretical
breakthrough ensures that our method consistently
outperforms existing approaches in terms of both
computational efficiency and scalability. Built on a
rigorous mathematical foundation, HWPQ demon-
strates exceptional effectiveness and relevance, par-
ticularly as the scale of future LL.Ms continues to
expand. By significantly reducing computational
resource demands and energy consumption, our
method contributes to a more sustainable future for
high-performance computing (HPC).

7 Limitations

Although this study has achieved promising re-
sults and made significant contributions to the field,
several limitations of our approach need to be fur-
ther addressed. Firstly, the performance of the
method may be constrained by various external
factors, including but not limited to hardware con-
figurations, software dependencies, and runtime en-
vironmental conditions, which could significantly
impact the stability and efficiency of the method
in practical applications. Secondly, while our ap-
proach has optimized memory usage compared to
existing methods, the improvement is limited. Tak-
ing the LLaMA2-7B model as an example, our
method requires approximately 20 GB of mem-
ory, which is slightly lower than the 22.79 GB
required by Wanda and the 30.82 GB required by
SparseGPT. However, further optimizing memory
consumption to support the deployment of larger
models on resource-constrained devices remains
a key focus for our future research. Additionally,
although FP8 operators in inference and optimiza-
tions for 2:4 sparse tensors theoretically offer sig-
nificant acceleration potential, these aspects were
not the core focus of this study. As aresult, we have
not fully exploited the acceleration capabilities of
the new architecture, leaving room for potential
technological breakthroughs in future research.

This study addresses critical challenges in large
language model (LLM) compression, aiming to
facilitate broader adoption and practical implemen-
tation of LLM technologies. In light of growing
concerns regarding ethical implications associated
with LLMs, particularly the potential presence of
latent biases embedded within these models, we
have conducted comprehensive investigations to
ensure the integrity of our proposed methodology.
Our findings demonstrate that the developed com-
pression approach not only maintains model per-
formance but also adheres to ethical standards by
preventing the amplification of existing biases or
introduction of new discriminatory patterns.

References

Ron Banner, Yury Nahshan, and Daniel Soudry. 2019.
Post training 4-bit quantization of convolutional net-
works for rapid-deployment. Advances in Neural
Information Processing Systems, 32.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
et al. 2020. Piqga: Reasoning about physical com-
monsense in natural language. In Proceedings of the

AAAI conference on artificial intelligence, volume 34,
pages 7432-74309.

Michael Boratko, Harshit Padigela, Divyendra Mikki-
lineni, Pritish Yuvraj, Rajarshi Das, Andrew McCal-
lum, Maria Chang, Achille Fokoue-Nkoutche, Pa-
van Kapanipathi, Nicholas Mattei, et al. 2018. A
systematic classification of knowledge, reasoning,
and context within the arc dataset. arXiv preprint
arXiv:1806.00358.

OpenCompass Contributors. 2023. Opencompass:
A universal evaluation platform for foundation
models. https://github.com/open-compass/
opencompass.

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi
Mi, and Xinchao Wang. 2023. Depgraph: Towards
any structural pruning. The IEEE/CVF Conference
on Computer Vision and Pattern Recognition.

Elias Frantar and Dan Alistarh. 2022. Optimal brain
compression: A framework for accurate post-training
quantization and pruning. Advances in Neural Infor-
mation Processing Systems, 35:4475-4488.

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas-
sive language models can be accurately pruned in
one-shot. In International Conference on Machine

Learning, pages 10323-10337. PMLR.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. 2022. Gptq: Accurate post-training
quantization for generative pre-trained transformers.
ArXiv, abs/2210.17323.

Yonggan Fu, Haichuan Yang, Jiayi Yuan, Meng Li,
Cheng Wan, Raghuraman Krishnamoorthi, Vikas
Chandra, and Yingyan Lin. 2022. Depthshrinker: a
new compression paradigm towards boosting real-
hardware efficiency of compact neural networks.
In International Conference on Machine Learning,
pages 6849-6862. PMLR.

Trevor Gale, Erich Elsen, and Sara Hooker. 2019. The
state of sparsity in deep neural networks.(2019).
arXiv preprint cs.LG/1902.09574.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2024. A framework for few-shot language model
evaluation.

Song Han, Huizi Mao, and William J Dally. 2015. Deep
compression: Compressing deep neural networks
with pruning, trained quantization and huffman cod-
ing. arXiv preprint arXiv:1510.00149.

Simla Burcu Harma, Ayan Chakraborty, Elizaveta
Kostenok, Danila Mishin, Dongho Ha, Babak Falsafi,

https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2210.17323
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602

Martin Jaggi, Ming Liu, Yunho Oh, Suvinay Sub-
ramanian, et al. 2024. Effective interplay between
sparsity and quantization: From theory to practice.
arXiv preprint arXiv:2405.20935.

Babak Hassibi, David G Stork, and Gregory J Wolff.
1993. Optimal brain surgeon and general network
pruning. In IEEE international conference on neural
networks, pages 293-299. IEEE.

Peng Hu, Xi Peng, Hongyuan Zhu, Mohamed M. Sabry
Aly, and Jie Lin. 2021. Opq: Compressing deep
neural networks with one-shot pruning-quantization.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35(9), pages 7780-7788.

Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Fran-
tar, Mark Kurtz, Benjamin Fineran, Michael Goin,
and Dan Alistarh. 2022. The optimal bert surgeon:
Scalable and accurate second-order pruning for large
language models. arXiv preprint arXiv:2203.07259.

Woosuk Kwon, Sehoon Kim, Michael W Mahoney,
Joseph Hassoun, Kurt Keutzer, and Amir Gholami.
2022. A fast post-training pruning framework for
transformers. Advances in Neural Information Pro-
cessing Systems, 35:24101-24116.

Changhun Lee, Jungyu Jin, Taesu Kim, Hyungjun
Kim, and Eunhyeok Park. 2023. Owq: Lessons
learned from activation outliers for weight quanti-
zation in large language models. arXiv preprint
arXiv:2306.02272.

Yixiao Li, Yifan Yu, Qingru Zhang, Chen Liang,
Pengcheng He, Weizhu Chen, and Tuo Zhao. 2023.
Losparse: Structured compression of large language
models based on low-rank and sparse approximation.
In International Conference on Machine Learning,
pages 20336-20350. PMLR.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang,
Xingyu Dang, and Song Han. 2023. Awq: Activation-
aware weight quantization for 1lm compression and
acceleration. ArXiv, abs/2306.00978.

Zhiqgiang Liu, Yong Dou, Jingfei Jiang, Jinwei Xu,
Shijie Li, Yongmei Zhou, and Yingnan Xu. 2017.
Throughput-optimized fpga accelerator for deep con-
volutional neural networks. ACM Transactions on
Reconfigurable Technology and Systems (TRETS),
10(3):1-23.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang
Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang,
Yuandong Tian, Christopher Re, et al. 2023. Deja
vu: Contextual sparsity for efficient llms at infer-
ence time. In International Conference on Machine
Learning, pages 22137-22176. PMLR.

Kai Lu, Yaohua Wang, Yang Guo, Chun Huang, Sheng
Liu, Ruibo Wang, Jianbin Fang, Tao Tang, Zhaoyun
Chen, Biwei Liu, et al. 2022. Mt-3000: a hetero-
geneous multi-zone processor for hpc. CCF Trans-
actions on High Performance Computing, 4(2):150—
164.

10

X Ma, G Fang, and X Wang. 2023a. On the structural
pruning of large language models. NeurlIPS, Lim-
pruner.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023b.
Llm-pruner: On the structural pruning of large lan-
guage models. Advances in neural information pro-
cessing systems, 36:21702-21720.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. arXiv preprint arXiv:1609.07843.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answer-
ing. arXiv preprint arXiv:1809.02789.

Markus Nagel, Rana Ali Amjad, Mart Van Baalen,
Christos Louizos, and Tijmen Blankevoort. 2020. Up
or down? adaptive rounding for post-training quan-
tization. In International Conference on Machine
Learning, pages 7197-7206. PMLR.

Vern Paxson, Mark Allman, Jerry Chu, and Matt Sar-
gent. 2011. Rfc6298: Computing tcp’s retransmis-
sion timer. Technical report.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial winograd schema challenge at scale. Commu-
nications of the ACM, 64(9):99-106.

Victor Sanh, Thomas Wolf, and Alexander Rush. 2020.
Movement pruning: Adaptive sparsity by fine-tuning.
Advances in neural information processing systems,
33:20378-20389.

Michael Santacroce, Zixin Wen, Yelong Shen, and
Yuanzhi Li. 2023. What matters in the structured
pruning of generative language models? arXiv
preprint arXiv:2302.03773.

Shashata Sawmya, Linghao Kong, Ilia Markov, Dan
Alistarh, and Nir Shavit. 2024. Sparse expan-
sion and neuronal disentanglement. arXiv preprint
arXiv:2405.15756.

Clemens JS Schaefer, Pooria Taheri, Mark Horeni, and
Siddharth Joshi. 2023. The hardware impact of quan-
tization and pruning for weights in spiking neural
networks. IEEE Transactions on Circuits and Sys-
tems II: Express Briefs, 70(5):1789-1793.

Sidak Pal Singh and Dan Alistarh. 2020. Woodfisher:
Efficient second-order approximation for neural net-
work compression. Advances in Neural Information
Processing Systems, 33:18098—-18109.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico
Kolter. 2023. A simple and effective pruning ap-
proach for large language models. arXiv preprint
arXiv:2306.11695.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter.
2024. A simple and effective pruning approach for
large language models. In The Twelfth International
Conference on Learning Representations.

https://ojs.aaai.org/index.php/AAAI/article/view/16950
https://ojs.aaai.org/index.php/AAAI/article/view/16950
https://ojs.aaai.org/index.php/AAAI/article/view/16950
https://arxiv.org/abs/2306.00978
https://arxiv.org/abs/2306.00978
https://arxiv.org/abs/2306.00978
https://arxiv.org/abs/2306.00978
https://arxiv.org/abs/2306.00978
https://www.rfc-editor.org/rfc/rfc6298
https://www.rfc-editor.org/rfc/rfc6298
https://www.rfc-editor.org/rfc/rfc6298
https://doi.org/10.1109/TCSII.2023.3260701
https://doi.org/10.1109/TCSII.2023.3260701
https://doi.org/10.1109/TCSII.2023.3260701
https://doi.org/10.1109/TCSII.2023.3260701
https://doi.org/10.1109/TCSII.2023.3260701
https://openreview.net/forum?id=PxoFut3dWW
https://openreview.net/forum?id=PxoFut3dWW
https://openreview.net/forum?id=PxoFut3dWW

Minjin Tang, Mei Wen, Yasong Cao, Junzhong Shen,
Jianchao Yang, Jiawei Fei, Yang Guo, and Sheng
Liu. 2022. Mentha: Enabling sparse-packing com-
putation on systolic arrays. In Proceedings of the
51st International Conference on Parallel Process-
ing, pages 1-11.

Mart van Baalen, Christos Louizos, Markus Nagel,
Rana Ali Amjad, Ying Wang, Tijmen Blankevoort,
and Max Welling. 2020. Bayesian bits: Unifying
quantization and pruning. In Advances in Neural
Information Processing Systems, volume 33, pages
5741-5752. Curran Associates, Inc.

Tycho F. A. van der Ouderaa, Markus Nagel, Mart Van
Baalen, and Tijmen Blankevoort. 2024. The LLM
surgeon. In The Twelfth International Conference on
Learning Representations.

A Vaswani. 2017. Attention is all you need. Advances
in Neural Information Processing Systems.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi
Chen. 2024. Sheared LLaMA: Accelerating lan-
guage model pre-training via structured pruning. In
The Twelfth International Conference on Learning
Representations.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? arXiv preprint
arXiv:1905.07830.

Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Chris De Sa,
and Zhiru Zhang. 2019. Improving neural network
quantization without retraining using outlier channel
splitting. In International conference on machine
learning, pages 7543-7552. PMLR.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yinggian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

Michael Zhu and Suyog Gupta. 2017. To prune, or not
to prune: exploring the efficacy of pruning for model
compression. arXiv preprint arXiv:1710.01878.

A Other experimental setups

Platforms. We carried out our experiments on
RTX 4090 GPUs. Given that the Tensor Cores
of the RTX 4090 support FP8 computations, our
goal is to demonstrate the computational bene-
fits of leveraging the FP8 format. The specific
experimental environment includes 2x Intel(R)
Xeon(R) Platinum 8358 CPUs @ 2.60GHz, 8x
RTX 4090 GPUs with 24GB each, GCC 7.5.0,
NVIDIA CUDA release 12.1, and Python 3.11.5
with Anaconda 23.9.0. We utilized PyTorch version
2.3.0.dev20240220+cul21, incorporating float8

11

support to take advantage of FP8 (ESM2) com-
puting via Tensor Cores on the RTX 4090.

Target Scenarios. Our focus is on Al-driven
personal computers (PCs), as LLMs demand sub-
stantial computational resources even during in-
ference. The RTX series, being a consumer-level
GPU, is a common accelerator for PCs, and we
hope our work will enhance the performance of
compressed LLM inference on these platforms. All
of our experiments were conducted on RTXs with
the Ada Architecture, utilizing Tensor Cores that
support FP§ GEMM. Given the generic nature of
our method, which compresses the weights of the
model without altering its computational pattern
during inference, it can be applied to other sce-
narios (such as embedded devices) as long as the
hardware supports FP8 or sparse computations.

B Correspondence between la and
sparsity
In Algorithm 1, it was mentioned that different
la values are set according to sparsity. The cor-

responding relationship is shown in the following
table 3.

Pruning Ratio 90% 80% 70% 60%

50%

la -1.5 09 -02 02

0.5

Table 3: Adjust la according to sparsity.

C More experimental results

https://proceedings.neurips.cc/paper_files/paper/2020/file/3f13cf4ddf6fc50c0d39a1d5aeb57dd8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/3f13cf4ddf6fc50c0d39a1d5aeb57dd8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/3f13cf4ddf6fc50c0d39a1d5aeb57dd8-Paper.pdf
https://openreview.net/forum?id=DYIIRgwg2i
https://openreview.net/forum?id=DYIIRgwg2i
https://openreview.net/forum?id=DYIIRgwg2i
https://openreview.net/forum?id=09iOdaeOzp
https://openreview.net/forum?id=09iOdaeOzp
https://openreview.net/forum?id=09iOdaeOzp

Pruning Ratio Method ‘ Latency(s)] ‘ WikiText2] ‘ ARC_c ARC_e WinoGrande PIQA HellaSwag OpenbookQA AverageT
0% Pythia-2.8B | | 12.69 | 3276 59.01 58.17 74.10 59.41 35.00 53.07
10% HWPQ | 4.23 | 13.21 | 32.08 57.66 59.12 73.23 58.42 35.8 52.71
20% HWPQ | 4.33 | 13.83 | 31.23 56.69 57.77 72.63 57.49 34.20 51.66
30% HWPQ | 4.10 | 15.03 | 30.89 54.76 58.88 71.87 56.28 352 51.31
40% HWPQ | 4.57 | 17.45 | 302 53.11 58.88 71.6 54.37 32.6 50.12
50% HWPQ | 3.99 | 21.69 | 29.18 51.94 57.22 70.29 52.14 31.2 48.66

50%(2:4) HWPQ | 3.83 | 233 | 27.28 46.81 56.12 69.83 49.13 29.2 46.39

Table 4: Zero-shot performance of the pruned Pythia-2.8B models. “pruning ratio” refers to the proportion of
parameters removed relative to the original number of parameters. “Latency(s)” indicates represents the time
overhead required for overall model pruning (excluding communication time such as loading to GPU). “Average” is
calculated among six classification datasets..

Pruning Ratio Method \ Latency(s)J \ WikiText2] \ ARC_c ARC_e WinoGrande PIQA HellaSwag OpenbookQA Average?
0% LLaMA2-13B | _ | 8.04 | 48.98 76.94 71.74 80.41 79.57 45.40 67.17
SparseGPT 759.13 9.82 43.60 69.53 70.88 78.35 75.13 44.00 63.58
50% Wanda 146.63 10.03 46.76 72.85 71.03 77.71 76.12 45.60 65.01
HWPQ (ours) 16.60 10.27 45.73 73.74 69.38 78.43 76.29 42.60 64.36
SparseGPT 912.81 13.27 38.65 66.62 68.67 73.83 64.54 41.00 58.88
50%(2:4) Wanda 190.02 15.61 37.71 65.49 66.77 75.41 62.65 39.00 57.83
HWPQ (ours) 16.39 9.42 42.30 75.72 70.40 79.38 77.28 45.20 65.04
0% LLaMA3.1-8B | _ | 7.93 | 5350 81.10 73.56 81.23 78.90 44.80 68.84
SparseGPT 558.57 12.54 43.26 67.34 70.09 76.82 68.90 40.60 61.16
50% Wanda 99.98 11.26 45.73 69.61 69.77 76.88 71.39 43.20 62.76
HWPQ (ours) 9.49 10.96 44.70 68.10 70.24 77.25 70.31 43.82 62.40
SparseGPT 613.13 17.76 33.96 57.24 63.46 69.42 55.22 33.60 52.15
50%(2:4) Wanda 125.64 29.95 29.95 52.15 59.27 67.85 48.69 31.40 48.21
HWPQ (ours) 9.28 15.02 35.27 59.19 65.84 73.17 63.10 35.02 55.26

Table 5: Zero-shot performance of the pruned LLaMA?2-13B and LLaMA3.1-8B. “Pruning Ratio” refers to the
proportion of parameters removed relative to the original number of parameters. “Latency(s)” indicates represents the
time overhead required for overall model pruning (excluding communication time such as loading to GPU). “Average”
is calculated among six classification datasets. Bold indicates the best performance at the same compression rate.

12

	Introduction
	Motivation & Relate Work
	Motivation
	Related Work

	The HWPQ Method
	Contribution-Oriented Weight Metrics
	EWMA Adaption
	2:4 Sparsification

	Intergration of HWPQ into Taichi framework
	Experiments
	Experimental setup
	Evaluation of HWPQ Algorithm
	Evaluation of FP8 transformers

	Conclusion
	Limitations
	Other experimental setups
	Correspondence between la and sparsity
	More experimental results

