
HWPQ: Hessian-free Weight Pruning-Quantization For LLM Compression
And Acceleration

Anonymous ACL submission

Abstract

Large Language Models (LLMs) have achieved001
remarkable success across numerous domains.002
However, the high time complexity of exist-003
ing pruning and quantization methods signif-004
icantly hinders their effective deployment on005
resource-constrained consumer or edge devices.006
In this study, we propose a novel Hessian-free007
Weight Pruning-Quantization (HWPQ) method.008
HWPQ eliminates the need for computation-009
ally intensive Hessian matrix calculations by010
introducing a contribution-based weight met-011
ric, which evaluates the importance of weights012
without relying on second-order derivatives.013
Additionally, we employ the Exponentially014
Weighted Moving Average (EWMA) technique015
to bypass weight sorting, enabling the selec-016
tion of weights that contribute most to LLM017
accuracy and further reducing time complex-018
ity. Our approach is extended to support 2:4019
structured sparsity pruning, facilitating efficient020
execution on modern hardware accelerators.021
Experimental results demonstrate that HWPQ022
significantly enhances the compression perfor-023
mance of LLaMA2. Compared to state-of-024
the-art quantization and pruning frameworks,025
HWPQ achieves average speedups of 5.97×026
(up to 20.75×) in quantization time and 12.29×027
(up to 56.02×) in pruning time, while largely028
preserving model accuracy. Furthermore, we029
observe a 1.50× inference speedup compared030
to the baseline.031

1 Introduction032

Recent years have witnessed an explosive growth033

in the capabilities of Large Language Models034

(LLMs). However, this advancement comes at the035

cost of exponentially growing model sizes, lead-036

ing to substantial monetary and energy costs (Zhao037

et al., 2023). Consequently, there have been grow-038

ing efforts to reduce these costs through model039

compression, with pruning and quantization emerg-040

ing as the two most popular approaches. Pruning041

removes network weights by setting them to zero,042

while quantization reduces the precision of neural 043

network weights during storage and computation. 044

A key finding is that these two widely used meth- 045

ods are not orthogonal and exhibit a convergent 046

trend (van Baalen et al., 2020; Hu et al., 2021; 047

Schaefer et al., 2023). 048

Despite impressive progress, compression re- 049

mains a labor-intensive process. Pruning and 050

quantization are typically performed indepen- 051

dently, and many methods require Recovery Fine- 052

Tuning (RFT) to maintain performance post- 053

compression (van der Ouderaa et al., 2024), ren- 054

dering the entire process computationally expen- 055

sive and difficult to scale. Current mainstream ap- 056

proaches circumvent the need for RFT by leverag- 057

ing Hessian matrix computations (Frantar et al., 058

2022; Frantar and Alistarh, 2022; Fang et al., 059

2023; Sawmya et al., 2024). Although these meth- 060

ods exhibit mathematical elegance, their practi- 061

cal implementation faces significant computational 062

challenges. Specifically, computing second-order 063

derivatives across all network weights generates 064

a massive Hessian matrix, whose dimensionality 065

scales quadratically with the number of parameters, 066

resulting in prohibitive computational complexity. 067

In real-world deployment scenarios, resource limi- 068

tations and stringent time constraints often hinder 069

the effective implementation of quantization and 070

pruning strategies. Moreover, the emergence of 071

advanced GPU architectures highlights the need 072

for structured hardware-aware pruning methodolo- 073

gies that achieve genuine performance acceleration 074

while maintaining computational efficiency (Tang 075

et al., 2022; Xia et al., 2024; Lu et al., 2022; Liu 076

et al., 2017). This underscores the importance of 077

advancing pruning methods for the 2:4 sparse for- 078

mat. 079

In this study, we propose HWPQ, a novel com- 080

pression method designed to circumvent the high 081

computational complexity associated with Hessian 082

matrix and its inverse calculations by developing 083

1

PIQA

HellaswagOpenBookQA

ARC

WinoGrande Lambada

0.0 0.2 0.4 0.6 0.8

Wanda
SparseGPT
HWPQ
Baseline_FP16
HWPQ_FP8

Figure 1: HWPQ achieves better compression in less
time
an alternative algorithm. We anticipate that our084

method will advance future research in domains085

where Hessian matrix computations are critical.086

First, our observations indicate that identifying087

weights with minimal loss contribution depends088

more on their relative importance than on absolute089

values. Consequently, HWPQ replaces Hessian090

matrix computations by constructing a numerically091

preserved sequence as contribution-oriented weight092

metrics, derived from a series of loss values. Addi-093

tionally, we introduce the Exponentially Weighted094

Moving Average (EWMA) method, borrowed from095

the Transmission Control Protocol (TCP), to re-096

place traditional sorting methods, further reduc-097

ing computational complexity. Moreover, we ex-098

tend this approach to support 2:4 structured sparsity099

pruning. By eliminating inverse quantization op-100

erations and incorporating efficient execution ker-101

nels, we achieve a more streamlined and efficient102

computational process. As shown in Figure 1, our103

method demonstrates exceptional compression per-104

formance, achieving state-of-the-art results. The105

key contributions of our work are summarized as106

follows:107

• We propose a computationally efficient weight108

metric that eliminates costly Hessian matrix109

calculations, reducing the time complexity110

from O(n3) to O(n) while preserving model111

accuracy. This advancement achieves signifi-112

cant speedups: 4.88× faster quantization than113

AutoGPTQ, 2.82× faster than AutoAWQ, and114

10.21× faster than SpQR. For model prun-115

ing, our method achieves an average speedup116

of 43.75× over SparseGPT and 12.29× over117

Wanda. When extended to 2:4 sparsity, further118

acceleration is achieved.119

• We develop an innovative mixed pruning-120

quantization approach using FP8 precision,121

dynamically identifying and removing model122

weights based on their impact magnitude.123

This unified framework enables simultaneous124

pruning and quantization, significantly stream-125

lining the compression process. 126

• We implement dequantization-free inference 127

in FP8 precision, optimized for Tensor Cores 128

with 2:4 sparsity support. This optimiza- 129

tion delivers significant performance improve- 130

ments, achieving 1.50× speedup on Attention 131

layers and 1.60× on MLP layers in LLaMA2- 132

7B, while reducing dequantization overhead 133

by over 80 134

2 Motivation & Relate Work 135

2.1 Motivation 136

Post-training compression has become a widely 137

used technique, initially developed and extensively 138

applied in quantization research (Banner et al., 139

2019; Zhao et al., 2019; Nagel et al., 2020). Re- 140

cently, it has been successfully adapted to network 141

pruning, demonstrating promising results (Kwon 142

et al., 2022; Fu et al., 2022; Sun et al., 2023). Com- 143

mon methods include magnitude-based (Gale et al., 144

2019), first-order (Kurtic et al., 2022), and second- 145

order (Sanh et al., 2020) pruning approaches. 146

Among these approaches, Hessian-based meth- 147

ods, which compute the second-order derivatives 148

of weights, have demonstrated exceptional perfor- 149

mance in preserving model accuracy without re- 150

quiring retraining. However, current mainstream 151

approaches still require hundreds of seconds to 152

sparsify a 2.7B model, even on high-performance 153

GPUs. For a 175B Transformer model, processing 154

time increases linearly, reaching hundreds of hours. 155

This substantial time requirement significantly de- 156

lays the deployment of personalized models, high- 157

lighting the challenges of scaling post-training com- 158

pression to extremely large models. The primary 159

bottleneck lies in constructing the Hessian matrix 160

H =

[
∂2E

∂wi∂wj

]
, which has a time complexity of 161

O(n3). Therefore, this work focuses on develop- 162

ing a novel compression approach that bypasses 163

the high computational cost of the Hessian ma- 164

trix and its inverse while closely approximating 165

its accuracy-preserving performance, achieving a 166

balance between runtime efficiency and precision, 167

and enabling scalability to very large models. 168

2.2 Related Work 169

The most fundamental sparsification approach is 170

magnitude-based pruning, which achieves sparsity 171

by setting the smallest weights to zero (Han et al., 172

2

2015; Zhu and Gupta, 2017). Although these meth-173

ods scale well, they often cause significant perfor-174

mance degradation in LLMs (Frantar and Alistarh,175

2023; Harma et al., 2024). To improve sparsifica-176

tion, researchers proposed the Optimal Brain Sur-177

geon (OBS) method (Hassibi et al., 1993), which178

innovatively uses the inverse of the Hessian matrix179

to update unpruned weights, thereby compensat-180

ing for errors caused by weight removal. However,181

OBS faces computational bottlenecks in practical182

applications - calculating and storing the inverse183

Hessian matrix is computationally infeasible for184

models with millions of parameters. To address185

this challenge, recent research has proposed two186

improvement approaches: one approximates the187

inverse Hessian matrix calculation, such as the188

WoodFisher method (Singh and Alistarh, 2020);189

the other performs layerwise pruning, known as Op-190

timal Brain Compression (OBC) (Frantar and Alis-191

tarh, 2022). While these methods perform well on192

medium-scale networks, they struggle with larger193

language models (Frantar et al., 2022).194

GPTQ (Frantar et al., 2022) addresses this195

issue by quantizing weight matrices using a196

grouping scheme and compensating updates to197

all yet-unquantized weights in the next col-198

umn of that group through the Hessian matrix.199

SparseGPT (Frantar and Alistarh, 2023) applies200

the same pruning idea and uses unstructured and201

semi-structured pruning to simplify large language202

models, while Sparse Expansion (Sawmya et al.,203

2024) improves inference efficiency by computing204

a separate Hessian matrix for each input cluster205

to allow specialists to specialize, then using the206

SparseGPT pruning algorithm with that matrix to207

prune the expert weight matrices. Wanda (Sun208

et al., 2024) simplified this idea by using only the209

diagonal of the Hessian.210

Simultaneously, to achieve tangible speed im-211

provements in practical applications, there has been212

a rowing recognition of the need to apply pruning in213

a structured and hardware-compatible manner (San-214

tacroce et al., 2023; Ma et al., 2023a; Li et al.,215

2023; Xia et al., 2024). This approach is typically216

followed by additional training (or fine-tuning) to217

restore any diminished performance. For exam-218

ple, the LLM-pruner (Ma et al., 2023b) eliminates219

specific connection structures within LLMs prior220

to further training. Similarly, the Large Language221

Model Surgeon (van der Ouderaa et al., 2024) in-222

terleaves recovery fine-tuning with pruning.223

3 The HWPQ Method 224

3.1 Contribution-Oriented Weight Metrics 225

Our objective is to identify weights that make min- 226

imal contributions to the loss function, such that 227

their removal would not substantially affect the 228

model’s output. In this regard, our main focus lies 229

in analyzing the relative importance of different 230

weights rather than their absolute values, an aspect 231

that has been largely neglected in previous research. 232

Previous studies have quantified the influence of 233

individual weights on the variation of E by pre- 234

cisely computing their contributions through the 235

Hessian matrix. The supplementary term in the 236

loss function is expressed as follows: 237

L =
1

2

w2
q

H−1
qq

(1) 238

When applied to quantization, the expression 239

becomes: 240

Lq =
1

2

(wq − quant(wq))
2

H−1
qq

(2) 241

A crucial issue arises from the fact that the ma- 242

trix (2XX⊤) is not positive definite, as its determi- 243

nant is zero, meaning it does not possess an inverse. 244

To address this, we introduce a small perturbation 245

term, denoted as: 246

H = 2XX⊤ +
∑
i

diag(2XX⊤)I (3) 247

Where I represents the identity matrix. This 248

ensures that matrix operations can be performed 249

safely. When using PyTorch, numerical methods 250

are used for matrix computation, and due to errors 251

in floating-point calculations, 2XX⊤ can result in 252

matrices with extremely large values, leading to 253

instability. By incorporating these small perturba- 254

tions, we achieve stability in numerical computa- 255

tions with almost zero overhead. 256

However, computing ∆w and L for every weight 257

can be computationally expensive. The time com- 258

plexity of quantization primarily lies in comput- 259

ing the inverse matrix H−1, which typically has 260

a complexity of O(n3). Even with the capabil- 261

ity to compute Hessian matrices for each row 262

in parallel, the total time complexity remains at 263

O(n3) +O((
n

m
)3) = O(n3). 264

To reduce the overall time complexity, the key 265

is to avoid the computation of H and H−1. Our 266

3

goal is not to obtain the exact value of L for each267

weight at this stage, but rather to construct a nu-268

merically stable sequence as contribution-oriented269

weight metrics and to derive numerical characteris-270

tics among a series of L values (such as magnitudes,271

variance, and averages).272

Denoting
∑

x2i as S, in Formula 3 that we273

constructed, Hqq = 2(x2q +
1

n
S). Noticed that274

H∗
qq is independent of xq, H∗

qq can actually be275

written as det

(
2X0X0

⊤ +
2S

n
I

)
, where X0 is276

the original X without the qth element. Since277

H−1
qq =

H∗
qq

det(H)
, and278

H∗
qq = 2(

2S

n
)n−2(

S

n
+ S − x2q)

det(H) = 2(
2S

n
)n−1(

S

n
+ S)

(4)279

Thus, we can express H−1
qq as:280

H−1
qq =

S

n
+ S − x2q

2S

n
(
S

n
+ S)

=
nS + n2(S − x2q)

2S(S + nS)
(5)281

Then, we can simplify further:282

H−1
qq

1− x2q/S
=

nS + n2(S − x2q)

2S(S + nS)
· S

S − x2q

=
n

2(1 + n)
· 1

S − x2q
+

n2

2S(1 + n)

(6)283

In LLMs, n is sufficiently large(e.g., 4096 in284

LLaMA2-7B), ensuring S >> x2q . Therefore, we285

can approximate S − x2q ∼ S, leading to:286

H−1
qq

1− x2q/S
∼ n2 + n

2S(1 + n)
= C (7)287

Now we observe that
H−1

qq

1− x2q/S
approaches a288

constant. Since we are concerned with the com-289

parative magnitudes of values rather than the exact290

value of each L, we replace H−1
qq with (1− x2q/S)291

to avoid computations involving the Hessian matrix.292

Thus, we compute L as follows:293

L =
1

2

w2
q

1− x2q/S
(8)294

Where S represents the sum of all x2i for every295

xi in X .296

In this formulation, the Hessian matrix is no 297

longer needed. To determine which weights should 298

be removed, we can simply sort the L values of 299

all weights and eliminate those with the smallest 300

L values. As we demonstrated earlier, smaller L 301

values indicate that the removal of those weights 302

will have a minor effect on the loss function. The 303

time complexity of computing all L values is O(n), 304

while the cost of the most common sorting algo- 305

rithms is O(n log n), thus reducing the overall time 306

complexity to O(n log n). It is worth noting that 307

we perform this operation simultaneously across 308

different rows, where n represents the number of 309

weights in a row. 310

3.2 EWMA Adaption 311

To further reduce the time complexity, our next 312

objective is to find an alternative method to replace 313

sorting, allowing us to assess where a particular L 314

value stands among all L values. 315

The Exponentially Weighted Moving Average 316

(EWMA) is a technique used for estimating the 317

mean and variance of a sequence of data points. 318

In the context of Transmission Control Protocol 319

(TCP), it is employed to estimate the round-trip 320

time (RTT) of a connection (Paxson et al., 2011). 321

In the practical implementation of TCP, the 322

EWMA method exhibits strong adaptability by dy- 323

namically estimating the mean and L1-mean norm 324

error of the recent RTT over time. We apply this 325

method to evaluate L. For each row, we treat the 326

weights as a sequential list. 327

First, after calculating S as outlined in Step 1 328

of Figure 2 (Algorithm 1, line 1), we initialize a 329

tensor state for each weight in a row. This tensor 330

state consists of the following components: the dy- 331

namically updated S, the estimated mean (denoted 332

as est), and the L1 mean norm error (denoted as 333

dev). Subsequently, following Step 2 of Figure 2 334

(Algorithm 1, line 4), we sequentially compute a 335

series of Li values. If Li satisfies the condition 336

L < est − la × dev (Algorithm 1, line 8), we 337

consider its contribution to the loss function to be 338

minimal and prune it; otherwise, we symmetrically 339

quantize it to FP8 format, as shown in Step 3 of 340

Figure 2 (Algorithm 1, lines 9 and 12). 341

Next, we update the tensor state according to the 342

procedure outlined in Table 1, as illustrated in Step 343

4 of Figure 2 (Algorithm 1, lines 10, 13, 16, and 344

17), until all weights in the row are compressed. 345

Throughout this process, the overall time complex- 346

ity is reduced to O(n), demonstrating that we can 347

4

State Updating Method Initial Value

est ← (1− α)est+αLi L0

dev ← (1− β)dev + β |est − Li | 0

S
← S − x2i (if pruned) ∑n−1

i=0 (x
2
i)← S + (v2i − x2i) (if quanted)

Table 1: The method for tensor state update. Parameter
α, β and la can be tuned for different level of sparsity.
vi is the quantized value of xi.

parallel computing
calculation process

data update

Linear weight

ro
w

s p
ro

ce
ss

ed
 in

 p
ar

al
le

l

𝑆𝑆 = �
𝑖𝑖=0

𝑛𝑛−1

𝑤𝑤𝑖𝑖2

S est dev

tensor state table

weights in a row as a sequential

preprocess1

Puring or Quantization3

Determining importance2

𝐿𝐿i < est - la * dev

Dataset

𝐿𝐿𝑖𝑖 =
1
2

𝑤𝑤𝑖𝑖2

1 − 𝑥𝑥𝑖𝑖2/𝑆𝑆

state update4

Figure 2: Our design of novel hybrid pruning and quan-
tization method, using EWMA criteria.
evaluate the contribution of each weight to the loss348

function and quantize the model to sparse FP8 in349

linear time.350

The Full Algorithm. Finally, we present the full351

pseudocode for HWPQ in Algorithm 1, including352

the optimizations discussed above.353

3.3 2:4 Sparsification354

To achieve efficient computation of structured355

sparse matrices on dedicated accelerators (Tang356

et al., 2022; Liu et al., 2023), our pruning method357

supports hardware-friendly structured sparsity. In358

implementation, we adopt fine-grained selection359

to support the 2:4 structured sparsity pattern. By360

leveraging Tensor Cores’ native support for this pat-361

tern, we partition each row of weights into groups362

of four and identify the two smallest weights in363

each group through five-way comparison on aver-364

age. This approach maintains the time complexity365

of pruning and quantization at O(n) while achiev-366

ing weight structured sparsity without introducing367

additional overhead, enabling a 2× improvement368

in inference throughput.369

4 Intergration of HWPQ into Taichi370

framework371

HWPQ significantly reduces LLMs size. How-372

ever, during inference, many frameworks acquire373

de-quantized weights by multiplying a scaling fac-374

tor (floating-point) with quantized integers (Lin375

Algorithm 1 The HWPQ algorithm. We prune the
matrix W to sp% sparsity
Input: Wnrow×ncol, X1×n, sp
Parameter: α, β, la
Output: Cnrow×ncol

1: Let S =
∑n−1

i=0 (x
2
i), dev = 0

2: Parallel calculation for each row
3: for i = 0, 1, ..., n− 1 do
4: Li =

1
2

w2
i

1−x2
i /S

5: if i == 0 then
6: est = L0

7: end if
8: if Li < est− la× dev then
9: wi = 0 //Puring

10: S = S − w2
i

11: else
12: vi = FP8(wi) //Quantization
13: S = S + (v2i − w2

i)
14: wi = vi
15: end if
16: est = (1− α)est+ αLi

17: dev = (1− β)dev + β |est− Li|
18: ci = wi

19: end for
20: return Cnrow×ncol

et al., 2023; Lee et al., 2023). This process in- 376

evitably leads to extra time and memory overhead. 377

To solve this problem, we improved the oper- 378

ator on the Taichi framework. During inference 379

procedure, the input activation is quantized into 380

FP8. In the Attention mechanism, the linear layers 381

generating the query, key, and value, as well as the 382

MLP, are replaced with FP8 precision, while other 383

components retain FP16 precision. Within Tensor 384

Cores, FP8 matrix operations and accumulations 385

are performed with FP16 bit-width. The computa- 386

tions following the linear layers, often Root Mean 387

Square Normalization (RMSNorm), are not linear 388

layers, and FP16 can conveniently utilize existing 389

operators. Finally, when the resultant output is fed 390

into the subsequent linear layer, we re-quantize it 391

to FP8. 392

Since the numerical format we use for quan- 393

tization is fully consistent with the one used in 394

hardware computations, we can directly utilize the 395

quantized weights. In other words, we can deliver 396

the weights directly to GPUs without transforming 397

them again. This avoids redundant dequantization 398

and enhances performance by leveraging the high 399

throughput of FP8 computations on GPUs. 400

5 Experiments 401

5.1 Experimental setup 402

Models. We evaluate two model families: Pythia 403

and LLaMA(including LLaMA2 and LLaMA3). 404

Pythia is a collection of models focused on LLM 405

interpretability, developed as a variant of GPT- 406

5

attn.q attn.k attn.v attn.o mlp.gate mlp.up mlp.down average
Layer

0.0

0.5

1.0

1.5

2.0

2.5

3.0
La

te
nc

y
(s

)
AutoGPTQ AutoAWQ SpQR HWPQ 5.56

Figure 3: Comparative time analysis of compression across attention and perception layers in LLaMA2-7B model
on a single RTX 4090 GPU

NeoX. LLaMA represents a series of open-source407

pre-trained models, with LLaMA3 being the latest408

iteration.409

Datasets. We evaluate pruning and quantiza-410

tion using zero-shot perplexity (PPL) on Wiki-411

Text2 (Merity et al., 2016). For task-agnostic412

performance, we adopt LLaMA’s evaluation ap-413

proach, testing on OpenCompass (Contributors,414

2023) and Lm-evaluation-harness (Gao et al., 2024)415

benchmarks. These benchmarks offer a com-416

prehensive assessment for LLMs. The datasets417

encompassed in this assessment are as follows:418

ARC(Easy and Challenge) (Boratko et al., 2018),419

WinoGrande (Sakaguchi et al., 2021), PIQA (Bisk420

et al., 2020), HellaSwag (Zellers et al., 2019) and421

OpenbookQA (Mihaylov et al., 2018).422

5.2 Evaluation of HWPQ Algorithm423

Efficiency: The HWPQ algorithm provides a sig-424

nificant speedup. Our performance improvements425

stem from two primary factors. First, we have made426

an algorithmic advancement. The O(n) algorithm427

offers remarkable scalability for pruning and quan-428

tization LLMs, allowing us to efficiently evaluate429

the importance of each weight without substan-430

tially increasing time consumption as the model431

size grows. Second, we have developed customized432

GPU operators using Taichi. Because the parame-433

ter matrix’s rows are independent, we fully exploit434

row-wise vector parallelism to enhance pruning435

and quantization efficiency on GPUs.436

Our experiments systematically demonstrate437

that compared with the state-of-the-art quanti-438

zation methods such as AutoGPTQ, AutoAWQ,439

and SpQR (detailed in Figure 3), the average440

speedup reaches 4.88× (up to 10.49×), 2.82× (up441

to 4.23×), and 10.21× (up to 20.75×), respec-442

tively. When compared to pruning methods like443

SparseGPT and Wanda (detailed in Table 2), the av-444

erage speedups reach 43.75× and 12.29×, respec-445

tively. The primary overhead in our approach stems446

from the just-in-time (JIT) compilation of kernel 447

functions, which introduces a cold-start delay oc- 448

curring only during the initial pruning-quantization 449

phase. This characteristic makes our algorithm par- 450

ticularly advantageous for LLMs, where the con- 451

tinuous growth in model size necessitates more 452

efficient methodologies for assessing weight con- 453

tributions to final outputs. The HWPQ method, 454

with its O(n) pruning-quantization time complex- 455

ity, effectively addresses this challenge, offering a 456

scalable solution for modern LLMs. 457

Accuracy: Zero-shot performance in 458

LLaMA2-7B. We conducted comprehensive 459

fine-grained pruning experiments on the LLaMA2- 460

7B model, systematically evaluating pruning 461

ratios ranging from 10% to 50%, including 462

structured 2:4 structured pruning configurations. 463

Model performance was rigorously assessed 464

using the Lm-evaluation-harness framework. As 465

detailed in Table 2, our experimental results 466

demonstrate that a model with a 20% pruning 467

ratio successfully maintains 99.4% of the baseline 468

model’s performance without requiring any 469

post-training. Remarkably, even at a 50% pruning 470

ratio, the model retains 91.57% of its original 471

performance. A comprehensive comparative anal- 472

ysis demonstrates that although our method may 473

exhibit slightly inferior performance compared 474

to well-established approaches such as Wanda 475

and SparseGPT (which rely on computationally 476

intensive Hessian matrix calculations) under 477

certain pruning ratios, the performance gap 478

remains negligible. More importantly, our method 479

consistently achieves significantly faster pruning 480

speeds across all pruning ratios, demonstrating 481

its superior computational efficiency. These 482

results validate the efficacy of HWPQ in enabling 483

efficient model compression without the need for 484

training data, delivering exceptional results in 485

dramatically less time. To further substantiate the 486

generalizability of our approach, we replicated the 487

6

Pruning Ratio Method Latency(s)↓ WikiText2↓ ARC_c ARC_e WinoGrande PIQA HellaSwag OpenbookQA Average↑

0% LLaMA2-7B _ 9.36 43.51 71.54 70.48 78.94 76.13 44.00 64.10

10%

magnitude 2.43 9.54 43.94 71.88 70.63 78.23 76.04 45.20 64.32
SparseGPT 371.83 10.44 43.86 71.42 70.24 77.52 76.19 42.40 63.60

Wanda 103.32 9.38 44.11 71.54 70.63 76.12 78.78 45.00 64.36
HWPQ (ours) 9.55 9.88 44.02 71.62 70.53 76.73 78.80 44.31 64.33

20%

magnitude 2.30 10.00 44.54 70.24 69.69 78.40 75.55 44.20 63.77
SparseGPT 371.34 9.56 43.60 70.79 69.53 78.29 76.12 45.20 63.92

Wanda 103.51 9.57 44.03 71.42 69.29 78.24 76.04 44.80 63.97
HWPQ (ours) 9.37 9.67 43.42 70.33 69.37 78.31 76.01 44.88 63.72

30%

magnitude 2.76 11.40 42.83 69.57 68.90 77.58 73.73 42.20 62.46
SparseGPT 357.03 9.86 43.68 70.07 69.13 78.07 75.17 44.20 63.38

Wanda 100.04 9.90 44.11 70.37 69.29 78.29 75.30 45.00 63.72
HWPQ (ours) 9.12 10.02 43.91 70.01 69.11 78.04 75.22 45.01 63.55

40%

magnitude 2.28 15.49 39.25 64.01 65.66 75.63 69.83 40.20 59.09
SparseGPT 357.03 9.39 43.83 69.69 69.13 78.84 73.15 45.40 63.34

Wanda 100.04 10.55 42.75 69.14 68.74 77.91 73.55 43.00 62.51
HWPQ (ours) 8.62 10.34 42.84 69.01 68.09 78.01 73.91 42.69 62.43

50%

magnitude 2.29 44.37 36.77 53.78 59.74 70.73 60.88 36.20 53.01
SparseGPT 361.29 7.91 39.33 66.65 66.61 76.44 68.84 39.40 59.54

Wanda 108.96 8.01 39.59 64.85 65.90 76.61 69.96 38.40 59.21
HWPQ (ours) 7.85 8.23 38.40 67.32 65.27 75.14 67.18 38.90 58.70

50%(2:4)

magnitude 14.99 120.90 30.12 48.86 59.58 68.77 56.30 34.01 49.60
SparseGPT 410.10 17.30 32.34 53.57 63.93 69.21 55.64 34.80 51.58

Wanda 114.26 20.49 30.55 53.45 62.19 70.35 56.17 35.40 51.35
HWPQ (ours) 7.73 18.21 32.42 56.48 64.01 71.00 61.72 34.60 53.37

Table 2: Zero-shot performance of the pruned LLaMA2-7B. “Pruning Ratio” refers to the proportion of parameters
removed relative to the original number of parameters. “Latency(s)” indicates represents the time overhead required
for overall model pruning (excluding communication time such as loading to GPU). “Average” is calculated among
six classification datasets. Bold indicates the best performance at the same compression rate; However, note that for
Latency(s), it represents the best performance excluding the cost associated with magnitude.

Figure 4: Statistical magnitude detection of L with EWMA method in LLaMA2-7B MLP blocks. x axis presents
the sequence number of each weight, and y axis presents the numerical values. Ideal algorithms should show est
approaches real mean and dev approaches real dev.
experiments on two additional model architectures:488

Pythia-2.8B and LLaMA3.1-8B. The consistent489

performance outcomes across these diverse models490

provide compelling evidence for the effectiveness491

and universal applicability of the HWPQ method492

in various model architectures.493

Reliability: HWPQ adapts to weight changes494

and approaches global expectations. In Figure 4,495

we demonstrate how our HWPQ method consis-496

tently and accurately predicts the mean and varia-497

tions of weights. As the weight sequence length-498

ens, HWPQ exhibits improved responsiveness and499

faster convergence. By adjusting the smoothing fac-500

tors (α, β, and la), we can fine-tune the algorithm’s501

responsiveness and stability to align with specific502

network characteristics. This capability enables us503

to determine whether the current row weight signif-504

icantly impacts the final output, thereby deciding505

whether to prune or quantize it. 506

The data presented in Figure 4, derived from a 507

layer of LLaMA2-7B, indicate that we can con- 508

sistently approach the global weight mean shortly 509

after an initial startup period. For the results in Fig- 510

ure 4, we set α = 0.125, β = 0.125, and la = 4, 511

which is consistent with RFC 6298 (Paxson et al., 512

2011). This configuration remains robust even as 513

the parameters undergo significant changes, with 514

fluctuations staying relatively small. Our predic- 515

tions consistently vary between the global variance 516

and the global L1-mean norm, showing a pattern 517

similar to the predicted mean. The experiments also 518

show that the method maintains its effectiveness 519

as the model weight length increases, showcasing 520

high scalability and validating the feasibility of our 521

introduced EWMA approach as a viable alternative 522

to traditional sorting methods. We also conducted 523

7

0.5 0.6 0.7 0.8 0.9 nop
pruning level

20

25

30

35
sc

or
e

race-high

0.5 0.6 0.7 0.8 0.9 nop
pruning level

0.5 0.6 0.7 0.8 0.9 nop
pruning level

0.5 0.6 0.7 0.8 0.9 nop
pruning level

20

25

30

35
ceval

40

45

50

55
siqa

20

25

30

35
race-middle

float16
fp8
original

Figure 5: An evaluation using OpenCompass on the wikitext2 dataset with LLaMA2-7B at various sparsity levels
shows that FP8 operators have a negligible impact on inference accuracy compared to FP16. Similar results were
observed with Pythia-2.8B.

Triton FP16 Triton FP8
(a) Attention layer latency

0

20

40

60

La
te

nc
y

(m
s)

in_t
de_t
re_t

Triton FP16 Triton FP8
(b) MLP block latency

0

1

2
La

te
nc

y
(m

s)

in_t
de_t
re_t

attn attn_qkv mlp
(c) Inference on basic Attention layer

0
30
60
90

120
150
180

La
te

nc
y

(m
s)

FP16
FP8

sdpa sdpa_qkv mlp
(d) Inference on SDPA Attention layer

0

30

60

90

120

150

La
te

nc
y

(m
s)

FP16
FP8

Figure 6: (a, b) In well-optimized frameworks, dequantization constitutes the majority of the time consumed in
processing a linear layer. where in_t, de_t, and re_t represent inference time, dequantization time, and requantization
time respectively. (c, d) FP8 demonstrates significant potential for acceleration.
the same experiments on the Pythia-2.8B model,524

achieving equally strong performance and further525

validating the generalizability of HWPQ.526

5.3 Evaluation of FP8 transformers527

Accuracy: Minimal impact when substituting528

linear layers with FP8 precision. In Figure 5, we529

present a comparative analysis of the evaluation530

scores for the LLaMA2-7B model, utilizing FP8531

linear layers at varying sparsity levels, against the532

scores achieved by the original FP16 model. Our533

findings indicate that the evaluation scores between534

the FP8 and FP16 precision models are generally535

comparable. This similarity in performance un-536

derscores the potential for inference acceleration537

through the adoption of FP8 precision in linear lay-538

ers. Our approach demonstrates not only consistent539

accuracy with LLaMA2 but also exhibits strong540

performance robustness on Pythia, particularly for541

certain datasets.542

Efficiency: The adoption of FP8 operators sig-543

nificantly reduces latency in linear blocks, with544

requantization introducing only minimal over-545

head. The advantages of employing FP8 over FP16546

for linear layer computations are clearly demon-547

strated. On Tensor Cores, data can be processed in548

FP8 and accumulated in FP16, producing a result549

tensor in FP16 format. Although requantizing this550

result tensor back to FP8 for the next layer may551

introduce slight precision loss and additional over-552

head, our experiments reveal that even basic trun-553

cation quantization to FP8 maintains acceptable ac-554

curacy levels. The requantization overhead consti-555

tutes merely 10% of the total processing time. This556

is a notable improvement over traditional methods, 557

where dequantization can consume over 50% of 558

the total time, as illustrated in Figure 6 (a) and (b). 559

Figure 6 compares cuBLAS FP8 and FP16 la- 560

tency in PyTorch. In the original attention net- 561

work (Vaswani, 2017), the query, key, and value 562

computations achieve a 2.53× speedup, while the 563

MLP block achieves a 1.77× speedup. Similarly, 564

in scaled dot-product attention (SDPA), we achieve 565

2.76× and 2.13× speedups, respectively. These 566

results highlight the efficiency gains achieved with 567

FP8, underscoring its potential for accelerating 568

deep learning computations while maintaining ac- 569

curacy. 570

6 Conclusion 571

In this paper, we propose Hessian-free Weight 572

Pruning-Quantization method, a hardware-friendly 573

approach for low-bit weight-only quantization of 574

LLMs. The core innovation of our study is the 575

development of a novel Hessian-free LLM prun- 576

ing and quantization method, which significantly 577

reduces time complexity from O(n3) to O(n) com- 578

pared to mainstream algorithms. This theoretical 579

breakthrough ensures that our method consistently 580

outperforms existing approaches in terms of both 581

computational efficiency and scalability. Built on a 582

rigorous mathematical foundation, HWPQ demon- 583

strates exceptional effectiveness and relevance, par- 584

ticularly as the scale of future LLMs continues to 585

expand. By significantly reducing computational 586

resource demands and energy consumption, our 587

method contributes to a more sustainable future for 588

high-performance computing (HPC). 589

8

7 Limitations590

Although this study has achieved promising re-591

sults and made significant contributions to the field,592

several limitations of our approach need to be fur-593

ther addressed. Firstly, the performance of the594

method may be constrained by various external595

factors, including but not limited to hardware con-596

figurations, software dependencies, and runtime en-597

vironmental conditions, which could significantly598

impact the stability and efficiency of the method599

in practical applications. Secondly, while our ap-600

proach has optimized memory usage compared to601

existing methods, the improvement is limited. Tak-602

ing the LLaMA2-7B model as an example, our603

method requires approximately 20 GB of mem-604

ory, which is slightly lower than the 22.79 GB605

required by Wanda and the 30.82 GB required by606

SparseGPT. However, further optimizing memory607

consumption to support the deployment of larger608

models on resource-constrained devices remains609

a key focus for our future research. Additionally,610

although FP8 operators in inference and optimiza-611

tions for 2:4 sparse tensors theoretically offer sig-612

nificant acceleration potential, these aspects were613

not the core focus of this study. As a result, we have614

not fully exploited the acceleration capabilities of615

the new architecture, leaving room for potential616

technological breakthroughs in future research.617

This study addresses critical challenges in large618

language model (LLM) compression, aiming to619

facilitate broader adoption and practical implemen-620

tation of LLM technologies. In light of growing621

concerns regarding ethical implications associated622

with LLMs, particularly the potential presence of623

latent biases embedded within these models, we624

have conducted comprehensive investigations to625

ensure the integrity of our proposed methodology.626

Our findings demonstrate that the developed com-627

pression approach not only maintains model per-628

formance but also adheres to ethical standards by629

preventing the amplification of existing biases or630

introduction of new discriminatory patterns.631

References632

Ron Banner, Yury Nahshan, and Daniel Soudry. 2019.633
Post training 4-bit quantization of convolutional net-634
works for rapid-deployment. Advances in Neural635
Information Processing Systems, 32.636

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,637
et al. 2020. Piqa: Reasoning about physical com-638
monsense in natural language. In Proceedings of the639

AAAI conference on artificial intelligence, volume 34, 640
pages 7432–7439. 641

Michael Boratko, Harshit Padigela, Divyendra Mikki- 642
lineni, Pritish Yuvraj, Rajarshi Das, Andrew McCal- 643
lum, Maria Chang, Achille Fokoue-Nkoutche, Pa- 644
van Kapanipathi, Nicholas Mattei, et al. 2018. A 645
systematic classification of knowledge, reasoning, 646
and context within the arc dataset. arXiv preprint 647
arXiv:1806.00358. 648

OpenCompass Contributors. 2023. Opencompass: 649
A universal evaluation platform for foundation 650
models. https://github.com/open-compass/ 651
opencompass. 652

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi 653
Mi, and Xinchao Wang. 2023. Depgraph: Towards 654
any structural pruning. The IEEE/CVF Conference 655
on Computer Vision and Pattern Recognition. 656

Elias Frantar and Dan Alistarh. 2022. Optimal brain 657
compression: A framework for accurate post-training 658
quantization and pruning. Advances in Neural Infor- 659
mation Processing Systems, 35:4475–4488. 660

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas- 661
sive language models can be accurately pruned in 662
one-shot. In International Conference on Machine 663
Learning, pages 10323–10337. PMLR. 664

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and 665
Dan Alistarh. 2022. Gptq: Accurate post-training 666
quantization for generative pre-trained transformers. 667
ArXiv, abs/2210.17323. 668

Yonggan Fu, Haichuan Yang, Jiayi Yuan, Meng Li, 669
Cheng Wan, Raghuraman Krishnamoorthi, Vikas 670
Chandra, and Yingyan Lin. 2022. Depthshrinker: a 671
new compression paradigm towards boosting real- 672
hardware efficiency of compact neural networks. 673
In International Conference on Machine Learning, 674
pages 6849–6862. PMLR. 675

Trevor Gale, Erich Elsen, and Sara Hooker. 2019. The 676
state of sparsity in deep neural networks.(2019). 677
arXiv preprint cs.LG/1902.09574. 678

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, 679
Sid Black, Anthony DiPofi, Charles Foster, Laurence 680
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, 681
Kyle McDonell, Niklas Muennighoff, Chris Ociepa, 682
Jason Phang, Laria Reynolds, Hailey Schoelkopf, 683
Aviya Skowron, Lintang Sutawika, Eric Tang, An- 684
ish Thite, Ben Wang, Kevin Wang, and Andy Zou. 685
2024. A framework for few-shot language model 686
evaluation. 687

Song Han, Huizi Mao, and William J Dally. 2015. Deep 688
compression: Compressing deep neural networks 689
with pruning, trained quantization and huffman cod- 690
ing. arXiv preprint arXiv:1510.00149. 691

Simla Burcu Harma, Ayan Chakraborty, Elizaveta 692
Kostenok, Danila Mishin, Dongho Ha, Babak Falsafi, 693

9

https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2210.17323
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602

Martin Jaggi, Ming Liu, Yunho Oh, Suvinay Sub-694
ramanian, et al. 2024. Effective interplay between695
sparsity and quantization: From theory to practice.696
arXiv preprint arXiv:2405.20935.697

Babak Hassibi, David G Stork, and Gregory J Wolff.698
1993. Optimal brain surgeon and general network699
pruning. In IEEE international conference on neural700
networks, pages 293–299. IEEE.701

Peng Hu, Xi Peng, Hongyuan Zhu, Mohamed M. Sabry702
Aly, and Jie Lin. 2021. Opq: Compressing deep703
neural networks with one-shot pruning-quantization.704
In Proceedings of the AAAI Conference on Artificial705
Intelligence, volume 35(9), pages 7780–7788.706

Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Fran-707
tar, Mark Kurtz, Benjamin Fineran, Michael Goin,708
and Dan Alistarh. 2022. The optimal bert surgeon:709
Scalable and accurate second-order pruning for large710
language models. arXiv preprint arXiv:2203.07259.711

Woosuk Kwon, Sehoon Kim, Michael W Mahoney,712
Joseph Hassoun, Kurt Keutzer, and Amir Gholami.713
2022. A fast post-training pruning framework for714
transformers. Advances in Neural Information Pro-715
cessing Systems, 35:24101–24116.716

Changhun Lee, Jungyu Jin, Taesu Kim, Hyungjun717
Kim, and Eunhyeok Park. 2023. Owq: Lessons718
learned from activation outliers for weight quanti-719
zation in large language models. arXiv preprint720
arXiv:2306.02272.721

Yixiao Li, Yifan Yu, Qingru Zhang, Chen Liang,722
Pengcheng He, Weizhu Chen, and Tuo Zhao. 2023.723
Losparse: Structured compression of large language724
models based on low-rank and sparse approximation.725
In International Conference on Machine Learning,726
pages 20336–20350. PMLR.727

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang,728
Xingyu Dang, and Song Han. 2023. Awq: Activation-729
aware weight quantization for llm compression and730
acceleration. ArXiv, abs/2306.00978.731

Zhiqiang Liu, Yong Dou, Jingfei Jiang, Jinwei Xu,732
Shijie Li, Yongmei Zhou, and Yingnan Xu. 2017.733
Throughput-optimized fpga accelerator for deep con-734
volutional neural networks. ACM Transactions on735
Reconfigurable Technology and Systems (TRETS),736
10(3):1–23.737

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang738
Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang,739
Yuandong Tian, Christopher Re, et al. 2023. Deja740
vu: Contextual sparsity for efficient llms at infer-741
ence time. In International Conference on Machine742
Learning, pages 22137–22176. PMLR.743

Kai Lu, Yaohua Wang, Yang Guo, Chun Huang, Sheng744
Liu, Ruibo Wang, Jianbin Fang, Tao Tang, Zhaoyun745
Chen, Biwei Liu, et al. 2022. Mt-3000: a hetero-746
geneous multi-zone processor for hpc. CCF Trans-747
actions on High Performance Computing, 4(2):150–748
164.749

X Ma, G Fang, and X Wang. 2023a. On the structural 750
pruning of large language models. NeurIPS, Llm- 751
pruner. 752

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023b. 753
Llm-pruner: On the structural pruning of large lan- 754
guage models. Advances in neural information pro- 755
cessing systems, 36:21702–21720. 756

Stephen Merity, Caiming Xiong, James Bradbury, and 757
Richard Socher. 2016. Pointer sentinel mixture mod- 758
els. arXiv preprint arXiv:1609.07843. 759

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish 760
Sabharwal. 2018. Can a suit of armor conduct elec- 761
tricity? a new dataset for open book question answer- 762
ing. arXiv preprint arXiv:1809.02789. 763

Markus Nagel, Rana Ali Amjad, Mart Van Baalen, 764
Christos Louizos, and Tijmen Blankevoort. 2020. Up 765
or down? adaptive rounding for post-training quan- 766
tization. In International Conference on Machine 767
Learning, pages 7197–7206. PMLR. 768

Vern Paxson, Mark Allman, Jerry Chu, and Matt Sar- 769
gent. 2011. Rfc6298: Computing tcp’s retransmis- 770
sion timer. Technical report. 771

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat- 772
ula, and Yejin Choi. 2021. Winogrande: An adver- 773
sarial winograd schema challenge at scale. Commu- 774
nications of the ACM, 64(9):99–106. 775

Victor Sanh, Thomas Wolf, and Alexander Rush. 2020. 776
Movement pruning: Adaptive sparsity by fine-tuning. 777
Advances in neural information processing systems, 778
33:20378–20389. 779

Michael Santacroce, Zixin Wen, Yelong Shen, and 780
Yuanzhi Li. 2023. What matters in the structured 781
pruning of generative language models? arXiv 782
preprint arXiv:2302.03773. 783

Shashata Sawmya, Linghao Kong, Ilia Markov, Dan 784
Alistarh, and Nir Shavit. 2024. Sparse expan- 785
sion and neuronal disentanglement. arXiv preprint 786
arXiv:2405.15756. 787

Clemens JS Schaefer, Pooria Taheri, Mark Horeni, and 788
Siddharth Joshi. 2023. The hardware impact of quan- 789
tization and pruning for weights in spiking neural 790
networks. IEEE Transactions on Circuits and Sys- 791
tems II: Express Briefs, 70(5):1789–1793. 792

Sidak Pal Singh and Dan Alistarh. 2020. Woodfisher: 793
Efficient second-order approximation for neural net- 794
work compression. Advances in Neural Information 795
Processing Systems, 33:18098–18109. 796

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico 797
Kolter. 2023. A simple and effective pruning ap- 798
proach for large language models. arXiv preprint 799
arXiv:2306.11695. 800

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. 801
2024. A simple and effective pruning approach for 802
large language models. In The Twelfth International 803
Conference on Learning Representations. 804

10

https://ojs.aaai.org/index.php/AAAI/article/view/16950
https://ojs.aaai.org/index.php/AAAI/article/view/16950
https://ojs.aaai.org/index.php/AAAI/article/view/16950
https://arxiv.org/abs/2306.00978
https://arxiv.org/abs/2306.00978
https://arxiv.org/abs/2306.00978
https://arxiv.org/abs/2306.00978
https://arxiv.org/abs/2306.00978
https://www.rfc-editor.org/rfc/rfc6298
https://www.rfc-editor.org/rfc/rfc6298
https://www.rfc-editor.org/rfc/rfc6298
https://doi.org/10.1109/TCSII.2023.3260701
https://doi.org/10.1109/TCSII.2023.3260701
https://doi.org/10.1109/TCSII.2023.3260701
https://doi.org/10.1109/TCSII.2023.3260701
https://doi.org/10.1109/TCSII.2023.3260701
https://openreview.net/forum?id=PxoFut3dWW
https://openreview.net/forum?id=PxoFut3dWW
https://openreview.net/forum?id=PxoFut3dWW

Minjin Tang, Mei Wen, Yasong Cao, Junzhong Shen,805
Jianchao Yang, Jiawei Fei, Yang Guo, and Sheng806
Liu. 2022. Mentha: Enabling sparse-packing com-807
putation on systolic arrays. In Proceedings of the808
51st International Conference on Parallel Process-809
ing, pages 1–11.810

Mart van Baalen, Christos Louizos, Markus Nagel,811
Rana Ali Amjad, Ying Wang, Tijmen Blankevoort,812
and Max Welling. 2020. Bayesian bits: Unifying813
quantization and pruning. In Advances in Neural814
Information Processing Systems, volume 33, pages815
5741–5752. Curran Associates, Inc.816

Tycho F. A. van der Ouderaa, Markus Nagel, Mart Van817
Baalen, and Tijmen Blankevoort. 2024. The LLM818
surgeon. In The Twelfth International Conference on819
Learning Representations.820

A Vaswani. 2017. Attention is all you need. Advances821
in Neural Information Processing Systems.822

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi823
Chen. 2024. Sheared LLaMA: Accelerating lan-824
guage model pre-training via structured pruning. In825
The Twelfth International Conference on Learning826
Representations.827

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali828
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a829
machine really finish your sentence? arXiv preprint830
arXiv:1905.07830.831

Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Chris De Sa,832
and Zhiru Zhang. 2019. Improving neural network833
quantization without retraining using outlier channel834
splitting. In International conference on machine835
learning, pages 7543–7552. PMLR.836

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,837
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen838
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A839
survey of large language models. arXiv preprint840
arXiv:2303.18223.841

Michael Zhu and Suyog Gupta. 2017. To prune, or not842
to prune: exploring the efficacy of pruning for model843
compression. arXiv preprint arXiv:1710.01878.844

A Other experimental setups845

Platforms. We carried out our experiments on846

RTX 4090 GPUs. Given that the Tensor Cores847

of the RTX 4090 support FP8 computations, our848

goal is to demonstrate the computational bene-849

fits of leveraging the FP8 format. The specific850

experimental environment includes 2× Intel(R)851

Xeon(R) Platinum 8358 CPUs @ 2.60GHz, 8×852

RTX 4090 GPUs with 24GB each, GCC 7.5.0,853

NVIDIA CUDA release 12.1, and Python 3.11.5854

with Anaconda 23.9.0. We utilized PyTorch version855

2.3.0.dev20240220+cu121, incorporating float8856

support to take advantage of FP8 (E5M2) com- 857

puting via Tensor Cores on the RTX 4090. 858

Target Scenarios. Our focus is on AI-driven 859

personal computers (PCs), as LLMs demand sub- 860

stantial computational resources even during in- 861

ference. The RTX series, being a consumer-level 862

GPU, is a common accelerator for PCs, and we 863

hope our work will enhance the performance of 864

compressed LLM inference on these platforms. All 865

of our experiments were conducted on RTXs with 866

the Ada Architecture, utilizing Tensor Cores that 867

support FP8 GEMM. Given the generic nature of 868

our method, which compresses the weights of the 869

model without altering its computational pattern 870

during inference, it can be applied to other sce- 871

narios (such as embedded devices) as long as the 872

hardware supports FP8 or sparse computations. 873

B Correspondence between la and 874

sparsity 875

In Algorithm 1, it was mentioned that different 876

la values are set according to sparsity. The cor- 877

responding relationship is shown in the following 878

table 3. 879

Pruning Ratio 90% 80% 70% 60% 50%

la -1.5 -0.9 -0.2 0.2 0.5

Table 3: Adjust la according to sparsity.

C More experimental results 880

11

https://proceedings.neurips.cc/paper_files/paper/2020/file/3f13cf4ddf6fc50c0d39a1d5aeb57dd8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/3f13cf4ddf6fc50c0d39a1d5aeb57dd8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/3f13cf4ddf6fc50c0d39a1d5aeb57dd8-Paper.pdf
https://openreview.net/forum?id=DYIIRgwg2i
https://openreview.net/forum?id=DYIIRgwg2i
https://openreview.net/forum?id=DYIIRgwg2i
https://openreview.net/forum?id=09iOdaeOzp
https://openreview.net/forum?id=09iOdaeOzp
https://openreview.net/forum?id=09iOdaeOzp

Pruning Ratio Method Latency(s)↓ WikiText2↓ ARC_c ARC_e WinoGrande PIQA HellaSwag OpenbookQA Average↑

0% Pythia-2.8B _ 12.69 32.76 59.01 58.17 74.10 59.41 35.00 53.07

10% HWPQ 4.23 13.21 32.08 57.66 59.12 73.23 58.42 35.8 52.71

20% HWPQ 4.33 13.83 31.23 56.69 57.77 72.63 57.49 34.20 51.66

30% HWPQ 4.10 15.03 30.89 54.76 58.88 71.87 56.28 35.2 51.31

40% HWPQ 4.57 17.45 30.2 53.11 58.88 71.6 54.37 32.6 50.12

50% HWPQ 3.99 21.69 29.18 51.94 57.22 70.29 52.14 31.2 48.66

50%(2:4) HWPQ 3.83 23.3 27.28 46.81 56.12 69.83 49.13 29.2 46.39

Table 4: Zero-shot performance of the pruned Pythia-2.8B models. “pruning ratio” refers to the proportion of
parameters removed relative to the original number of parameters. “Latency(s)” indicates represents the time
overhead required for overall model pruning (excluding communication time such as loading to GPU). “Average” is
calculated among six classification datasets..

Pruning Ratio Method Latency(s)↓ WikiText2↓ ARC_c ARC_e WinoGrande PIQA HellaSwag OpenbookQA Average↑

0% LLaMA2-13B _ 8.04 48.98 76.94 71.74 80.41 79.57 45.40 67.17

50%
SparseGPT 759.13 9.82 43.60 69.53 70.88 78.35 75.13 44.00 63.58

Wanda 146.63 10.03 46.76 72.85 71.03 77.71 76.12 45.60 65.01
HWPQ (ours) 16.60 10.27 45.73 73.74 69.38 78.43 76.29 42.60 64.36

50%(2:4)
SparseGPT 912.81 13.27 38.65 66.62 68.67 73.83 64.54 41.00 58.88

Wanda 190.02 15.61 37.71 65.49 66.77 75.41 62.65 39.00 57.83
HWPQ (ours) 16.39 9.42 42.30 75.72 70.40 79.38 77.28 45.20 65.04

0% LLaMA3.1-8B _ 7.93 53.50 81.10 73.56 81.23 78.90 44.80 68.84

50%
SparseGPT 558.57 12.54 43.26 67.34 70.09 76.82 68.90 40.60 61.16

Wanda 99.98 11.26 45.73 69.61 69.77 76.88 71.39 43.20 62.76
HWPQ (ours) 9.49 10.96 44.70 68.10 70.24 77.25 70.31 43.82 62.40

50%(2:4)
SparseGPT 613.13 17.76 33.96 57.24 63.46 69.42 55.22 33.60 52.15

Wanda 125.64 29.95 29.95 52.15 59.27 67.85 48.69 31.40 48.21
HWPQ (ours) 9.28 15.02 35.27 59.19 65.84 73.17 63.10 35.02 55.26

Table 5: Zero-shot performance of the pruned LLaMA2-13B and LLaMA3.1-8B. “Pruning Ratio” refers to the
proportion of parameters removed relative to the original number of parameters. “Latency(s)” indicates represents the
time overhead required for overall model pruning (excluding communication time such as loading to GPU). “Average”
is calculated among six classification datasets. Bold indicates the best performance at the same compression rate.

12

	Introduction
	Motivation & Relate Work
	Motivation
	Related Work

	The HWPQ Method
	Contribution-Oriented Weight Metrics
	EWMA Adaption
	2:4 Sparsification

	Intergration of HWPQ into Taichi framework
	Experiments
	Experimental setup
	Evaluation of HWPQ Algorithm
	Evaluation of FP8 transformers

	Conclusion
	Limitations
	Other experimental setups
	Correspondence between la and sparsity
	More experimental results

