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Abstract

Large-scale machine learning is often impeded by
a lack of labeled training data. To address this prob-
lem, the paradigm of weak supervision aims to
collect and then aggregate multiple noisy labels.
We propose a Bayesian probabilistic model that
employs a tractable Sinkhorn-based optimal trans-
port formulation to derive a ground-truth label. The
translation between true and weak labels is cast as
a transport problem with an inferred cost struc-
ture. Our approach achieves strong performance
on the WRENCH weak supervision benchmark.
Moreover, the posterior distribution over cost ma-
trices allows for exploratory analysis of the weak
sources.

1 INTRODUCTION

The success of supervised learning crucially depends on
the availability of high-quality labels. However, obtaining
these labels can be expensive, time consuming, and privacy-
intrusive. Weak supervision [Zhou, 2018]—like crowdsourc-
ing Raykar et al. [2010]—seeks to solve this problem by
learning from an abundance of cheap but low-quality labels.
Two-stage weak supervision is a popular paradigm: a model
infers a latent ground-truth label from the weak sources,
and the latent labels are used to train a downstream pre-
dictive model [Zhang et al., 2022]. The weak sources can
range from being human experts to automated heuristics.
In all cases but especially when the sources are humans,
we wish to have an interpretable model that allows for easy
identification of poorly- and well-performing labelers.

In this paper, we model the relationship between the la-
tent label and observed weak label as an optimal transport
problem Villani [2009]. The cost matrix then encodes the
mislabeling tendencies of the weak source. This allows prac-
titioners to identify weak sources that should be rebuilt or

excluded from the current system. Iterative improvement of
weak supervision systems via source analysis is an essential
property for successful deployment.1 Our contributions are:

1. We propose a novel generative model that re-casts weak
supervision as an optimal transport problem between
latent and observed (weak) labels. This is the first time
optimal transport is used in the context of weak super-
vision.

2. We propose a post-hoc cost analysis that identifies
poorly performing weak sources and their mislabel-
ing tendencies. The latter can be used to create inter-
pretable feedback to train and improve human labelers.

3. We empirically validate our model in two ways. Using
simulated data, we show that we can identify poorly
performing weak sources and improve the performance
of a practical baseline method after pruning them. We
also show that our method is highly competitive in the
WRENCH benchmark [Zhang et al., 2021].

2 BACKGROUND

Notation Matrices are denoted by upper-case, bold-face
letters (e.g. Y ), vectors using lower-case bold-face (e.g.
y), and scalars by regular letters (e.g. y). We use italics
to differentiate observations and constants (e.g. y, y) from
random variables (e.g. y, y).

We consider the task of weakly supervised classification:
predicting labels y = {y1, y2, . . . , yN} where the true label
yi for data point i takes a value c ∈ C = {1, 2, . . . , d}. We
specify weak supervision using L sets of weak labels (each
from a weak source): ỹ = {ỹ1, . . . , ỹL}. Weak label ỹl

i

for example i from weak source l takes a value from the
set Cl. The core assumption of weak supervision is that we
have access to ỹ but not realizations of y. Hence our goal
is to estimate a ‘strong’ latent label y from weak labels ỹ.

1See for example: https://snorkel.ai/
programmatic-labeling/
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In practice, due to a lack of expertise, we assume a weak
source l can also abstain from providing a label (⊥∈ Cl)
and a weak source may only be able to label certain values
Cl ⊆ C). We also assume that weak sources are always more
accurate than random guessing [Ratner et al., 2016].

Optimal Transport with Entropic Regularization We
next define the optimal transport problem for discrete proba-
bility measures. Let ν and y (a latent label) be discrete prob-
ability measures of the forms

∑
c∈Cl νcδc and

∑
c∈C ycδc

respectively, where δc is the Dirac at position c, and ν and y

are probability simplex weights. The cost matrix C ∈ Rd×dl

+

stores all pairwise costs between values in C and Cl. The
entropic optimal transport problem obtains the optimal cou-
pling matrix P λ by solving:

P λ = argmin
P∈U(y,ν)

⟨P ,C⟩ − λH(P ), (1)

where H(P ) = −
∑

c,c′ Pc,c′(logPc,c′ − 1) is the entropy
of coupling P , λ > 0 controls the regularization, and
U(y,ν) = {P ∈ Rd×dl

: P1dl = y and P T1d = ν}
is the set of all admissible couplings between y and ν. The
optimal coupling matrix entry P λ

c,c′ represents the amount
of mass transferred from c ∈ C to c′ ∈ Cl. As λ → 0,
P λ converges to the Kantorovich optimal transport, which
tends to admit a sparse optimal coupling matrix. In our
problem, we favor the use of entropic regularization which
admits a denser solution. This allows conflicting labels for
a data point to be probabilistically combined without incur-
ring a large transport cost during optimization. This bias
is similar to that in minimax entropy approaches in crowd-
sourcing Zhou et al. [2012]. The entropic regularization
in Equation 1 renders the problem efficiently solvable by
Sinkhorn scaling [Cuturi, 2013].

3 AN OPTIMAL TRANSPORT MODEL

We propose the following hierarchical generative model
that captures how strong latent labels are ‘corrupted’ by the
weak sources to produce the weak labels. Specifically, this
‘corruption’ is encoded as a transportation problem between
discrete measures. The weak sources move probability mass
away from the latent label according to a per-source cost
structure. Inferring a lower cost means that a weak labeler
is more likely to flip the latent (presumably true) label to
the (presumably incorrect) observed label.

Generative Model We write this model formally as fol-
lows. Each weak source l ∈ [1, L] has a latent cost matrix
Cl ∼ p(Cl; γ). We will discuss specification of p(Cl; γ)
below. Each data point i for i ∈ [1, N ], is associated with
a strong latent label yi ∼ Dirichlet(ρ0) and a weak label

ρ0γ0

ν l
iCl yi

ỹl
i

l ∈ L i ∈ N

Figure 1: Directed graphical model with plates over weak
sources L (red) and data points N (blue).

ỹl
i ∼ Categorical(νl

i) for source l. We model the strong
label using the Dirichlet distribution since the label model is
expected to output probabilistic (soft) labels for downstream
end models. This is different from other truth inference mod-
els which require a Categorical latent variable Dawid and
Skene [1979], Kim and Ghahramani [2012] and have ex-
pensive posterior inference due to discrete enumeration. We
now come to our key insight of using optimal transport to
relate the weak and strong labels. We model the weak label’s
parameters νl

i as a quantity proportional to the OT cost of
‘break up’ the mass of yi and re-arranging it as νl

i according
to costs Cl:

p
(
νl
i | yi,C

l;λ, T, ψ
)
∝

exp

−
max

(
0, < P λ

i,l,C
l > −ψ H(Cl)

)
T

 ,

(2)

where P λ
i,l is the coupling, T is a temperature that controls

the spread of the distribution, and ψ controls the amount of
regularization due to the entropy of the cost matrix. This
distribution over νl

i is realistic since weak sources may not
select the corresponding ỹ with the smallest optimal trans-
portation cost. Informally, the mode of

∏
l p(ν

l
i | yi,C

l)
can be thought of as a (regularized) barycenter across the
weak sources. The plate diagram for the complete model is
shown in Figure 1.

Specification Details As the optimal transport cost de-
creases to 0, the probability in Eqn 2 increases. In order to
instill a mislabeling structure into the cost matrix, we set
Cl ∼ Dirichlet(γ0), where γ0 is a |C| × |Cl| matrix where
each row corresponds to a vector concentration parameter.
Thus, each row of Cl is a Dirichlet random variable which
sums up to one. In order to break the symmetry during
cost inference, we set the diagonal concentration parameter
value to be smaller than the off-diagonals. This matches the
practical setting, as weak sources tend to label examples
correctly. This prior choice can however be washed out by
the observed weak labels. We set diagonal and off-diagonal
concentration parameters to 1 and 2, respectively. Lastly,
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we set γ0 = 1. In practice, we find the use of lower tempera-
ture T and small cost-based regularization ψ to be favorable
(see discussion in Figure 2).

Posterior Inference The Sinkhorn scaling procedure used
to evaluate the RHS of Eqn 2 is differentiable and we can use
Hamiltonian Monte Carlo (HMC) to perform sampling Neal
[2011]. We use the expectation of y under the marginal
posterior distribution as a prediction for the true label.

4 RELATED WORK

Weak Supervision and Crowdsourcing. Weak labels
can come from different sources, for example crowd annota-
tions [Krishna et al., 2017], distant supervision [Mintz et al.,
2009], and labelling heuristics [Gupta and Manning, 2014,
Bunescu and Mooney, 2007]. Various two-stage models
have been proposed and they differ in the way they model
the joint distribution of observed weak labels and latent
true label [Ratner et al., 2016, 2019, Fu et al., 2020]. In the
crowdsourcing setting, different model-based approaches
have been proposed to estimate workers’ error probabilities
Dawid and Skene [1979], Khetan and Oh [2016], Kleindess-
ner and Awasthi [2018], ? or jointly model the labels and
worker quality [Khetan et al., 2017]. Bayesian aggregation
methods have been proposed to allow for prior specification
and uncertainty quantification [Kim and Ghahramani, 2012,
Raykar et al., 2010, Paun et al., 2018].

Inverse and Belief Transport The inverse optimal trans-
port problem seeks to recover the cost matrix from observed
couplings [Chiu et al., 2021, Stuart and Wolfram, 2020, Cu-
turi and Avis, 2014]. The idea of transporting human beliefs
using forward optimal transport has been proposed in the
context of modeling cooperation [Shafto et al., 2021].

5 EXPERIMENTS

5.1 COST ANALYSIS

We describe how to use the the posterior cost matrices
{Ĉl}l∈L, i.e., Ĉl = ECl|ỹ

[
Cl

]
to analyze the quality of

weak sources. Without loss of generality we assume C = Cl.
The diagonal entry Ĉc,c corresponds to the cost of correctly
labeling class c, while the off-diagonal entries Ĉc,c′’s cor-
respond to the costs of incorrectly labeling class c as c′.
To determine the quality of weak source l, we compute its
health score:

HS(l) =
1

|C|
∑
c∈C

 1

|C| − 1

∑
c′∈C\c

Ĉl
c,c′

− Ĉl
c,c, (3)

which is the expected difference between the average off-
diagonal cost and diagonal cost. Intuitively, when the health

score is high, the weak source is good at labeling that class
since the diagonal has a generally lower cost than the off-
diagonal.

Synthetic Data We consider a binary classification prob-
lem with cost matrix of the form

(
α 1−α

1−α α

)
. We consider

a weak source to be good when α ∈ [0, 0.2] and bad when
α ∈ [0.8, 1]. This cost matrix structure has a very pre-
dictable impact on simple aggregation methods like majority
voting – a performance increase can be isolated to the ad-
dition of good sources and/or deletion of bad sources. If a
source is deleted and the performance of majority voting in-
creases, then the deleted source is a bad weak source. Using
the health scores, we can rank the weak sources and delete
the lowest ranked ones.

We create L = 12 weak sources by fixing 8 good and 4 bad
weak sources by sampling the appropriate α’s. We create
N = 1000 true labels by sampling uniformly from a binary
C. Using the generative model in Figure 1, we perform
forward sampling to obtain the weak labels by conditioning
on the the costs and true labels. Conditioning on these weak
labels, we perform posterior inference using Hamiltonian
Monte Carlo (HMC) to obtain estimates of the true labels
and compute the health scores. Sampling diagnostics show
that HMC has been successful in exploring the posteriors.

Method Accuracy Brier score
EOT 0.94± 0.03 0.12± 0.08
Majority 0.75 0.25
Majority, Pruned 0.81 0.19

Table 1: Predictive performance against simulated data. We
compare accuracy and Brier score across three methods:
EOT (our model), Majority voting, and Majority (pru) vot-
ing after EOT cost-based pruning. Credible intervals for
EOT are obtained from y’s posterior simulation sets. There
is no uncertainty for Majority and Majority (pruned) be-
cause they are only computed once from the simulated weak
labels.

To measure the accuracy of our true label estimates, we com-
pare the accuracy and Brier score of our approach (EOT)
to majority voting (Majority). From Table 1, we see that
EOT is able to improve upon Majority, as it is able to infer
the right cost structure. We then delete two weak sources
with the lowest health scores and run majority voting on
the remaining weak sources (Majority (pru)). We choose to
only delete two weak sources, since heuristically in practice
we may not want to delete more than 20% of the available
weak sources. We find that the two deleted weak sources are
bad weak sources. In general, we can use a small amount
of ground truth development set, typically available in prac-
tice [Ratner et al., 2019], to determine the number of weak
sources to prune. We see that this improves upon Majority,
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Figure 2: Unnormalized probability density from Eqn 2: Each row corresponds to different values of T and ψ. Each column
corresponds to the density of 3-dimensional ν given fixed cost matrix C = ( 0.1 0.45 0.45

0.45 0.1 0.45 ) and 2-dimensional y. This cost
matrix prefers correct weak label assignment (with 0.1 cost) over incorrect assignment and abstaining. First row shows
the density when T = 1, ψ = 0, which corresponds to no temperature scaling and cost-based regularization. Second row
sets T = 0.1, ψ = 0, which transforms the density to be more peaked and the downstream categorical choice to be more
concentrated. This tends to occur in practice, as weak sources tend to be confident at labeling certain classes. Third row sets
T = 0.1, ψ = 0.3, which increases the absolute magnitude and widens the range of density according to the entropy of C.
This causes density levels across different cost matrix entropy levels to be more similar and more posterior mass is assigned
to high entropy cost matrices.

as bad weak sources have been removed. This is impactful
in practice, as we can use EOT to prune weak sources with-
out using it as a long-running label model and instead use
simpler baseline methods.

5.2 WRENCH BENCHMARK

The WRENCH benchmark includes various datasets and
label model implementations for evaluating weakly su-
pervised learning [Zhang et al., 2021]. We evaluate our
method (EOT) against other two-stage model baselines from
weak supervision: majority voting (Majority), Snorkel [Rat-
ner et al., 2016] and Flying Squid [Fu et al., 2020] and
crowdsourcing: Dawid Skene (DS) [Dawid and Skene,
1979], IBCC [Kim and Ghahramani, 2012], and Hierarchical
Dawid Skene (HDS) [Paun et al., 2018]. Snorkel and Fly-
ing Squid are popular label models in the weak supervision
community. DS is fitted using a closed-form Expectation-
Maximization algorithm, whereas IBCC and HDS received
a fully Bayesian treatment and are fitted using Hamiltonian
Monte Carlo. Similar sampler settings are used for IBCC,
HDS and EOT and sampling diagnostics show that HMC

has been successful in exploring the posteriors.

Method Accuracy
EOT 0.796 ±.02

Majority 0.761 ±.04

Snorkel 0.747 ±.03

Flying Squid 0.752 ±.03

DS 0.547 ±.02

IBCC 0.611 ±.04

HDS 0.690 ±.15

Table 2: Accuracy results on IMDB dataset.

We perform our experiments on the imdb dataset, which
is a dataset for binary sentiment classification with 20,000
movie reviews for training, 2,500 for validation and 2,500
for testing. The weak sources are 4 heuristics rules on key-
words and 1 heuristics rule on expressions. This dataset and
its weak sources are generated in Ren et al. [2020]. Since
the features are textual, we use BERT as the end model [De-
vlin et al., 2018]. We measure accuracy as a performance
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metric. From Table 2, we observe that our model (EOT) is
competitive as a label model.

6 CONCLUSION

We have proposed a novel generative model that exploits
optimal transport to translate strong labels into weak ones.
A latent cost matrix is estimated for each weak source, giv-
ing us insight into the source’s misspecification w.r.t. the
latent label. We demonstrated in the experiments how in-
specting the posterior cost matrices can be used to prune
poor-performing weak sources. Moreover, our empirical
results suggest that our model is competitive with state-of-
the-art methods for weak supervision (e.g. Snorkel) and
crowdsourcing. In future work, we plan to explore alterna-
tive cost priors, to analyze scenarios where weak sources
are only able to label certain values (Cl ⊂ C), and to scale
the work to larger data sets.
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