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Abstract

Motivation: Many methods have been proposed to infer gene regulatory networks (GRNs) from single-
cell RNA sequencing (scRNA-seq) data. One major challenge when working with single-cell data is the
prevalence of dropout events, when some expression values are not captured. Here we propose to improve
GRN inference using Dropout Augmentation (DA), which helps models stay robust against stochastic
dropout events by introducing more dropout noise during training.

Results: Benchmarking experiments illustrate the improved performance and increased stability of the
proposed DAZZLE model over existing approaches. Exploration of the source of gain shows that DA plays
a significant role in improving performance, while restricting the sparsity of the adjacency matrix at a
later stage stabilizes the model. The practical application of the DAZZLE model on a longitudinal mouse
microglia dataset, containing over 15,000 genes, illustrates its ability to handle real-world single cell data
with minimal gene filtration.

Conclusions: The improved robustness and stability of DAZZLE make it a practical and valuable addition
to the toolkit for GRN inference from single-cell data. Dropout Augmentation may have wider applications
beyond the GRN-inference problem.

Availability and implementation: Project website: https://bcb.cs.tufts.edu/DAZZLE; Visualization of
inferred mouse microglia network: https:/bcb.cs.tufts.edu/DAZZLE/hammond.html; Code available at
https://github.com/TuftsBCB/dazzle and on PyPI under the grn-dazzle package.

Contact: hao.zhu@tufts.edu; donna.slonim@tufts.edu

1 Introduction

Gene Regulatory Network (GRN) inference from expression data offers a
contextual model of the interactions between genes in vivo. (Davidson
and Levin, 2005; Karlebach and Shamir, 2008; Penfold and Wild,
2011). Understanding these interactions is crucial for gaining insight into
development, pathology, and key points of regulation that may be amenable
to therapeutic intervention (Emmert-Streib et al., 2014).

While GRN inference from bulk transcriptomic data has a long
history, many recent studies consider the contextual specificity offered
by single-cell RNA sequence data (scRNA-seq) (Svensson et al., 2018).
Single cell RNA sequencing allows researchers to analyze transcriptomic
profiles of individual cells, providing a more detailed and accurate view

of cellular diversity than traditional bulk methods. Among established
network inference methods, GENIE3 (Huynh-Thu er al, 2010) and
GRNBoost2 (Moerman et al., 2019) are tree-based approaches initially
proposed for bulk data that have been found to work well on single-cell data
without modification. LEAP (Specht and Li, 2017) estimates pseudotime
to infer gene co-expression over several lagged windows. SCODE
(Matsumoto et al., 2017) applies a similar pseudotime idea, combined
with ordinary differential equation (ODE) to model the results. SCENIC
(Aibar et al., 2017) starts by identifying gene co-expression modules using
GENIE3/GRNBoost2, followed by identifying key transcription factors
(TFs) that regulate these modules or regulons. scMTNI (Zhang et al.,
2023) studies GRNSs in different cell clusters using a multi-task learning
framework. NetREX-CF (Wang et al., 2022) makes optimizations based
on prior GRN networks and uses collaborative filtering to address the
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incompleteness of prior data. PANDA (Schlauch et al., 2017) further
optimizes prior GRN networks using massage passing.

The application of neural networks (NNs) in the analysis of single-cell
data has advanced rapidly in the last couple of years. A leading NN-
based GRN inference method, DeepSEM, (Shu et al., 2021) parameterizes
the adjacency matrix and uses a variational autoencoder (VAE) (Kingma
and Welling, 2013) architecture optimized on reconstruction error. In fact,
when compared on the BEELINE benchmarks where the "right" networks
are (approximately) known, (Pratapa et al., 2020), DeepSEM reports better
performance than other methods and runs significantly faster than most.

Beyond GRN inference, DCA (Eraslan et al.,2019), SAUCIE (Amodio
et al., 2019), and scGen (Lotfollahi er al., 2019) all use autoencoder
or VAE designs, but have different focuses. DCA prioritizes removing
noise, amplification, and dropout events from single cell data. SAUCIE
trains its network with multiple objectives and scGen focuses on predicting
perturbation. Some major challenges in GRN inference from single-cell
data (Pratapa et al., 2020) include handling cellular diversity, accounting
for inter-cellular variation in sequencing depth, cell-cycle problems, and
dropout events. The latter is the main focus of this paper.

Dropout events describe the situation when transcripts, often those with
low or moderate expression in a cell, are not counted by the sequencing
technology, resulting in single-cell data sets having an excessive number of
zero expression counts. This phenomenon of excessive numbers of zeros,
or "zero-inflation", is known to be a primary characteristic of single-cell
data. For example, in nine representative datasets examined in Ghazanfar
et al., 2016, 57.7% - 92.3% of the count data are zeros. Typical solutions
to handle dropout events include attempting to impute the missing data,
focusing only on the most variable genes, or modeling the data to account
for dropout and cellular heterogeneity. With dropout imputation, there are
concerns about imputation accuracy and inflated variability, although some
imputation methods claim to suffer less (Chen and Zhou, 2018). Focusing
only on genes with the most variable expression (or otherwise filtering the
gene set) can omit crucial nodes from the regulatory network.

Other common solutions from the machine learning field have, to our
knowledge, rarely been explored in the field of single-cell GRN inference.
One possible route is to improve model robustness through noise injection.
It has long been known that by adding noise to the input data during
model training, we can improve the robustness, and sometimes even the
performance, of many machine learning models. Bishop first pointed
out that adding noise is equivalent to Tikhonov regularization (Bishop,
1995). Hinton further introduced the idea of using random "dropout" on
either input or model parameters to improve training performance (Hinton
et al., 2012). In this case, adding zeros regularizes the models, improving
robustness. Moreover, given that our single cell data sets are already filled
with zeros, arguably due to stochastic events (though some credit biological
variability), it seems reasonable to assume that a functioning model would
still work with a few extra zeros.

Based on these considerations, here we propose to use "dropout
augmentation” (DA), in which we add random zeros to the input single
cell data during training to improve the performance of GRN inference.
In this work, we apply DA to a model inspired by DeepSEM (Shu
et al., 2021), which, as explained above, parameterizes the adjacency
matrix and models GRNs with a VAE framework. We also improve the
stability of the model by only restricting the sparsity of the adjacency
matrix at a later stage, and we explore the feasibility of training only
on the non-zero data. In addition, we simply the model by reducing
the number of parameters up to 73% by using a closed-form normally
distributed prior instead of a separated latent variable. Together, we
name our method DAZZLE (Dropout Augmentation for Zero-inflation
Learning Enhancement). We demonstrate DAZZLE’s performance both
on the BEELINE benchmarks and on a real, time-series mouse microglia
data set. In this latter context, we illustrate how DAZZLE’s network

inference facilitates interpreting typical-sized data sets efficiently, in this
case explaining microglial dynamics across the mouse lifespan.

2 Materials and Methods
2.1 Datasets Used

2.1.1 BEELINE single-cell benchmarks

In the main text, we compare the performance of DAZZLE, our proposed
method, primarily to the DeepSEM approach, using the seven scRNA-
seq datasets from the BEELINE benchmarks. DeepSEM has previously
been shown to outperform GENIE3 (Huynh-Thu ez al., 2010), GRNBoost2
(Moerman et al., 2019), PIDC (Chan et al., 2017), SCODE (Matsumoto
et al., 2017), ppcor (Kim, 2015), and SINCERITIES (Papili Gao et al.,
2018) on the same data - these comparisons are reported in the Supplement.

The BEELINE benchmarks consist of both synthetic expression data
based on curated ground truth networks, as well as seven pre-processed
real single-cell RNA-seq datasets (Pratapa et al., 2020). These scRNA-seq
datasets come from both human and mouse samples and have undergone
different pre-processing steps, including normalization, depending on the
original data format (e.g. raw counts or processed data). In some aspects,
this variety reflects the wide array of differences we encounter in real-world
data.

Next, BEELINE combines the scRNA-seq data with three
different sources of "ground truth" data about regulatory relationships,
including the functional interaction network represented in the STRING
database (Szklarczyk et al., 2019), non-cell-type specific transcriptional
networks, and cell-type specific networks. The non-cell-type specific
network combines links from DoRothEA (Garcia-Alonso et al., 2019),
RegNetwork (Liu et al., 2015), and TRRUST v2 (Han et al., 2018)).
The cell-type specific networks were created by the BEELINE authors
for each dataset by searching through the ENCODE (ENCODE Project
Consortium, 2012), ChIP-Atlas (Zou et al., 2022), and ESCAPE (Xu et al.,
2013) databases. To generate a benchmarking dataset, BEELINE identifies
highly variable transcription factors and genes and randomly samples from
this pool to create a benchmark of the desired size.

In our experiments, we use the exact evaluation dataset from the
DeepSEM paper. We observed that the performance of all methods on
the non-cell-type-specific networks was little different from random, as
reported in (Shu et al., 2021), so we do not further discuss results for
those networks.

2.1.2 Hammond microglial data

To assess DAZZLE’s performance in a more practical context, we use a
published data set from Hammond et al., 2019 (data available from NCBI’s
Gene Expression Omnibus database (Edgar et al., 2002) under accession
number GSE121654). The Hammond mouse microglial dataset includes
RNA sequencing counts for cells underlying several possible comparisons.
Inour analysis, we selected the data from five mouse developmental stages,
namely embryonic day (E14.5), early postnatal day (P4/5), late juvenile
stage (P30), adulthood (P100), and old age (P540). Each stage includes
single cell data from four male mice.

To preprocess the data, following suggestions from Green ez al., 2022
for the same data, we filtered out cells with fewer than 400 or more
than 3000 unique genes, cells with more than 10,000 UMIs, and cells
with over 3% of reads mapping to mitochondrial genes. Many standard
analysis approaches further reduce the data set size by filtering the gene set,
only including the most variable genes. However, here, we only remove
genes with a raw count of zero transcripts detected in all cells. We further
removed all genes with only "model" RefSeq entries (genes predicted only
by automated annotation pipelines, with "XM_" RefSeq prefixes (O’Leary
et al.,2016)), mitochondrial genes, and ribosomal genes from this pool, to
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Fig. 1. Dropout augmentation and network structure

simplify the interpretation of the resulting networks. The expression values
are normalized using natural log transformation. Note that compared to
the original Hammond et al., 2019 paper, here we are using a very different
approach, analyzing changes in potential regulatory links across time,
rather than attempting to identify microglial subpopulations defined by
specific injury-responsive cell clusters.

2.2 Evaluation Metrics

Following the suggestions from the BEELINE paper, we choose Early
Precision Ratio (EPR) as our primary evaluation metric. Early Precision
is "the fraction of true positives in the top-k edges," where k is number of
edges in the "ground truth" network. The EPR compares the ratio of the
measured Early Precision against the performance of a random predictor.
In addition, we also calculate the area under the precision recall curve
(AUPR) and the corresponding ratio (AUPRR) as secondary measures.

2.3 Dropout Augmentation

Previous research suggests that the zero values in single cell data include
both real biological zeros, corresponding to truly absent genes, and random
dropout events. A successful single-cell model should remain robust
regardless of how dropout values are distributed. This idea informs the
dropout augmentation algorithm. Let X € Rlel*19l be a gene expression
matrix from a single-cell experiment, where |c| is the number of cells and
|g| is the number of genes. We randomly sample a proportion of data and
temporarily replace these values with zeros. Alternatively, the augmented
data could be treated as the sum of the original expression data X and a
dropout noise term F, where E is the Hadamard product of negative X and
a masking term derived from binomial sampling. By denoting the mask of
dropout augmentation as Mpa and the probability of augmented dropout
by p, we can write the dropout noise term E and the augmented data X’
as follows:

E = —X @ Mpa, where M}, ~ Bernoulli(p) (D
X'=X+E. 2)
During the entire training process, Mpa is re-sampled every iteration,

so the augmented data X’ changes in every iteration. The model only sees
X', not X.

2.4 GRN Inference with DAZZLE

The task of GRN inference is to infer a weighted adjacency matrix A €
RI9!%19] based on the expression data X. In previous work, DAG-GNN

where Z € Rlelxlgl is a random variable characterizing the noise,
essentially describing the gap between the overall expected counts of the
genes based on their regularizers (X A) and the observed counts (X).
Here, to embrace the idea that the observed data are noisy due to dropout,
we modify this assumption and rewrite equation 3 as following. Since
dropout is so prevalent in single-cell data, we believe equation 4 describes
the reality in a more accurate manner:

X' =X'A+7Z, )

where Z’ is defined for X’ analogously to the definition of Z for
X. Following a similar transformation to that done in DAG-GNN and
DeepSEM, by rearranging the terms, we can rewrite equation 4 in the
following two forms

Z' = X'(I — A), &)
X' =z'(I-A)~L (6)

Equation 5 infers Z’ from X’ and Equation 6 is a generative model that
reconstructs X’ based on the noise sum. These two equations naturally fit
into a VAE framework with Equation 5 as an encoder and Equation 6 as
a decoder. When we parameterize both the VAE model and the adjacency
matrix, the encoder could be denoted as g4 (2’| X”) and the decoder could
be denoted as pg(X’|Z’), with A being part of ¢ and 6. In this case,
Z' is the latent variable. For a VAE, the problem of finding the set of
parameters 6 that maximizes the log evidence log(P (X)) is intractable.
Instead, people often maximize the evidence lower bound (ELBO), which
we write as

ELBO = — Dx1.(¢5(2'|1X")|Ipe(2")) @
+Eerng,(z1x) logpo(X'|2");

where the first term is the KL divergence and the second term can be
thought as the reconstruction loss.

The random variable Z’ describes the deviation of the observed value
X'’ from the expected value X’A. In a particular cell, if the expression
value of a particular gene happens to be observed as 0 due to dropout
events, we will more likely see a larger deviation Z’. In other words, Z’
contains information that could be used to infer whether a value comes
from dropout events. Following this rationale, we can add a classifier Cpa
based on the specified dropout augmentation masked Mpa, as shown in
equation 8 below. As a naive approach, here we choose a simple 3-layer
multi-layer perceptron (MLP) to do the classification.

Mpa = sigmoid(Cpa (Z")). ®)

The loss function of this classifier is simply a binary cross entropy
function.

Lpce = —E [MDA log Mpa + (I — Mpa) log(I — MDA)] ©)

The dropout augmentation classifier could be trained either separately
or together with the main model using the same optimizer. In our
experiment, we add the classification loss to the ELBO function scaled
by a hyper parameter x. Furthermore, following the setup in DeepSEM,
we combine an L1 sparse loss term that regulates the sparsity of the learned
adjacency matrix. The final form of the objective function is to minimize
the following loss function:
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Summary of % Change
Min. Mean Max.

Sig. Changes
Better Worse

Based on EPR
Btw. Single-run -0.8% 9.1% 26.8% 11 0
Btw. Ensemble -5.8% 2.7% 21.4% 6 4
Cross compare -7.4% 1.6% 18.8% 4 4
Based on AUPRR
Btw. Single-run  3.3% 10.1% 25.4% 14 0
Btw. Ensemble -5.0% 3.5% 22.4% 7 2
Cross compare  -5.9% 2.3% 19.9% 5 3

Table 1. Summary of performance changes between DAZZLE and DeepSEM
across 14 BEELINE benchmarks with 1,000 target genes. Significance
(adjusted p value < 0.05) is calculated by paired T test with Bonferroni
correction. "Cross-compare” compares a single run of DAZZLE to the
DeepSEM ensemble model.

Loss = — ]Ez~q¢(z|x)[10g179 (X12)]

+ BDk1(94(Z1X)Ipo(2))

+yLpcE(Mpa, Mpa)

+a> |Al

(10)

Additionally, we made several other model design and training choices
that distinguish our model from that of DeepSEM. First, we improved the
stability of model by delaying the introduction of the sparse loss term
by a customizable number of epochs. Second, DeepSEM is trained on
all expression data while we also explored the possibility of training
exclusively on the non-zero values. This approach is discussed in more
detail in the Results. Next, in terms of prior estimation, DeepSEM
estimates a separate latent variable while DAZZLE uses a closed-form
normal distribution. The closed-form solution reduced the number of
model parameters up to 70%. Finally, while DeepSEM is trained with
two separate optimizers (one on the adjacency matrix and the other on the
rest of the neural networks) in an alternating manner, DAZZLE is trained
using a single optimizer with different learning rates. This improvement
helps DAZZLE stay modular, so it can be integrated with other network
components more easily in the future.

After the DAZZLE model converges, the adjacency matrix can be
extracted from the model and converted to an adjacency list. This list is
then sorted by the absolute value of the edge weights and the highest valued
edges are selected for evaluation.

3 Experiments and results

In this section, we start with a comparison of the performance of DAZZLE
under this set of default parameters to the performance of DeepSEM (with
comparisons to other methods appearing in the Supplement). Then we
explore how much DAZZLE gains from each model component separately.
Finally, we apply DAZZLE to a practical analysis problem, that of
interpreting temporal changes in the Hammond dataset. Based on the
performance on the BEELINE benchmarks, we suggest training DAZZLE
with dropout augmentation intensity at 10% sampled from all data. We
also suggest training DAZZLE on only non-zero expression counts and
delaying the introduction of the sparse loss term by 5 steps.

STRING: TFs + 1000 genes

EPR

75

::]Jﬂi

75

::lLIﬂJj

mHSC-E mHSC-GM mHSC-L

Method Significant Changes

GRN-VAE single run GRN-VAE ensemble — vs. L Vs, .

DeepSEM single run - DeepSEM ensemble L_a vs..

Fig. 2. Comparison of DAZZLE and DeepSEM on 14 BEELINE Benchmarks with 1,000
target genes based on EPR scores. Significant changes (adjust p value < 0.05) are marked

by horizontal brackets.

3.1 GRN Inference on BEELINE benchmark data sets

A comparison of DAZZLE and DeepSEM on the BEELINE benchmarks
is illustrated in Figure 2. We evaluated both methods using single runs and
ensemble models across 28 BEELINE benchmarks, which consist of 7 data
sets, 2 "ground truth" networks for comparison, and 2 sizes of collections
of target genes. (The comparable table for these benchmarks with just 500
target genes is included in the supplementary materials.) Each ensemble
model is constructed by summing the predicted adjacency matrices from
10 repetitions of the given model. The results presented in Figure 2 show
the 7 data sets and represent the average EPR score of 100 repetitions for
single runs and 10 repetitions for the ensemble models. The same plots for
average AUPRR scores can be found in the Supplemental materials.

In addition, we summarize the comparison between DAZZLE and
DeepSEM individual and ensemble models on the BEELINE benchmarks
with 1,000 target genes in Table 1. We compare the EPR/AUPRR
performance of DAZZLE with that of DeepSEM and highlight the percent
change. We also count the number of significant changes using paired T
tests adjusted for multiple comparison.

In a single run of the model, DAZZLE demonstrates superior GRN
inference capabilities compared to DeepSEM. Across all benchmarks with
1,000 target genes, DAZZLE improves the prediction EPR by an average
of 9.1% (ranging from -0.8% to 26.8%). In 11 out of the 14 benchmarks,
these improvements are statistically significant. In the ensemble model,
the performance of the ensemble models for DAZZLE and DeepSEM
is comparable. The average improvement for DAZZLE is 2.7% and the
numbers of significant improvements (6) and declines (4) are similar.
Interestingly, DeepSEM experiences a substantial gain by combining the
results from 10 repeated runs, behavior not observed with DAZZLE. A
plausible explanation is that the results from each run of DAZZLE are
already consistent, due to enhanced robustness and model stability. As a
result, using an ensemble to combine the 10 stable and similar outcomes
does not yield significant gains.
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In fact, we even find that a single run of DAZZLE is comparable to the
ensemble version of DeepSEM, as shown by the "Cross-compare" analysis
in Table 1. Single-run DAZZLE outperforms ensemble DeepSEM by an
average of 1.6% when evaluating EPR and 2.3% for AUPRR. The number
of significant improvements and declines are similar for both the EPR and
AUPRR metrics.

3.2 Impact of Dropout Augmentation

Dropout Augmentation can be applied to the model at different intensities.
In the default model, 10% DA means that 10% of data are randomly chosen
and set to zero in each iteration of training (whether or not they already
contain zero values, so the number of data points that are changing is below
10%). Here we vary this probability from 0% to 20% while keeping all the
other variables fixed to assess the impact of DA on different data sets. The
results are visualized in Figure 3. For simplicity, we only display results
on benchmarks with 1,000 target genes, but similar patterns are observed
in benchmarks with 500 target genes.

As shown in the figure, dropout augmentation provides a significant
performance lift for hESC and hHep, two human single-cell data sets in
BEELINE. The increase starts to show with light augmentation at 5%
and often peaks at a moderate augmentation of 10%. Heavy augmentation
(20%) often start to damage the performance, but in two cases, it yields
the best results. A moderate DA (10%) seems to be a good default
because it either provides a gain or yields similar performance. Overall, the
performance gain is inconsistent across datasets. Dropout Augmentation
appears, in this case, to be more useful for the human than for mouse data
sets, but more work is needed to explain this results. We also investigated
the correlation of performance with the percentage of actual zero counts
in the data sets, but we didn’t find consistent patterns.

3.3 Impact of Training with delayed sparse loss

Both DAZZLE and DeepSEM are trained with a sparse loss term that
regularizes the adjacency matrix to prevent overfitting. Experiments have

EPR
oo

{_/i- == * ——s
6
5

0 1 3 5 10 20

Number of steps waited before indroducing sparse loss

—e— Ensemble Single-run

Fig. 4. Delaying the introduction of sparse loss for certain steps help reduce results variance
for both single-run and ensemble models for mHSC-E with TFs + 500 genes and Non-
specific ChIP-seq (a typical example; results for other benchmarks are similar).

Summary of % Change
Min. Mean Max.

Sig. Changes
Better Worse

Based on EPR
Btw. Single-run -1.6% 19% 6.4% 7 0
Btw. Ensemble -1.8% 2.1% 8.5% 6 0
Based on AUPRR
Btw. Single-run -1.5% 12% 5.8% 7 4
Btw. Ensemble -2.9% 12% 6.1% 6 2

Table 2. Training with only the non-zero data outperforms training with the full
data. Data show reflect BEELINE benchmarks with 1,000 target genes

shown that a large coefficient for this sparse loss is required to generate
a meaningful adjacency matrix prediction in GRN inference. However,
we observed that the sparse loss often destabilizes the model and traps
the model in local minima. The direct outcome is that the performance of
single-run DeepSEM is unstable. We therefore propose to overcome this
limitation by delaying the introduction of the sparse loss term for a number
of steps. Figure 4 demonstrates that delaying the addition of the sparse loss
by as few as 3 to 5 epochs, we can significantly reduce the result variance in
both single-run and ensemble models. A full visualization of performance
for all 28 benchmarks is included in the supplementary document.

3.4 Impact of Training with Non-Zero Data

Single-cell data is well-known to be noisy. Importantly, many counts
of zero in scRNA-seq data do not truly reflect a lack of expression of
the corresponding transcripts. Rather, these are readings missed by the
assay, especially when the true expression counts are low. One way to
handle dropout is to train the autoencoder on only the non-zero counts.
In other words, when we account for loss, we ignore prediction errors
on fields where the original expression counts are reported as zeros. In
this way, all the numbers the model encounters are real, which should
theoretically improve model performance. However, when we applied this
idea to the original DeepSEM model, we found that it hurt performance on
many benchmarks and introduced considerable variance in the results. We
suspect that focusing on non-zero values may make the DeepSEM model
less robust and more sensitive to random noise or other factors such as
sparse loss.

With its increased model robustness and stability, DAZZLE makes
training on only non-zero values a more promising choice. We find that
doing so modestly improves model prediction. In Table 2, we compare the
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performance of DAZZLE trained on all the data to a version trained only
on non-zero data, with all other parameters fixed. Given these results, we
believe that in most cases, training on non-zero data only is a good choice.

3.5 Application to a real microglial single cell data set

To test the effectiveness of running DAZZLE on actual single-cell
data, we applied the method to data from mouse microglia at different
developmental stages, generated by Hammond et al. (2019). After cell
and gene filtering (detailed description of the data and preprocessing steps
appears in the Methods section), the final data set includes 49,972 cells
from five time points across the mouse lifespan: Embryonic (embryonic
day E14, 11,262 cells and 15,673 genes), Early Postnatal (postnatal day
P4/5, 13,316 cells and 15,039 genes), Late Juvenile (P30, 9,431 cells and
13,929 genes), Adulthood (P100, 8,259 cells and 13,998 genes), and Old
Age (P540, 7,704 cells and 14,140 genes). At each time point, an adjacency
matrix with all the input genes is calculated using DAZZLE and all the
edges with absolute value larger than 0.001 are extracted and analyzed.

The GRN inference results show that gene regulation is a dynamic
process that changes in different life stages. In the supplement, we list
the top 10 regulated genes at each time point, ranked according to the
cumulative edge weights of regulating relationships on each gene. At the
earliest life stages, most of the top regulated genes are associated with cell
proliferation and differentiation. For example, Tubala (Tubulin alpha 1a)
encodes proteins in microtubules, which form the mitotic spindle for cell
division and motility structures that move cells to their correct positions.
At later ages, we see more regulation of immune response genes. Many
of these genes, such as Tmem176B (transmembrane protein 176B), H2.D1
(histocompatibility 2, D region locus 1), and PISD (phosphatidylserine
decarboxylase), encode key proteins, receptors, and enzymes of microglial
immune response.

In Figure 5, shows a closer view of two specific genes of interest.
(Similar visualizations for other genes are available on the project website.)
First, since Tmeml19 (transmembrane protein 119) is often used as a
biomarker to differentiate microglia from other immune cells in the brain
(Bennett et al., 2016), we choose it as the center of the local network to
analyze. As shown in Figure 5, Tmem119 is only heavily active after the
late juvenile stage. Among the top 10 predicted regulators, Clgc, Cd81,
Cx3crl, Hexb, Lgmn, P2ryl2, and Selplg are commonly considered as part
of the microglia transcriptional "signature," as they are generally expressed
at low levels in other immune cells (Masuda et al., 2020; Holtman et al.,
2015; Boche and Gordon, 2022; Schwabenland et al., 2021; Pettas et al.,
2022). In addition, Csflr has been recently identified as a regulator of
pathogenesis for microglia and macrophages (Hagan et al., 2020). It
is reasonable to hypothesize that this surrounding local neighborhood
includes much of the core functionality of healthy microglia.

Apoe (apolipoprotein E) is another well-studied gene that encodes
a protein playing a central role in lipid metabolism, neurobiology, and
neurodegenerative diseases. Unlike Tmem119, Apoe is highly regulated
at embryonic day E14. As the mice mature, the relative impact of Apoe
drops, but it increases again in old age. The list of top predicted links
by DAZZLE is consistent with recent studies showing the variety of
Apoe’s roles in many cellular activities. For example, at E14, the top
three genes regulating Apoe are Ftll (ferritin light polypeptide 1), Tmsb4x
(thymosin beta 4 X-linked), and /tm2b (integral membrane protein 2B).
The connection between Apoe and Frl1 is not well established, but a recent
study by Ma et al., 2021 shows that Apoe deficiency leads to increased iron
levels. Another study by Kenkhuis et al., 2021 suggests iron loading is a
prominent marker of activated microglia in Alzheimer’s disease patients.
Further, both genes are located on mouse chromosome 7. This evidence
suggests a plausible regulatory connection between Ft// and Apoe and
further reflects the important role of iron in early brain development.

This image illustrates DAZZLE’s predicted regulation patterns for
some typical well expressed genes. However, we have found that
DAZZLE’s regulatory predictions make sense even for genes whose overall
expression levels are low. (See, e.g., Ifit3 (Interferon Induced Protein With
Tetratricopeptide Repeats 3) on the project web site.)

Another gene worth mentioning is Malat]l (Metastasis Associated
Lung Adenocarcinoma Transcript 1), which appears in our predicted
networks as one of the top regulators for many microglia core genes,
including ( Figure 5) Tmemli19, Apoe, and H2.DI. As a long non-coding
RNA (IncRNA), MalatI has been identified in many pathological processes
with immunological components, including (Amodio et al., 2018) and
diabetes (Gordon et al., 2018). It has also been identified as a key regulator
in the microglial inflammatory response (Zhou et al., 2018; Cai et al., 2020)
but beyond that its function in microglia is mostly unexplored.

Overall, our analysis of this data set confirms that DAZZLE can
handle typical real-world single-cell data with over ten thousand genes
and thousands of cells. On examination, of the predicted networks appear
generally consistent with current research on gene regulation in microglia.
Beyond previously identified links, DAZZLE also suggests novel yet
plausible links that may be confirmed through future experiments.

3.6 Runtime Analysis

As described in the Methods section, DAZZLE parameterizes the entire
adjacency matrix. This design makes time complexity approximately
quadratic in the number of genes and linear in the number of cells. With
respect to clock time, DAZZLE finishes inference for one the the BEELINE
benchmarks, with 758 cells and 910 genes, in an average of 16 seconds
on a machine with an Nvidia A100 card. For one time point of the much
larger Hammond data set, with 7,704 cells and 14,140 genes, inference
takes approximately 5.25 hours.

4 Discussion

In this study, we tackle the dropout problem in real-world single-cell data
paradoxically by adding more dropout. To our knowledge, this is the first
time a noise-injection approach has been applied for this purpose. Our
experiments show that at least for the GRN inference task, DA improves
model performance.

In terms of GRN inference, our proposed method DAZZLE not
only stabilizes the predictions but also produces better predictions. On
the BEELINE benchmarks, a single-run of DAZZLE yields comparable
results to an ensemble containing of 10 repeated trials with the previously
most-accurate method.

Finally, our experiment with the microglia dataset shows that DAZZLE
has the capacity to run on large single-cell data with minimal gene filtration.
The predicted networks are consistent with current understanding, and
include plausible novel links. These novel links could serve as good
candidates for future investigations of key regulatory relationships.

One major limitation of the current model architecture is that the space
complexity of this model also scales quadratically. With 15,000 genes, the
model requires 30 Gb GPU memory, which still fits in a single modern
GPU. However, for even larger use cases, the method may require multiple
GPUs. Another limitation is that the current version is designed to be
applied to each individual dataset (time point or cell cluster). Thus, it
does not develop a universal understanding of gene interactions. How to
lift these restrictions, how to learn these connections in a more efficient
way, and how to interpret the inferred networks intuitively are the main
questions to consider in future work.
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Fig. 5. Predicted local networks for Tmem119 and Apoe in mouse microglia, inferred by DAZZLE from the Hammond data. Each plot consists of two panels, where the left shows top

genes that regulate the indicated gene, and the right shows top genes that it regulates. Here edge weights are scaled between 0 and 1 using the maximum weight at each time point. The

backgrounds are violin plots of the scaled weights. Top genes are selected according to the maximum weight at all time points.
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