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Abstract

This study applies Conditional Generative Adversarial Networks (cGAN) to the1

field of seismology. With GAN, realistic seismic waveforms can be created for2

various applications, such as augmenting limited seismic data or modeling, or3

generating realistic noise. A potential and alarming application of GAN is to4

generate realistic seismic signals that can cause disturbances to the international5

treaty banning nuclear explosions (CTBT). Results show that the generated seismic6

waves are nearly indistinguishable from real ones.7

1 Introduction8

Seismic waves are created when an earthquake or explosion causes the ground to shake, and they9

can be recorded with seismic sensors. The science that studies seismic waves is called seismology.10

This field has helped explore the structure of the Earth, to understand earthquakes, identify seismic11

hazards for various locations, and to understand and predict natural disasters. A seismic instrument12

can either measure the vertical component of the ground motion or both the horizontal (typically13

N-S and W-E motion) and vertical components. Ground motion is recorded as a waveform, where14

negative values mean negative motion and vice versa.15

An important step in seismological data analysis is the calculation of synthetic seismograms (records16

produced by seismic sensors): one computes a forward model of the event and fits the observed17

waveform to the model. Such models are often slow and computationally expensive to render. It18

may thus be of interest to use generative adversarial networks (GAN) - a technique from the machine19

learning domain that can generate realistic synthetic data by training two competing neural networks20

against each other (one network generates synthetic data and the other judges whether it is real or21

fake) [1]. We apply GAN in the field of seismology and show that our approach can generate realistic22

seismic waveforms. While GANs are extensively used for generating images, less research has been23

done on other data types. We demonstrate how GAN can be trained directly on raw waveforms (1D24

time-series) as opposed to training on time-frequency representation (2D images).25

Generating any seismic waveform is, however, of little use. To make effective use of such generated26

data, certain parameters must be considered (e.g. time of signal arrival to the station, azimuth of27

propagation, focal mechanism of the earthquake, etc.). That can be done by using Conditional GAN28

(cGAN) [2]. In the context of seismology, this idea has been probed by [5] in connection to detecting29

earthquakes in Oklahoma. They used a cGAN to generate realistic synthetic three-component30

seismic waveforms for two classes: arrivals from earthquakes and background noise. They found31

that dataset augmentation with GAN-generated seismic data could improve detection algorithms in32

instances when only limited amounts of labeled data are available. Despite working independently33

from their group, our work extends the idea of conditional generation to a number of classes for34

variables such as distance from source and source magnitude, which provide additional advantages35

for enriching datasets with relevant synthetic information and expand the range of applicability of36

GAN in seismology.37
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There are more potential applications for generated seismic signals: (1) GAN could potentially be38

used to create an earthquake response to nuclear explosions, which might be used as proof that an39

explosion took place when there wasn’t one. The international community should therefore be aware40

of such possibilities, rule out hostile uses of GANs, and take preventative measures to recognize this41

threat. Otherwise GAN-generated seismic signals might potentially cause problems for the future42

Comprehensive Nuclear-Test-Ban Treaty, which will ban all nuclear explosions. (2) Despite the43

abundance of seismic data (tens of thousands of sensors are recording seismic activity globally)44

only the fraction is labeled. GAN-generated signals can augment limited seismic data, for instance45

for seismological tasks requiring machine learning. (3) Forward modeling of a seismic signal is46

computationally expensive and slow. Machine Learning inference is fast, and forward modeling can47

benefit from this speedup. (4) Many methods of seismology are tested on synthetic seismograms,48

with added synthetic noise (which is typically just normally distributed). We could replace that noise49

with realistic GAN-generated noise, and thus improve the capability of those methods to deal with50

real (recorded) seismic data. (5) The seismic hazard in a region is determined by the frequency and51

magnitude of past events. Geological events such as earthquakes and landslides provide a wealth of52

information about the region and can be used to better assess the seismic hazard in the area. Perhaps53

one would be able to fine-tune a pre-trained GAN (to take weights of a trained neural network and use54

it as initialization for a new model being trained on data from the same domain) to locally recorded55

seismic events. If that works, one would be able to generate events that have all the properties of56

events that already happened in the area but didn’t actually happen (e.g. in some regions perhaps the57

only events of magnitude 4 and lower were registered. Using cGAN, one would be able to look at58

events of higher magnitudes as if they happened in the area). (6) Since there are so many seismic59

stations globally, one can perhaps select a particular earthquake event, fine-tune GAN on all available60

records of this event and produce "virtual receivers", displaying how this particular earthquake would61

have looked like if recorded from some other location.62

2 Data and Methods63

We propose a model based on Auxiliary Classifier GAN [4] (see Fig. 1) to generate seismic signals64

that do not exist. We called this network - TEDE GAN (This Earthquake Doesn’t Exist GAN). We65

train the model on STanford EArthquake Dataset (STEAD): A Global Data Set of Seismic Signals for66

AI [3] - earthquake waveform dataset consisting of nearly 1.5 mln 3-channel samples (one vertical67

displacement and two horizontal displacements) as well as ∼0.5 mln samples of seismic noise (no68

earthquake is recorded). This data were preprocessed as follows: we removed the instrument response,69

converted the data to displacement, and normalized the channels on the global maximum (for each70

sample). Since this dataset is labeled (Receiver Type; Polarization; P- arrival time; S- arrival time;71

Source Depth, km; Source Magnitude; Source Mechanism (Strike Dip Rake); Source Distance, km;72

Back Azimuth, Deg; Signal-to-Noise ratio), we can exploit labels for a conditional generation. We73

achieve this by converting continuous labels into discrete bins of size N (number of classes we want74

to train the model on). Each bin is constructed in such a way as to contain an equal number of samples75

to avoid the label imbalance problem. We condition our model on the aforementioned properties and76

demonstrate that we can generate realistic seismic waveforms with any conditional properties.77

3 Results78

First, we generate seismic noise with no conditions (see Fig. 2A). This noise has all the properties79

of what would be recorded on a seismometer in the absence of an earthquake. We then generate80

3-component earthquake records with a conditional label and demonstrate how TEDE GAN can be81

conditioned on the source distance, i.e. how far away, from the receiver, the earthquake happened82

(see Fig. 2C). The farther the receiver is from the source, the longer the signal should travel. We83

can see how with increasing distance in the figure, the first arrivals (large amplitudes) are shifting84

towards the right of the window. The TEDE GAN can also be conditioned on the magnitude of the85

source, i.e. how strong the earthquake is (see Fig. 2B). One way to tell if the earthquake was strong is86

to look at the amplitudes of the seismic signal, however, since our TEDE GAN generates signals with87

normalized amplitudes (in the range [-1,+1]), we cannot use this as a visual cue about the quality88

of the generated conditioned signal. Nevertheless, the higher the magnitude of the earthquake - the89

more energy is released over time, and this is something that we indeed can observe on the generated90
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Figure 1: The proposed model uses an auxiliary classifier GAN that makes two predictions - real/fake
and class. A) Architecture of the This Earthquake Doesn’t Exist GAN. The network takes a latent
vector z and a class label as an input. The label is then embedded with a linear embedding layer and
multiplied by z. Using a linear layer, the obtained vector is re-projected to the latent dimension (see
B). B) Re-projection block, used to balance the influence of z and embeddings. C) Architecture of
the Generator. We adopt ResNet-like convolutional blocks (see D) to generate 3-component (Z, N,
E) waveforms directly from time-domain data. D) ResBlocks for processing the latent vector. E)
Schematics of the linear transform block F) Architecture of the Discriminator. Discriminator has two
heads: first is predicting whether this is a real waveform or fake; second is predicting the class of this
waveform. G) Schematics of the DisBlock.

signals (weaker earthquakes appear to be pulse-like, weather stronger ones are spread over the whole91

time window).92

The approach of using conditional GAN has some limitations. In the case of images, it is rather easy93

to assess the quality of the image and decide whether the generation is of sufficient quality. In the94

case of seismic waveforms, this is much more challenging. If the generation does not obey physical95

laws - its application would be rather limited, and yet, this is something difficult to observe visually.96

There are no automatic metrics for generated seismic waveform quality as of now. One of the next97

steps in supporting this line of research would be to design a (physics informed) metric that measures98

how realistic generated seismic waveforms are.99

4 Conclusions100

We demonstrate that a generative model can be trained without using time-frequency representations101

based on raw waveforms. Using raw waveforms as input, we can generate realistic earthquake signals102

based on categorical labels. Based on the subjective evaluation of geophysics professionals, these103

generated signals are nearly identical to real ones. The future work will focus on improving the104

conditional capabilities of the model with a combination of multiple continuous and categorical105

variables, and developing a metric to quantitatively evaluate the realness of a generated seismic signal.106

A pre-trained model and the source code will be released as soon as possible.107

Generative Adversarial Networks provide researchers with the ability to generate synthetic seismic108

data that can be used to model past or hypothetical events, as well as numerous other applications,109

mentioned in the text. Therefore, we hope that this work will provide a new approach to seismology.110
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Figure 2: Samples generated with This Earthquake Doesn’t Exist GAN. All 3 channels (Z-vertical
and N, E - horizontal) are displayed. A) Generated seismic noise. B) Earthquake signals conditioned
on the source magnitude (how strong was the earthquake). C)Earthquake signals conditioned on the
source distance (how far away the earthquake is from the recorder).
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