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Abstract

Real world evolves in continuous time but computations are done from finite
samples. Therefore, we study algorithms using finite observations in continuous-
time linear dynamical systems. We first study the system identification problem,
and propose a first non-asymptotic error analysis with finite observations. Our
algorithm identifies system parameters without needing integrated observations
over certain time intervals, making it more practical for real-world applications.
Further we propose a lower bound result that shows our estimator is provably
optimal up to constant factors. Moreover, we apply the above algorithm to online
control regret analysis for continuous-time linear system. Our system identification
method allows us to explore more efficiently, enabling the swift detection of
ineffective policies. We achieve a regret of O(

√
T ) over a single T -time horizon

in a controllable system, requiring only O(T ) observations of the system.

1 Introduction

Finding optimal control policies requires accurately modelling the system [18]. However, real-
world environments often involve unknown system parameters. In such cases, estimating unknown
parameters from exploration becomes essential to identify the unseen dynamics. This process is
recognized as system identification, a fundamental tool employed in various research fields, including
time-series analysis [20], control theory [21], robotics [16], and reinforcement learning [28].

The identification of linear systems has long been studied because linear systems, as one of the most
fundamental systems in both theoretical frameworks and practical applications, has wide applications
ranging from natural physical processes to robotics. Most classical results provide only asymptotic
convergence guarantees for parameter estimation [3, 24, 5].

On the other hand, with the rapid increase in data scale, there is a growing concern for statistical
efficiency. Consequently, the non-asymptotic convergence of discrete-time linear system identifi-
cation has emerged as another pivotal topic in this field. Investigations into this matter delve into
understanding how estimation confidence is influenced by the sample complexity of trajectories [9],
or the running time on a single trajectory [33, 29]. Furthermore, many of these studies operate
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under the common assumption of stochastic noise, there has been a parallel exploration into the
identification of discrete-time linear dynamical systems with diverse setups. This includes scenarios
where perturbations are adversarial [15] or when only black-box access is available [7].

In contrast to studies in discrete time system, there have been relatively fewer non-asymptotic results
addressing parameter identification for continuous-time systems. Two problems exist for continuous
time analysis. First, nonasymptotic analysis in continuous system without noise can be degenerate,
as a short time interval can contain infinite pieces of information. Second, if we consider the non-
degenerate case when finite noisy observations are available, then the analyses require concentration
results that become known only as in [33, 9, 29]. Recently [4] provides novel analyses for estimating
system parameters, which relies on continuous data collection and interaction with the environment.
Motivated by progress in these works, our first goal is to answer the question below:

Can we design a continuous-time stochastic system identification algorithm that provides
nonasymptotic error bounds with only a finite number of samples?

We will introduce our system identification algorithms tailored to meet the above requirements. As
expected, we discretize time into small intervals, thereby reducing the problem to a discrete system.
The interesting part involves ensuring that the discretization remains bijective and that the inversion
is unbiased. Our algorithm identifies the continuous system using only a finite number of samples
from the discrete system. We further propose a information theoretic lower bound that shows our
algorithm is optimal.

As an application of our system identification methods, we study an online continuous-time linear
control problem as introduced in [30]. In this context, exploration is essential for estimating unknown
parameters, with the goal of identifying a more optimal control policy that narrows the performance
gap. The primary challenge involves finding the right balance between exploration and exploitation.
Leveraging our identification method for more efficient parameter estimation allows us to effectively
manage exploration and exploitation, achieving an expected regret of O(

√
T ) over a single trajectory

with only O(T ) samples in time horizon T . This surpasses the previously best known result of
O(
√
T log(T )), which needs continuous data collection from the system.

We summarize our contributions below.

1. When the system can be stabilized by a known controller, we establish an algorithm with
O(T ) samples that achieves estimation error O(

√
1/T ) on a single trajectory with running

time T , which is shown in Theorem 2. We also provide Theorem 4 which shows that the
estimation error of our system identification method is optimal up to constant factors.

2. When a stable controller is not available, we can use N independent short trajectories to
obtain estimators with error O(

√
1/N), as is shown in Theorem 5 .

3. We apply our system identification method to an online continuous linear control algorithm,
which only requires O(T ) samples and achieves O(

√
T ) regret on a single trajectory with

lasting time T (Theorem 6), improving upon the best known result O(
√
T log(T )) in [30].

2 Related Works

Control of both discrete and continuous linear dynamical systems have been extensively studied in
various settings, such as linear quadratic optimal control [27], H2 stochastic control [10], H∞ robust
control [34, 17] and system identification [21, 24]. Below we introduce some of the important results
on both system identification and optimal control for linear dynamical systems.

System Identification Earlier literature focused primarily on the asymptotic convergence of system
identification [6, 25]. Recently, there has been a resurgence of interest in non-asymptotic system
identification for discrete-time systems. [9] studied the sample complexity of multiple trajectories,
with O(

√
1/N) estimation error on N independent trajectories. For systems with dynamics xt+1 =

Axt+wt(without controllers), [33] established an analysis forO(
√
1/T ) estimation error on a single

stable trajectory with running time T , while [13] and [29] extended to more general discrete-time
systems.
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Non-asymptotic analyses for continuous-time linear system are less studied. Recently, [4] examined
continuous-time linear quadratic control systems with standard brown noise and unknown system
dynamics. Our algorithm is specifically designed for finite observations, achieving an error rate that
cannot be attained through the direct discretization of integrals as done in [4].

Regret Analysis of Online Control In online control, if the system’s parameters are known,
achieving the optimal control policy in this setup can be straightforward [34, 35]. However, when
the system parameters are unknown, identifying the system incurs regret. [1] achieved an O(

√
T )

regret for discrete-time online linear control, which has been proven optimal in T under that setting
in [32]. Subsequent works have extended this setup, focusing on worst-case analysis with adversarial
noise and cost, including [26, 8, 22, 32, 2]. These analyses are limited to discrete systems. For
continuous-time systems, works of [31, 30, 23] established algorithms for online continuous control
that achieves O

(√
T log(T )

)
regret.

3 Problem Setups and Notations

In this section, we introduce the background and notation for linear dynamical systems and online
control.

3.1 Linear Dynamical Systems

We first introduce discrete-time linear dynamical systems as follows: Let xk ∈ Rd represent the
state of the system at time k, and let uk ∈ Rp denote the action at time k. Then, for some linear
time-invariant dynamics characterized by A ∈ Rd×d and B ∈ Rd×p, the transition of the system to
the next state can be represented as:

xk+1 = Axk +Buk + wk, (1)

where wk ∈ Rd are i.i.d. Gaussian random vectors with zero means and certain covariance.

Similarly, a continuous-time linear dynamical system with stochastic disturbance at time t is defined
by a differential equation, instead of a recurrence relation:

dXt = AXtdt+BUtdt+ dWt. (2)

In this context, we use Xt and Ut to represent the state and action in the continuous-time linear
system, distinguishing them from xt and ut in discrete-time systems. Wt denotes the stochastic noise,
which is modeled by standard Brownian motion.

For a continuous control problem, an important question of a linear dynamical system is whether such
system can be stably controlled. Below we define the concepts of stable dynamics and stabilizers.

Definition 1. For any square matrix A, define α(A) = maxi{ℜ(λi)|λi ∈ λ(A)}, where ℜ(λ)
represents the real part of complex number λ, λ(A) is the set of all eigenvalues of A.

Definition 2. A matrix A ∈ Rd×d is stable if α(A) < 0. A control matrix K ∈ Rp×d is said to be a
stabilizer for system (A,B) if A+BK is stable.

Under the above definition, a stable dynamic guarantees that the state can automatically go to the
origin when no external forces are added, while applying a stabilizer as the dynamic for controller
will also ensure that the state does not diverge.

3.2 Continuous-time LQR Problems and Optimal Control

For continuous-time linear systems disturbed by stochastic noise, as introduced in 3.1, we denote
the strategy of applying control to such systems through a specific causal policy, f : X → U . This
policy maps states X to control inputs U , where the policy at time t can only depend on the states
and actions prior to t.

The optimal controls in linear systems are often linear [34, 35], which takes the following form

Ut = KtXt,
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where Kt ∈ Rp×d represents the linear parameterization at time t under some policy f(X) = KX .
Additionally, we define the cost function of applying the action Ut = KtXt with linear quadratic
regulator (LQR) control. Given predefined symmetric positive definite matrices Q ∈ Rd×d and
R ∈ Rp×p, along with the initial state X0, the cost during t ∈ [0, T ] is denoted by JT , as represented
in the following equation:

JT = E

[∫ T

t=0

(
XT

t QXt + UT
t RUt

)
dt

]
. (3)

Here the expectation is taken over the randomness of Xt.

Among all the polices there exists an optimal mapping f∗ which minimizes JT . When the system
is dominated by dynamics (A,B), with the state transits according to (2), such optimal Kt can be
computed via the Lyapunov matrix Pt that solves the Ricatti differential equation [35]:

d

dt
Pt = PT

t BR
−1BTPt −ATPt − PT

t A−Q, PT = 0. (4)

Then, under f∗ the action dynamic is set to be Kt = −R−1BTPt.

When T → +∞, the starting dynamic P0 converges to some special dynamic P∗ satisfying

PT
∗ BR

−1BTP∗ −ATP∗ − PT
∗ A−Q = 0 , (5)

and the optimal control policy for infinite time horizon is by setting K∗ = −R−1BTP∗ and apply
the action by Ut = K∗Xt.

Online Control Problems. Online learning aims to find a strategy to output a sequence of controls
{Ut} that minimizes the cost JT without knowing the system parameters A,B. In this scenario,
the algorithms explore to obtain valuable information, such as estimators (Â, B̂) for (A,B), while
simultaneously exploit gathered information to avoid large instantaneous cost.

To quantify the progress in an online learning problem with horizon T , one quantity of interest is
the regret RT , which quantifies the performance gap between the control taken Ut = f(Xt) and
a baseline optimal policy which takes Ut = K∗Xt = −R−1BTP∗Xt, where K∗ is defined in (5).
Formally, by denoting JT be the expected cost under f , and J∗

T be the expected cost under the
baseline optimal policy, the regret RT is represented as:

RT = JT − J∗
T . (6)

Other Notations Denote the d-dimensional unit sphere Sd−1 = {v ∈ Rd, ∥v∥2 = 1}, where ∥ · ∥2
is the L2 norm. For any matrix A ∈ Rm×n, denote ∥A∥ be the spectral norm of A, or equivalently,

∥A∥ = sup
v∈Sn−1

∥Av∥2 = sup
u∈Sm−1,v∈Sn−1

uTAv.

4 The Proposed System Identification Method

In this section we propose our system identification method. Before presenting our method, we first
introduce the formal definition of system identification and the finite observation setting.

4.1 System Identification and Finite Observation

We start with the definition of system identification.
Definition 3 (System Identification). The system identification task aims to recover the true system
dynamics matrices A and B by observing the system’s response over time. Specifically, one selects a
time horizon T and a sequence of actions U , observes the resulting states X , and computes estimates
Â and B̂ of the true dynamics. The goal is to design an effective algorithm that achieves the following
non-asymptotic estimation bound:

∥Â−A∥, ∥B̂ −B∥ ≤ f(T ) ,
for some function f depending on T . In particular, as T →∞, we expect the estimation error f(T )
to converge to zero.
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Next, we introduce the finite observation assumption. Under this setting, the number of observed
states N grows at most linearly with the trajectory running time T . In other words, for any trajectory
of length T , we can only access a finite set of states {X1, X2, . . . , XN} to identify the system, where
N = O(T ) and does not exhibit superlinear growth.

To analyze the continuous-time system, we need to discretize it. Prior works [4, 31, 30] commonly
approximate the dynamics using

Xt+h ≈ (I + hA)Xt + hBUt + (Wt+h −Wt).

However, this approximation introduces a discretization error between the approximated and true
dynamics. The error term, characterized by (ehA − I)/h−A, is of order O(h). Consequently, the
sampling interval h must be chosen as O(1/

√
T ) to ensure that discretization error does not dominate.

This leads to a super-linear sampling complexity of m = T/h = Ω(T 3/2), which violates the finite
observation assumption and significantly increases computational demands.

In contrast, our method overcomes this limitation by directly estimating the matrix exponential eAh

in Lemma 1, and subsequently recovering (A,B) from this estimate. As a result, our approach avoids
discretization error entirely, allowing the sampling interval to depend solely on system parameters
rather than the total sampling time T . This innovation reduces the sampling complexity to grow
linearly with T , offering significant computational advantages.

4.2 Algorithm Design

Then we introduce our algorithm. We choose a small sampling time interval h across a single
trajectory of time length T . We then divide the time into small intervals and consider the state
evolution within each interval. We get the following Lemma:
Lemma 1. In the time interval [t, t+ h], the following transition function holds:

Xt+h = eAhXt +

∫ h

s=0

eA(h−s)BUt+sds+ wt ,

Here, wt is Gaussian noise N (0,Σ) with covariance Σ =
∫ h

s=0
eAseA

Tsds. The formal proof of this
Lemma is deferred to the Appendix A.2.

This transition equation connects continuous-time and discrete-time systems. In our method, the
whole trajectory is partitioned into intervals with proper determined length h. During time t ∈
[kh, (k + 1)h], we observe a state xk at time t = kh, and fix the action Ut ≡ uk in this interval.
Denoting A

′
= eAh and B

′
=
[∫ h

s=0
eA(h−s)ds

]
B, then the set of observations {xk|k = 0, 1, 2, ...}

and actions {uk|k = 0, 1, 2, ...} follow the standard discrete-time linear dynamical system:

xk+1 = A
′
xk +B

′
uk + wk.

Then we can apply the system identification method of discrete-time system [33, 9]. However,
different from classical discrete-time systems, continuous-time systems present new challenges. The
crucial one is that knowing eAh is not sufficient to determine A, because the matrix exponential
function f(X) = eX is not one-to-one. This means we might obtain an incorrect estimator Â by
solving eÂh = M , where M is the estimate of eAh. From the above analysis, we introduce our
assumptions of the algorithm.
Assumption 1 (Assumptions for Algorithm 1 and Theorem 2). We assume

1. The linear dynamic A is stable, with α(A) < 0 (see Definition 1). This is equivalent to
assuming the existence of a stable controller K and then set A← A+BK.

2. ∥A∥ ≤ κA, ∥B∥ ≤ κB for some known κA, κB (κA, κB need not be closed to ∥A∥, ∥B∥).

3. The sample interval h is chosen to be h = 1
15κA

.

With the above assumptions, we design our algorithm as described in Algorithm 1. In the k-th interval
of length h, the state xk is observed at the beginning, and a randomly selected action uk is applied
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Algorithm 1 System identification algorithm for stable system

Input: Running time T , sample interval h satisfying the condition in Assumption 1.
Define the number of samples T0 = ⌈T/h⌉.
for k = 0, . . . , T0 − 1 do

Sample the action uk
i.i.d.∼ N (0, Ip).

Use the action Ut ≡ uk during the time period t ∈ [kh, (k + 1)h].
Observe the new state xk+1 at time (k + 1)h.

end for
Compute system estimates (Â, B̂) via (8).

uniformly throughout the interval. The state-action pair xk, uk is then used to estimate the discretized
dynamics via:

(Ã)T =

[
T0−1∑
k=0

xkx
T
k

]† T0−1∑
k=0

xkx
T
k+1 , (B̃)T =

[
T0−1∑
k=0

uku
T
k

]† T0−1∑
k=0

uk

(
xk+1 − Ãxk

)T
. (7)

The continuous-time dynamics (A,B) are then recovered from (Ã, B̃). Under the condition ∥A∥h≪
1, we employ Taylor expansion to compute Âh = log(Ã), approximating Ah. The estimators (Â, B̂)
are given by:

Â =
1

h

∑
k≥1

(−1)k−1

k
(Ã− I)k, B̂ =

[∫ h

t=0

eÂtdt

]−1

B̃ . (8)

We now establish the efficiency of our algorithm and derive the main theorem as follows.
Theorem 2 (Upper bound). In Algorithm 1, there exists a constant C ∈ poly

(
|α(A)|−1, κA, κB

)
such that, ∀ 0 < δ < 1

2 , when T ≥ C
(
∥X0∥22 + log2 1/δ

)
, with probability at least 1− δ, we have:

∥Â−A∥, ∥B̂ −B∥ ≤ C
√

log(1/δ)

T
. (9)

We defer the proof of the theorem to Appendix A.4 and highlight the key idea below. The key idea
of the proof is to analyze the error transformation from the discrete system to the original system.
We prove Lemma 3, which shows that the errors in the discrete and original systems differ only by a
constant factor. This allows us to focus solely on the discrete system identification problem.

Lemma 3. In Algorithms 1, suppose we obtain the relative error ∥Ã−A′∥, ∥B̃ −B′∥ ≤ ϵ for some
ϵ ≤ 1

15 and ∥Ah∥ ≤ 1
15 . Then, the relative error in the original system satisfies:

∥Â−A∥, ∥B̂ −B∥ ≤ 1

h

(
2 +

κB
κA

)
ϵ . (10)

From this lemma, it follows that if we develop a system identification algorithm for the discrete system
that produces dynamics estimates Ã and B̃ with minimal error, we can obtain accurate estimates for
the original system. The remaining task is to analyze the discrete system with the transition function
xk+1 = Axk +Buk + wk, which has been discussed in previous works such as [33].

4.3 Lower Bound

In this section, we discuss the lower bound of the problem. We prove Theorem 4 and establish that
this method has already attained the optimal convergence rate for parameter estimation. The theorem
primarily asserts that, given a single trajectory lasting for time T , any algorithm that estimates system
parameters solely based on an arbitrarily large number of finite observed states cannot guarantee an
estimation error of o(

√
1/T ).

Theorem 4 (Lower bound). Suppose T ≥ 1 be the running time of a single trajectory of continuous-
time linear differential system, represented as in (2). Then there exist constants c1, c2 independent
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of d such that, for any finite set of observed points {t0 = 0, t1, t2, ..., tN = T}, and any (possibly
randomized) estimator function ϕ : {Xt0 , Xt1 , ..., XtN } → Rd×d, there exists system parameter

A,B satisfying P
[
∥ϕ({Xti}i≤N )−A∥ ≥ c1√

T

]
≥ c2. Here the probability is with respect to noise.

In Theorem 4, the mapping ϕ can refer to the output of any algorithm that exclusively relies on the
finite set of states Xt0 , Xt1 , ..., XtN . The interesting observation is that the lower bound does not
decrease with a larger observation number N .

We defer the proof of the theorem to the Appendix A.6 and provide a proof sketch below. We consider
two sets of dynamics, (A, 0) and (Ā, 0), where both A and Ā are stable, and |A − Ā| = 2c1√

T
. Our

key observation is that for the two distributions of observed states Sk = {Xt0 , Xt1 , ..., Xtk} and
S̄k = {X̄t0 , Xt1 , ..., Xtk}, where X corresponds to the linear dynamic A and X̄ corresponds to Ā,
the KL divergence between Sk+1 and S̄k+1 increases by at most c

T (tk+1 − tk). Here, c is a universal
constant independent of tk and tk+1. Thus, regardless of how the observation times are selected, the
KL divergence between the observed states remains bounded.

Remark 1 (The Discussion of Lower Bound). The construction in Theorem 4 involves matrices A
and Ā that depend on T , specifically with ∥A − Ā∥ = 2c1√

T
. One might be concerned that such a

T -dependent construction lacks interpretability since the true system parameters are independent of T .
However, as shown in Appendix A.6, the matrices are taken as A = −Id and Ā = −Id − U , where
U has only one nonzero entry at position (1, 1) equal to 1

5
√
T

. For these matrices, the key constants in
the upper bound remain uniformly bounded: the inverse stability margin 1

|α(A)| equals 1 for A = −Id
and is at most 1

1+
1

5
√
T

≤ 1 for Ā; the condition number κ(A) equals 1 for A = −Id and is at most

1 + 1
5
√
T
≤ 2 for Ā. Thus both quantities are controlled by universal constants, independent of T ,

ensuring that the lower and upper bounds are comparable up to a constant factor.

4.4 Finding an Initial Stable Controller

While previous work on continuous-time system identification [4, 30] always assumes a known stable
controller, our method extends to cases where a stabilizer is not known in advance. For general
(A,B), where a stabilizer is not predetermined, relying on a single trajectory is not feasible, as the
state may diverge rapidly before obtaining a stable controller is obtained. Instead, we first find a
stable controller K using multiple short-interval trajectories and then employ it in Algorithm 3 for
online control. Below, we list the assumptions on system parameters.

Assumption 2 (Assumptions for Algorithm 2 and Theorem 5). We assume

1. The constants κA, κB , h follow the same assumptions as in 1.

2. The running time T for each trajectory is small, say, T = T0h where T0 ∈ N and T0 ≤ 10.

Then, we employ multiple short trajectories to identifyA andB as outlined in Algorithm 2. Similar to
what is demonstrated in [9], this procedure results in an O(H−1/2) estimation error on the trajectory
number H .

Theorem 5. In Algorithm 2, there exists a constant C ∈ poly(κA, κB) such that w.p. at least 1− δ,
the estimation error of (Â, B̂) from H trajectories satisfies:

∥Â−A∥, ∥B̂ −B∥ ≤ C
√

log(1/δ)

H
.

The proof details are shown in the Appendix A.5.

5 A Continuous Online Control Algorithm with Improved Regret

In this section, we apply our system identification method to a continuous LQR online control
algorithm. Recall the setup introduced in Section 3.2 where we want to minimize the regret RT

defined in (6). We will show in this section that with O(T ) samples, our algorithm achieves O(
√
T )
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Algorithm 2 Multi-trajectory system identification algorithm

Input: T , T0, h as in Assumption 2, number of trajectories H .
for l = 1, . . . ,H do

for k = 0, . . . , T0 − 1 do
Sample the action ulk

i.i.d.∼ N (0, Ip), use the action Ut ≡ ulk during t ∈ [kh, (k + 1)h].
Observe the new state xlk+1 at time (k + 1)h.

end for
end for
Compute (Ã, B̃) by (Ã, B̃) ∈ argmin(A,B)

1
2

∑H
l=1

∥∥xlT0
−AxlT0−1 −BulT0−1

∥∥2
2
.

Compute Ā, B̄ as in (8), let (Â, B̂) = (Ā, B̄) be estimates for system dynamics (A,B).

expected regret on a single trajectory, thereby improving upon the previous O
(√

T log(T )
)

result.
We list the assumption for the online LQR problems below.

Assumption 3 (Assumptions for Algorithm 3 and Theorem 6). We assume that:

1. A stabilizer K for (A,B) (see Definition 2) with α(A+BK) < 0 is known in advance.

2. Sample distance h satisfies h = 1
15κ , where κ ≥ ∥A∥+ ∥B∥∥K∥ ≥ ∥A+BK∥ is known.

3. Denote P∗ be the solution in (5) and K∗ = −R−1BTP∗ be the baseline control dynamic.

4. Q,R are positive-definite symmetric matrices with bounded spectral norms ∥Q∥, ∥R∥ ≤M
and for some µ > 0, µI ⪯ Q,µI ⪯ R.

5.1 An O(
√
T ) Regret Algorithm for Continuous Online Control

Our online continuous control algorithm is outlined in Algorithm 3, and we provide a detailed
description below. Algorithm 3 is divided into two phases, exploration and exploitation. For the first
exploration phase, a previously known stabilizer K is applied to prevent the state from diverging.
During the k-th interval, by setting Ut = KXt + uk, the state Xt transits according to

dXt = (A+BK)Xtdt+Bukdt+ dWt.

Since A + BK is stable, through replacing A in Theorem 2 by A + BK in Algorithm 3, we can
obtain a set of estimators (Â, B̂) for (A,B) with small error. This further allows us to accurately
estimate (A,B), thereby a controller K̄ = −R−1(B̂)TP closed to K∗ is obtained.

During exploitation phase, the near-optimal controller is deployed to minimize the cost, resulting
in a regret of O(

√
T ) (see Theorem 6). However, as we lack direct feedback on whether K̄ is a

stabilizer, we need to detect its stability. Our approach involves replacing it with the known stabilizer
K whenever the state deviates too far. Then we introduce the theorem of the regret analysis:

Theorem 6. Let JT be the expected LQR cost introduced in (3) that takes the action Ut as in
Algorithm 3. Then for some constant C ∈ poly

(
κ,M, µ−1, |α(A+BK)|−1, |α(A+BK∗)|−1

)
,

the regret satisfies:

RT = JT − J∗
T ≤ C

√
T .

Proof Sketch of Theorem 6 We analyze the two phases of our algorithm. During the exploration
phase, the stabilizing controller K effectively bounds the trajectory’s radius, ensuring the average
cost per unit time is within O(1), resulting in a total exploration cost of C

√
T . In the subsequent

exploitation phase, we analyze two scenarios separately. The first scenario occurs when the estimators
(Â, B̂) have large errors or when ∥Xt∥2 ≥ T 1/5 for some t ∈ [

√
T , T ]. This situation is rare and

contributes a limited expected cost that can be bounded by a constant. The second scenario occurs
when (Â, B̂) are accurately estimated, and the control Ut = −R−1(B̂)TPXt is applied throughout
the exploitation phase. In this case, the trajectory’s performance is straightforward to analyze, and
the expected cost is bounded by O(

√
T ) + J∗

T .
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Algorithm 3 Continuous online control algorithm

Input: K,h which follows Assumption 3, running time T
for k = 0, . . . , [

√
T
h ]− 1 do

Sample the action uk
i.i.d.∼ N (0, Ip).

For t ∈ [kh, (k + 1)h], set Ut = KXt + uk.
Observe the new state xk+1 at time (k + 1)h.

end for
Do system identification and estimate dynamics:
Compute (Ã, B̃) according to (7) by using {xk, uk}.
Compute Ā, B̄ by (8) with Ã, B̃, and estimators (Â, B̂) by Â = Ā− B̄K,B̂ = B̄.
If Â is stable, compute P by (5) with estimated Â, B̂, and set K̄ = −R−1(B̂)TP .
If Â is not stable or P computed above satisfies ∥P∥ ≥ T 1

5 , then set K̄ = K.
Perform exploitation:
For t ∈ [

√
T , T ], set Ut = K̄Xt.

Detect bad policy and prevent the trajectory from diverging:
If for some t0 ≥

√
T , ∥Xt0∥ ≥ T

1
5 , then set Ut = KXt for t ∈ [t0, T ].

By summing the expected costs, the total exploration cost is bounded byO(
√
T ), and the exploitation

cost is bounded by J∗
T + O(

√
T ). By the definition of regret, RT = JT − J∗

T , the total regret is
O(
√
T ), leading to the result of Theorem 6.

Our result is closely related to the result in [30], along with its similar version [12]. They achieve
O(
√
T log(T )) regret. However, they further assumes a known stabilization set for obtaining a stable

controller, which is stronger compared with ours. Such difference exists because our approach detects
divergence and avoids sticking to a controller which is not stable. Morever, in [30], the exploration
and exploitation is simultaneous, where a random matrix is added to the near-optimal controller so
that both A and B can be identified. This causes an extra log(T ) factor to the regret. In contrast,
our algorithm follows an explore-then-commit structure, which is enabled by the efficient system
identification results presented previously. Finally, we additionally considered the setup of finite
observation, which is not discussed in [30].

5.2 Experiments

In this section, we conduct simulation experiments for the baseline algorithm and our proposed
algorithm. The baseline algorithm follows the work of [30]. We set d = p = 3 for simplicity. Each
element of A is sampled uniformly from [−1, 1], making A unstable with high probability. The
matrix B, Q, R are set as the identity matrix I3. The sampling interval is set to h = 1

30 .

First, we run Algorithm 1 for system identification. We plot the expected Frobenius norms of the
error matrices ∥Â−A∥2F and ∥B̂ −B∥2F . The results demonstrate that our algorithm can identify A
and B within sufficient running time or number of trajectories.

Next, we compare Algorithm 3 with the baseline algorithm. We analyze the normalized regret
R(T )/T 1/2 for different t ∈ [600, 10000] and plot the results in Figure 1. The results show that our
online control algorithm with system identification achieves constant normalized regret (i.e., O(

√
T )

regret) and outperforms the baseline algorithm when T is sufficiently large.

6 Conclusions, Limitations and Future Directions

In this work, we establish a novel system identification method for continuous-time linear dynamical
systems. This method only uses a finite number of observations and can be applied to an algorithm
for online LQR continuous control which achieves O(

√
T ) regret on a single trajectory. Compared

with existed works, our work not only eases the requirement for data collection and computation, but
achieves fast convergence rate in identifying the unknown dynamics as well.

9



Figure 1: The empirical validation of our algorithm. Left: Identification of system dynamics using a single
trajectory. Right: The normalized regret R(T )/T 1/2 of the baseline algorithm and our algorithm. The results
show that our algorithm achieves small identification error and is more efficient than the baseline algorithm.

Although our method achieves near-optimal results in system identification and LQR online control
for continuous systems with stochastic noise, many questions remain unsolved. First, it is unclear
whether our system identification approach can be extended to more challenging setups, such as
deterministic or adversarial noise. Additionally, many practical models are non-linear, raising the
question of under what conditions discretization methods are effective. We believe these questions
are crucial for real-world applications.
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A System Identification for Continuous-time Linear System

In this section, we analysis our system identification method in Algorithm 1 and Algorithm 2. As a
preparation, we establish some properties of matrix exponentials and their inverses.

A.1 Matrix Exponential

For a matrix exponential eAt, where the largest real component of A’s eigenvalues is denoted by
α(A), the spectral norm of eAt can be well-bounded [14], as demonstrated in Lemma 7.
Lemma 7. Suppose an n × n matrix A satisfies that 0 > α(A) = max{ℜ(λi)|λi ∈ λ(A)}. Let

QHAQ = diag(λi) +N be the Schur decomposition of A, and let MS(t) =
∑n−1

k=0
∥Nt∥k

2

k! . Then for
t > 0, we have:

∥eAt∥ ≤ eα(A)tMs(t) , (11)∥∥e(A+E)t − eAt
∥∥

∥eAt∥
≤ t∥E∥2(Ms(t))

2e(tMS(t)∥E∥2) . (12)

In a special case where α(A) ≤ 0, since Ms(t) ≥ 1 for all t, we obtain

∥eAt∥ ≤ eα(A)t .

We also show some properties of matrix inverse in the following Lemma 8.
Lemma 8 (Matrix inverse). For any A ∈ Rd×d and t such that 0 < ∥At∥ ≤ 1

10 , we have the
following estimation of eAt:

∥eAt − Id∥ ≤ e∥At∥ − 1 ,

and if we denote A1 = eAt, then A also satisfies that

A =
1

t

∑
k≥1

(−1)k+1

k
(A1 − Id)k .

Proof. We expand eAt by

eAt =
∑
k≥0

1

k!
(At)k ,

which follows that

∥eAt − Id∥ =

∥∥∥∥∥∥
∑
k≥1

1

k!
(At)k

∥∥∥∥∥∥ ≤
∑
k≥1

1

k!
∥At∥k = e∥At∥ − 1 ≤ 1

9
.

Since ∥A1 − Id∥ < 1, the progression A2 =
∑

k≥1
(−1)k+1

kt (A1 − Id)k converges, and thus eA2t =

eAt. Furthermore, it can be computed that

∥A2t∥ ≤
∑
k≥1

∥∥∥∥1k (A1 − Id)
∥∥∥∥ ≤∑

k≥1

1

k
(
1

9
)k ≤ 1

8
.

Now we show that A2 = A. We have already known that ∥At∥ and ∥A2t∥ are small. We also
note that the function f : X → eX

(
∥X∥ ≤ 1

8

)
constitutes a one-to-one mapping. This assertion

is supported by the observation that for any X1, X2 such that ∥X1∥, ∥X1 + X2∥ ≤ 1
8 , we have

∥X2∥ ≤ 1
4 , implying that∥∥eX1+X2 − eX1 −X2

∥∥ =

∥∥∥∥∥∥
∑
k≥2

1

k!
(X1 +X2)

k −Xk
1

∥∥∥∥∥∥ (13)

≤
∑
k≥2

1

k!

2k − 1

4k−1
∥X2∥ (14)

≤ 1

2
∥X2∥ . (15)
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Then
∥∥eX1+X2 − eX1

∥∥ ≥ 1
2∥X2∥, which means f is one-to-one, and thereby leading that A2 = A.

A.2 Proof of Lemma 1

Lemma 1. In the time interval [t, t+ h], the following transition function holds:

Xt+h = eAhXt +

∫ h

s=0

eA(h−s)BUt+sds+ wt ,

Proof. Using Newton-Leibniz formula, we have

Xt+h = Xt +

∫ h

0

AXt+t1 +BUt+t1 +
dWt+t1

dt
dt1 .

Let wt+t1 = BUt+t1 +
dWt+t1

dt , we have:

Xt+h = Xt +

∫ h

0

AXt+t1 + wt+t1dt1

= (I +Ah)Xt +

∫ h

0

wt+t1dt1 +A

∫ h

0

(Xt+t1 −Xt)dt1

= (I +Ah)Xt +

∫ h

0

wt+t1dt1 +A

∫ h

0

∫ t1

0

AXt+t2 + wt+t2dt2dt1

= (I +Ah+
1

2
A2h2)Xt +

∫ h

0

(I +A(h− t1))wt+t1dt1 +A2

∫ h

0

∫ t1

0

(Xt+t2 −Xt)dt2dt1 ,

where the last equality we use the Fubini theorem to change the integral order of t1 and t2 to calculate
the second term.

Suppose we already have the following equality for integer m (The case m = 2 has been checked
above):

Xt+h = (I +

m∑
k=1

(hA)k

k!
)Xt +

∫ h

0

[I +

m−1∑
k=1

((h− t1)A)k

k!
]wt+t1dt1

+Am

∫
0≤tm≤...≤h

(Xt+tm −Xt)dt1dt2...dtm .

Then, replace Xt+tm −Xt by
∫ tm
0

[AXt +A(Xt+tm+1
−Xt) + wtm+1

]dtm+1
, we get:

Am

∫
0≤tm...≤h

(Xt+tm −Xt)dt1dt2...dtm

=Am+1Xt

∫
0≤tm+1≤...≤h

dt1dt2...dtm+1 +Am

∫
0≤tm+1≤...≤h

wt+tm+1dt1dt2...dtm

+Am+1

∫
0≤tm+1≤...≤h

(Xt+tm+1 −Xt)dt1dt2...dtm+1 .

Using the property that

∫
0≤x1≤x2≤...≤xm≤h

dx1dx2...dxm =
hm

m!
.
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We finally get

Am

∫
0≤tm≤tm−1≤...≤t1≤h

(Xt+tm −Xt)dt1dt2...dtm

=
hm+1

(m+ 1)!
Am+1Xt +Am

∫ h

0

(h− tm+1)
m

m!
wt+tm+1

dtm+1

+Am+1

∫
0≤tm+1≤...≤h

(Xt+tm+1
−Xt)dt1...dtm+1

.

In the calculation of the second term we use the Fubini theorem to change the integral order of tm+1

and t1, t2...tm.

So the induction hypothesis is true. For any positive integer m, we have the following equality:

Xt+h = (I +

m∑
k=1

(hA)k

k!
)Xt +

∫ h

t1=0

[I +

m−1∑
k=1

((h− t1)A)k

k!
]wt+t1dt1

+Am

∫
0≤tm...≤h

(Xt+tm −Xt)dt1dt2...dtm .

For the time interval t̃ ∈ [t, t+ h], by the continuity of Xt̃ we know that Xt̃ is uniformly bounded by
some constant C. Therefore we have the convergence of the third term in the RHS:

lim
m→∞

∥Am

∫
0≤tm...≤h

(Xt+tm −Xt)dt1dt2...dtm∥ ≤ lim
m→∞

2C(κAh)
m

m!
= 0 .

Therefore, we finally get:

Xt+h = eAhXt +

∫ h

0

eA(h−s)wt+sds (16)

Now, we use wt+s = BUt+s +
dWt+s

dt , we get:

Xt+h = eAhXt +

∫ h

0

eA(h−s)BUt+sds+

∫ h

0

eA(h−s)dWt+s (17)

= eAhXt +

∫ h

0

eA(h−s)BUt+sds+ wt , (18)

where wt is Gaussian noise N (0,Σ) with covariance Σ =
∫ h

0
eAseA

Tsds.

A.3 Proof of Lemma 3

We restate Lemma 3 and provide the proof here.

Lemma 3 In Algorithm 1, 2, suppose we have obtained the relative error ∥Ã−A′∥, ∥B̃ −B′∥ ≤ ϵ
for some ϵ ≤ 1

15 and ∥Ah∥ ≤ 1
15 , then we have the following relative error of the primal system:

∥Â−A∥, ∥B̂ −B∥ ≤ C

h
ϵ , (19)

where C is a constant independent of h.

Proof. Firstly, according to Lemma 8, the estimated Ã is not too far away from Id, as we have:∥∥∥Ã− Id∥∥∥ ≤ ∥∥∥Ã− eAh
∥∥∥+ ∥∥eAh − Id

∥∥ ≤ ϵ+ e∥A∥h − 1 ≤ 1

7
,
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Then, from (8) we can bound the matrix norm
∥∥∥Âh∥∥∥ by

∥∥∥Âh∥∥∥ =

∥∥∥∥∥∥
∑
k≥1

(−1)k−1

k
(Ã− I)k

∥∥∥∥∥∥ ≤
∑
k≥1

1

k
(
1

7
)k ≤ 1

6
.

Now, let’s denote A1 = Ah and A2 = Âh−A1, satisfying the relations A
′
= eA1 and Ã = eA1+A2 .

It is given that ∥A1∥ ≤ 1
15 and ∥A2∥ ≤ ∥A1∥+ ∥Âh∥ ≤ 1

4 , so by (13), we obtain that ∥Â−A∥h =

∥A2∥ ≤ 2∥Ã−A′∥, which follows that ∥Â−A∥ ≤ 2
h∥Ã−A

′∥ ≤ 2
hϵ.

Next, we will upper bound the estimation error of B. Let Ah =
∫ h

t=0
eAtdt and Āh =

∫ h

t=0
eÂtdt,

satisfying

∥Ah − hI∥ =

∥∥∥∥∥
∫ h

t=0

(eAt − I)dt

∥∥∥∥∥ ≤
∫ h

t=0

∥∥eAt − I
∥∥ dt ≤ ∫ h

t=0

(e∥A∥t − 1)dt ≤ 1

20
h ,

∥Āh −Ah∥ =

∥∥∥∥∥
∫ h

t=0

eÂt − eAtdt

∥∥∥∥∥ ≤
∫ h

t=0

∥∥∥eÂt − eAt
∥∥∥ dt ≤ 3

2

∫ h

t=0

∥Â−A∥tdt ≤ 3

4
hϵ .

This follows that∥∥A−1
h

∥∥ =
1

h

∥∥∥∥∥
[
I + (

Ah

h
− I)

]−1
∥∥∥∥∥ ≤ 1

h

∑
k≥0

∥∥∥∥Ah

h
− I
∥∥∥∥k ≤ 20

19h
,

∥(Āh)
−1 −A−1

h ∥

=
∥∥A−1

h

∥∥∥∥∥[I + (Āh −Ah)A
−1
h

]−1 − I
∥∥∥ ≤ ∥∥A−1

h

∥∥ 1

1−
∥∥(Āh −Ah)A

−1
h

∥∥ ≤ 1

h
ϵ .

Since B and its estimator B̂ satisfy that

B = (Ah)
−1B

′
, B̂ = (Āh)

−1B̃ ,

we can upper bound the estimation error
∥∥∥B̂ −B∥∥∥ by∥∥∥B̂ −B∥∥∥ ≤ ∥∥(Āh)

−1 −A−1
h

∥∥ ∥∥∥B′
∥∥∥+ ∥∥(Āh)

−1
∥∥ ∥∥∥B̃ −B′

∥∥∥ ≤ ∥B′∥
h

ϵ+
2

h
ϵ ≤ (2∥B∥+ 2

h
)ϵ ,

where the last inequality is because ∥B′∥ ≤ ∥Ah∥∥B∥ ≤ 2h∥B∥.

Since 2∥B∥ ≤ 2κB ≤ 1
h ·

2κB

15κA
≤ κB

κA
, we obtain Lemma 3.

A.4 Proof of Theorem 2

In this section, we derive the proof of Theorem 2. We upper bound the estimation errors of inter-
mediate dynamics (A

′
, B

′
), obtained as in (7). We first prove Lemma 9 below, providing system

identification results on a single trajectory with a stable controller.
Lemma 9. Consider the trajectory xk+1 = Axk +Buk +wk with A ∈ Rd×d, ∥A∥ < 1, B ∈ Rd×p;
uk ∼ N (0, Ip) and wk ∼ N (0,Σ) are i.i.d. random variables. Suppose we compute (Â, B̂) by

(Â)T =

[
T0−1∑
k=0

xkx
T
k

]† T0−1∑
k=0

xkx
T
k+1 , (B̂)T =

[
T0−1∑
k=0

uku
T
k

]† T0−1∑
k=0

uk

(
xk+1 − Âxk

)T
. (20)

Then there exists a constant C (depending only on A, B, d, p and Σ) such that for T ≥
C
(
∥X0∥22 + log2(1/δ)

)
, w.p. at least 1− δ:

∥Â−A∥, ∥B̂ −B∥ ≤ C
√

log(1/δ)

T
, (21)
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We first provide Lemma 10, which is used as the base of Lemma 9.

Lemma 10. Consider A ∈ Rd×d such that ρ(A) < 1 and the system Xk+1 = AXk + wk with
wk ∼ N (0,Σ) be i.i.d. random variables. Suppose we estimate A as in (7). Then there exists a
constant C depending on A, Σ and d such that for T ≥ C(∥X0∥22 + log(1/δ)), w.p. at least 1− δ,
we have:

∥Â−A∥ ≤ C
√

log(1/δ)

T
.

The work of [33] has discussed such systems in their Theorem 2.4, and we list it below:

Theorem 11. Fix ϵ, δ ∈ (0, 1), T ∈ N and 0 ≺ Γsb ≺ Γ̄. Then if (Xt, Yt)t≥1 ∈ (Rd × Rn)T is a
random sequence such that (a) Yt = A∗Xt + ηt, where ηt|Ft is σ2-sub-Gaussian and mean zero, (b)

X1, ..., XT satisfies the (k,Γsb, p)-small ball condition, and (c) such that P
[∑T

t=1XtX
T
t ̸⪯ T Γ̄

]
≤

δ. Then if

T ≥ 10k

p2
(
log(1/δ) + 2d log(10/p) + log det(Γ̄Γ−1

sb )
)
,

we have

P

∥Â−A∗∥ >
90σ

p

√
n+ d log 10

p + log det(Γ̄Γ−1
sb ) + log( 1δ )

Tλmin(Γsb)

 ≤ 3δ .

Here, the (k,Γsb, p)-small ball condition is defined as follows. Let (Zt)t≥1 be an Ftt≥1-adapted
random process taking values in R. We say (Zt)t≥1 satisfies the (k, ν, p)-block martingale small-ball
(BMSB) condition if, for any j ≥ 0, one has 1

k

∑k
i=1 P(|Zj+i| ≥ ν|Fj) ≥ p almost surely. Given

a process (Xt)t≥1 taking values in Rd, we say that it satisfies the (k,Γsb, p)-BMSB condition for
Γsb ≻ 0 if, for any fixed w ∈ Sd−1, the process Zt := ⟨w,Xt⟩ satisfies (k,

√
wTΓsbw, p)-BMSB.

In the work of [33], they have discussed the case when X0 = 0, and now we modify it to a general
starting state X0. From (7), we derive the estimation error of A as

ÂT −AT =

[
T−1∑
k=0

XkX
T
k

]† T−1∑
k=0

XkX
T
k+1 −AT

=

[
T−1∑
k=0

XkX
T
k

]† T−1∑
k=0

Xk(AXk + wk)
T −AT

=

[
T−1∑
k=0

XkX
T
k

]† T−1∑
k=0

Xkw
T
k .

For the first term, consider any v ∈ Sd−1, we lower bound vT
(∑T−1

k=0 XkX
T
k

)
v. Let ak = vTXk,

then ak = vTAXk−1 + vTwk. We claim that for any k ≥ 1, P
[
|ak| ≥ 1

2 |Xk−1

]
≥ 1

2 . Let bk =

vTwk, which is independent of Xk−1. It suffices to show that for any c ∈ R, P [bk ∈ [c, c+ 1]] ≤ 1
2 .

Since ∥v∥2 = 1 and wk ∼ N (0, Id), we have bk ∼ N (0, 1), from which we estimate the probability
as

P [bk ∈ [c, c+ 1]] =

∫ c+1

x=c

1√
2π
e−

1
2x

2

dx ≤ 1√
2π
≤ 1

2
. (22)

Based on (22), we can simply choose k = 1, Γsb = 1
4Id and p = 1

2 , then the random sequence
(Xi)i≥0 satisfies the (k,Γsb, p)-BMSB condition. It remains to choose a proper Γ̄ that meets the
condition (c) in Theorem 11.
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Since Xk = AkX0 +
∑k

i=1A
k−iwi, we have:

E

[
T−1∑
k=0

XkX
T
k

]
= E

T−1∑
k=0

(
AkX0 +

k∑
i=1

Ak−iwi

)(
AkX0 +

k∑
i=1

Ak−iwi

)T


=

T−1∑
k=0

AkX0X
T
0 (A

k)T + E

[
T−1∑
k=0

k∑
i=0

AkX0w
T
i (A

k−i)T

]

+ E

[
T−1∑
k=0

k∑
i=0

Ak−iwiX
T
0 (A

k)T

]
+ E

T−1∑
k=0

k∑
i,j=0

Ak−iwiw
T
j (A

k−j)T


=

T−1∑
k=0

AkX0X
T
0 (A

k)T +

T−1∑
k=0

k∑
i=0

Ak−iΣ(Ak−i)T .

Let Γ∞ =
∑

k≥0A
kΣ(Ak)T which is bounded and C1 be a constant such that C1 ≥

∑
k≥0 ∥Ak∥2.

We then show that for Γ̄ =
(

C1∥X0∥2
2

T dId + d∥Γ∞∥Id
)
/δ, the condition (c) in Theorem 11 is

satisfied. This is because E
[
tr
(∑T−1

k=0 XkX
T
k

)]
= tr

(
E
[∑T−1

k=0 XkX
T
k

])
≤ Tδ

d tr(Γ̄) so that

P
[
tr(
∑T−1

k=0 XkX
T
k ) ≥ 1

dT tr(Γ̄)
]
≤ δ. Furthermore, a necessary condition for∑T−1

k=0 XkX
T ̸≺ T Γ̄ is tr(

∑T−1
k=0 XkX

T) ≥ 1
dT tr(Γ̄).

Now, we apply such Γ̄ to Theorem 11. It can be computed that

log det(Γ̄Γ−1
sb ) = d log

(
4d(C1∥X0∥22/T + ∥Γ∞∥)

)
+ d log(1/δ) .

Then when T ≥ C1∥X0∥2 as well as T ≥ 40 (2d log(20) + d log(4d(1 + ∥Γ∞∥)) + 2d log(1/δ)),
we have:

P

∥Â−A∥ > 360

√
d+ d log(20) + d log(4d(1 + ∥Γ∞∥)) + 2d log( 1δ )

T

 ≤ 3δ .

This implies our Lemma 10.

Proof of Lemma 9 As for the estimation error ∥Â−A∥, let w
′

k = Buk +wk ∼ N (0,Σ+BBT),
which form a sequence of i.i.d random variables. With the results in Lemma 10, there exist some
constants C1, C2 such that, as long as T ≥ C1

(
∥X0∥22 + log(1/δ)

)
we have:

∥Â−A∥ ≤ C2

√
log(1/δ)

T
.

Now we upper bound the estimation error ∥B̂ −B∥. With the expression in (7), we obtain:

∥B̂ −B∥ =

∥∥∥∥∥∥
[
T−1∑
k=0

uku
T
k

]† T−1∑
k=0

uk

[
(A− Â)Xk + wk

]T∥∥∥∥∥∥
≤ λ−1

min(

T−1∑
k=0

uku
T
k )

[∥∥∥∥∥
T−1∑
k=0

ukX
T
k

∥∥∥∥∥ ∥∥∥Â−A∥∥∥+
∥∥∥∥∥
T−1∑
k=0

ukw
T
k

∥∥∥∥∥
]
.

For the quantities λ−1
min(

∑T−1
k=0 uku

T
k ) and ∥

∑T−1
k=0 ukw

T
k ∥, we apply Lemma 2.1. and Lemma 2.2.

in the work of [9], where they present the following results.
Lemma 12. Let N ≥ 2 log(1/δ). Suppose fk ∈ Rm, gk ∈ Rn are independent vectors such that
fk ∼ N (0,Σf ) and gk ∼ N (0,Σg) for 1 ≤ k ≤ N . With probability at least 1− δ,∥∥∥∥∥

N∑
k=1

fkg
T
k

∥∥∥∥∥ ≤ 4∥Σf∥1/22 ∥Σg∥1/22

√
N(m+ n) log(9/δ) .
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Lemma 13. Let X ∈ RN×n have i.i.d. N (0, 1) entries. With probability at least 1− δ,√
λmin(XTX) ≥

√
N −

√
n−

√
2 log(1/δ) .

With these two lemmas, we can conclude that if T ≥ 32(d+ p) log(4/δ), then both λmin(uku
T
k ) ≥

1
2T and

∥∥∥∑T−1
k=0 ukw

T
k

∥∥∥ ≤ 4 ∥Σ∥1/22

√
T (d+ p) log(18/δ), w.p. at least 1− δ.

Now we concentrate on the term
∥∥∥∑T−1

k=0 ukX
T
k

∥∥∥. Since w
′

i = Bui +wi ∼ N (0,Σ+BBT), it can

be directly computed that, w.p. at least 1− δ/T ,
∥∥∥w′

i

∥∥∥
2
≤ 2

∥∥d(Σ +BBT)
∥∥1/2
2

√
log(T/δ). Then

by union bound we get P
[
sup0≤i≤T−1

∥∥∥w′

i

∥∥∥
2
≤ 2∥Σ+BBT∥1/22

√
d log(T/δ)

]
≤ δ. Furthermore,

when sup0≤i≤T−1

∥∥∥w′

i

∥∥∥
2
≤ 2

∥∥Σ+BBT
∥∥1/2
2

√
d log(T/δ), we must have

∥Xk∥2 =

∥∥∥∥∥AkX0 +

k−1∑
i=0

Ak−1−iwi

∥∥∥∥∥ ≤ ∥A∥k∥X0∥2 +
2

1− ∥A∥
∥∥Σ+BBT

∥∥1/2
2

√
d log(T/δ) .

(23)

For any u ∈ Sp−1 and v ∈ Sd−1, let xi = uTui(0 ≤ i ≤ T − 1). Then, xi follows a normal
distribution xi ∼ N (0, 1) and {xi} is a sequence of independent random variables. Furthermore, xk
is also independent of (Xi)0≤i≤k. On the other hand, denote yk = XT

k v, (23) implies that w.p. at

least 1− δ, for all k we have |yk| ≤ ∥X0∥2 + 2
1−∥A∥

∥∥Σ+BBT
∥∥1/2
2

√
d log(T/δ) := Y . Let

Zk :=

k∑
i=0

uT
(
ukX

T
k

)
v · 1∥Xk∥2≤Y =

k∑
i=0

xkyk · 1∥Xk∥2≤Y ,

and let F0,F1, ...,FT be the filtration of X0, X1, ..., XT , then for any α ≥ 0,

E
[
e

αZk+1
Y |Fk

]
= e

αZk
Y EXk+1

[
Ex∼N (0,1)

[
exp

(
αxyk+1 · 1∥Xk+1∥2≤Y

Y

)]]
≤ e 1

2α
2

e
αZk
Y ,

implying that E
[
e

αZk+1
Y

]
≤ e

1
2α

2E
[
e

αZk+1
Y

]
So we have: E

[
e

αZT−1
Y

]
≤ e

1
2α

2T . By choosing

α = ±
√

1
T , we obtain that

P
[
|ZT−1| ≥ 2Y

√
T log(4/δ)

]
≤ δ

For Td be a 1
4 -net of Sd−1 and Tp be a 1

4 -net of Sp−1, we use union bound on them and obtain that,
w.p. at least 1− δ

|ZT−1| ≤ 2Y
√
T log(4|Tp||Td|/δ) ≤ 2Y

√
T [4(d+ p) + log(4/δ)] .

Where the last inequality is because |Tp| ≤ 9p and |Td| ≤ 9d

Next we upper bound
∥∥∥∑T−1

k=0 ukX
T
k

∥∥∥. For any u∗ ∈ Sp−1 and v∗ ∈ Sp−1, with some u ∈ Tp and

v ∈ Td s.t. ∥u− u∗∥2, ∥v − v∗∥2 ≤ 1
2 , we have:∣∣∣∣∣uT∗ (

T−1∑
k=0

ukX
T
k )v∗

∣∣∣∣∣
≤

∣∣∣∣∣uT(
T−1∑
k=0

ukX
T
k )v

∣∣∣∣∣+
∣∣∣∣∣(u∗ − u)T(

T−1∑
k=0

ukX
T
k )v∗

∣∣∣∣∣+
∣∣∣∣∣uT(

T−1∑
k=0

ukX
T
k )(v − v∗)

∣∣∣∣∣
≤ sup

u∈Tp,v∈Td

∣∣∣∣∣uT(
T−1∑
k=0

ukX
T
k )v

∣∣∣∣∣+ 1

2

∥∥∥∥∥
T−1∑
k=0

ukX
T
k

∥∥∥∥∥ .
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This leads
∥∥∥∑T−1

k=0 ukX
T
k

∥∥∥ ≤ 2 supu∈Tp,v∈Td

∣∣∣uT(∑T−1
k=0 ukX

T
k )v

∣∣∣. Therefore, for any δ ∈ (0, 12 ),
we have:

P

[∥∥∥∥∥
T−1∑
k=0

ukX
T
k

∥∥∥∥∥
2

≥ 4Y
√
T [4(d+ p) + log(4/δ)]

]

≤ P

[
sup

u∈Td,v∈Tp

∣∣∣∣∣uT
(

T−1∑
k=0

ukX
T
k 1∥Xk∥2≤Y

)
v

∣∣∣∣∣ ≥ 2Y
√
T [4(d+ p) + log(4/δ)]

]
+ P [∃ 0 ≤ k ≤ T − 1, ∥Xk∥2 ≥ Y ]

≤ 2δ .

We choose constant C depending on A,B, d, p such that for all T ≥ C
(
∥X0∥22 + log2(1/δ)

)
,

4Y
√
T [4(d+ p) + log(4/δ)] ≤ T ,

and we further have: whenever T ≥ C
(
∥X0∥22 + log2(1/δ)

)
, w.p. at least 1− 3δ,∥∥∥∥∥

T−1∑
k=0

ukX
T
k

∥∥∥∥∥ ∥Â−A∥ ≤ C2

√
log(1/δ)T .

Finally, when T ≥ max
(
C
(
∥X0∥22 + log2(1/δ)

)
, 32(d+ p) log(4/δ)

)
, we combine this upper

bound with P
(
λmin(

∑T−1
k=0 uku

T
k ) ≤ 1

2T
)
≤ δ, and obtain Lemma 9.

A.5 Proof of Theorem 5

Now, we aim to establish Theorem 5. The analysis of system identification for discrete-time linear
dynamical systems with multiple trajectories has been thoroughly investigated by [9]. We hereby cite
their findings, denoting the relevant result as Lemma 14.

Lemma 14. Suppose we have N i.i.d. trajectories Xi
k, each is defined by Xi

(k+1)h = AXi
k +

Buik + wi
k, where T0 is any integer, uik ∼ N (0, Ip) and wi

k ∼ N (0,Σ) are two sets of i.i.d. random
variables. Then, for the estimator (Â, B̂) of

(Â, B̂) ∈ arg min
(A,B)

1

2

N∑
i=1

∥∥Xi
T0
−AXi

T0−1 −BuiT0−1

∥∥2
2

(24)

with probability at least 1− δ, we have:

∥Â−A∥, ∥B̂ −B∥ ≤ O

(√
log(1/δ)

N

)
.

Combining Lemma 14 with Lemma 3, we directly obtain Theorem 5.

A.6 Lower Bound of System Identification with Finite Observation

We restate and provide the proof of Theorem 4.

Theorem 4 Suppose T ≥ 1 be the running time of a single trajectory of continuous-time linear
differential system, represented as in (2). Then there exist constants c1, c2 independent of d such
that, for any finite set of observed points {t0 = 0, t1, t2, ..., tN = T}, and any (possibly random-
ized) estimator function ϕ : {Xt0 , Xt1 , ..., XtN } → Rd×d, there exists bounded A,B satisfying
P
[
∥ϕ({Xi}i≤N )−A∥ ≥ c1√

T

]
≥ c2. Here the probability corresponds to the dynamical system

dominated by (A,B).
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Proof. Firstly, we consider a special case where d = 1, and let A = [−1] and Ā = [−1 − δ].
We show that when δ = 1

5
√
T

, for the two dynamical systems ψθ : dXt = AXtdt + dWt and
ψθ̄ : dXt = ĀXtdt + dWt, any algorithm A that outputs according only to {Xt0 , Xt1 , ..., XtN }
satisfies:

max

{
P
[
∥A(Xt0 , Xt1 , ..., XtN )−A∥ ≥ 1

10
√
T

]
,P
[
∥A(Xt0 , Xt1 , ..., XtN )− Ā∥ ≥ 1

10
√
T

]}
≥ 1

4e3
.

We note that this special case can be easily generalized to any dimension d, since we can consider
A = −Id and Ā satisfies Ā1,1 = A1,1 − δ, and for any (i, j) ̸= (1, 1), Āi,j = Ai,j . In this case the
last d− 1 dimension is independent of the first dimension, so it is essentially the same as the simplest
one-dimensional case.

Denote X = {Xt0 , Xt1 , ..., XtN } and g(X), ḡ(X) be the probability density of ψθ and ψθ̄, respec-
tively. For these two probability densities we have:

g(X) =

N∏
i=1

1√
2πΓ(ti − ti−1)

exp

(
− 1

2Γ(ti − ti−1)
(Xti − e−(ti−ti−1)Xti−1

)2
)
,

and

ḡ(X) =

N∏
i=1

1√
2πΓ̄(ti − ti−1)

exp

(
− 1

2Γ̄(ti − ti−1)
(Xti − e−(1+δ)(ti−ti−1)Xti−1)

2

)
.

Where

Γ(t) =

∫ t

s=0

e−2sds =
1

2
(1− e−2t) Γ̄(t) =

∫ t

s=0

e(−2−2δ)sds =
1

2 + 2δ
(1− e−(2+2δ)t) .

Denote αi =
√

1
Γ(ti−ti−1)

(Xti − e−(ti−ti−1)Xti−1
),

βi =
√

1
Γ(ti−ti−1)

(e−(ti−ti−1) − e−(1+δ)(ti−ti−1))Xti−1
and γi =

√
Γ(ti−ti−1)

Γ̄(ti−ti−1)
. Then

ln

(
g(X)

ḡ(X)

)
=

N∑
i=1

− ln(γi) +
1

2
γ2i (αi + βi)

2 − 1

2
α2
i .

Next we show that
∣∣∣ln( g(X)

ḡ(X)

)∣∣∣ is not large with high probability when X follows the probability den-

sity of g. Consider the following subsets of X: E1 =
{
X
∣∣ ∣∣∣∑N

i=1− ln(γi) +
1
2 (γ

2
i − 1)α2

i

∣∣∣ ≤ 1
}

.

E2 =
{
X
∣∣|∑N

i=1 γ
2
i αiβi| ≤ 1

}
and E3 =

{
X
∣∣ 1
2

∑N
i=1 γ

2
i β

2
i ≤ 1

}
. When X lies in the intersection

of these three sets,
∣∣∣ln( g(X)

ḡ(X)

)∣∣∣ is guaranteed to be not very large.

Let P be the probability with respect to density g. We will explicitly show that P[X ∈ Ek] ≥ 5
6 (k =

1, 2, 3).

Lower bound P[X ∈ E1] Firstly, we estimate
∑N

i=1
1
2 (γ

2
i − 1) − ln(γi). We first prove the

following inequality:

0 ≤ γ2i − 1 ≤ 2δmin{1, ti − ti−1} . (25)
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Let t = ti − ti−1. Then γ2i = (1 + δ) 1−e−2t

1−e−(2+2δ)t .

The left hand side of this inequality is because Γt ≥ Γ̄t, due to the reason that e−2s ≥ e−(2+2δ)s

for all s ≥ 0 and when f(x) ≥ g(x) for any x ∈ I we have:
∫
x∈I

f(x)dx ≥
∫
x∈I

g(x)dx. Now we
consider the right hand side of the inequality.

Case 1: When t ≥ 1, we directly use the fact that 1− e−2t ≤ 1− e−(2+2δ)t and obtain γi ≤ 1 + δ.

Case 2: When t ∈ (0, 1], it suffices to show that

(1 + δ)(1− e−2t) ≤ (1 + 2δt)(1− e−(2+2δ)t) .

Let h(t) = (1 + δ)(1− e−2t)− (1 + 2δt)(1− e−(2+2δ)t), then

h(t) = δ(1− 2t)− e−2t[1 + δ − (1 + 2δt)e−2δt]

≤ δ(1− 2t− e−2t)

≤ 0 .

Where for the first inequality we use the relation that e−2δt ≤ 1
1+2δt . The second inequality is

obtained by the relation that e−2t ≥ 1− 2t.

Now we bound 1
2 (γ

2
i − 1)− ln(γi). We first show that

0 ≤ 1

2
(γ2i − 1)− ln(γi) ≤

1

4
(γ2i − 1)2 .

Let x = γ2i − 1 and we obtain 1
2 (γ

2
i − 1)− ln(γi) =

1
2 [x− ln(1+ x)], and the inequality is obtained

directly since we have x ≥ ln(1 + x) ≥ x− 1
2x

2(x ≥ 0).

Then we can bound
∑N

i=1
1
2 (γ

2
i − 1)− ln(γi) as

0 ≤
N∑
i=1

1

2
(γ2i − 1)− ln(γi) ≤

N∑
i=1

1

4
(γ2i − 1)2

≤
N∑
i=1

δ2 min(1, (ti − ti−1))
2

≤
N∑
i=1

δ2(ti − ti−1)

≤ δ2T

≤ 1

25
.

Now we bound
∑N

i=1
1
2 (γ

2
i − 1)(α2

i − 1). Notice that this variable has zero mean, so we can bound
its variance and then apply Markov inequality to obtain a high probability bound.

At first, consider the variance of α2
i − 1, denoted as V ar(α2

i − 1). By noticing that αi ∼ N (0, 1),
we can directly calculate that

V ar(α2
i − 1) =

∫
x∈R

1√
2π
e−

1
2x

2

(x2 − 1)2dx = 2 .

Since all the αi’s are independent, we have:
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V ar

(
N∑
i=1

1

2
(γ2i − 1)(α2

i − 1)

)
=

N∑
i=1

1

4
(γ2i − 1)2V ar(α2

i − 1)

≤ 1

2

N∑
i=1

(γ2i − 1)2

≤ 2δ2
N∑
i=1

min(1, ti − ti−1)
2

≤ 2δ2T

≤ 2

25
.

By Markov inequality, we have:

P

[∣∣∣∣∣
N∑
i=1

1

2
(γ2i − 1)(α2

i − 1)

∣∣∣∣∣ ≥ 4

5

]
≤ V ar

(
N∑
i=1

1

2
(γ2i − 1)(α2

i − 1)

)
/

(
4

5

)2

≤ 1

8
.

Finally, for the subset E1 =
{
X
∣∣ ∣∣∣∑N

i=1− ln(γi) +
1
2 (γ

2
i − 1)α2

i

∣∣∣ ≤ 1
}

, we have:

P [x ∈ E1] ≥ 1− P

[∣∣∣∣∣
N∑
i=1

1

2
(γ2i − 1)(α2

i − 1)

∣∣∣∣∣ ≥ 4

5

]
≥ 7

8
.

Lower bound P[X ∈ E2] Since all the αi’s are independent, and αi is independent of {β1, ..., βi}
and {γ1, ..., γN}, we obtain that

E

( N∑
i=1

γ2i αiβi

)2
 = E

[
N∑
i=1

(γ2i αiβi)
2

]

= E

[
N∑
i=1

(γ2i βi)
2

]

=

N∑
i=1

E
[
(γ2i βi)

2
]
.

We have shown that γ2i ≤ 1 + 2δ. Then for T ≥ 1 we have: γ4i ≤ (1 + 2
5 )

2 ≤ 2. Therefore, we
obtain:

E

( N∑
i=1

γ2i αiβi

)2
 ≤ 2

N∑
i=1

E
[
β2
i

]
.

Now we upper bound E
[
β2
i

]
, where βi =

√
1

Γ(ti−ti−1)
(e−(ti−ti−1) − e−(1+δ)(ti−ti−1))Xti−1

Firstly, we show that√
1

Γ(ti − ti−1)
(e−(ti−ti−1) − e−(1+δ)(ti−ti−1)) ≤ δ

√
ti − ti−1 . (26)
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Again denote t = ti − ti−1. By using Γt =
1
2 (1− e

−2t), it suffices to show that

e−t − e−(1+δ)t ≤ δ
√

1

2
t(1− e−2t) .

By multiplying et on both sides, the inequality is equivalent to

1− e−δt ≤ δ
√

1

2
t(e2t − 1) .

This is true since e−δt ≥ 1− δt, and e2t ≥ 1 + 2t, implying that

1− e−δt ≤ δt ≤ δ
√

1

2
t(e2t − 1) .

With this result, we can upper bound 2
∑N

i=1 E
[
β2
i

]
by

2

N∑
i=1

E
[
β2
i

]
≤

N∑
i=1

2δ2(ti − ti−1)E
[
X2

ti−1

]
.

Finally, since Xt ∼ N (0,Γ(t)), for all t ≥ 0,

E
[
X2

t

]
= Γt =

1

2
(1− e−2t) ≤ 1 .

Therefore, we obtain

E

( N∑
i=1

γ2i αiβi

)2
 ≤ 2

N∑
i=1

E
[
β2
i

]
≤

N∑
i=1

2δ2(ti − ti−1)E
[
X2

ti−1

]
≤

N∑
i=1

2δ2(ti − ti−1) = 2Tδ2 =
2

25

Again by using Markov inequality, we obtain:

P

[
|

N∑
i=1

γ2i αiβi| > 1

]
≤ 2

25
.

Which follows that

P [X ∈ E2] = 1− P

[
|

N∑
i=1

γ2i αiβi| ≥ 1

]
≥ 23

25
.

Lower bound P[X ∈ E3] We have shown that γ2i ≤ 2,∀i and
∑N

i=1 E
[
β2
i

]
≤ δ2T . Therefore,

E

[
1

2

N∑
i=1

γ2i β
2
i

]
≤ δ2T ≤ 2

25
.

And we also have

P [X ∈ E3] = 1− P

[
1

2

N∑
i=1

γ2i β
2
i > 1

]
≥ 23

25
.
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Now we come back to prove the theorem. With lower bounds of P[X ∈ E1],P[X ∈ E2],P[X ∈ E3],
we have

P [X ∈ E1 ∩ E2 ∩ E3] ≥ 1− (1− P[X ∈ E1])− (1− P[X ∈ E2])− (1− P[X ∈ E3]) ≥
1

2
.

With this bound, we have:

EX∼g

[
1

(
|ϕ(X)−A| ≥ 1

10
√
T

)]
+ EX∼ḡ

[
1

(
|ϕ(X)− Ā| ≥ 1

10
√
T

)]
≥
∫
X∈E1∩E2∩E3

g(X)E
[
1

(
∥ϕ(X)−A∥ ≥ 1

10
√
T

) ∣∣X]+ ḡ(X)E
[
1

(
∥ϕ(X)− Ā∥ ≥ 1

10
√
T

) ∣∣X] dX
≥
∫
X∈E1∩E2∩E3

min{g(X), ḡ(X)}dX

≥
∫
X∈E1∩E2∩E3

1

e3
g(X)dX

≥ 1

2e3
.

Where the second inequality is because ∥ϕ(X) − A∥ + ∥ϕ(X) − Ā∥ ≥ ∥A − Ā∥ = 1
5
√
T

so we
cannot have both ∥ϕ(X)−A∥ ≤ 1

10
√
T

and ∥ϕ(X)− Ā∥ ≤ 1
10

√
T

. The third inequality is because
for any X ∈ E1 ∩ E2 ∩ E3, we have

∣∣∣∣ln g(X)

ḡ(X)

∣∣∣∣ =
∣∣∣∣∣

N∑
i=1

− ln(γi) +
1

2
γ2i (αi + βi)

2 − 1

2
α2
i

∣∣∣∣∣
≤

∣∣∣∣∣
N∑
i=1

− ln(γi) +
1

2
(γ2i − 1)α2

i

∣∣∣∣∣
+

∣∣∣∣∣
N∑
i=1

γ2i αiβi

∣∣∣∣∣
+

1

2

N∑
i=1

γ2i β
2
i

≤ 3 ,

implying that ḡ(X) ≥ 1
e3 g(X).

Therefore, we have:

max

{
PX∼g

[
|ϕ(X)−A| ≥ 1

10
√
T

]
,PX∼ḡ

[
|ϕ(X)− Ā| ≥ 1

10
√
T

]}
≥ 1

4e3
.

This means that for any algorithm, it cannot achieve 1
10

√
T

estimation error with success probability
1− 1

4e3 for at least one of the systems controlled by (A, 0) and (Ā, 0).

B Regret Analysis

Having demonstrated the results of system identification for continuous-time linear systems, we
leverage these findings to establish upper bounds on the regret for Algorithm 3. Elaborations on the
details will be presented in the subsequent sections.
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B.1 Convergence of P and the Estimation Error of K

In this section we provide the following Lemma 15, along with its proof, which shows that ∥P −P∗∥
converges at the same speed as ∥Â−A∥+ ∥B̂ −B∥.
Lemma 15. There exist constants ϵ0 > 0 and C2 > 0 such that as long as ∥Â−A∥, ∥B̂ −B∥ ≤ ϵ
for some 0 < ϵ < ϵ0, with P obtained from (5) we have:

∥P − P∗∥ ≤ C2ϵ . (27)

Recall that the optimal dynamic is K∗ = −R−1BTP∗ with P∗ obtained from equation (5). Now we
consider the distance between it and the sub-optimal dynamic K̄ = −R−1BTP with P obtained
from (5) with (Â, B̂). Denote ∆A = Â − A and ∆B = B̂ − B, along with ∥∆A∥, ∥∆B∥ ≤ ϵ
where ϵ ∈ [0, ϵ0] with some ϵ0 determined later. We establish the proof by constructing a sequence of
matrices (Pk)k≥0, and we will prove that such sequence converges to the unique symmetric solution
P satisfying

PB̂R−1B̂TP − ÂTP − PÂ−Q = 0 .

At first we introduce a solution of a particular kind of matrix equation [19].
Lemma 16. Suppose A satisfies α(A) = max{ℜ(λi)|λi ∈ λ(A)} < 0. Q is a symmetric matrix.
Consider such a function

ATX +XA+Q = 0 . (28)

Then, the unique symmetric solution X of this equation can be expressed as:

X =

∫
t≥0

eA
TtQeAtdt . (29)

Now we consider the relation between P and P∗. The core is iteratively constructing a sequence
of matrices Pk such that P0 = P∗ and limk→+∞ Pk = P . Such matrices follows the relation
Pk+1 = Pk +∆Pk where ∆Pk converges rapidly. As for the starting case, consider the expansion

(P∗ +∆P )(B +∆B)R−1(B +∆B)T(P∗ +∆P )

− (A+∆A)T(P∗ +∆P )− (P∗ +∆P )(A+∆A)−Q

=
[
(B +∆B)R−1(B +∆B)TP∗ −A−∆A

]T
∆P

+∆P
[
(B +∆B)R−1(B +∆B)TP∗ −A−∆A

]
+
[
P∗BR

−1BTP∗ −ATP∗ − P∗A−Q
]
+ P∗

[
∆B

(
R−1(B +∆B)T

)
+BR−1∆B

]
P∗

+∆P (B +∆B)R−1(B +∆B)T∆P .

Define

A0 = A+∆A− (B +∆B)R−1(B +∆B)TP∗ ,

F0 = −P∗
[
∆B

(
R−1(B +∆B)T

)
+BR−1∆B

]
P∗ .

We set ∆P0 be a solution of

AT
0 ∆P0 +∆P0A0 + F0 = 0 .

which satisfies that (see Lemma 16)

∆P0 =

∫
t≥0

eA
T
0 tF0e

A0tdt ,

∥∆P0∥ ≤
∫
t≥0

e2α(A0)t∥F0∥dt =
1

−2α(A0)
∥F0∥ ≤

1

−α(A0)
∥P∗∥2(∥BR−1∥ϵ+ ∥R−1∥ϵ2) .
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This ∆P0 also satisfies

(P∗ +∆P0)(B +∆B)R−1(B +∆B)T(P∗ +∆P0)

− (A+∆A)T(P∗ +∆P )− (P∗ +∆P )(A+∆A)−Q
= ∆P0(B +∆B)R−1(B +∆B)T∆P0 .

An important thing is to guarantee that A0 is stable, and |α(A0)| can not be too closed to zero.
For any ϵ1 ∈ (0, 1) and C1 = ∥R−1∥∥P∗∥ + 1 + 2∥BR−1∥∥P∗∥, as long as ϵ ≤ ϵ1, ∥A0 − (A −
BR−1BTP∗)∥ ≤ C1ϵ. Furthermore, there exists ϵ2 > 0 such that if ∥X − (A−R−1BTP∗)∥ ≤ ϵ2,
then α(X) ≤ 1

2α(A − R
−1BTP∗)(the work of [30] shows this result). We can further let this ϵ2

satisfies that, as long as ∥∆A∥, ∥∆B∥, ∥∆P∥ ≤ ϵ2, we always have:

α
(
A+∆(A)− (B +∆B)R−1(B +∆B)T(P∗ +∆P )

)
≤ 1

2
α(A−BR−1BTP∗) . (30)

Now we additionally set ϵ1 satisfying ϵ1 ≤ 1
2C1

ϵ2 and ∥R−1∥ϵ1 ≤ 1, then for all ϵ ≤ ϵ1,

∥∆P0∥ ≤
2

−α(A−BR−1BTP∗)
∥P∗∥2(1 + ∥BR−1∥)ϵ .

Denote P1 = P0 +∆P0, C2 = 2
−α(A−BR−1BTP∗)

∥P∗∥2(1 + ∥BR−1∥), and set some constant C3

satisfying C3 ≥ ∥BR−1BT∥ + 2∥BR−1∥ + ∥R−1∥. We then inductively define Pk+1 and ∆Pk

(k ≥ 1). For defined ∆Pk−1, we set Pk = Pk−1 +∆Pk−1, which satisfies

Pk(B +∆B)R−1(B +∆B)TPk − (A+∆A)TPk − Pk(A+∆(A))−Q
= ∆Pk−1(B +∆B)R−1(B +∆B)T∆Pk−1 .

Then we denote Ak = A+∆A− (B +∆B)R−1(B +∆B)TPk, and set ∆Pk satisfying:

AT
k∆Pk +∆PkAk = ∆Pk−1(B +∆B)R−1(B +∆B)T∆Pk−1 .

By the hypothesis of ϵ2, as long as ∥Pk − P∗∥ ≤ ϵ2, we have α(Ak) ≥ 1
2α(A−BR

−1BTP∗). By
using (29) we obtain that ∥∆Pk∥ ≤ C4∥∆Pk−1∥2, where C4 = 2

−α(A−BR−1BTP∗)
C3. Now if we

define Pk+1 = Pk +∆Pk, Pk+1 also satisfies:

Pk+1(B +∆B)R−1(B +∆B)TPk+1 − (A+∆A)TPk+1 − Pk+1(A+∆(A))−Q
= ∆Pk(B +∆B)R−1(B +∆B)T∆Pk ,

Then these sequences ∆Pk and Pk are well defined, along with the relation that Pk+1 = Pk +∆Pk.
Furthermore, when ∥Pk − P∗∥ ≤ ϵ2, we have∥∆Pk+1∥ ≤ C4∥∆Pk∥2. Note that for the base case
we have ∥∆P0∥ ≤ C2ϵ.

Finally, it remains to constrain ∥Pk − P∗∥. By choosing ϵ ≤ min( 1
2C2C4

, 1
2C2

ϵ2, 1), we obtain
∥∆P0∥ ≤ C2ϵ. We can also see that if for all 0 ≤ k ≤ m, ∥∆Pk∥ ≤ 2−kC2ϵ, then ∥Pm − P∗∥ ≤
2(1 − 2−m+1)C2ϵ ≤ ϵ2 so that ∥∆Pm+1∥ ≤ C4∥∆Pm∥2 ≤ 2−m−1C2ϵ. So by induction we see
that ∥∆Pk∥ ≤ 2−kC2ϵ for any k.

On the other hand, since ∥∆Pk∥ ≤ 2−k∥∆P0∥, limk→+∞ Pk = P∞ exists, and such P∞ is the
unique symmetric solution of

P (B +∆B)R−1(B +∆B)TP − (A+∆A)TP − P (A+∆(A))−Q = 0 ,

such that (A+∆A)− (B+∆B)R−1(B+∆B)TP is stable (recall the stable margin in (30), which
implies that (A+∆A)− (B +∆B)R−1(B +∆B)TP∞ is stable).

So P∞ is exactly P , satisfying ∥P − P∗∥ ≤ 2C2ϵ.

Therefore, we conclude that there exists some ϵ0 > 0 and constantC, both depending onA,B,K, d, p
such that for any ϵ ∈ [0, ϵ0], ∥P − P∗∥ ≤ Cϵ as long as ∥Â−A∥, ∥B̂ −B∥ ≤ ϵ.
Then we apply our results for system identification to establish an upper bound for ∥K̄ −K∗∥.
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Based on Lemma 15, fix constant ϵ1 > 0 and constant C1 ≥ 0 so that we have ∥P − P∗∥ ≤
C1

(
∥Â−A∥+ ∥B̂ −B∥

)
whenever ∥Â−A∥+ ∥B̂ −B∥ ≤ ϵ1

We set C2 ≥ 1 be two times the constant C in Lemma 9, and obtain that, when log2(1/δ) ≤ T 1/2

C2

and T 1/2 ≥ C2∥X0∥22, we have:

P

[
∥Â−A∥+ ∥B̂ −B∥ ≤ 2C2

√
log(1/δ)

T 1/2

]
≥ 1− δ .

Then, for log(1/δ) ≤ min

{
Tϵ21
4C2

2
, T

1/4

C
1/2
2

}
≤ T 1/4ϵ21

4C2
2

, we have:

P

[
∥P − P∗∥ ≤ 2C1C2

√
log(1/δ)

T 1/2

]
≥ 1− δ . (31)

Finally, since K̄ = −R−1(B̂)TP , K∗ = −R−1BTP∗, we have:∥∥K̄ −K∗
∥∥ ≤ ∥R−1∥

[
∥B̂ −B∥∥P∥+ ∥B∥∥P − P∗∥

]
.

We can resetC1 such that ∥K̄−K∗∥ ≤ C1

(
∥Â−A∥+ ∥B̂ −B∥

)
whenever ∥Â−A∥+∥B̂−B∥ ≤

ϵ1, and combine this with (31), we have: for any log(1/δ) ≤ T 1/4ϵ21
4C2

2

P

[
∥K̄ −K∗∥ ≤ 2C1C2

√
log(1/δ)

T 1/2

]
≥ 1− δ . (32)

With this probability bound on ∥K̄ − K∗∥, we can further upper bound the regret, shown in the
following part.

B.2 Key Lemmas

We first upper bound the radius of a single trajectory with stable controller, for which we introduce
and provide a proof for the following lemma:
Lemma 17. Consider the continuous system dXt = AXtdt+ dWt such that α(A) < 0 where α(A)
is the largest real component of A and W is a standard Brownian noise. Then, w.p. at least 1− δ:

sup
0≤t≤T

(
∥Xt∥2 − eα(A)t∥X0∥2

)
≤ C

√
d log((1 + T )/δ) .

Then we concentrate on how the error ∥P − P∗∥ will influence the regret during the exploitation
phase. For a dynamic U with α(A+BU) < 0, we define a cost function:

cost(U) = tr

(∫
t≥0

(e(A+BU)t)T(Q+ UTRU)e(A+BU)tdt

)
.

The convergence rate of this cost function is stated in the following lemma:
Lemma 18. Let U∗ minimize cost(U). Then, there exists ϵ0 ≥ 0 such that for any ∥∆U∥ = 1 and
ϵ ∈ [0, ϵ0], we have:

cost(U∗ + ϵ∆U)− cost(U∗) ≤ C1ϵ
2 .

The above result shows the average cost per unit time when applying fixed controller for infinite time.

Then we further consider the case when the running time is finite. We derive the following lemma:
Lemma 19. Let U∗ follows the same definition as in Lemma 18. Then, for some ϵ > 0, there exist
constants C2 and C3 (independent of U ) such that for all T > 0 and any U such that ∥U − U∗∥ ≤ ϵ,

|JT − cost(U)T | ≤ C2∥x∥22 + C3 .

Here JT is the expected cost of the policy that takes action by Ut = UXt (t ∈ [0, T ]), with initial
state X0 = x.
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With this lemma, by definition of U∗, we actually have U∗ = K∗, where K∗ = −R−1BTP∗ and P∗
is the solution of (4). Since such C2, C3 also satisfy:

|J∗
T − cost(U∗)T | ≤ C2∥x∥22 + C3 ,

so it follows that

RT = JT − J∗
T ≤ 2C2∥x∥22 + 2C3 . (33)

B.3 Proof of Lemma 17

We first upper bound the radius of a single trajectory with stable controller, for which we introduce
and provide a proof for the following lemma:
Lemma 17. Consider the continuous system dXt = AXtdt+ dWt such that α(A) < 0 where α(A)
is the largest real component of A and W is a standard Brownian noise. Then, w.p. at least 1− δ:

sup
0≤t≤T

(
∥Xt∥2 − eα(A)t∥X0∥2

)
≤ C

√
d log((1 + T )/δ) .

Proof. The trajectory Xt with differential equation dXt = AXt + dWt can be derived as

Xt = eAtX0 +

∫ t

s=0

eA(t−s)dWt .

Lemma 7 tells that when A is stable,
∥∥eAtX0

∥∥
2
≤ eα(A)t∥X0∥2. So it suffices to show that

P
[

sup
0≤t≤T

∥∥∥∥∫ t

s=0

eA(t−s)dWt

∥∥∥∥
2

≥ C
√
d log(1 + T )/δ

]
≤ δ .

Let T = T0h with T0 be an integer. We first consider the set of points {Xkh}. Denote wk :=∫ kh

t=0
eA(kh−t)dWt, then wk ∼ N (0,Σk) with Σk =

∫ kh

t=0
eAteA

Ttdt. This Σh also satisfies

∥Σk∥ ≤
∫ h

t=0

∥∥eAt
∥∥2 dt ≤ ∫ kh

t=0

e2α(A)tdt ≤ 1

2|α(A)|
.

Which follows that sup0≤k≤T0
∥wk∥2 ≤ 2

√
d

|α(A)| log((1 + T0)/δ), w.p. at least 1− δ.

Next we consider any Xkh+t with t ∈ [0, h]. Bounding such terms requires the Doob’s martingale
inequality [11], stated as in Lemma 20. We denote xkt =

∫ t

s=0
eA(t−s)dWkh+sds with corresponding

filtration Ft. We also define Zk
t := eλ∥e

−Atxk
t ∥22 with λ ≥ 0. Then Zk

t is a submartingale under the
filtration Ft, since for any t ≥ s,

E
[
Zk
t |Fs

]
= E

[
exp

(
λ

∥∥∥∥e−Asxks +

∫ t

t1=s

e−At1dWkh+t1

∥∥∥∥2
2

)∣∣xks
]
≥ eλ∥e

−Asxk
s∥22 = Zk

s .

Where we notice that E
[∥∥∥e−Asxks +

∫ t

t1=s
e−At1dWkh+t1

∥∥∥2
2

∣∣xks] ≥ ∥∥e−Asxks
∥∥2
2
, and apply

Jensen’s inequality on the non-decreasing convex function f(x) = eλx to obtain the above inequality.

Now we apply Lemma 20 and get

P

[
sup

t∈[0,h]

∥∥e−Atxkt
∥∥
2
≥ C

]
≤ e−λC2

E[Zk
h ] . (34)

We next estimate E(Zk
h). Since e−Ahxkh =

∫ h

t=0
e−AtdWkh+t, we obtain that e−Ahxkh ∼ N (0, Σ̄),

where

Σ̄ =

∫ h

t=0

e−Ate−ATtdt .
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By setting λ = 1
4∥Σ̄∥ , it can be computed that

E
[
eλ∥e

−Ahxk
h∥22
]
=

∫
x∈Rd

1

(2π)d/2
√

det(Σ̄)
e−

1
2x

TΣ−1
1 xeλx

TIdxdx

=

√
1

det(Σ̄) det(Σ−1
1 − 2λId)

=

√
1

det(Id − 2λΣ̄)

≤ 2d/2 ,

where the last inequality is because Id − 2λΣ̄ ⪰ 1
2Id.

We combine this result with (34) and obtain:

P

[
sup

0≤k≤T0−1,0≤t≤h

∥∥xkt ∥∥2 ≥ 2e∥A∥h ∥∥Σ̄∥∥1/2√log(2d/2T0/δ)

]

≤
T0−1∑
k=0

P

[
sup

t∈[0,h]

Zk
t ≥ 2d/2

T0
δ

]

≤
T0−1∑
k=0

P

[
sup

t∈[0,h]

Zk
t ≥

T0
δ
E(Zk

h)

]
≤ δ .

Finally, since Xkh+t = eA(kh+t)X0 + eAtwk + xkt , it follows that

∥Xkh+t∥2 ≤
∥∥∥eA(kh+t)X0

∥∥∥
2
+
∥∥eAtwk

∥∥
2
+
∥∥xkt ∥∥2

≤ eα(A)(kh+t) ∥X0∥2 + ∥wk∥2 +
∥∥xkt ∥∥2 .

By applying union bound on ∥wk∥2 and
∥∥xkt ∥∥2 we finally obtain Lemma 17.

Lemma 20 (Doob’s martingale inequality). LetX1, . . . , Xn be a discrete-time submartingale relative
to a filtration F1, . . . ,Fn of the underlying probability space, which is to say:

Xi ≤ E [Xi+1 | Fi] .

The submartingale inequality says that

P
[
max
1≤i≤n

Xi ≥ C
]
≤ E [max (Xn, 0)]

C

for any positive number C.

Moreover, let Xt be a submartingale indexed by an interval [0, T] of real numbers, relative to a
filtration Ft of the underlying probability space, which is to say:

Xs ≤ E [Xt | Fs]

for all s < t. The submartingale inequality says that if the sample paths of the martingale are
almost-surely right-continuous, then

P
[

sup
0≤t≤T

Xt ≥ C
]
≤ E [max (XT , 0)]

C

for any positive number C.
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B.4 Proof of Lemma 18

In this section, we proof Lemma 18 which refers to the convergence rate of the cost function:
Lemma 18. Let U∗ minimize cost(U). Then, there exists ϵ0 ≥ 0 such that for any ∥∆U∥ = 1 and
ϵ ∈ [0, ϵ0], we have:

cost(U∗ + ϵ∆U)− cost(U∗) ≤ C1ϵ
2 .

Proof. For any ∥∆U∥ = 1 and ϵ > 0, consider U = U∗ + ϵ∆U , we show that as ϵ→ 0, there exists
V ∈ Rd such that tr(V ) = 0, and∫

t≥0

e(A+BU)Tt(Q+ UTRU)e(A+BU)tdt−
∫
t≥0

e(A+BU∗)
Tt(Q+ UT

∗ RU∗)e
(A+BU∗)tdt

= ϵV +O(ϵ2) .

Let D(ϵ, t) = e(A+B(U∗+ϵ∆U))t − e(A+BU∗)t. The most important intuition is that D(ϵ, t) can be
represented by the form of D(ϵ, t) = ϵD1(t) + ϵ2D2(ϵ, t), where D1(t) does not depend on ϵ, and
the residual D2(ϵ, t) can be well bounded. Now we find such D1(t) and upper bound ∥D2(ϵ, t)∥.
For t ≤ t0 = 1

max{∥A+BU∗∥,∥B∥} and ϵ < 1, the Taylor expansion of e(A+B(U∗+ϵ∆U))t can be
represented as follows:

D(ϵ, t) =
∑
k≥1

1

k!

[
(A+BU∗ + ϵB∆U)ktk − (A+BU∗)

ktk
]

=
∑
k≥1

1

k!

[(
k−1∑
i=0

(A+BU∗)
i(B∆U∗)(A+BU∗)

k−1−i

)
ϵ+D1(ϵ, k)ϵ

2

]
tk ,

where D1(ϵ, k) is the residual of (A + BU + ϵB∆U)k − (A + BU)k with order at least ϵ2. This
sequence of matrices are expressed and bounded as follows.

D1(k, ϵ) =

k∑
i=2

ϵi
∑

j1+...+ji+1=k−i

(A+BU∗)
j1(B∆U)(A+BU∗)

j2(B∆U)...(A+BU∗)
ji+1 ,

∥D1(k, ϵ)∥ ≤
k∑

i=2

k!

i!(k − i)!
∥A+BU∗∥k−i∥B∥iϵi−2 .

Thus we have: ∥∥∥∥∥∥
∑
k≥1

tk

k!
D1(k, ϵ)

∥∥∥∥∥∥ ≤
∑
k≥2

∑
i≥2

1

i!(k − i)!
≤ 4 .

Define E(t) and E1(ϵ, t) as follows: for 0 ≤ t ≤ t0, let

E(t) =
∑
k≥1

tk

k!

k−1∑
i=0

(A+BU∗)
i(B∆U∗)(A+BU∗)

k−1−i, E1(ϵ, t) =
∑
k≥1

tk

k!
D1(k, ϵ) ,

and for t ∈ [ 12 t0, t0], l ≥ 1, we inductively define E(2lt) and E1(2
lt) as follows:

E(2lt) = e(A+BU∗)2
l−1tE(2l−1t) + E(2l−1t)e(A+BU∗)2

l−1t ,

E1(ϵ, 2
lt) =e(A+BU∗)2

l−1tE1(ϵ, 2
l−1t) + E1(ϵ, 2

l−1t)e(A+BU∗)2
l−1t

+
(
E(2l−1t) + ϵE1(ϵ, 2

l−1t)
)2
.

Then we have the relation that e(A+BU∗+B∆U)t − e(A+BU∗)t = ϵE(t) + ϵ2E1(ϵ, t).
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Now we upper bound ∥E(t)∥ and ∥E1(ϵ, t)∥. When t ≤ t0:

∥E(t)∥ ≤
∑
k≥1

tk

k!

k−1∑
i=0

∥∥(A+BU∗)
i(B∆U∗)(A+BU∗)

k−1−i
∥∥ ≤∑

k≥1

1

(k − 1)!
= e

For t ≥ t0, let t = 2l1t1, with l1 be an integer and t1 ∈ ( 12 t0, t0], then

∥E(2l1t1)∥ =
∥∥∥e(A+BU∗)2

l1−1t1E(t) + E(t)e(A+BU∗)2
l1−1t1

∥∥∥
≤ 2eα(A+BU∗)2

l1−1t1
∥∥E(2l1−1t1)

∥∥
≤ 2l1e1+α(A+BU∗)2

l1−2t0

≤ 4

−α(A+BU∗)t0
,

where the last inequality is because for any x, a > 0, xe−ax ≤ 1
ae , and thus for any t ≥ 0,

∥E(t)∥ ≤ C = 4
−α(A+BU∗)t0

.

When t ≥ 2
−α(A+BU∗)

, we additionally have

∥E(t)∥ ≤ 2e
1
2α(A+BU∗)t

∥∥∥∥E(
t

2
)

∥∥∥∥ ≤ 4t

t0
e

1
2α(A+BU∗)t ≤ 8

−α(A+BU∗)t0
e

1
4α(A+BU∗)t .

Now we consider E1(ϵ, t). When t ≤ t0,

∥E1(ϵ, t)∥ ≤
∑
k≥1

∥∥∥∥ tkk!D1(k, ϵ)

∥∥∥∥ ≤ 4 .

When t > t0, with t = 2lt1 and t1 ∈ ( 12 t0, t0], we obtain:∥∥E1(ϵ, 2
lt1)
∥∥ =∥∥∥e(A+BU∗)2
l−1t1E1(ϵ, 2

l−1t1) + E1(ϵ, 2
l−1t1)e

(A+BU∗)2
l−1t1 +

(
E(2l−1t1) + ϵE1(ϵ, 2

l−1t1)
)2∥∥∥

≤ 2eα(A+BU∗)2
l−1t1

∥∥E1(ϵ, 2
l−1t1)

∥∥+ ∥∥E(2l−1t1) + ϵE1(ϵ, 2
l−1t1)

∥∥2
≤ 2eα(A+BU∗)2

l−1t1
∥∥E1(ϵ, 2

l−1t1)
∥∥+ 2

∥∥E(2l−1t1)
∥∥2 + 2ϵ2

∥∥E1(ϵ, 2
l−1t1)

∥∥2 .
Now, we show that

∥∥E1(ϵ, 2
lt1)
∥∥ converges exponentially eventually. The proof consists of two

parts: first, for t which is not too large, ∥E1(ϵ, t)∥ can be bounded uniformly over all possible ∆U
and any constrained ϵ. Then, for larger t we can utilize the construction of ∥E1(ϵ, t)∥ to estimate its
convergence speed.

Let ϵ ≤ −α(A+BU∗)t0
(64C)2 , l0 = 1 + ⌊log2 4

−α(A+BU∗)t0
⌋. We first inductively show that for any l ≤ l0,∥∥E1(ϵ, 2

lt1)
∥∥ ≤ (2l+3 − 4)C2. The base case where l = 0 is certainly true. Suppose we already

have
∥∥E1(ϵ, 2

l−1t1)
∥∥ ≤ (2l+2 − 4)C2. Then for the case of l, we obtain:

∥∥E1(ϵ, 2
lt1)
∥∥ ≤ 2

∥∥E1(ϵ, 2
l−1t1)

∥∥+ 4C2 ≤ (2l+3 − 4)C2 ,

where for the first inequality we use the inductive hypothesis that

ϵ
∥∥E1(ϵ, 2

l−1t1)
∥∥ ≤ 2l0+3C2ϵ ≤ 64

−α(A+BU∗)t0
C2ϵ ≤ C ,

along with facts that
∥∥E(2l−1t1)

∥∥ ≤ C and 2eα(A+BU∗)2
l−1t1 ≤ 2. Specifically, we have∥∥E1(ϵ, 2

l0t1)
∥∥ ≤ 64C2

−α(A+BU∗)t0
.
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Now, we consider l > l0. We first show that for all such l,
∥∥E1(ϵ, 2

lt1)
∥∥ ≤ 64C2

−α(A+BU∗)t0
. Since

2l−1t1 ≥ 2l0−1t0 ≥ 2
−α(A+BU∗)

, we have 2eα(A+BU∗)2
lt1 ≤ 2e−2, and thus∥∥E1(ϵ, 2

lt1)
∥∥ ≤ 2eα(A+BU∗)2

l−1t1
∥∥E1(ϵ, 2

l−1t1)
∥∥+ 2

∥∥E(2l−1t1)
∥∥2 + 2ϵ2

∥∥E1(ϵ, 2
l−1t1)

∥∥2
≤ 2e−2

∥∥E1(ϵ, 2
l−1t)

∥∥+ 4C2

≤ 64C2

−α(A+BU∗)t0
,

which holds for all l ≥ l0 with induction on l. Now we reuse the above expression and obtain that∥∥E1(ϵ, 2
lt1)
∥∥

≤ 2eα(A+BU∗)2
l−1t1

∥∥E1(ϵ, 2
l−1t1)

∥∥+ 2
∥∥E(2l−1t1)

∥∥2 + 2ϵ2
∥∥E1(ϵ, 2

l−1t1)
∥∥2

≤ 2e−2l−l0 64C2

−α(A+BU∗)t0
+

128

α2(A+BU∗)t20
e−2l−l0−1

+ 2ϵ2
∥∥E1(ϵ, 2

l−1t1)
∥∥2 .

Let l∗ be the smaller integer greater than l0 + 1 which satisfies:

2e−2l∗−l0 64C2

−α(A+BU∗)t0
+

128

α2(A+BU∗)t20
e−2l∗−l0−1

≤ 1

4
.

Then by using the relation that 2ϵ2
∥∥E1(ϵ, 2

l−1t1)
∥∥2 ≤ 2ϵ2

(
64C2

−α(A+BU∗)t0

)2
≤ 1

4 , we have:∥∥E1(ϵ, 2
l∗t1)

∥∥ ≤ 1

2
.

Now we inductively show that for all k ≥ 0,∥∥E1(ϵ, 2
l∗+kt1)

∥∥ ≤ 2−2k .

By using the hypothesis for k and 2ϵ2 ≤ 1
4 , we obtain:

∥∥E1(ϵ, 2
l∗+k+1t1)

∥∥ ≤ 2ϵ2
∥∥E1(ϵ, 2

l∗+kt1)
∥∥2 + 1

4
e−2k+l∗−l0+2l∗−l0

≤ 1

4
2−2k+1

+
1

4
e−2k+2+22

≤ 2−2k+1

,

leading to the claim. This means there exist some constants C1, c1 > 0 depending on α(A+BU∗)
such that for all t ≥ 0, ∥E1(ϵ, t)∥ ≤ C1e

−c1t .

Finally, we consider
∫
t≥0

e(A+BU)Tt(Q+ UTRU)e(A+BU)tdt. Since

e(A+BU∗+ϵ∆U)t = e(A+BU∗)t+ ϵE(t)+ ϵ2E1(ϵ, t), with ∥E(t)∥ ≤ 8
−α(A+BU∗)t0

e
1
4α(A+BU∗)t and

bounded E1(ϵ, t), we obtain:∫
t≥0

e(A+BU)Tt(Q+ UTRU)e(A+BU)tdt

=

∫
t≥0

(e(A+BU∗)
Tt + ϵET(t) + ϵ2ET

1 (ϵ, t))(Q+ UTRU)(e(A+BU∗)t + ϵE(t) + ϵ2E1(ϵ, t))dt

=

∫
t≥0

e(A+BU∗)
Tt(Q+ UT

∗ RU∗)e
(A+BU∗)tdt

+ ϵ

∫
t≥0

ET(t)(Q+ UT
∗ RU∗)e

(A+BU∗)t + e(A+BU∗)
Tt(Q+ UT

∗ RU∗)E(t)dt

+ ϵ

∫
t≥0

e(A+BU∗)
Tt
(
∆UTRU∗ + UT

∗ R∆U
)
e(A+BU∗)tdt

+O(ϵ2) .

33



Where the last term O(ϵ2) contains any terms with order at least ϵ2, whose norm is at most C2ϵ
2

for any ϵ ∈ [0, ϵ0) and ∥∆U∥ = 1, where the constant C2 depends on A,B, α(A+BU∗) and ϵ0 is
some small constant.

For any ∥∆U∥ = 1, define V by

V =

∫
t≥0

ET(t)(Q+ UT
∗ RU∗)e

(A+BU∗)t + e(A+BU∗)
Tt(Q+ UT

∗ RU)E(t)dt

+

∫
t≥0

e(A+BU∗)
Tt
(
∆UTRU∗ + UTR∆U

)
e(A+BU∗)tdt ,

then cost(U) = cost(U∗) + ϵtr(V ) +O(ϵ2).

Since U∗ minimizes cost(U), tr(V ) = limϵ→0 ϵ
−1(cost(U∗ + ϵ∆U)− cost(U∗)) = 0. Therefore,

we obtain that cost(U) = cost(U∗) +O(ϵ2).

B.5 Proof of Lemma 19

In this section, we proof Lemma 19.

Lemma 19. Let U∗ follows the same definition as in Lemma 18. Then, for some ϵ > 0, there exist
constants C2 and C3 (independent of U ) such that for all T > 0 and any U such that ∥U − U∗∥ ≤ ϵ,

|JT − cost(U)T | ≤ C2∥x∥22 + C3 .

Here JT is the expected cost of the policy that takes action by Ut = UXt (t ∈ [0, T ]), with initial
state X0 = x.

Proof. By definition of JT , we have:

JT = E

[∫ T

t=0

(
XT

t QXt + UT
t RUt

)
dt

]
= E

[∫ T

t=0

XT
t (Q+ UTRU)Xtdt

]
.

Since the state transits according to dXt = AXtdt+BUXtdt+ dWt, we can derive the expression
of Xt by Xt = e(A+BU)tX0 +

∫ t

s=0
e(A+BU)(t−s)dWs. Then by utilizing this expression we obtain:

E
[
XT

t (Q+ UTRU)Xt

]
= (e(A+BU)tX0)

T(Q+ UTRU)e(A+BU)tX0

+ 2E
[
(e(A+BU)tX0)

T(Q+ UTRU)

(∫ t

s=0

e(A+BU)(t−s)dWs

)]
+ E

[(∫ t

s=0

e(A+BU)(t−s)dWs

)T

(Q+ UTRU)

(∫ t

s=0

e(A+BU)(t−s)dWs

)]
= XT

0 e
(A+BU)Tt(Q+ UTRU)e(A+BU)tX0

+ tr

(∫ t

s=0

e(A+BU)Ts(Q+ UTRU)e(A+BU)sds

)
= XT

0 e
(A+BU)Tt(Q+ UTRU)e(A+BU)tX0

+

∫ t

s=0

tr
(
e(A+BU)Ts(Q+ UTRU)e(A+BU)s

)
ds .
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Then, the expected cost on a trajectory lasting for time T can be computed as:

E

[∫ T

t=0

XT
t (Q+ UTRU)Xtdt

]

=

∫ T

t=0

E
[
XT

t (Q+ UTRU)Xt

]
dt

=

∫ T

t=0

XT
0 e

(A+BU)Tt(Q+ UTRU)e(A+BU)tX0dt

+

∫ T

t=0

(T − t)tr
(
e(A+BU)Tt(Q+ UTRU)e(A+BU)t

)
dt

=

∫ T

t=0

XT
0 e

(A+BU)Tt(Q+ UTRU)e(A+BU)tX0dt+ cost(U)T

−
∫ T

t=0

tr
(
e(A+BU)Tt(Q+ UTRU)e(A+BU)t

)
tdt

− T
∫ +∞

t=T

tr
(
e(A+BU)Tt(Q+ UTRU)e(A+BU)t

)
dt .

Here the first term satisfies∣∣∣∣∣
∫ T

t=0

XT
0 e

(A+BU)Tt(Q+ UTRU)e(A+BU)tX0dt

∣∣∣∣∣ ≤
∫
t≥0

e2α(A+BU)t ∥X0∥22 dt

≤ 1

−2α(A+BU)
∥X0∥22 ,

and the latter two integral terms can be bounded as follows.∣∣∣∣∣
∫ T

t=0

tr
(
e(A+BU)Tt(Q+ UTRU)e(A+BU)t

)
tdt

∣∣∣∣∣
≤
∫
t≥0

d · e2α(A+BU)t
∥∥Q+ UTRU

∥∥ tdt
≤
d
∥∥Q+ UTRU

∥∥
4α2(A+BU)

,

∣∣∣∣T ∫ +∞

t=T

tr
(
e(A+BU)Tt(Q+ UTRU)e(A+BU)t

)
dt

∣∣∣∣
≤ T

∫
t≥T

d · e2α(A+BU)t
∥∥Q+ UTRU

∥∥ dt
≤
Td
∥∥Q+ UTRU

∥∥
−2α(A+BU)

e2α(A+BU)T

≤
d
∥∥Q+ UTRU

∥∥
4α2(A+BU)

.

Therefore, for C2 ≥ − 1
2α(A+BU) and C3 ≥

d∥Q+UTRU∥
2α2(A+BU) , we have

|JT − cost(U)T | ≤ C2∥x∥22 + C3 .

B.6 Proof of Lemma 21

Finally, we prove Lemma 21. In this part we suppose T ≥ T0, where T0 ≥ 1 is a constant depending
on some hidden constants and ∥X0∥22.
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Lemma 21. regret Let Ut be the action applied as in Algorithm 3. Then there exists a constant
C ∈ poly(κ,M, µ−1, |α(A+BK)|−1, |α(A+BK∗)|−1) such that for sufficiently large T :

E

[∫ √
T

t=0

(
XT

t QXt + UT
t RUt

)
dt

]
≤ C ·

√
T ,

E

[∫ T

t=
√
T

(
XT

t QXt + UT
t RUt

)
dt

]
≤ C ·

√
T + J∗

T .

Define the following events where the stabilizing controller K might ever be applied during the
exploitation phase. Let E1 =

{
∥X√

T ∥2 ≥
1
2T

1/5
}

, E2 =
{
∥Xt∥2 ≥ T 1/5 for some t ∈ [

√
T , T ]

}
,

and E3 =
{
∥K̄ −K∗∥ ≤ ϵ3

}
, where ϵ3 > 0 depends on the constant ϵ0 in Lemma 18, which will

be determined later. In this part, we again let C1, C2 be the same as in (32), and denote C3 be the
constant C1 in Lemma 18. We firstly analyze these three events.

Upper Bound of P[E1] By Lemma 17, we can find some constant C0 depending on
∥A∥, ∥B∥, ∥K∥, d, p, h such that

P
[
∥X√

T ∥2 ≥ C0

√
log(2T/δ)

]
≤ δ .

This is because we have the recursive function of {Xkh} that

X(k+1)h = e(A+BK)hXkh +

∫ h

t=0

e(A+BK)(h−t)dWkh+t +

∫ h

t=0

e(A+BK)(h−t)ukdt ,

from which we can derive that

Xkh

= e(A+BK)khX0 +

∫ kh

t=0

e(A+BK)(kh−t)dWt +

k−1∑
i=0

e(A+BK)(k−i−1)h

(∫ h

t=0

e(A+BK)tdt

)
ui .

Then, for sufficiently large T ,
∥∥∥e(A+BK)

√
TX0

∥∥∥
2

can be bounded by 1, and from the proof in
Lemma 17 we can apply similar idea to upper bound the norm of the last two terms. So we can obtain
the probability bound on ∥X√

T ∥2.

By setting δ = 2T · e
−T1/5

4C2
0 , we obtain that P[E1] ≤ 2T · e

−T1/5

4C2
0 .

Upper Bound of P[EC3 ] By (31), we obtain that, for ϵ3 ≤ C1ϵ1
T 1/84C2

2
, we have:

P
[
∥K̄ −K∗∥ ≥ x

]
≤ e

−T1/2x2

4C2
1C2

2 ∀x ≤ ϵ3 ,

and we also have: P[EC3 ] ≤ e
−T1/2ϵ23

4C2
1C2

2 .

By setting ϵ3 = C1ϵ1
T 1/84C2

2
, we have: P[EC3 ] ≤ e

−T1/4ϵ21
64C2

2 .

Upper Bound of P[E2] Consider any ∥X√
T ∥2 ≤

1
2T

1/5 and any ∥K̄ −K∗∥ ≤ ϵ3, we claim that

P
[
E2
∣∣X√

T , K̄
]
≤ e−Ω(T 1/5).

As what have discussed in Lemma 15 (see the discussion about stable margin near (30)), such K̄
satisfies α(A+BK̄) ≤ 1

2α(A+BK∗).
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Then by Lemma 17 we can derive that, for some constant C,

P

[
sup

t∈[
√
T ,T ]

∥Xt∥2 − ∥X√
T ∥2 ≤

1

2
T 1/5

]
≤ CTe−T1/5

C ≤ e−Ω(T 1/5) .

Therefore,

P [E2] ≤ 1− P
[
EC1 ∩ E3

]
+ e−Ω(T 1/5)P

[
EC1 ∩ E3

]
≤ P [E1] + P

[
EC3
]
+ e−Ω(T 1/5)

≤ e−Ω(T 1/5) .

Now we come to estimate the expected cost of Algorithm 3, as well as bound the regret. We separately
calculate the cost during the two phases.

Cost During Exploration Phase For (k + 1)h ≤
√
T and t ∈ [0, h], we have:

Xkh+t = e(A+BK)tXkh +

∫ kh+t

s=kh

e(A+BK)(kh+t−s)dWs +

(∫ t

s=0

e(A+BK)sds

)
uk .

Then
E
[
XT

kh+tQXkh+t + UT
kh+tRUkh+t

]
= E

[
XT

kh+t(Q+KTRK)Xkh+t + uTkRuk
]
+ 2E

[
XT

kh+tK
TRuk

]
≤ E

[
XT

kh+t(Q+KTRK)Xkh+t + uTkRuk
]

+ 2E

[
uTk

(∫ t

s=0

e(A+BK)sds

)T

KTRuk

]
,

where the inequality is because uk is independent of Xkh and Ws(s ∈ [kh, kh+ t]).

For the first term, we first upper bound E
[
∥Xkh+t∥22

]
.

Denotewk,t =
∫ kh+t

s=kh
e(A+BK)(kh+t−s)dWs+

(∫ t

s=0
e(A+BK)sds

)
uk, which is a Gaussian variable

with zero mean and is independent of Xkh. Then

E
[
∥Xkh+t∥22

]
= E

[∥∥∥e(A+BK)tXkh + wk,t

∥∥∥2
2

]
= E

[∥∥∥e(A+BK)tXkh

∥∥∥2
2

]
+ E

[
∥wk,t∥22

]
≤ E

[
∥Xkh∥22

]
+ E

[
∥wk,t∥22

]
.

For E
[
∥Xkh∥22

]
, since

Xkh = e(A+BK)hX0 +

∫ kh

t=0

e(A+BK)(kh−t)dWt +

k−1∑
i=0

e(A+BK)(k−i−1)h

(∫ h

t=0

e(A+BK)tdt

)
ui .

We have

E
[
∥Xkh∥22

]
=
∥∥∥e(A+BK)khX0

∥∥∥2
2
+ E

∥∥∥∥∥
∫ kh

t=0

e(A+BK)(kh−t)dWt

∥∥∥∥∥
2

2


+

k−1∑
i=0

E

∥∥∥∥∥e(A+BK)(k−i−1)h

(∫ h

t=0

e(A+BK)tdt

)
ui

∥∥∥∥∥
2

2


≤ e2α(A+BK)·kh∥X0∥22 + tr

(∫ kh

t=0

e(A+BK)te(A+BK)Ttdt

)

+

k−1∑
i=0

tr

[e(A+BK)ih

(∫ h

t=0

e(A+BK)tdt

)][
e(A+BK)ih

(∫ h

t=0

e(A+BK)tdt

)]T
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Therefore, we have

E
[
∥Xkh∥22

]
≤ e2α(A+BK)·kh∥X0∥22 +

∫ kh

t=0

d · e2α(A+BK)tdt+

k−1∑
i=0

d · e2α(A+BK)ih · h2

≤ e2α(A+BK)·kh∥X0∥22 +
d

−2α(A+BK)
+

dh2

1− e2α(A+BK)h

≤ C3 + e2α(A+BK)·kh∥X0∥22 .

Where C3 is a constant depending on α(A+BK) and d.

For the second term E
[
∥wk,t∥22

]
, can follow the same process of the above bound and obtain

E
[
∥wk,t∥22

]
≤ C3. Therefore, E

[
∥Xkh+t∥22

]
≤ 2C3.

Now we can upper bound E
[
XT

kh+tQXkh+t + UT
kh+tRUkh+t

]
. We have

E
[
XT

kh+t(Q+KTRK)Xkh+t

]
≤ E

[∥∥Q+KTRK
∥∥ ∥Xkh+t∥22

]
≤
∥∥Q+KTRK

∥∥E [∥Xkh+t∥22
]
,

We also have E
[
uTkRuk

]
= tr(R) and the following inequality:

E

[
uTk

(∫ t

s=0

e(A+BK)sds

)T

KTRuk

]
≤ (d+ p) ·

∥∥∥∥∥
(∫ t

s=0

e(A+BK)sds

)T

KTR

∥∥∥∥∥ ≤ (d+ p)h∥KR∥ .

We can conclude that there exists constant C4 depending on A,B,K,Q,R, d, p, h such that

E
[
XT

kh+tQXkh+t + UT
kh+tRUkh+t

]
≤ C4

(
1 + e2α(A+BK)·(kh+t)∥X0∥22

)
,∀k, t .

Therefore, the cost during exploration phase can be bounded as

E

[∫ √
T

t=0

(
XT

kh+tQXkh+t + UT
kh+tRUkh+t

)
dt

]
≤ C4

(√
T +

∥X0∥22
−2α(A+BK)

)
. (35)

Cost During Exploitation Phase We first concentrate on E2, which is the hardest event for the
analysis of the cost. Consider the following two cases:

Case 1: ∥X√
T ∥2 ≥ T 1/5. In this case, the action is applied by Ut = KXt, t ∈ [

√
T , T ].

Case 2: ∥X√
T ∥2 < T 1/5. In this case, the trajectory is unfortunately controlled by a bad controller,

and suffers from large risk of diverging.

We first consider Case 1. By (??) we can derive that

Xt = e(A+BK)(t−
√
T )X√

T +

∫ t

s=
√
T

e(A+BK)(t−s)dWs .

Then, we have:

E
[
XT

t QXt + UT
t RUt

]
= E

[
XT

t (Q+KTRK)Xt

]
≤
∥∥Q+KTRK

∥∥E [∥Xt∥22
]

≤
∥∥Q+KTRK

∥∥ [∥X√
T ∥

2
2 +

∫ t

s=
√
T

tr
(
e(A+BK)(t−s)e(A+BK)T(t−s)

)
dt

]
≤
∥∥Q+KTRK

∥∥ [∥X√
T ∥

2
2 +

∫ t

s=
√
T

d · e2α(A+BK)(t−s)dt

]
.

Therefore, for some constants C5, C6, we have:

E
[
XT

t QXt + UT
t RUt

]
≤ C5∥X√

T ∥
2
2 + C6 .
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Now we consider Case 2. Let t0 = inft{∥Xt∥2 ≥ T 1/5, t ≥
√
T}, then ∥Xt0∥2 = T 1/5 almost

surely.

For t ∈ [
√
T , t0], since we always have

∥Ut∥2 ≤ max
{
∥K∥,

∥∥R−1BTP
∥∥} ∥Xt∥2 ≤

(
∥K∥+

∥∥R−1BT
∥∥T 1/5

)
T 1/5 ,

the cost satisfies:

XT
t QXt + UT

t RUt ≤ C7T
4/5 .

Where C7 is a constant depending on B,R,K, P .

For t ∈ [t0, T ], the trajectory Xt satisfies

Xt = e(A+BK)(t−t0)Xt0 +

∫ t

s=t0

e(A+BK)(t−s)dWs .

Similar to the analysis for Case 1, we have:

E
[
XT

t QXt + UT
t RUt

]
≤ C5T

2/5 + C6

Combining them, we can conclude that for some constant C8, no matter whether E2 happens, we
always have:

E
[
XT

t QXt + UT
t RUt

]
≤ C8

[
T 4/5 + ∥X√

T ∥
2
2

]
∀t ∈ [

√
T , T ] .

Now we establish the upper bound for the regret. Since

1 = 1EC
1 ∩E3

+ 1E1
+ 1EC

1 ∩EC
3

Then we can rewrite E
[∫ T

t=
√
T

(
XT

t QXt + UT
t RUt

)
dt
]

as

E

[∫ T

t=
√
T

(
XT

t QXt + UT
t RUt

)
dt

]

= E

[∫ T

t=
√
T

(
XT

t QXt + UT
t RUt

)
dt · 1EC

1 ∩E3

]

+ E

[∫ T

t=
√
T

(
XT

t QXt + UT
t RUt

)
dt · 1E1

]

+ E

[∫ T

t=
√
T

(
XT

t QXt + UT
t RUt

)
dt · 1EC

1 ∩EC
3

]
.

For the first term, we can upper bound it by

E

[∫ T

t=
√
T

(
XT

t QXt + UT
t RUt

)
dt · 1EC

1 ∩E3

]

≤ E

[∫ T

t=
√
T

(
XT

t QXt + UT
t RUt

)
dt · 1EC

1 ∩EC
2 ∩E3

]

+ E

[∫ T

t=
√
T

(
XT

t QXt + UT
t RUt

)
dt · 1EC

1 ∩E2

]
≤ E

[(
cost

(
R−1BTP

)
T + C9∥X√

T ∥
2
2

)
· 1EC

1 ∩E3

]
+ E

[
C8

(
T 4/5 + ∥X√

T ∥
2
2

)
· 1EC

1 ∩E2

]
≤ C9T

2/5 + cost(R−1BTP∗)T + C10TE
[
∥K̄ −K∗∥2 · 1E3

]
+ 2C8T

4/5 · E
[
1EC

1 ∩E2

]
.
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Here the first inequality is because 1EC
1 ∩E3

= 1EC
1 ∩EC

2 ∩E3
+ 1EC

1 ∩E2∩E3
and 1EC

1 ∩E2∩E3
≤ 1EC

1 ∩E3
.

For the second inequality, the first term is because we can assume a situation that we do not change
the dynamic when E2 happens, and that will not make the expectation smaller. By applying the results
of Lemma 18 and Lemma 19 we can get this term, where the constant C9 is related to constants
in these two lemmas. The last inequality is obtained from these two lemmas and the definitions of
E1, E2, E3.

As for E
[
∥K̄ −K∗∥2 · 1E3

]
, we use the bound that

P
[
∥K̄ −K∗∥ ≥ x

]
≤ e

−T1/2x2

4C2
1C2

2 ∀x ≤ ϵ3 ,

and compute that

E
[
∥K̄ −K∗∥2 · 1E3

]
≤
∫ ϵ23

x=0

P
[
∥K̄ −K∗∥2 ≥ x

]
· dx

≤
∫
x≥0

e
− T1/2x

4C2
1C2

2 dx

=
4C2

1C
2
2

T 1/2
.

For E
[
1EC

1 ∩E2

]
, we directly have E

[
1EC

1 ∩E2

]
≤ P [E2] ≤ e−Ω(T 1/5). Combining these results and

Lemma 19 we obtain that for some constant C,

E

[∫ T

t=
√
T

(
XT

t QXt + UT
t RUt

)
dt · 1EC

1 ∩E3

]
≤ Jθ∗,T + C

√
T .

For the second term E
[∫ T

t=
√
T

(
XT

t QXt + UT
t RUt

)
dt · 1E1

]
, given any X√

T , we always have

E
[
XT

t QXt + UT
t RUt

]
≤ C8

[
T 4/5 + ∥X√

T ∥
2
2

]
∀t ∈ [

√
T , T ] .

So we can upper bound E
[∫ T

t=
√
T

(
XT

t QXt + UT
t RUt

)
dt · 1E1

]
by

E

[∫ T

t=
√
T

(
XT

t QXt + UT
t RUt

)
dt · 1E1

]
≤ C8T

9/5P[E1] + C8TE
[
∥X√

T ∥
2
2 · 1E1

]
≤ O(1) + C8TE

[
∥X√

T ∥
2
2 · 1E1

]
,

where for the last inequality we apply the upper bound of P[E1] shown before.

For E
[
∥X√

T ∥22 · 1E1

]
, we can apply Lemma 17 and obtain that for some constant c > 0, for any

x ≥ 1
2T

1/5, we have

P
[
∥X√

T ∥2 ≥ x
]
≤ e−cx2

.

Thus we have:

TE
[
∥X√

T ∥
2
2 · 1E1

]
≤ 1

4
T 7/5P

[
∥X√

T ∥2 ≥
1

2
T 1/5

]
+ T

∫
x≥ 1

4T
2/5

P
[
∥X√

T ∥
2
2 ≥ x

]
dx

≤ O(1) .

Therefore, we have E
[∫ T

t=
√
T

(
XT

t QXt + UT
t RUt

)
dt · 1E1

]
≤ O(1)
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Finally, for the last term E
[∫ T

t=
√
T

(
XT

t QXt + UT
t RUt

)
dt · 1EC

1 ∩EC
3

]
, when condition on any

∥X√
T ∥2 ≤

1
2T

1/5, estimator (Â, B̂) and Xt0 , where t0 = inft≥
√
T (∥Xt∥2 ≥ T 1/5), we still

have:

E
[
XT

t QXt + UT
t RUt

]
≤ C8

[
T 4/5 + ∥X√

T ∥
2
2

]
≤ 2C8T

4/5 ,∀t ∈ [
√
T , T ] .

So we can upper bound it by

E

[∫ T

t=
√
T

(
XT

t QXt + UT
t RUt

)
dt · 1EC

1 ∩EC
3

]
≤ 2C8T

9/5P
[
EC1 ∩ EC3

]
≤ 2C8T

9/5P[EC3 ]

≤ O(1) .

Combining them we finally obtain Lemma 21.
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