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ABSTRACT

Replicating human-like perception in artificial systems requires capturing the at-
tentional biases that shape human interpretation of visual scenes. While modern
Vision-Language Models (VLMs) demonstrate strong multimodal reasoning, they
often lack the behavioral priors that guide human attention. We address this gap
with a framework that integrates human gaze patterns into the visual encoder
of a state-of-the-art VLM. Aggregated attention heatmaps—collected from 29
participants in a visual description task—are incorporated via a cross-attention
mechanism that refines the encoder’s latent space to prioritize human-salient re-
gions. Aligning model attention with human gaze yields consistent improvements
in both human-likeness and semantic accuracy of image descriptions. METEOR
and Cosine Similarity increase by 29.6% and 4.6%, respectively. Our contribu-
tions are threefold: a lightweight, plug-in architectural modification of VLM
for integrating behavioral priors without full model retraining; empirical evidence
of enhanced alignment with human perception, especially in scenes with strong
bottom-up saliency cues; and a novel dataset of 778 image—heatmap—caption
triples to facilitate research on attention-conditioned generation. This work demon-
strates that incorporating behavioral priors systematically enhances VLMs and
contributes to the development of more human-aligned interpretative capabilities
for social cognition and human—Al interaction.

1 INTRODUCTION

Human perception is inherently selective. When viewing a scene, people allocate attention unevenly,
focusing on the semantically or visually salient regions that guide their understanding and inter-
pretation. This selectivity emerges from a complex interplay between bottom-up sensory cues and
top-down cognitive goals, and plays a central role in tasks such as scene understanding and language
generation |Henderson & Hayes|(2017). While Visual Language Models (VLMs) [Li et al.|(2023)
have demonstrated impressive progress in multi-modal understanding, they typically lack access to
behavioral signals that shape human interpretation. Consequently, their outputs often diverge from
human-like descriptions, particularly in scenarios driven by stimulus-driven (bottom-up) attention.

In this work, we propose a novel architectural approach to bridge this gap by directly injecting human
attention heatmaps into the visual encoder of a state-of-the-art VLM, Qwen2.5-VL |Bai et al.| (2025).
Unlike previous methods that incorporate gaze data through auxiliary heads, additional supervision,
or complex attention fusion modules, our method seamlessly integrates the behavioral signal into the
latent space of the model through a calibrated injection point in the middle of the vision encoder. This
preserves the pre-trained model architecture, avoids overhead in additional parameters, and allows the
injected signal to interact natively with mid-level vision representations optimized for downstream
generation.

To support this integration, we introduce a new dataset comprising 30 natural images sourced from
CAT2000 Borji & Ittif (2015), each paired with aggregated gaze heatmaps recorded from 29 human
participants and human-generated image descriptions. This data set captures the diversity of human
attention and provides a ground truth to evaluate the alignment between the model and human
perception.
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Our contributions are fourfold:

1. Architectural modification: We propose a lightweight yet effective injection mechanism
for behavioral priors, enhancing VLMs without modifying their architecture or retraining
from scratch (code repo available in the supplementary materials).

2. Demonstrated behavioral alignment: We show that injecting gaze heatmaps improves
the human-likeness and semantic precision of generated captions, especially in scenes
dominated by bottom-up saliency.

3. Dataset release: We release a unique dataset of image—heatmap—caption triples for studying
attention-conditioned generation (dataset and annotations provided in the supplementary
materials).

4. Practical readiness: Our system is optimized with FlashAttention for real-time applications
such as virtual and augmented reality, enabling low-latency generation aligned with human
focus.

Our experiments demonstrate that embedding human attentional priors directly into a VLM’s encoder
not only boosts standard captioning metrics, but also produces descriptions whose focus and intent
more closely mirror how people perceive scenes. These results highlight the promise of behavioral-
prior integration as a pathway toward more interpretable, contextually aware, and user-aligned
vision—language systems.

2 RELATIONSHIP TO PRIOR WORK

Visual Question Answering (VQA) |Antol et al.| (2015); [Yu et al.| (2019) and Image Captioning
Anderson et al.| (2018)); |Sugano & Bulling| (2016)) are challenging multimodal tasks requiring a deep
understanding of both visual content and associated text. Neural attention mechanisms Vaswani et al.
(2017);|Shih et al.|(2016); Nam et al.[(2017) are key for models to focus on relevant information. The
field of human attention modeling has seen significant advances, with comprehensive surveys Cartella
et al.|(2024) documenting trends, applications, and challenges in integrating behavioral priors into
computational systems.

In VQA, a crucial aspect has been the interplay between visual feature extraction and question
understanding. Early approaches often relied on global image features. However, significant progress
was made by incorporating more nuanced attention. Bottom-up attention mechanisms |/Anderson
et al.| (2018)), for instance, first use object detectors (like Faster R-CNN) to identify salient regions in
an image, effectively proposing a set of objects or areas of interest along with their features. These
region-based features then serve as the basis for subsequent processing. Complementary to this,
top-down attention mechanisms allow the question (the textual input) to guide the model’s focus
towards the most relevant of these proposed regions or features. The question semantics help to
dynamically weight or select visual information pertinent to answering the query. This combination
is powerful because the bottom-up process provides a rich, object-centric representation of the visual
scene, while the top-down process ensures that the model selectively uses visual information that is
most relevant to the specific linguistic query, mimicking how humans might first scan a scene for
prominent objects and then focus their attention based on a specific question. Models like MCAN |Yu
et al.[(2019)) further refined this by using co-attention mechanisms to model complex interactions
between question words and visual regions.

Despite the sophistication of these learned attention mechanisms, they do not always align with
human gaze or reasoning patterns Chen et al.| (2020); \Das et al.|(2016). This observation has motivated
incorporating human-like attention as a supervisory signal or inductive bias, for example, by using
predicted human saliency maps to guide network focus|Selvaraju et al.| (2019)); [Wu & Mooney| (2019).
Recent benchmarks like the AIM 2024 Challenge on Video Saliency Prediction Moskalenko et al.
(2024) have advanced the state of saliency modeling, providing standardized evaluation protocols for
attention prediction tasks.

When integrating human gaze heatmaps, VQA and especially Image Captioning Sugano & Bulling
(2016) have proven to be highly indicative tasks. Image Captioning, in particular, allows models to
generate a holistic description of an image’s content and events, unconstrained by leading questions
common in VQA. This setup offers a more realistic evaluation of a model’s ability to ground language
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in visual understanding, reflecting a more natural human-like interpretation. Our research, therefore,
primarily focuses on leveraging human-like attention within the Image Captioning framework. Prior
work, such as the Multimodal Human-like Attention Network (MULAN) Sood et al. (2021), has
explored integrating human-like attention derived from models like TSM |Sood et al.|(2020) for text
and MDS [Fosco et al.|(2020) for images, for both text and images in VQA by modifying attention
scores within self-attention layers of an MCAN-based Yu et al.[(2019) architecture.

Recent approaches have explored alternative strategies for attention integration. GazeLLM Rekimoto
(2025) simulates human focus through object detection and image cropping without requiring
external gaze data, while Voila-A |Yan et al.| (2025) uses mouse-tracking as a gaze proxy within
BLIP-2/OpenFlamingo architectures that repeatedly fuse visual and linguistic modalities. Other work
like "MLLMs Know Where to Look” [Zhang et al.| (2025]) focuses on training-free perception of
fine-grained details. While these approaches share the broader goal of human-aligned vision-language
modeling, they differ fundamentally from our methodology in both architectural choices and problem
formulation.

Our work diverges by proposing a more direct integration of contextual information (derived from or
guided by human attention insights for captioning) into the visual processing pipeline. We leverage
cross-attention, as originally formulated in the Transformer architecture [Vaswani et al.|(2017), to
inject this information into the visual encoder. Here, visual features are Keys (X,;s) and Values
(Vis), and contextual information (e.g., initial caption context or high-level human gaze-derived
concepts F.,) is the Query (Q.t,). The output, contextually modulated visual features, is then
integrated into the visual encoder. This method avoids extensive patching of self-attention layers and
offers a dedicated fusion mechanism.

This approach is also motivated by insights from mechanistic interpretability, where specific attention
heads and MLP layers in Transformers can form “circuits” for distinct sub-tasks |[Elhage et al.| (2021)).
By using cross-attention, we aim to guide these visual processing circuits, making them more attuned
to caption-relevant visual patterns from an early stage.

This architectural choice is informed by recent discussions on the role of attention in both artificial
and biological systems. The Transformer architecture replaced recurrence and convolution with
multi-head self-attention, enabling powerful modeling of long-range dependencies. This design has
inspired comparisons with attentional processes in humans. For example, large-scale studies like
those by Lai et al. [Lai et al.| (2019) have shown partial overlap between human gaze and machine
attention maps, with results suggesting that incorporating human attention can improve performance
and robustness, especially in attention-driven tasks.

In cognitive neuroscience, attention is known to influence both neural dynamics, such as gamma
band oscillations in primate area V4 that predict response speed, and behavioral outcomes in humans
Fries et al.[(2001). In psycholinguistics, attention helps structure how language is processed and
produced, with syntactic relationships guiding stimulus-driven attention |Yuan et al.| (2024). Despite
these insights, there is still little understanding of how manipulating a model’s attention maps might
causally influence its linguistic behavior. Most of the current work focuses on observing attention
rather than using it as a tool for targeted intervention.

To move beyond this, we treat attention not just as a learned weighting, but as a functional and
editable data structure. Rather than simply reweighting inputs, we integrate aggregated human
attention maps directly into the model’s latent space through cross-attention. This allows us to align
model representations with human attentional patterns at both the pixel and feature levels. Importantly,
we observe systematic changes in the model’s language output: the generated text becomes more
aligned with human interpretive strategies. By integrating gaze-inspired priors early in the visual
encoder, our method offers a biologically motivated and mechanistically interpretable route toward
aligning model perception and generation with human attentional and interpretive norms.

3 METHODS

3.1 DATASET DEVELOPMENT: HUMAN-ALIGNED VISUAL DESCRIPTIONS

To ground our model’s visual attention in real human behavior, we created a novel dataset comprising
30 unique images from the CAT2000 dataset |Borji & Itti| (2015)), spanning five distinct visual
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categories: Abstractions (Patterns), Social, Object, Compositions, and Disrupted (Low Resolution).
These categories were chosen to activate diverse attentional systems: Abstractions and Disrupted
primarily engage bottom-up, stimulus-driven attention, while Social, Object, and Compositions
engage top-down, goal-directed attention. For each image, we collected synchronized human eye-
tracking data and verbal image descriptions from 29 participants during a structured two-phase
viewing and recall task. Participants first freely observed an image, then described it aloud while
being recorded.

These categories also differ in object numerosity:

» Zero-object scenes: Abstractions and Disrupted often lack identifiable objects.
* One-object scenes: Object images typically contain a single dominant item.
* Multi-object scenes: Social and Compositions involve multiple salient entities.

This dual categorization enables analysis of how attentional mechanisms and scene complexity jointly
shape visual saliency.

This setup allowed us to extract heatmaps of aggregated human gaze patterns aligned with natural
language outputs. Each session was recorded using high-fidelity eye-tracking hardware and resulted
in verbal and visual behavioral traces, yielding 778 high-quality (image, heatmap, caption) triplets
after filtering. The dataset serves as the foundation for training and evaluating our attention-injection
framework.

Full details of the recording protocol, hardware, pre-processing, and participant instructions are
provided in the Appendix.

3.2 ARCHITECTURE MODIFICATION FOR SALIENCY INTEGRATION

Our approach modifies a Vision-Language Model (VLM), exemplified by architectures like Qwen-
VL, InternVL Bai et al.| (2025); |Chen et al.| (2024), to incorporate human saliency information
(Mgy € RHmeXWine X1y "V Ms typically process an image [ing through a Vision Encoder (VE) to
produce visual embeddings Z,, € RVv*dmat which are then injected into a prompt template (e.g.,
Sprompt = “Image: (P1) ... (Px,) Question: ... Answer:”) at predefined placeholder locations for
processing by the Large Language Model (LLM).

Limitations of Alternative Injection Strategies. Common strategies for incorporating auxiliary
visual information, such as saliency maps, include concatenating them to the input image channels
or directly modifying the self-attention scores within the VE (e.g., as in MULAN). However, these
methods can lead to challenges such as pre-training mismatch with VEs typically expecting 3-
channel inputs, increased computational overhead, or direct alteration of the VE’s core self-attention
mechanisms |Dosovitskiy et al.|(2021). A more detailed discussion of these alternatives, including the
standard self-attention mechanism, is provided in the Appendix.

This architectural choice is inspired by insights from classical transformer architecture [Vaswani et al.
(2017), mechanistic interpretability Elhage et al.| (2021). We inject the saliency signal (a ”human
ViT” representation) via this cross-attention “calibrator” within a VE layer. Integrating it near the
VE’s output, after several layers of self-attention have processed the image and a polysemantic space
of high-order visual features has already formed, allows the saliency to refine these existing complex
representations. This strategy aims to efficiently guide the VE’s internal visual processing circuits”
towards human-perceived regions of interest with minimal disruption. The rationale for patching a
specific number of layers and the choice of integration point are discussed in the Appendix.

Proposed Saliency Injection via a Patched Transformer Layer with Cross-Attention. We
modify existing Vision Encoder (VE) layers by inserting a cross-attention mechanism after its self-
attention sub-layer and before its feed-forward network (MLP) sub-layer. This “patched layer” design
allows the saliency information to act as a calibrator on the features processed by self-attention,
without fundamentally altering the nature of the feature vectors passing through the original layer’s
components.

Let Ny = N, is number of saliency patches and d.,;; is dimenition of VE’s latent space. Thus, features

M, € RN=*di_derived from the input saliency map My, via a learnable projection (as described
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Figure 1: Two-stage training for saliency integration. Step 1 (Saliency Calibrator Warm-up):
Human saliency features M/, (derived via learnable Eg,) are injected into the Visual Encoder (VE)
using an aditional Transformer Layer with Cross-Attention (CA) module. Eg, and CA are trained
from scratch (solid red); subsequent VE layers are LoRA fine-tuned (hatched red). The LLM (blue)
is frozen; training uses LLM-stylized human captions. Step 2 (Full Model Style Transfer): Original
human captions are used. Previously tuned components (FEg,, CA, VE layers via LoRA) and the
LLM (now also LoRA fine-tuned, hatched red) are trained to adapt to human linguistic style and
the integrated saliency. Color legend: Solid Red = trained from scratch; Hatched Red = LoRA
fine-tuning; Blue = frozen.

by Eia, detailed in the Appendix), serve as the Query for this inserted cross-attention mechanism.
The output of the preceding self-attention sub-layer within the patched VE layer, X! € RNpxdvi,

self-attn
acts as Keys and Values. The cross-attention mechanism then produces saliency- 1nf0rmed features:

! _ _ / _ / N Xdyi
Zsaljnformed - CI‘OSSAULH(Q - sal’ K = self-attn» V= self—attn) eR '

These features Z., irormed &t then integrated with X/, .. (e.g., via addition and layer normalization)
before being passed to the MLP sub-layer of the patched Transformer layer. The full mathematical
formulation of the multi-head cross-attention mechanism itself is standard [Vaswani et al.|(2017) and

detailed in the Appendix.
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Training Strategy: Two-Stage Calibration and Style Transfer. Our model is trained in a two-
stage process (illustrated in Figure[I)) to first calibrate the VE to human saliency and then adapt the
entire VLM to human linguistic nuances.

STAGE 1: SALIENCY CALIBRATOR WARM-UP. The goal is to integrate My, effectively, minimiz-
ing influence from human linguistic style variations. The learnable saliency projection (involving
Esa), the inserted cross-attention mechanism within the patched VE layer(s), and the LoRA Hu et al|
(2021) adapters for these patched layers (including their MLP sub-layers) and any subsequent VE
layers are trained. The LLM remains frozen. Training targets are human-provided image descriptions
stylistically normalized by the pre-trained VLM.

STAGE 2: FULL MODEL STYLE TRANSFER AND REFINEMENT. This stage adapts the entire VLM
to original human-generated captions. The components trained in Stage 1 continue to be LoRA-tuned.
Additionally, selected layers of the LLM are now also fine-tuned using LoRA. This allows the model
to better utilize the saliency-informed visual features and adapt its language generation to human
stylistic nuances. This two-stage approach encourages the model to genuinely react to the injected
saliency signal rather than merely memorizing response patterns.

4 RESULTS

Baseline: The image features a person with short, dark hair wearing a
patterned shirt with a mix of orange, yellow, and black colors. The
shirt has a collar and appears to be made of a fabric with a textured
design. The person is making a funny face with their eyes closed and
pink and blue objects placed over their eyes, giving the appearance of
wearing them. The background consists of a brick wall with a mix of
red and orange bricks, and part of a white structure is visible on the
right side of the image.

Injected: A man in a colorful shirt put bouncy balls in his eyes and
distorted his face.

Target: A man in a colorful shirt put bouncy balls in his eyes and
tensed his face.

Figure 2: This image demonstrates the effect of human attention alignment. The baseline (an answer
from VLM without injected saliency map) description is compared with injected (an answer from
VLM with saliency map) and target (human answer) descriptions.

Our integration of human attention heatmaps into the VLM’s visual encoder yields marked im-
provements across both aggregate and category-specific metrics. Table[T] shows the overall metric
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comparison, with notable increases in ROUGE-L (+161.5%) and ROUGE-2 (+391.4%). Meanwhile,
the +4.6% boost in Cosine Similarity reflects better semantic alignment with human-written captions.

Table 1: Metric Comparison for Overall Category

METEOR ROUGE-L ROUGE-2 ROUGE-1 CS-F1 CS-Recall CS-Precision

Baseline 0.12 0.11 0.02 0.13 0.85 0.88 0.82
Injected 0.15 0.29 0.15 0.32 0.89 0.90 0.89
Diff (%)  +29.6% +161.5% +391.4% +137.0%  +4.6% +1.5% +7.6%

Table 2] highlights category-specific improvements, with the Abstraction category showing the highest
METEOR increase (+55.9%) and Composition the highest CS-F1 gain (+5.9%).

Table 2: Metric Improvements by Category (%, Higher is Better)

Category METEOR ROUGE-L ROUGE-2 ROUGE-1 CS-F1 CS-Recall CS-Precision
Abstraction +55.9% +256.6%  +1583.3% +207.0% +4.8% +2.0% +7.5%
Object -9.5% +87.4% +102.2% +80.8%  +3.2% -0.3% +6.7%
Social +13.4% +115.6% +1849%  +1185% +4.1% +1.1% +7.1%
Disrupted +42.1% +178.0% +463.5%  +127.8% +4.8% +2.1% +7.5%
Composition  +51.9% +204.1% +522.7%  +1729%  +5.9% +2.5% +9.4%

* CS — Cosine Similarity

Figure [2]illustrates the effect of this alignment with an example image and its corresponding descrip-
tions.

ABLATION STUDY. To isolate and validate the impact of our core contribution—the saliency
integration mechanism—we conducted an ablation study. This study is inherent to our experimental
design, directly comparing the performance of our full model ("Injected”) against an architecturally
identical baseline model where this mechanism was ablated (i.e., deactivated). A statistical analysis
comparing the output distributions of the two models revealed a significant difference, yielding a
p-value of less than 1e-5. This result confirms that the improvements detailed below are a direct and
statistically significant consequence of integrating human attentional priors, rather than a product of
chance.

5 DISCUSSION

5.1 ATTENTION AS A CAUSAL HANDLE ON LANGUAGE

Our results confirm that human gaze maps function as editable inductive priors within a transformer’s
mid-level representations. Prior work suggested that aligning model attention with gaze improves
interpretability [Lai et al.| (2019). We extend these insights by directly injecting saliency features
via cross-attention, leading to systematic shifts in caption semantics. This provides the first causal
evidence that attention maps can steer language circuitry in vision—language transformers. This claim
of causality is further substantiated by our ablation study, which, as shown in the results, confirmed
the statistical significance of the module’s impact (p < le-5)

5.2 EXPLAINING CATEGORY-SPECIFIC GAINS

We selected images and divided them into five categories: Abstractions and Disrupted (bottom-up),
Social and Compositions (top-down), and single-Object scenes. Our dual taxonomy reveals:

» Zero-object, bottom-up scenes (e.g., patterns): Lacking semantic anchors, these benefit
most from gaze injection, as saliency maps disambiguate where to focus.

* Multi-object, top-down scenes: Rich contextual cues reduce but do not eliminate gains,
indicating partial overlap between human goals and learned priors.
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* Single-object scenes: When a single dominant object anchors the description, gaze provides
less additional signal.

5.3 METRIC SENSITIVITY AND SEMANTIC ALIGNMENT

While n-gram based metrics like ROUGE and METEOR demonstrate a marked increase in lexical
overlap with reference captions, it is important to consider the nature of these improvements. We
observed that the baseline model (without heatmap injection) often produced captions that differed
considerably in length and stylistic expression compared to both human references and the captions
generated by our attention-injected model. Such variations in output verbosity and style can dispro-
portionately affect n-gram overlap scores, potentially leading to the large percentage gains seen in
ROUGE metrics.

In this context, the consistent +4.6% improvement in Cosine Similarity (CS-F1) becomes particularly
informative. As Cosine Similarity measures semantic relatedness by comparing vector embeddings of
the generated and reference captions, it is less sensitive to exact word matches or structural differences
and more indicative of true semantic alignment. Therefore, while the high gains in n-gram based
metrics are noteworthy and align with metrics used in prior research, we posit that the improvement
in Cosine Similarity provides a more robust and direct measure of the enhanced semantic quality and
relevance of the captions generated by our attention-injected model. The increase in ROUGE and
METEOR, while substantial, should thus be interpreted as complementary indicators, reflecting in
part the model’s ability to generate outputs that are not only semantically closer but also potentially
more aligned in structure with human references, a change likely facilitated by the guidance from
human attention.

5.4 BROADER BEHAVIORAL PRIORS

Beyond gaze, other neurobehavioral signals—EEG and fMRI—offer promising inductive priors.
Recent EEG-fMRI synthesis work shows transformers can translate scalp signals into haemodynamic
maps (Li et al., [2024), and self-attention CNNs have been adapted for EEG classification (Ma et al.,
2024). Architecturally, these modalities can be embedded as query streams in cross-attention layers,
aligning model representations with richer cognitive signatures.

5.5 LIMITATIONS

* Dataset scale and diversity: Our corpus, comprising 30 unique images and gaze data from
29 participants, offers a controlled benchmark for modeling core attention mechanisms.
However, its limited scale constrains generalization across demographics, tasks, and device
contexts. Crowdsourced eye-tracking platforms such as SALICON (Jiang et al.l 2015)
demonstrate the feasibility of scaling attention data collection. Future work should explore
hybrid pipelines combining low-fidelity large-scale inputs with high-fidelity samples.

* Domain transferability: While our approach performs well on naturalistic visual stimuli,
its efficacy in domain-specific contexts—such as radiology, satellite imagery, or histopathol-
ogy—temains untested. These domains present distinct visual grammars, expert gaze
patterns, and task structures, which may not align with attention priors learned from natural
images. To ensure applicability in real-world decision-critical settings, future evaluations
should incorporate task-aligned datasets with expert annotations.

 Ethical and representational concerns: Embedding human attention into AI models
introduces a range of ethical considerations. Gaze data, being inherently biometric and
behavioral, can be misused for surveillance or behavioral profiling (Liebling & Preibusch)
2014). Additionally, current eye-tracking corpora often underrepresent individuals with
visual impairments, age-related changes, or neurodivergent attention profiles. This demo-
graphic skew risks encoding and amplifying bias within attention-guided models (Chen
et al.,[2023)). Mitigation strategies must include: (i) explicit informed consent and opt-in
policies for gaze data collection; (ii) local, on-device inference pipelines to ensure user
privacy; and (iii) fairness audits across subgroups to detect and correct distributional shifts.
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5.6 FUTURE DIRECTIONS

Recent advances such as FlashAttention-2 (Dao, 2023) enable transformer inference below 50 ms on
commodity GPUs, making real-time applications increasingly viable. We developed our solution
directly with FlashAttention support and utilized a small and efficient base model such as Qwen-
VL-3B-Instruct to open compelling opportunities for attention-guided systems in immersive and
embodied contexts.

Wearable and mobile deployments: The integration of eye-tracking into head-mounted displays
(HMDs)—exemplified by Apple Vision Pro, Meta Quest Pro, and Tobii-enabled AR glasses—offers
unprecedented access to naturalistic, continuous gaze data in everyday settings. Such platforms can
serve both as testbeds and deployment targets for real-time attention-aware Al, including mobile
captioning, gaze-contingent rendering, and attention-modulated interaction design. Models trained on
such data could optimize perceptual alignment between user intent and system response, enhancing
usability and trust in ubiquitous computing.

Assistive technologies: In accessibility contexts, dynamic attention modeling holds promise for
augmenting narration interfaces for visually impaired users. Systems could prioritize salient regions
based on collective attention priors or individual user history, generating more informative scene
descriptions. Further integration with speech synthesis and haptic feedback could enable multimodal
assistive agents that adapt in real time to user attention.

Medical and scientific imaging: Attention-injected architectures offer potential in high-stakes
domains like radiology and microscopy, where human gaze can serve as an interpretable prior
for diagnostic relevance. Embedding gaze traces into training regimes or inference-time saliency
modulation could improve both model performance and clinician trust, particularly when combined
with explainable Al techniques.

Multimodal behavioral priors: Looking ahead, richer attention priors could emerge from aligning
gaze with other biosignals—e.g., EEG, pupillometry, or even fMRI. This would enable attention mod-
eling that reflects not only spatial selection but cognitive load, emotional state, and task engagement.
Such multimodal inputs may inform more adaptive and human-aligned inductive biases in generative
systems.

Video and temporal dynamics: The current focus on static image datasets leaves temporal attention
modeling underexplored. Extending gaze-injection to video requires dynamic modeling of attention
shifts, fixations, and re-entrance phenomena. Incorporating mechanisms for temporal continuity and
memory may prove critical in developing attention-aware video captioning, scene understanding, or
egocentric Al assistants.

In sum, our results suggest that human attention is not merely a useful input modality, but a manipula-
ble inductive bias that can be explicitly injected into learning systems. By operationalizing this bias,
we pave the way for Al that is more interpretable, context-aware, and grounded in human cognitive
priors.
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ETHICS STATEMENT

The collection and use of human gaze data in this research were conducted with rigorous adherence
to ethical principles. The study protocol received approval from the institutional ethics committee,
and all 29 participants provided written informed consent prior to their involvement. Participants
were explicitly informed about the nature of the data being collected and its intended use for research
purposes.

We acknowledge that the integration of human behavioral data, such as eye-tracking, into AI models
carries significant ethical responsibilities. Gaze data is inherently biometric and can reveal sensitive
behavioral patterns; therefore, its misuse for applications like surveillance or behavioral profiling is a
valid concern. To mitigate this risk, all data was anonymized during preprocessing, and our research
focuses exclusively on aggregated attention patterns rather than individual-level analysis.

Furthermore, we recognize that biases present in current eye-tracking corpora, which often underrep-
resent individuals with visual impairments, age-related visual changes, or neurodivergent attention
profiles, can lead to the encoding and amplification of demographic biases within attention-guided
models. While our dataset provides a controlled benchmark, its scale is limited. We advocate for
future work to address these representational gaps, employing fairness audits and developing hybrid
data collection pipelines to ensure more equitable and generalizable models. Our commitment is to
foster the development of Al systems that are not only technologically advanced but also ethically
robust and aligned with human-centric values.

REPRODUCIBILITY STATEMENT

To ensure full reproducibility of our findings, we have made all necessary components publicly
available. The complete source code for our proposed architectural modification, including the cross-
attention injection mechanism and the two-stage training strategy, is provided in the supplementary
materials. This repository includes the necessary configuration files, Python scripts, and a Docker
image to reconstruct the computational environment. To guide researchers and prevent potential
ambiguity, a comprehensive README file is also included, detailing the setup process and execution
steps. All experiments were performed on a single HI00 GPU, and the provided assets allow for a
direct replication of our model training, fine-tuning, and evaluation processes.

Furthermore, to allow for the replication of our human-aligned dataset, a detailed description of the
data collection protocol is provided in Appendix A. This section outlines the participant recruitment
criteria, the specific hardware used (including the EyeLink 1000+ eye-tracker), the structured two-
phase experimental procedure for recording synchronized eye-tracking and verbal descriptions,
and the data preprocessing steps. This comprehensive protocol provides a clear methodology for
researchers to collect comparable gaze-caption datasets and offers full transparency on the generation
of the 778 image-heatmap-caption triplets used in this work.
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A APPENDIX

A.1 DATASET COLLECTION PROTOCOL

A.1.1 PARTICIPANTS

We recruited 29 normotypic participants with normal or corrected-to-normal vision. Individuals who
wore glasses or contact lenses were excluded to ensure high-fidelity eye-tracking. All participants
provided written informed consent, and the study protocol was approved by the institutional ethics
committee. Participants were compensated at a rate of $20 per hour for their time.
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A.1.2 EQUIPMENT

Stimuli were displayed on a 24-inch ASUS VG248QE monitor (1920 x 1080 resolution, 1 ms
response time, 144 Hz refresh rate), with text rendered in 22-point Courier New font. Eye movements
were recorded using the EyeLink 1000+ system (SR Research, 2024) at a sampling rate of 1000 Hz.
Participants’ heads were stabilized with a chin rest. The viewing distance was approximately 55 cm
from the eye-tracking camera and 90 cm from the monitor, resulting in each character subtending
a visual angle of approximately 0.29°. Only the dominant eye was tracked. Saccades and fixations
were identified using SR Research’s default saccade detection algorithm in the Data Viewer software.
Stimulus presentation and data acquisition were controlled via SR Research Experiment Builder
v2.1.140.

A.1.3 PROCEDURE

Each session began with calibration procedures: chin rest positioning, dominant eye detection, focus
adjustment, and a 9-point calibration sequence. Participants were instructed:

”You will be shown 30 images, each presented twice. During the first presentation, look freely at the

image for 5 seconds. Then, after a brief text prompt, the same image will reappear for 10 seconds.
During this second presentation, please describe the image aloud as clearly and completely as
possible.”

Drift correction was applied after each trial, where a trial consists of two consecutive presentations of
the same image. Eye movements were recorded during all image presentations. Verbal descriptions
were captured using a studio-grade microphone.

A.1.4 EXPERIMENTAL DESIGN

Each participant completed 30 trials (5 categories x 6 images). The order of images was randomized
per subject. The entire session lasted approximately 14 minutes. The design was within-subjects;
all participants viewed the same images. Each trial produced both an eye-tracking recording and a
synchronized verbal description.

A.1.5 DATA PREPROCESSING

To ensure data quality, each sample (i.e., one image presentation) was manually reviewed. Exclusion
criteria:

* Insufficient fixation density or technical artifacts in the heatmap.

* Inaudible or incomplete verbal descriptions.

After filtering, 778 valid samples were retained, each consisting of an image, aggregated human gaze
heatmap, and aligned verbal description.

A.2 ALTERNATIVE SALIENCY INJECTION STRATEGIES AND STANDARD ATTENTION

A.2.1 LIMITATIONS OF INPUT CHANNEL CONCATENATION

One intuitive method to incorporate My, is by concatenating it with the input image I, along the
channel dimension, creating Ii’mg € RHimexWimex (Cme+1) - However, this approach has significant
drawbacks for modern pre-trained VLMs like Qwen-VL Bai et al.|(2025) or InternVL |Chen et al.
(2024):

* Pre-training Mismatch: These VEs are typically pre-trained on images with Ciyg = 3
channels. Modifying the input channel count necessitates retraining the VE’s initial layers.

* Computational Cost and Parameter Increase: Retraining or adapting the VE for a new
input dimensionality increases parameters and computational expense.
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A.2.2 LIMITATIONS OF DIRECT SELF-ATTENTION SCORE MODIFICATION

Another class of methods involves directly modifying the attention scores within the VE’s Vision
Transformer (ViT) Dosovitskiy et al.|(2021)). Previous works, such as MULAN |Sood et al.| (2021,
have incorporated human-like attention by directly modulating these attention scores. For an input
token 4 (corresponding to a query ¢;) and its associated saliency-derived weight 3;, the scores are
modified, for example:

(QiKJT) - Bi
ven

While this integrates external guidance, it directly alters the self-attention’s internal scoring mecha-
nism.

Scores(¢;, K;) =

A.2.3 STANDARD MULTI-HEAD SELF-ATTENTION (MHA) IN VIT

Given an input sequence of patch embeddings X, € RNe*dvi:

Let h be heads, dj, = dyit/h.

Projection matrices: W7, W3, W‘J, € R%<dn for head j.
Output projection: W € Rbixdvit,

Qj =XuWp, K;=XuWi, V;=Xu W

KT
Aj = softmax @K,
Vdp

headj = AJV;
MHA (Xj,) = Concat(heady, . . ., head,)Wo

A.3 SALIENCY PROCESSING AND PATCHED LAYER DETAILS

A.3.1 SALIENCY FEATURE PROJECTION

The input saliency map My, € RHme*WineX1 jg processed to derive features M/, € RN=*% to be
used as Queries for the cross-attention mechanism. This involves a learnable projection:

! Ng Xdy;
Mgy = Miat_patches Esal proj € R vit )

where M patches € RYs* % are embeddings derived from patches of Mgy, and Egyp proj € R %X i
is the learnable projection matrix.

A.3.2 PATCHED TRANSFORMER LAYER WITH CROSS-ATTENTION

A standard Transformer layer in the Vision Encoder (VE) consists of a Multi-Head Self-Attention
(MHA) sub-layer followed by a Feed-Forward Network (FFN or MLP) sub-layer, with residual
connections and layer normalization around each. Our modification, referred to as a “’patched layer,”
inserts a Multi-Head Cross-Attention (MHCA) mechanism after the MHA sub-layer and before the
FFN sub-layer.

Let Xinjayer be the input to the patched Transformer layer. 1. Self-Attention: X[ ... =
MHA (Xin tayer) (details of MHA in Appendix). Xinermediae: = LayerNorm(Xin jayer + Xoifatn)-
2. Cross-Attention Injection (our patch): The Query for MHCA is M, (from Equation . The Key

and Value for MHCA are Xpermediatel -

! —
Zsal,informed -

MHCA(Q = Ms/ah K= Xintermediatel ) V= Xintermediatel)
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The mathematical formulation of MHCA is analogous to MHA, with separate projection matrices for
Q. K, V. Given Qg € RNe*dit and K Ve € RVkvo X i,

Let hcross be heads, dh,cross = dvit/hcross-
Wgoss,k’ W}c{ross,k’ W‘c/ross,k: c Rdvi&th,cmss.
Weress ¢ R it X duie

cross, k
Qk = ercWQ

cross, k

K = K‘/srcWK
Vi = KV Wy™*

KT

Aj, = softmax Qkik
AV dh,cross

headk = Aka

MHCA (Qgre, K Vire) = Concat(heady, . . ., head, W5

In our case, Qs = M/, and KV = Xinermediae1- The output Z7, . . . € RN=*dwt i then
integrated. If Ny = N, (e.g., saliency patches correspond to image patches), this integration
can be: Xinermediaez = LayerNorm(Xinermediae! + Zegl informea)- 1 Vs = 1 (global saliency
query), Z. informea Might be added (after replication) or used in a more complex fusion with
Xintermediatel 10 produce Xipermediae2- 3. Feed-Forward Network: Xf{fn = FFN(Xintermediale2)~

/
Xout,layer = LayerNorm(XimermediateZ + Xffn)'

A.4 DETAILS OF THE TWO-STAGE TRAINING
A.4.1 STAGE 1: SALIENCY CALIBRATOR WARM-UP.

The primary goal of this stage is to enable the Vision Encoder (VE) to effectively integrate information
from human saliency maps (Ms,) without being influenced by variations in human linguistic style.
The raw saliency map M, € RHime*WineX1 is first processed into patch-like embeddings M, sal_patches €
RNs*dsmv  We then introduce a learnable embedding matrix Ega proj € Rssav X dvit g project these
into M/, = Mat_patches Esal_proj € RVs X duie, Alternatively, if a single global saliency context vector is
desired (N, = 1), M/, € R'*% jg derived.

sal

During this warm-up stage, the following components are trained:

¢ The saliency projection embedding Esa proj (Or equivalent learnable parameters used to
derive M.

* The entire cross-attention module (i.e., W5*™, W™ W57 WEes),

/
sal_informed?>

* The layers of the VE that follow the injection point of
Hu et al.| (2021)).

fine-tuned using LoRA

Crucially, for training targets in this stage, we use human-provided image descriptions that have been
stylistically normalized by passing them through the pre-trained, frozen VLM to generate its own
version of the captions. The LLM component of the VLM remains frozen.

A.4.2 STAGE 2: FULL MODEL STYLE TRANSFER AND REFINEMENT.

Once the saliency calibrator is warmed up, this stage adapts the entire VLM to human-generated
captions. The components trained with LoRA in Stage 1 (g, proj, the cross-attention module, and
subsequent VE layers) remain trainable with LoRA. Additionally, LoRA is applied to selected layers
of the LLM.

The training data consists of original human-generated captions paired with images and saliency
maps. By including the LLM in fine-tuning, the model learns to better utilize saliency-informed
visual features and match human linguistic style.
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A.5 RATIONALE FOR SINGLE PATCHED LAYER INTEGRATION

The decision to integrate saliency information by patching a limited number of Vision Encoder (VE)
layers, specifically favoring a single strategically placed patched layer, is informed by empirical
observations and theoretical considerations related to model interpretability and optimization.

Training curves

4 Calibration layers
1 calibration layer
M\ 32 (all) layers are patched with the calibrator

Cross-Entropy Loss

08

0.7

0 200 400 600 800 1000
Steps

Figure 3: Loss curves during training for different numbers of VE layers patched with the saliency
calibrator.

Figure 3] presents loss curves for three configurations:

* 32 Patched Layers (Green Line): All available layers in the VE are patched with our
cross-attention calibrator. This configuration demonstrates the highest initial loss and slower
convergence, suggesting that modifying every layer introduces excessive complexity or
instability, potentially disrupting the pre-trained features too extensively.

* 4 Additional Layers (Blue Line): The cross-attention calibrator is inserted into four VE
layers, distributed across the encoder. While performing better than patching all layers, it
still shows a higher loss and less stable learning compared to a single patched layer.

* 1 Additional Patched Layer (Orange Line): A single VE layer is patched. This configura-
tion exhibits the lowest loss and the most stable and rapid convergence among the tested
setups.

By this stage of the encoder, the model has likely formed high-level, polysemantic features, and the
internal “circuits” [Elhage et al.|(2021) are processing more abstract visual concepts. Injecting the
“human ViT” signal (our saliency-derived query) at this point allows the cross-attention mechanism to
act as a fine-grained calibrator on these already sophisticated representations, rather than attempting
to influence low-level feature extraction or overly perturbing the entire feature hierarchy. Modifying
too many layers, especially early ones, might interfere with the foundational visual understanding
learned during pre-training, leading to optimization difficulties as seen with the 32-layer and 4-
layer patching strategies. A single, late-stage patched layer appears to strike an effective balance
between incorporating external human-centric guidance and preserving the VE’s powerful pre-trained
capabilities.

All experiments were conducted on a single H100 GPU. To ensure robustness and reproducibility, the
full experimental environment—including configuration files, Python scripts, and Docker images are
available in the supplementary materials.
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