Under review as a conference paper at ICLR 2024

STRATEGIC RECOMMENDATIONS FOR IMPROVED
OUTCOMES IN CONGESTION GAMES

Anonymous authors
Paper under double-blind review

ABSTRACT

Traffic on roads, packets on the Internet, and electricity on power grids share a
structure abstracted in congestion games, where self-interested behaviour can lead
to socially sub-optimal results. External recommendations may seek to alleviate
these issues, but recommenders must take into account the effect that their rec-
ommendations have on the system. In this paper, we investigate the effects that
dynamic recommendations have on ()-learners as they repeatedly play conges-
tion games. To do so, we propose a novel model of recommendation whereby a
@-learner receives a recommendation as a state. Thus, the recommender strategi-
cally picks states during learning, which we call the Learning Dynamic Manipula-
tion Problem. We define the manipulative potential of these recommenders as the
proportion of action profiles which can be induced in (-learners and propose an
algorithm for the Learning Dynamic Manipulation Problem designed to drive the
actions of Q-learners to maximize the social welfare. We simulate our algorithm
and show that it can drive the system to convergence at the social optimum of a
well-known congestion game. Our results show theoretically and empirically that
increasing the recommendation space can increase the manipulative potential of

the recommender.

1 INTRODUCTION

Route RSs are a prominent example of RSs
(RS) that promise to improve the traffic expe-
rience for all its users. In the simplest of cases,
shortest path algorithms are applied dlrectly to
networking and traffic (

) and extended to user-
facing platforms hke Google Maps and Waze

(;i

). C0n51der however What hap-
pens if all drivers receive the same shortest
path recommendation and follow it: the recom-
mended path will congest and it may even be-
come the longest by travel time. Drivers may
even realise this inefficiency and learn not to
follow recommendations. Therefore, leading
route RSs must necessarily recommend routes
that account for their effect on the system, and
account for whether or not drivers will follow
the recommendations. This interaction between
drivers and recommendations is what we for-
malize in this paper.

To study the route recommendation problem,
we propose an extension of the model of con-
gestion games (s), where we re-
lax the rationality assumption by having the

LDMP
CGwith
Learning -
Clome [
e a
5 %, 4 (o) =
511

Figure 1: The state space of the Learning Dy-
namic Manipulation Problem (LDMP), where Q-
learners are playing a congestion game (CG), and
the g-tables, policies, and learning algorithms of
the agents are known.

players as tabular -learning agents. We assume that the agents play repeated congestion games

Under review as a conference paper at ICLR 2024

and learn over time which paths to pick, which attempts to provide a closer representation of real-
life human behaviour.

We propose a model of recommendation whereby agents receive a recommendation at each iteration
as a state and learn based on this state which road to pick. Thus, the problem becomes what we refer
to as a Learning Dynamic Manipulation Problem (LDMP, see Figure 1), where the recommender’s
goal is to dynamically manipulate the learning dynamics of the agents. We frame the LDMP as a
Markov Decision Process (MDP), given perfect knowledge of the g-values, policy, and update rule
of the agents, which guarantees the problem to be computable in polynomial time (P-complete)
with dynamic programming (,). However, we show that the sizes
of the state and action spaces are very large and argue that dynamic programming methods may
be inadequate even in the best of cases (perfect knowledge of all agents). Therefore, we provide
an algorithm that can compute user recommendations based on this information in reasonable time.
We demonstrate that it can improve the social welfare of converged ()-learning agents in a classic
routing game in which the Nash equilibrium social welfare is much worse than the socially optimal
solution (,).

In the following sections, we describe the classical Congestion Game Model, following the literature.
We then expand the model to incorporate learning agents, relaxing the rationality assumptions of the
classical model. Then we formalize the LDMP and introduce a heuristic algorithm that can drive the
system to better social outcomes. We present results that show the effectiveness of the algorithm.
Moreover, we find that the manipulative potential of the recommender increases with the size of
the recommendation space. We consider the potential of the algorithm and its limitations. Lastly,
we discuss the relevance of our model with respect to real-life cases of route and other types of
recommendation systems.

1.1 CONGESTION GAME MODEL

In congestion games (,) n players interact with a set of k resources A =
{1,2,...,k}. Each player selects one resource a (or more) and experiences a utility for that choice
uq(f(a)), where f(a) is the number of players that picked resource a and u,, is a non-increasing
function. This paper restricts attention to atomic, unweighted, symmetric, linear cost congestion
games such that there are a finite number of players (atomic), each player contributes equally (un-
weighted), all players have the same available strategies (symmetric) and all utility functions u, are
linear in the number of players that pick resource a (linear cost).

The Nash equilibrium (NE) is an action profile a = (aj,as,...,a,) in which no agents have
unilateral incentives to deviate to a different action (,). Congestion games are known
to have a unique pure NE (,) and are also a special case of convex potential games
(,), games that admit a convex potential function whose maximization
leads to the NE.

In a repeated congestion game, players will repeatedly play the game for up to infinitely many it-
erations. Here, selfish behaviour can sustain outcomes that are better than NE in terms of social

welfare (Pareto-optimal) (,), even though Best-Response dynamics are
known to converge in congestion games. Therefore, it is interesting to look beyond Best-Response
dynamics (). Correlated equilibria are a well-known generalization of NE (

,), which contain equilibria that are possibly better than NE. A correlated equilibrium is
achieved with a correlation device, meaning that all players are given additional information, which
can change their best responses. A correlation device can be understood as a RS. For rational play-
ers and Best-Response dynamics in convex potential games, there are expected to be little possible
improvements with correlation devices (, ; s).

1.2 CONGESTION GAMES WITH LEARNING

This paper treats a bounded rationality case of repeated congestion games in which the players are -
learning agents. As such, the congestion game can be framed as a Markov Decision Process (MDP),
with the actions corresponding to the set of resources .A and the reward function of the MDP being
equal to the utilities experienced by the agents R(a) = (uq, (f(a1)),...,uq, (f(an))). The Q-
learners are assumed to have an e-greedy policy, arg max with probability 1 — e and uniform random

Under review as a conference paper at ICLR 2024

with probability e, and update their g-values with the Bellman update rule. For the time-being the
states have no explicit relevance to the congestion game, but will be explained in subsection 2.3
to represent recommendations. The ()-learners have their own state—action value function Q; :
S x A — R, a policy function 7; : S — A, and an update rule U; : S Xx A xR xS — R
parametrized with learning rate o and discount factor . The environment runs for 7 steps, and
at each step ¢ a policy 7; to determine their next action a; 4, observe (s; ¢, Qi ¢ Tt 52,15) and then
update (); ; using their update rule U; to obtain Q; ;1.

Independent reinforcement learners that apply incremental updates to their p011c1es are drawn to-
wards the NE, but the NE may not be a stable equilibrium (

;). Additionally, the NE may not be the optimum of the social welfare function deﬁned
asW =1 Z" r;. It has already been shown, for some games (pricing game (,

,), prisoner’s dilemma (,)), that ()-learners are able to
perform better social outcomes than the NE through implicit coordination. In Figure 2 we show that
it is also the case for a Congestion Game with 100 players (). This paper expands

this result by focusing on the repeated case of congestion games played by ()-learning agents that
will achieve even better social outcomes (than NE or the one reported in Figure 2) with the help of
recommendations.

1.0

| O
B T e X 1
E 04 ¥
" i © 0 O
0.0 1 1 | 1 1

0 2000 4000 6000 8000 10000

training step 1 X
' T 1 1 I 1 O

1.0 0.202 0.041 0.008 0.002 0.0
exploration rate: £
Figure 2: Left: Training curve of 100 e-greedy tabular Q-learners (o = 0.1, v = 0.8) in the Braess
Paradox, which shows convergence to social welfare values much higher than the NE (0). Right:
Iustration of the Braess Paradox network. Agents start in the “s” state and prck a path to reach
state “t”. The numbers represent the cost of traveling over a link. A cost of x is the ratio of agents
that choose that link. Rational and fully-informed agents all pick the crossing link in the augmented
network (NE), which leads to high congestion and the worst possible social welfare.

1.3 FURTHER BACKGROUND

Route recommendation has also been tackled with collaborative filtering (s ; s
), an effective tool from content recommendations (,). RSs given
strategic content providers have also been formalized in game theoretic terms (

,). We also employ a formalism relying on game theory for our work. In the context of
content recommendation there exist some fundamental limitations of incentive mechanisms, show-
ing the challenges of designing a well-working recommender (,). Neural networks
are also applied to handle large state spaces of personalised recommendations ().
Interestingly, the effects of route recommendations are simpler to estimate and theorize due to the
similarity of traffic to congestion games (,) suitable for analysis with
game-theoretic solution concepts.

As with content recommendation, route recommendation has also been identified to cause perverse
congestion effects. Identified quickly in society, these trends are picked up by researchers showing
that ublqultous shortest path planning may worsen traffic congestion (

,), and possibly the economies of cities (,) The dynamics
such drrvers create depend on road network topology, but most roads in cities were not designed
with the assumption of widespread GPS routing recommendations. Congestion worsens when all
users selfishly converge on the same shortest paths and may lead to a so-called “Price of Anarchy”
(s), the ratio of the social welfare at the worst NE and the
socially optimal solution.

In this paper, we propose a route recommendation algorithm for a well-known congestion game with
a high price of anarchy called the Braess Paradox (,). The Braess Paradox demonstrates

Under review as a conference paper at ICLR 2024

theoretically that an increase in the capacity of a network (building new roads) can deteriorate its
performance. This is because the added capacity may shift the NE of the network to an equilibrium
that is less socially optimal. The Braess Paradox is found to be relevant for the routing of packets
on the internet (s ; s), the path selection of cars on roads
(,) and the flow of energy on power grids (

))-

Finally, the model of recommendation which we explain in the next section is novel but has some
similarity to previous work on machine teaching (, ; s). The goal of machine
teaching is to select the optimal dataset that will allow a learner to learn the optimum. Recent work
has extended machine teaching to reinforcement learning (,). Our work is
similar to machine teaching because we assume knowledge of a target distribution (like an optimum)
to which we would like the system of (-learning agents to converge on. It is also similar to machine
teaching because the recommender in our model is capable of influencing the experiences of agents
(picking data). Our model crucially differs from machine teaching because it involves picking the
states for (Q-learners rather than feeding them data (a state, action, reward, next state tuple for a
reinforcement learner). Furthermore, our model has many ()-learners interacting in a congestion
game such that what is optimal for an individual learner may not be socially optimal, leading to
pluralistic notions of optimality.

2 LEARNING DYNAMIC MANIPULATION PROBLEM IN REPEATED
CONGESTION GAMES

recommend z, apply' 7'(,
-
actions

5 n

g qo0 | o1 |9o2 D
nJ ., g q10 |11 [Jr2 | 7 1_’ ; a;givenz; =1

i 8 | 920 | 721 | 122 §
\ I

.

Figure 3: As each user learns a g-table of recommendation—action pairs, the recommender chooses
the row of the g-table by recommending z; which determines the row to which the policy 7; is
applied. Time subscripts are omitted for clarity. This is a particular case where the number of
actions equals the number of recommendations (k = m).

In this section, we discuss the main contribution of this paper which is a model of recommendations
for -learners in congestion games. We assume that ()-learners are playing repeated congestion
games and that a RS provides the Q-learners with recommendations. From here on out we will call
the (Q-learners which receive recommendations (Q-users. (Q-users receive recommendations as their
states. Therefore, the MDP is extended to use states that reflect the recommendations. This could
be understood as agents being given additional information. The Q-users learn the values of actions
a € A as a function of the recommendation states. To emphasize this particularity, we will denote
recommendations by z, the recommendation space by Z, and recommendation vectors by the bold
z. The RS outputs a length n vector zy = (214, .. ., zmt) from a finite recommendation space z; ; €
Z ={1,2,...,m} and at each timestep provides each Q-user ¢ with a recommendation z; ;. The
Q-users receive this recommendation and select actions using their e-greedy policies ;(z; +) = a; ;.
This process is visualized in Figure 3 for the case where @Q-users have 3 actions (k = |.A| = 3) and
the recommendation space has 3 elements (m = |Z| = 3). The RS is effectively picking the rows
of the g-tables that QQ-users consider when applying their policy.

In subsection 2.1 we formulate the Learning DynamicManipulation Problem (LDMP) as finding the
optimal policy of a Markov Decision Process. In subsection 2.2 we discuss how the LDMP scales
as players (n), actions (k) or recommendations (m) grow. In subsection 2.3 we provide more theory

Under review as a conference paper at ICLR 2024

that can help understand the design principles of our algorithm, and justify the performance benefits
that we report in 3.

2.1 REWARDS, STATES, AND ACTIONS

The policies of Q-users playing a repeated congestion game induce a distribution over actions P;(a)
with domain A™ at each iteration ¢ where a is the action profile specifying an action for each agent.
When the Q-users receive recommendations z;, the distribution depends on z; which we denote
as P, ((a). As all agents are treated to be equal (un-weighted congestion game) the congestion
in the network is determined by mapping the distribution P, ;(a) over action profiles to a simpler
distribution over actions P, ;(a) with domain A instead of .A™. Then, we formulate the goal of
the RS as trying to get as close as possible to the target distribution P*(a) which maximizes the
social welfare of the congestion game. Define the cumulative discounted sum of future rewards as
G = >",_,7"'r, for a given discounting factor . Then, the rewards 7 are equal to the Kullback—
Leibler divergence between the induced distribution and the target distribution:

re = =Dx (Pz, 1(2)[| P (a)) - (D

We denote the reward function for the RS as Rrg. The goal of the RS is to find the policy 7%q
which outputs recommendations for the Q-users z:

Ths =maxBor -, [G] = maxE[= > 7' Dk (Pei(2)|| P* (a)) 2)
t=1

TRS TRS

We assume the RS has a state space that includes the g-values of the users. For each agent, @ :
Z x A — R, and given n agents, the space of all g-values is S = R!Z*AI"_ Thus, the RS policy
maps Sto Z, s : S — Z.

2.2 SCALING

The RS picks a recommendation z; € Z for each agent ¢. Given a recommendation space of
size m the action space of the RS becomes Z™ and thus has size |Z"| = m™. In any practical
application of)-learning running on computers with finite precision, S will be finite. Given a finite
action space, the system becomes an MDP defined by the tuple (S, Agrs, T, Rrs,~), where T is
the transition probability distribution 7'(s’|s, z). For MDPs there are polynomial time algorithms to
find the optimal policy. However, this MDP grows very fast. The state space S grows exponential in
n,m, k: O(C™™*). The action space Agg grows exponential in n and polynomial in m: O(m™).
Nonetheless, the following theorems do not require the MDP assumption and give a sense of the
extent to which a RS can influence the learning dynamics of systems of (Q-users in congestion
games.

2.3 DEMONSTRATING HOW RECOMMENDATIONS CAN MANIPULATE LEARNING DYNAMICS

We wish to demonstrate that state recommendations can in theory manipulate the learning dynamics.
In so doing the RS acts as a controller of a non-linear discrete-time dynamical system. For non-
linear discrete-time dynamical systems we can not guarantee controllability in a control theoretic
sense (). Therefore we will resort to demonstrate some weaker notions than
controllability, namely that under given assumptions it is possible to influence the actions that agents
take. We then provide intuitions that can aid in understanding the design principles of our heuristic
algorithm. In subsubsection 2.3.1 we prove that increasing the size of the recommendation space
can increase the manipulative potential. In subsubsection 2.3.2 we show that it is possible to pick
recommendations to optimize belief updates. In subsubsection 2.3.3 we show that it is necessary to
vary recommendations in time to manipulate the system.

2.3.1 MANIPULATING BY INCREASING THE RECOMMENDATION SPACE

We will first present all of our arguments for the single agent case, which are then naturally extended
to all agents to ensure that the entire dynamical system can be influenced. Proofs are in Appendix C.

Under review as a conference paper at ICLR 2024

Consider a single agent with an m X k g-table @ and a deterministic policy 7(z) = argmax, Q. q-

Definition 2.1. (Reachable) We define the reachable set of an agent as the set of all actions which
are an arg max of a row j of Q.

R(Q) ={a € AF.a=m(2)}. (3)

Our given @ is a g-table with m rows which can be extended to have more rows. We define a new
function Ext which extends a matrix @ to a matrix QQ’ which has m-1 rows, and the first 7m rows are
identical to the rows of matrix Q. E'xt is a function Fxt : (m X k)-matrices — (m+ 1 x k)-matrices
so that Q" = Fxt(Q) and Vindices i, j where 1 <7 <m,1 < j <k: Q] ; = Q; ;. With the newly
defined tools we can state our first theorem.

Theorem 2.1. (Increasing Reachability) When increasing the size of the recommendation space
m which amounts to adding rows to a g-table Q, the size of the reachable set R(Q) is monotonically
non-decreasing.

R(Q) € R(Ext(Q))

The function Ext can be seen as adding a new row which is a vector v = (q1, ..., g) of g-values.
Assumption 2.1. (Full Support) The g-values of the new row v are drawn from a distribution D
where each action a has a non-zero probability of being the arg max of v:

v ~ D and Va, P(argmax(v) = a) > 0.

Theorem 2.2. (Global Reachability) As the size of the recommendation space approaches infinity,
and given Full Support of the g-values, the RS can induce any action in the ()-learner:

lim R(Ext"(Q)) = A

With these two theorems, Increasing Reachability and Global Reachability, we have shown that
the size of the recommendation space has a big influence on the states that the RS can induce for a
single Q-learner. If we have a system of n Q-users playing a game, all of our results hold for the
joint system too, with a tensor composed of all the g-tables of agents, Q = (Q1, ..., @), and the
reachable set as the set R(Q) C A" of action profiles a. It will still hold that increasing the size of
the recommendation space for any of the QQ-users, and thus the number of rows in their ¢-tables, we
can increase the size of the reachable set for the system.

Definition 2.2. (Manipulative Potential) Given a RS which can strategically pick recommenda-
tions z, and users described by ¢-tables Q and arg max policies, we define the manipulative potential
of the RS as R(Q)/A.

The manipulative potential reflects the proportion of possible action profiles which a recommender
can induce. If follows from the definition that maximizing reachability maximizes the manipulative
potential. Fast forward to section 3, increasing the size of the recommendation set allows our algo-
rithm to drive the system to near-system-optimum with finitely many states. In the next section we
explain the other design principles required to achieve this performance.

2.3.2 MANIPULATING BY OPTIMIZING BELIEF UPDATES

Achieve higher social welfare requires optimizing belief updates. This is done to achieve a popula-
tion of Q-users that believes the socially optimal actions to be better than the socially sub-optimal
actions.

Example Consider a single user, and a single ¢-table
ay a2 as

* zZ . .
Q= (qL1 a2 q173) L for actions (a1, as, a3) and recommendations (21, 22).
42,1 *q2.2 {23/ =22

We use an asterix * to indicate the max values of the row. Both ¢; 2, g2 2 max values belong to
the same column, as, so for both recommendations a)-learner with an arg max policy would pick

Under review as a conference paper at ICLR 2024

action 2. We know that the ()-learner’s g-values change according to the Bellman update rule from
time ¢ to time ¢ 4 1, and can express the total update as:

t+1 t _ t t
z,a _qz,a = 7"+’7II}3,X(]Z/@/ ~Y4zal- (4)

)

Az,a =q

We also need the reward r that the agent will observe so that we can predict the way the agent will
update their g-value. In our presented model it is possible to predict the reward because the recom-
mendations determine the rewards that agents will take. Then recommendations should be picked
to optimize belief updates. Let us suppose that a, is a socially beneficial action. Given that it is the
arg max of both of the recommendation states, we can interpret this agent as having learned socially
beneficial behaviour for both recommendations. If we wish to ensure that these socially benefi-
cial actions will stay in the reachable set R(Q), we should use positive reinforcement and select
argmax, A, ». If instead action 2 is socially sub-optimal, we should use negative reinforcement
and select argmin, A, 5.

2.3.3 CONSTANT RECOMMENDATIONS CHANGE NOTHING

If the RS picks a fixed recommendation vector z and never alters it during repeated play of the con-
gestion game, the learning dynamics will resemble the case without recommendations, and collapse
to the stateless congestion game as described in subsection 1.2. This is the case for any arbitrary
recommendation vector, and means that static no-regret learning formalisms (Gordon et al., 2008)
are not directly meaningful and applicable. To see this clearly, consider Figure 3 and imagine what
happens when the same recommendation is picked for the entire horizon: the same g-values are used
to select actions and update, which leads the system dynamics to be identical to the case where there
are no recommendations. Therefore, the RS must vary the recommendations throughout the learning
process to influence the learning dynamics, and it is not enough for the RS to find a recommendation
vector z that induces the optimal action profile.

ay ag as

Example Take a new Q = <*q1’1 q1,2 (J1,3) “1 | and assume a; is the socially beneficial
42,1 *q2,2 42,3/ 22

action. It is the case that a; € R(Q), so we can induce action 1 by recommending z;. However,
after the Q-learner updates the g-table to Q’, there is no guarantee that a; € R(Q’). Specifically:

a1 € R(Q') if ¢1.1 + A11 < max{q1,2,¢1,3} = max{b,c},

and the update A ; will have altered the arg max.

3 RESULTS WITH BRAESS PARADOX

3.1 EXPERIMENTS!

In order to showcase the effectiveness of the proposed recommender algorithm we run it on a par-
ticular instance of a congestion game and compare the social welfare of the system over a fixed
horizon. The particular congestion game setting is the augmented network of the Braess paradox
(Figure 2), first introduced from the perspective of cars (Braess, 1968), but also extended for the
cases of packet routing (Tumer and Wolpert, 2000). The NE has all agents crossing, which leads to
an average latency of 2. However, the Social Welfare optimizing solution is for half of the agents to
go up and the other half to go down, for an average latency of 1.5. The latencies experienced by the
agents are linear in the fraction of agents that choose the actions, ¢, x¢. Specifically, the latencies,
l(a), are: {(u) = 14 Zufne [(d) =1+ Zafle |(c) = Duthe 4 Rathe The rewards for agents are
then the negative of the latency (r; = —I(a;)).

This scenario models a shared resource dilemma, which can lead to chaotic and non-convergent
multi-agent learning dynamics. Figure S2 in the appendix gives additional information about the

'Code available at: https://anonymous.4open.science/r/manipulateRL-57DB

https://anonymous.4open.science/r/manipulateRL-57DB

Under review as a conference paper at ICLR 2024

learning dynamics in the augmented network of the Braess paradox, which are not the focus of this
paper. What is necessary to know is that: independent QQ-users on this network are drawn towards
the NE, and that the NE is unstable, and can cause oscillatory and chaotic dynamics. Therefore, it
is particularly challenging for a RS to benefit social welfare by influencing the learning dynamics in
this network.

We run the experiments for 9 population sizes between 100 and 900 agents. We also vary the number
of states available to each agent (from 3 to 93). Three settings are compared with recommendations
given by: our proposed heuristic algorithm, random, and no recommendations (optimized, random,
and none, respectively). Each setting—population—state combination is run 40 times and the reported
values are averaged over these runs.

optimized random none
number of states number of states number of states

3 23 43 63 83

1 1 1 1
900
800
« 700 @
£ =
S 600 - 0.6 9
© [
€ 500 =
3 =
Jé! 400 - 0.4 g
Z 300 a
200
100 [
T opt 3“‘ e 0pt93 ‘emmmim Tand 3 === none
1.0
0.8
g
0.6
=
g 0.4
(%]
3
0.2
0.0 I 1 I | l
0 2000 4000 6000 8000 10000
training step
I I I I I I
1.0 0.202 0.041 0.008 0.002 0.0

exploration rate: £

Figure 4: Top: Social welfare achieved in Braess’s Paradox with varying numbers of agents and
states for three recommenders: optimized, random, and none. Botttom: Evolution of the social
welfare for four select conditions. Values of social welfare were rescaled from [—2, —1.5] — [0, 1],
higher social welfare is better.

3.2 RESULTS

In Figure 4 we report the results of our experiments. The heatmaps presented at the top represent the
average social welfare achieved over a finite horizon by each of the runs. We note that the heuristic
recommender setting achieves consistently higher values of social welfare (than the random or none
settings) regardless of the number of agents. The setting with no recommendations achieves better
welfare than random recommendations which consistently give the worst results. Furthermore, we
note that increasing the number of states for the recommender setting increases the social welfare
of the system. At the bottom of Figure 4 we report the learning dynamics in terms of the social
welfare (over the training steps and decreasing exploration rate €) for four conditions. The system
with random recommendations with the least number of recommendation states (m = 3) converges
to the NE. On the other hand, the system with no recommendations (none) converges to a better
value than NE, but fails to reach the social optimum. In contrast, using the heuristic algorithm to
recommend the optimized states shows some improvements. On one extreme end, for the system
with the least recommendation states (m = 3), we reach social welfare that is comparable to none,

Under review as a conference paper at ICLR 2024

but with slightly faster convergence. But, on the other extreme of more recommendation states
(m = 93), recommendations can steer the performance of the system to converge very close to the
social optimum. It is worth noting that all systems exhibit a transient in the early phases of training
(when the € value is high).

4 DISCUSSION AND CONCLUSION

In this paper, we have formalized the Learning Dynamic Manipulation Problem (LDMP) which
we propose as a model of route recommendations which take two main dynamics into account:
the effects on the system, and the effects on the learning of users. We show that our model has a
manipulative potential which increases with the size of the recommendation space. Furthermore,
we propose a heuristic algorithm and demonstrated with a well known congestion game that we can
influence the learning dynamics of a system (Q-learners (Q-users). Figure 4 shows that an RS can
improve the welfare of iterative games even when the NE is opposed to the social welfare optimizing
solution. We interpret the success that any RS may have in such a system as due to its ability to
i) slow down the dynamic evolution of the system which naturally “degrades” to the NE, and ii)
speed up the dynamic evolution of the system, which, close to the NE, experiences a repelling force
(Figure S2, right). Figure 4 also confirms our intuitions from Theorem 2.1 and Theorem 2.2 that the
manipulative potential increases with the size of the recommendation space (number of states). This
result could be interpreted as more information allowing for better social outcomes.

This model however allows for other interpretations. While in the presented example, the LDMP
is directed at optimizing social welfare, nothing prevents the LDMP from being directed at other
arbitrary metrics which may be harmful. Simultaneously, the model could also be seen as confus-
ing the (Q-learners which leads to a more grim interpretation that confusing the learning dynamics
of users allows for greater manipulation. Such an interpretation may have interesting and relevant
extrapolations to the present world where digital systems bombard their users with large amounts
of information. For these reasons, we wish to emphasize that this formalism should be as alarm-
ing as it may be insightful. In subsection E.3 we include additional results and discussions about
recommendation alignment and what it means for a route RS to be aligned with its users.

Our results have a notable limitation that we assume that the RS is omniscient, somewhat “God-like”,
such that the g-tables of all agents were known and the welfare optimizing actions for all agents
were also known. This omniscience is a very restrictive assumption that will not apply in practice.
Nonetheless, we wish to point out that while omniscience will likely not hold, RSs in practice all
create models of user behaviour. While predictive power on an individual scale is harder, aggregating
RS users into categories has been a successful means for RSs to model users. Therefore, even though
it is unrealistic to assume omniscience, it is still interesting to consider what omniscience can afford
while keeping in mind that omniscience is the best-case scenario of any RS. In subsection E.2 we
run some simulations with relaxed assumptions of omniscience by adding noise to the Q-learning
dynamics.

In future work on a theoretical side we are interested to better understand the controllability of
multi-agent reinforcement learning systems both from an algorithmic lens, and as models of learn-
ing behaviour. We would like to extend our algorithm to larger congestion networks with Braess-like
features (); (). In this pursuit, we are inter-
ested to understand the proposed formalism in the context of other games. This sort of dynamic
could also occur in other RSs, such as the centerpieces of the modern internet, that allow platforms
to fetch and filter “optimal” results for their users (s). Such systems also create feed-
back loops with their users (never recommending certain content to a group of users, only showing
users what they want to see, etc.), which can drive content bubbles and echo chambers. We propose
that our approach may be used for RSs to optimize a notion of social welfare, while also achieving
the necessary goals of a platform e.g. engagement. Both route RSs and content RSs need to account
for the effects of their actions on the population they are affecting in order to consistently maintain
high level of recommendations. Finally, while we believe it to be an intractable problem it would be
very interesting to test the limits of solving the LDMP for congestion games by modelling the RS
as a large Neural Network. We strongly encourage using heuristic methods to provide the bounds of
comparison for such black-box techniques.

Under review as a conference paper at ICLR 2024

REFERENCES

Mehran Abolhasan, Tadeusz Wysocki, and Eryk Dutkiewicz. A review of routing protocols for
mobile ad hoc networks. Ad hoc networks, 2(1):1-22, 2004.

Wei Zeng and Richard L Church. Finding shortest paths on real road networks: the case for a.
International journal of geographical information science, 23(4):531-543, 2009.

Dennis Luxen and Christian Vetter. Real-time routing with openstreetmap data. In Proceedings
of the 19th ACM SIGSPATIAL international conference on advances in geographic information
systems, pages 513-516, 2011.

Henan Wang, Guoliang Li, Huigi Hu, Shuo Chen, Bingwen Shen, Hao Wu, Wen-Syan Li, and Kian-
Lee Tan. R3: a real-time route recommendation system. Proceedings of the VLDB Endowment,
7(13):1549-1552, 2014.

Jian Dai, Bin Yang, Chenjuan Guo, and Zhiming Ding. Personalized route recommendation using
big trajectory data. In 2015 IEEFE 31st international conference on data engineering, pages 543—
554. IEEE, 2015.

Robert W Rosenthal. A class of games possessing pure-strategy nash equilibria. [International
Journal of Game Theory, 2:65-67, 1973.

Christos H Papadimitriou and John N Tsitsiklis. The complexity of markov decision processes.
Mathematics of operations research, 12(3):441-450, 1987.

Dietrich Braess. Uber ein paradoxon aus der verkehrsplanung. Unternehmensforschung, 12(1):
258-268, 1968.

John F Nash Jr. Equilibrium points in n-person games. Proceedings of the national academy of
sciences, 36(1):48-49, 1950.

Dov Monderer and Lloyd S Shapley. Potential games. Games and economic behavior, 14(1):124—
143, 1996.

Marco Scarsini and Tristan Tomala. Repeated congestion games with bounded rationality. Interna-
tional Journal of Game Theory, 41:651-669, 2012.

Ozan Candogan, Asuman Ozdaglar, and Pablo A Parrilo. Near-potential games: Geometry and
dynamics. ACM Transactions on Economics and Computation (TEAC), 1(2):1-32, 2013.

Robert] Aumann. Correlated equilibrium as an expression of bayesian rationality. Econometrica:
Journal of the Econometric Society, pages 1-18, 1987.

Tim Roughgarden. Intrinsic robustness of the price of anarchy. Journal of the ACM (JACM), 62(5):
1-42, 2015.

Frederic Koessler, Marco Scarsini, and Tristan Tomala. Correlated equilibria in large anonymous
bayesian games, 2023.

Robert D Kleinberg, Katrina Ligett, Georgios Piliouras, and Eva Tardos. Beyond the nash equilib-
rium barrier. In ICS, pages 125-140, 2011.

Jakub Bielawski, Thiparat Chotibut, Fryderyk Falniowski, Grzegorz Kosiorowski, Michat Misi-
urewicz, and Georgios Piliouras. Follow-the-regularized-leader routes to chaos in routing games.
In International Conference on Machine Learning, pages 925-935. PMLR, 2021.

Jakub Bielawski, Thiparat Chotibut, Fryderyk Falniowski, Michal Misiurewicz, and Georgios Pil-
iouras. The route to chaos of reinforcement learning in routing networks. In APS March Meeting
Abstracts, volume 2022, pages A03-013, 2022.

Emilio Calvano, Giacomo Calzolari, Vincenzo Denicolo, and Sergio Pastorello. Artificial intel-
ligence, algorithmic pricing, and collusion. American Economic Review, 110(10):3267-3297,
2020.

10

Under review as a conference paper at ICLR 2024

Timo Klein. Autonomous algorithmic collusion: Q-learning under sequential pricing. The RAND
Journal of Economics, 52(3):538-558, 2021.

Maximilian Schaefer. On the emergence of cooperation in the repeated prisoner’s dilemma. arXiv
preprint arXiv:2211.15331, 2022.

Arthur Dolgopolov. Reinforcement learning in a prisoner’s dilemma. Available at SSRN 4240842,
2022.

Cesare Carissimo. The social benefit of exploration in braess’ s paradox. Available at SSRN
4348118, 2023.

Han Su, Kai Zheng, Jiamin Huang, Hoyoung Jeung, Lei Chen, and Xiaofang Zhou. Crowdplanner:
A crowd-based route recommendation system. In 2014 IEEE 30th international conference on
data engineering, pages 1144—-1155. IEEE, 2014.

Ge Cui, Jun Luo, and Xin Wang. Personalized travel route recommendation using collaborative
filtering based on gps trajectories. International journal of digital earth, 11(3):284-307, 2018.

Xiaoyuan Su and Taghi M Khoshgoftaar. A survey of collaborative filtering techniques. Advances
in artificial intelligence, 2009, 2009.

Omer Ben-Porat and Moshe Tennenholtz. A game-theoretic approach to recommendation systems
with strategic content providers, 2018.

Fan Yao, Chuanhao Li, Karthik Abinav Sankararaman, Yiming Liao, Yan Zhu, Qifan Wang, Hongn-
ing Wang, and Haifeng Xu. Rethinking incentives in recommender systems: Are monotone re-
wards always beneficial?, 2023.

Jingyuan Wang, Ning Wu, Wayne Xin Zhao, Fanzhang Peng, and Xin Lin. Empowering a* search
algorithms with neural networks for personalized route recommendation. In Proceedings of the
25th ACM SIGKDD international conference on knowledge discovery & data mining, pages 539—
547, 2019.

Jérome Thai, Nicolas Laurent-Brouty, and Alexandre M Bayen. Negative externalities of gps-
enabled routing applications: A game theoretical approach. In 2016 IEEE 19th international
conference on intelligent transportation systems (ITSC), pages 595-601. IEEE, 2016.

Théophile Cabannes, Marco Antonio Sangiovanni Vincentelli, Alexander Sundt, Hippolyte Signar-
gout, Emily Porter, Vincent Fighiera, Juliette Ugirumurera, and Alexandre M Bayen. The impact
of gps-enabled shortest path routing on mobility: a game theoretic approach 2. University of
California, Berkeley, 29, 2017.

Jane Macfarlane. When apps rule the road: The proliferation of navigation apps is causing traffic
chaos. it’s time to restore order. IEEE Spectrum, 56(10):22-27, 2019.

Matthias Sweet. Does traffic congestion slow the economy? Journal of Planning Literature, 26(4):
391-404, 2011.

Elias Koutsoupias and Christos Papadimitriou. Worst-case equilibria. In Stacs, volume 99, pages
404-413. Springer, 1999.

Yannis A Korilis, Aurel A Lazar, and Ariel Orda. Avoiding the braess paradox in non-cooperative
networks. Journal of Applied Probability, 36(1):211-222, 1999.

Kagan Tumer and David H Wolpert. Collective intelligence and braess’ paradox. In AAAI/TAAI,
pages 104-109, 2000.

Javier Argota Sdnchez-Vaquerizo and Dirk Helbing. Less can be more: Pruning street networks for
sustainable city making. Available at SSRN 4291171, 2023.

Benjamin Schifer, Thiemo Pesch, Debsankha Manik, Julian Gollenstede, Guosong Lin, Hans-Peter
Beck, Dirk Witthaut, and Marc Timme. Understanding braess’ paradox in power grids. Nature
Communications, 13(1):5396, 2022.

11

Under review as a conference paper at ICLR 2024

Xiaojin Zhu. Machine teaching: An inverse problem to machine learning and an approach toward
optimal education. Proceedings of the AAAI Conference on Artificial Intelligence, 29(1), March
2015. doi: 10.1609/aaai.v29i1.9761.

Xiaojin Zhu, Adish Singla, Sandra Zilles, and Anna N Rafferty. An overview of machine teaching.
arXiv preprint arXiv:1801.05927, 2018.

Alex Lewandowski, Calarina Muslimani, Dale Schuurmans, Matthew E Taylor, and Jun Luo. Rein-
forcement teaching. arXiv preprint arXiv:2204.11897, 2022.

Yang-Yu Liu and Albert-Ldszl6 Barabasi. Control principles of complex systems. Reviews of Mod-
ern Physics, 88(3):035006, 2016.

Geoffrey J Gordon, Amy Greenwald, and Casey Marks. No-regret learning in convex games. In
Proceedings of the 25th international conference on Machine learning, pages 360-367, 2008.

Greg Valiant and Tim Roughgarden. Braess’s paradox in large random graphs. In Proceedings of
the 7th ACM conference on Electronic commerce, pages 296-305, 2006.

Fan Chung and Stephen J Young. Braess’s paradox in large sparse graphs. In Internet and Network
Economics: 6th International Workshop, WINE 2010, Stanford, CA, USA, December 13-17, 2010.
Proceedings 6, pages 194-208. Springer, 2010.

Hyeyoung Ko, Suyeon Lee, Yoonseo Park, and Anna Choi. A survey of recommendation systems:
recommendation models, techniques, and application fields. Electronics, 11(1):141, 2022.

Martin Mundhenk, Judy Goldsmith, Christopher Lusena, and Eric Allender. Complexity of finite-
horizon markov decision process problems. Journal of the ACM (JACM), 47(4):681-720, 2000.

Wee Lee, Nan Rong, and David Hsu. What makes some pomdp problems easy to approximate?
Advances in neural information processing systems, 20, 2007.

12

Under review as a conference paper at ICLR 2024

A NOMENCLATURE AND SYMBOL GLOSSARY

symbol meaning
n number of agents
k number of actions
m number of recommendation states
Z recommendation set
z recommendation
A action set
a action
a action profile (vector)
Q g-tables of all agents
Q entry of Q
Qi%a g-value for agent ¢ recommendation z action a
Q g-table of a single agent, a slice of Q, Q; . .

Table 1: Nomenclature
B LEARNING DYNAMICS ON THE BRAESS AUGMENTED NETWORK
O (s) 0 O
\Q/ \@/

(a) Initial Network (b) Augmented Network

()

Figure S1: Illustration of the initial network (a), and the augmented network (b) in the Braess
Paradox. Agents start in the “S” state and pick a path to reach state “t”. The numbers represent the
cost of traveling over a link. A cost of x is the ratio of agents that choose that link. Two actions are
possible in (a), up takes the upper edges, and down takes the lower edges. In (b) an additional action
cross is possible, which takes the first upper edge, crosses to the lower section at the middle, and
finishes on the second lower edge. Rational and fully-informed agents all pick the crossing link in
the augmented network (Nash equilibrium), which leads to high congestion and the worst possible
social welfare.

C HEURISTIC ALGORITHM PSEUDOCODE AND SUBROUTINES

C.1 PROOF OF THEOREM 2.1

Proof. Consider matrices Q and Q" = Ext(Q). We can split the Q" matrix into Q' ;.; and

o +1,1;; (the row added in the Ext operation). Since the R operates on rows independently

and is associative we have R(Q’) = R(Q.,,,1.;) U R(Q},.;n11,1.;)- Since by definition of Ext
we have Q = Q1,,, 1.; we arrive at R(Q') = R(Q) U R(Q;,,.,,+1,1.;)- Therefore R(Q) C
R(Ezt(Q)). O

C.2 PROOF OF THEOREM 2.2

13

Under review as a conference paper at ICLR 2024

N
-
]

Cross

— = - N}
N © © =}
1 1 1 1

average latency

-
[=2
1

[N
w
1

=
IS

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

learning step x103

Figure S2: Left: The latency that emerges from the actions of the learning agents exhibits chaotic
dynamics that tend towards the Nash equilibrium with E[l] = 2. Right Vector field visualization of
the evolution of the joint action space of the agents (74, Ndown, Neross). The corners of the triangle
represent all agents taking a single action, and the arrows indicate the change between consecutive
learning steps.

Proof. Take an arbitrary action @ € 1, ...,k which has probability p > 0 of being the arg max of
every new added row. At any recommendation space size m the probability that a never appears as
the arg max of any row can be expressed as: (1 — p)™. As m — oo, the probability (1 — p)™ goes
to 0. Therefore, with probability 1, the action a will be the arg max of at least 1 row, and the a can
be induced in an agent. O

D HEURISTIC ALGORITHM PSEUDOCODE AND SUBROUTINES

Algorithm 1 describes a routine that can be used to assign recommendations to ()-learners at each
timestep of a repeated congestion game. In the algorithm, we call a few subroutines which we
explain in greater detail.

The subroutine ESTIMATEREWARD calculates an optimistic estimate of the reward for each action
7. It calculates all the agents for which all recommendations only lead to one action. This defines a
new congestion game with altered utilities u/, for each action, and a new socially optimal assignment
d"*. The reward for each action is estimated as u,(d.*), the new socially optimal actions given the
original utility for each action u,.

The subroutine ESTIMATEUPDATE receives the estimated rewards per action and calculates the
expected update as a difference A; , , between the g-values of agents and the estimated reward
assuming the g-values are updated with the Bellman equation.

The subroutine CALCULATEPRIORITY outputs a priority score for each action and reflects the ac-
tions that most need agents to be assigned to them. This is done by looking at the difference between
the number of unique agents that could be assigned recommendations that lead to a, and the optimal
value d. Priority O means that no more agents need to be assigned to the action.

The subroutine SELECTRECOMMENDATION receives a table with actions as columns and rows filled
with the values A; . , that have been sorted. The routine proceeds row by row, checking first if a
column has priority O, then the column is removed. Second, if the agent ¢ of A, ., is unique
in the row. If it is, recommendation z will be assigned to agent ¢. If it is not unique then the
recommendation is selected for the highest priority action. If the actions have equal priority then the
recommendation z is selected such that A; , , < A; ./ /.

14

Under review as a conference paper at ICLR 2024

Algorithm 1 Heuristic algorithm for a route recommender

Require: Q > the g-tables of all agents
Require: n, k,m > numbers of (agents, actions, recommendations)
Require: d* > the target assignment of agents per action
1: fori € {1,2,...,n} do
2: A; + argmax, Q; . ,
3 P; < GETPOSSIBLEACTIONS(A4;)
4: 7 < ESTIMATEREWARD(P)
5: A < ESTIMATEUPDATE(Q, A, r) > a table with update estimates separated by actions
6: Cinin < SORTTABLE(C, min) > sorts to minimize the update estimates by actions
7: u < CALCULATEPRIORITY (P, d*) > which actions need agents most
8: z SELECTRECOMMENDATION(C i,) > assign recommendations to achieve priority
9: if Xicqgents ASSIGNED(¢) then > if agents are unassigned
10: Chmax < SORTTABLE(C, max) > sort to maximize the update estimates
11: p' < CALCULATEPRIORITY (P, d*)
12: z < SELECTRECOMMENDATION(C'qz, 1)
Y
up
2 = amax . [r} - Q'(z,a)|
down nw
Cross pdown z! = amin Z[r; - Qi(z, c)]
Agents
ncross
recommend Up or dOWn to agents s.t.
upndown— — u down TOSS s s s
(n*r =~ n) N (7% is minimized)
—
Estimate
R(a)
o
aligned up —_ —> zi=up
aligned down ——— = |—> z' = down
nup
aligned cross pdowon > z! = cross
Agents aligned up N down — eros [Tecommend Up or down to agents s.t.
n (n“V =~ nd"w") 8l (n”“sS is minimized)
mis-aligned) 1 N))
_\» z! = amax , —E ri — max,Q/(z,a)
— N4
Estimate =
R(a)

Figure S3: The Heuristic Recommender: Agents are categorized as up, down, or cross groups
according to the argmax actions in each of their recommendation states. In the case of the argmax
being a tie between both up and down, these agents are classified as up N down. Recommendations
are then set such that the, up and down categories’ g-values would improve most. Similarly, cross
agents receive recommendations that worsen their cross g-values most. Finally, up N down agents
are split equally between going up and down, if possible. The Aligned Heuristic Recommender:
agents are categorized as up, down, or cross groups according to argmax = z; ;, that is that the
recommendation z; ; is aligned with the argmax action. Agents can be classified into multiple
groups. For agents that fall exclusively into a single group, they are recommended their aligned
recommendation state. The agents that are both in the up and down groups are given (still aligned)
recommendations such that they are split equally between going up and down, if possible. Agents
with no aligned recommendation states are categorized as misaligned. All misaligned agents receive
the same recommendation state, picked such that it is the state whose average belief change over all
agents is maximized (the equation in the picture explains it best).

15

Under review as a conference paper at ICLR 2024

E THREE-STATE RECOMMENDER EXPERIMENTS

In the case where the route recommender can suggest m = k recommendations to the agents, this
is akin to the route recommender suggesting an action to the agent. For the initial (k¥ = 2) and
augmented (k = 3) Braess networks, we explored the potential of using a route recommender to
manipulate the system of agents to achieve the social optimum (least latency). Figure S3 summarizes
the heuristic route recommender for the augmented network.

E.1 OMNISCIENT LEARNING DYNAMIC MANIPULATION

When the RS is omniscient When Q;(0,a) = Q;(0,a), Vi, and the RS also knows m;Vi, the RS
is said to be omniscient. In other words, the RS models the beliefs of agents perfectly, and with
knowledge of the policies it can determine exactly what agents will do (a distribution over actions).
Thus, when the RS is omniscient the problem is reduced to an MDP where the state information
available to the RS fully determines the transition probabilities to future states conditioned on ac-
tions. In the omniscient case, reinforcement learning algorithms like (-learning have polynomial
worst-case guarantees O(n°), even though the constant ¢ may be prohibitively large.

E.2 NON OMNISCIENT LEARNING DYNAMIC MANIPULATION

When the RS is not omniscient If the RS has an inaccurate model of beliefs, or it does not have
knowledge of the policies of the users, the problem becomes a POMDP, where POMDPs are NP-
hard in the worst case (R). The authors
do not know if this particular problem admits an efﬁc1ently computable approxunatlon (,

), but hypothesize that it does not. For this reason, the examples in the following sections
use heuristic recommendation algorithms instead of reinforcement learning. In the examples, it is
assumed that: i) the users are e-greedy ()-learners ii) the RS is omniscient iii) the RS models users
as greedy (Q-learners. Therefore, when the Q-learners exploration rate ¢ = 0, the RS is effectively
omniscient, but when ¢ > 0 the RS is no longer omniscient. Thus, € will represent the likelihood
that the RS makes an error in predicting the actions of users.

E.3 RECOMMENDATION ALIGNMENT

Recommendation Alignment We have thus set the stage to introduce what is meant by rec-
ommendation alignment. For a given agent ¢ at iteration ¢, we use the following definitions, as-
suming there are |A| possible recommendations z;; corresponding to each possible action, which
users treat as state input to their ()-function. Given an observation o € (2, a recommendation z; ;
is aligned for user i when z;; is the action with the highest ¢g-value in the state (o - z;;) € S:
zit = argmax, Q; ((o- z; 1), a’). Consequently, a recommendation z; ; is misaligned when z; ¢ is
not the action with the highest ¢-value in the state (0 - z;;): a # argmax,, Q; ((0- z1),a’).

Recommendation alignment can be a metric for trust Given that users are modelled as learners,
an aligned recommendation suggests that users have learned to follow the recommendations being
given by the RS. This can be taken as an indication that the user trusts the RS. Consequently, a user
with a misaligned recommendation does not trust the RS for that particular recommendation.

The Particular Case of Misaligned Agents In the case where an RS knowingly recommends a
misaligned recommendation, we define the recommendation as a manipulative recommendation.
Furthermore, it is possible for the beliefs of a user to have no aligned recommendations: for the
users’ g-values to lead him not to follow any of the recommendations. In such a case, it is not
possible to provide the agent with a non-manipulative recommendation. However, it may still be
possible to provide a recommendation that may establish alignment during learning.

A Trade-off Between Welfare and Alignment The optimal policy 7}, ¢ is guaranteed to maximize
G, and at states s; € S takes action a; = (z1,...,2x). The elements of a; may or may not be
aligned recommendations for all agents. Therefore, if a RS were to restrict itself from providing
misaligned recommendations, it may not be able to recommend the optimal recommendation. As

16

Under review as a conference paper at ICLR 2024

—— constant —— random - - - misaligned ---- aligned
—-1.49 -
- 10 e &~
.) 5
—1504- social optimum =
v = 0.8
= E 0
8 1511 = .
- = 0.6
S v
B -1.52 = <P RPANASRAT A Faarns
— = ?
= S 0.4 o
S -1.531 g f
g 0.2 5
—1.54 3
o} oo
— 00 -+
-1.55 T T T T T T T T T T
0.00 025 050 075 1.00 0.00 025 050 075 1.00
exploration rate (£) exploration rate (€)

Figure S4: 100 Q-learners (a« = 0.01, v = 0) are simulated for 500 learning steps in the initial
network Figure Sla for varying RS and e exploration rates. Curves plot averages 10 repetitions of
training with error bars as standard deviation. Left: Social welfare for the different recommender
schemes. With the exception of the constant recommender, recommendations can help the users
achieve social optimum. Right: Alignment (and misalignment) for the heuristic recommenders
converge to 0.5 as € increases to 1 (fully random actions by agents.)

such, for some multi-agent systems, there can exist an inevitable trade-off between recommendation
alignment and system welfare.

We have simultaneously conceptualized and demonstrated that the gains in social welfare could
come at the loss of recommendation alignment. A mis-aligned recommendation means that a user
has learned not to follow a recommendation, which we interpret as a metric of trust. The results
of Figure S5 also lend credibility to the trade-off between welfare and alignment. The largest per-
formance improvements were achieved by the heuristic RS which did not avoid misaligned recom-
mendations and achieved poor alignment scores. On the other hand, the best alignment scores were
achieved by the aligned heuristic RS which achieves lower optimizations of the welfare.

E.4 SOLVING THE INITIAL NETWORK WITH RECOMMENDATIONS: A SIMPLE CASE FOR THE
LDMP

A symmetric routing game is considered with two routes: N agents (Q-learners: v = 0.01, v = 0,
€ = 0.01) decide whether to pick up or down, leading to n,, agents picking up, and n4 agents picking
down (Figure Sla). The latencies experienced by the agents are linear in the fraction of agents that

choose the actions, i, ¢. Specifically, the latencies, [(a), are: I(u) = 1 + ¢, 1(d) = 1 + 2.

The Nash equilibrium is aligned with the Social Welfare optimizing state, such that the average
latency experienced by all agents is 1.5. Using the negative of latency as the rewards (r; = —I(a;)),
we choose to initialize all agents equally with the following g-values, Q(e,u) = Q(e,d) = —1.5.
These are equivalent to the negative of the latency of the actions up and down experienced by agents
at the Nash equilibrium (higher latency leads to lower g-values). Due to the e-greedy policy, for
equal g-values an agent picks the first action in their ¢g-tables (the definition of the argmax operator
being in line with NumPy). Thus, regardless of the recommendation, the argmax of all agents
will be to go up in the first iteration of the game. The only deviations from this action will be
due to the € exploration rate. This creates a simple scenario for an RS to evaluate the effects of its
recommendations on welfare.

To demonstrate the potential of the RS, we test three cases in the Figure Sla scenario, report the
results in Figure S4, and summarize them below.

Tested cases and results for the Initial Network (constant) This recommendation is kept con-
stant, and it does not help the agents to converge. In fact, keeping a recommendation constant
is equivalent to providing no recommendation. The social welfare is poorest because, due to the

17

Under review as a conference paper at ICLR 2024

argmax definition, agents start all doing the same action, update their beliefs in the same way, and
all do the other action in the next iteration. This is only offset by the e exploration rate. (random)
The recommendation is randomized between each iteration. The results show significant improve-
ment from constant recommendation. While similar in social welfare to aligned and misaligned
recommendations, only half of all recommendations are aligned. (misaligned) A two-step recom-
mendation, sufficient for agents to immediately converge to the Nash equilibrium. The first recom-
mendation is for all agents to go up. The second recommendation splits the population, as in the
fixed case. The recommendation is then kept constant. While achieving rapid convergence to the
Nash equilibrium this recommendation is fully misaligned. (aligned) A two-step recommendation,
as in the misaligned case, but the first recommendation is for all agents to go down. Again, the
second recommendation splits the population half-and-half and is then kept constant. This recom-
mendation achieves both rapid convergence and recommendation alignment.

These results show that it is possible to drastically improve ()-learning convergence with cleverly
timed recommendations that induce a coordinated behaviour in a system of multi-agent ()-learners.
Additionally, recommendation alignment is measured as a metric that shows whether the coordina-
tion was achieved on average with aligned or misaligned recommendations. The difference between
the aligned and misaligned cases is minimal but illustrates the effect that picking recommendations
has on alignment.

E.5 INITIAL ¢-VALUES FOR FIGURE S5

The g¢-tables are initialized as the following matrix for each agent, aligned and misaligned respec-
tively:

-15 -2 -2 -2 —15 -2
[—2 ~15 —2]and[—2) —1.5] (5)

-2 -2 —=15 —-15 =2 -2

E.6 SOLVING THE AUGMENTED NETWORK WITH THE LDMP

Testing different initial beliefs of users Figure S5 shows the relative performances for these RSs
for two cases of initialized g-values: aligned g-values where the argmax for each recommendation
state corresponds to the recommendation and misaligned g-values where the argmax does not
correspond to the recommendation state (specific g-values are included in subsection E.5, results for
two additional initializations of g-values are included in subsection E.7). It is noteworthy that in the
misaligned initialization, each agent still has each action up, down, cross as the argmax of one of
its states, but it does not align with the recommendation state.

To compare and contrast different RS approaches we test the following RS which are visible in
Figure S5.

Tested cases and results for the Augmented Network (constant) The RS produces the constant
recommendation S = (u, d, u,d, ..., u,d). In practice, any constant recommendation is equivalent
when all agents have their g-values initialized in the same manner. Furthermore, it is identical to
the case where no recommendation is provided. This case is to demonstrate that a successful RS
must actively, and dynamically change recommendation states for the agents to benefit the social
welfare. (random) The RS generates a recommendation at each step that is uniformly picked at
random from S. This case demonstrates that a random RS can have the beneficial effect of slow-
ing down the natural learning dynamics. It also establishes a baseline recommendation alignment
score. (heuristic) The RS attempts to pick recommendations such that as many agents as possible
split between up and down, and the remaining agents are recommended actions that would lead their
beliefs to change favorably due to the learning dynamics. A detailed picture of this heuristic RS
is described in Figure S3. This RS achieves higher system welfare at the cost of recommendation
alignment. The achieved performance increases the leverage of the manipulative potential of the
omniscient RS system, which can be seen by poor recommendation alignment scores. The heuristic
recommender results are nearly identical for average latency in the aligned (top row) and misaligned
(bottom row) cases of Figure S5. This makes sense, as the heuristic recommender, “blind” to rec-
ommendation alignment, is not affected by the change in g-value initialization of the users. (aligned

18

Under review as a conference paper at ICLR 2024

—— constant ==+ random - heuristic =~ -+ aligned heuristic
5 5 1.0 - = m=emmgranirannan e
15 . social optimum = \‘
g \
o\
= 0.8 HA
© -1.625 &b T\
= = Y
5 2 0.6 \
o o i\
2 175 B=] T
— =] A
£ g 0.4 \\
15) .4 -)
=} 4 L TN —
% -1.875 - = I O ——
g 0.2
o
-2.0 —
T T T T T 0.0 == T T T T
0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20
exploration rate (£) exploration rate (€)
—— constant ==+ random - heuristic =~ -+ aligned heuristic
social optimum - 1.0
1.5 - 2
£
= 0.8
© -1.625 =N
=
& s | it
o) g 0.6
2 1.75 E=|
— <
£ g 0.4
5 4
o Q L p—— Y
@ -1.875 E S
s
J S 0217 v/
H ilibri S
2.0 nash equilibrium L ".,,
T T T T T 0.0 I. — T T T T
0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20
exploration rate (€) exploration rate (€)

Figure S5: 100 Q-learners (o« = 0.01, v = 0) are simulated for 10000 learning steps in the aug-
mented network Figure S1b for varying RS and e exploration rates. Curves plot averages 40 repeti-
tions of training with error bars as standard deviation. Top row: The systems were initialized with
aligned g-values (see Equation 5). The experiments show that the heuristic recommender yields
the lowest latencies while using the aligned recommender results in high latencies (left column).
However, the aligned recommender also maintains a high alignment with the beliefs of the agents
(right column). Bottom row: Initializing misaligned g-values (see Equation 5) leads to a different
evolution of the system, which also allows the aligned recommender to have lower latencies than all
other recommenders at € > 0.08, while maintaining higher alignment.

heuristic) The RS attempts to pick recommendations such that as many agents as possible split be-
tween up and down, and the remaining agents are recommended actions that would lead their beliefs
to change favorably due to the learning dynamics. A detailed picture of this aligned heuristic RS
is described in Figure S3. This still achieves an improvement in the system welfare while prioritiz-
ing recommendation alignment and achieving the highest recommendation alignment scores. When
possible, this recommender always recommends aligned recommendations.

E.7 ADDITIONAL RESULTS FOR OTHER ¢-VALUE INITIALIZATIONS

19

Under review as a conference paper at ICLR 2024

—— constant —=- random ----- heuristic =~ ----- aligned heuristic
social optimum - 104
-1.5 =]
£
bgl) 0.8
% -1.625 A =
S =
[5) g 0.6
2 1.75 = .
= S .
2 £ 0.4 -
o) Q PR AL
@ -1.875 - g e
g 0.2
h equilibri 8
2.0 nash equilibrium O
T T T T T 0.0 == T T T T
0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20
exploration rate (&) exploration rate (&)
Figure S6: The systems were initialized to uniform random g-values.
—— constant —=—- random ----- heuristic = ----- aligned heuristic
15 social optimum - 10
o =}
=
1 < 0.8
© -1.625 \ =Y
E —
= s .
o g069
B 1.75 4 g= !
— < .
o =l 3
B3 044
o Q -]
@ -1.875 g "
% 024
h equilibri 5 :
2.0 nash equilibrium O /gy,
T T T T T 0.0 = — T T
0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20

exploration rate (£)

exploration rate (£)

Figure S7: The systems were initialized to the Nash belief @ = —2.

20

	Introduction
	Congestion Game Model
	Congestion Games with Learning
	Further Background

	Learning Dynamic Manipulation Problem in Repeated Congestion Games
	Rewards, States, and Actions
	Scaling
	Demonstrating how recommendations can manipulate learning dynamics
	Manipulating by increasing the recommendation space
	Manipulating By Optimizing Belief Updates
	Constant Recommendations Change Nothing

	Results with Braess Paradox
	Setup
	Results

	Discussion and Conclusion
	Nomenclature and Symbol Glossary
	Learning Dynamics on the Braess Augmented Network
	Heuristic Algorithm Pseudocode and Subroutines
	Proof of Theorem 2.1
	Proof of Theorem 2.2

	Heuristic Algorithm Pseudocode and Subroutines
	Three-state recommender experiments
	Omniscient Learning Dynamic Manipulation
	Non Omniscient Learning Dynamic Manipulation
	Recommendation Alignment
	Solving the Initial Network with Recommendations: A simple case for the LDMP
	
	Solving the Augmented Network with the LDMP
	

