
ABN: Anti-Blur Neural Networks for Multi-Stage
Deformable Image Registration

Yao Su
Worcester Polytechnic Institute

Worcester, MA, USA
ysu6@wpi.edu

Xin Dai
Worcester Polytechnic Institute

Worcester, MA, USA
xdai5@wpi.edu

Lifang He
Lehigh University

Bethlehem, PA, USA
lih319@lehigh.edu

Xiangnan Kong
Worcester Polytechnic Institute

Worcester, MA, USA
xkong@wpi.edu

Abstract—Deformable image registration, i.e., the task of
aligning multiple images into one coordinate system by non-
linear transformation, serves as an essential preprocessing step
for neuroimaging data. Recent research on deformable image
registration is mainly focused on improving the registration
accuracy using multi-stage alignment methods, where the source
image is repeatedly deformed in stages by a same neural network
until it is well-aligned with the target image. Conventional
methods for multi-stage registration can often blur the source
image as the pixel/voxel values are repeatedly interpolated from
the image generated by the previous stage. However, maintaining
image quality such as sharpness during image registration is
crucial to medical data analysis. In this paper, we study the
problem of anti-blur deformable image registration and propose
a novel solution, called Anti-Blur Network (ABN), for multi-
stage image registration. Specifically, we use a pair of short-
term registration and long-term memory networks to learn the
nonlinear deformations at each stage, where the short-term
registration network learns how to improve the registration
accuracy incrementally and the long-term memory network
combines all the previous deformations to allow an interpolation
to perform on the raw image directly and preserve image
sharpness. Extensive experiments on both natural and medical
image datasets demonstrated that ABN can accurately register
images while preserving their sharpness.

I. INTRODUCTION

Background. Image registration is an essential task in
medical image analysis with many applications, including
anatomical and functional studies [1], [2], multi-modality
fusion [3] and diagnostic assistance [4]. It represents the
process of estimating the transformation between two images
and align them into one coordinate system. In the same
coordinate system, the interference of viewpoints, motion and
imaging modalities can be eliminated, thus allowing accurate
quantification of changes in the position, size, and shape
of anatomy and function. In the diagnosis of pneumonia, a
patient’s serial chest CT scans need to be aligned together
to counteract breathing movement. This crucial preprocessing
step helps doctors accurately locate tumors and shadows in
the lung, and perform medical diagnosis. The morphology of
human organs is diverse, which presents a unique challenge
to precise image registration. Conventional methods for image
registration often rely on simple linear transformation to
optimize the similarity between source and target images,
such as rigid transformations and affine transformations [5],
[6], which render coarse results, as shown in Figure 2(a).
To address this limitation, deformable image registration has
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Fig. 1: The problem of anti-blur deformable image registration.
(a) Given a patient’s brain MRI scan (the source image) and
a template image of the standard brain (the target image), the
goal is to transform the source image non-linearly so that it is
aligned with the target image and the sharpness of the registered
image should be preserved in the process. Example of different
possible results are shown in (b). The bottom-right box is the
ideal result: the registered image should be well-aligned with the
target image while preserving the sharpness.

attracted increasing attention in recent years [7]–[12], which
intends to learn a nonlinear transformation to boost registration
performance.

State-of-the-Art. With the emergence of deep learning,
convolutional neural networks (CNNs) have recently been
introduced for deformable image registration [13]–[17] due
to their superior capability. Conventional CNN-based meth-
ods [13]–[15] focus on estimating the deformation by one-
step to derive a registered image, where the transformation is
directly predicted by a single network, as shown in Figure 2(b).
However, this design is difficult to achieve satisfactory regis-
tration results, especially when there are complex and large
deformations between source and target images. To address
this limitation, multi-stage registration methods [16], [17] have
been developed based on cascaded neural networks, which
tends to improve the registration accuracy by multiple stages
of transformation, as shown in Figure 2(c). However, these
methods often lead to blurry registered images and loss of
details as they perform transformation only on the image
generated by the previous stage, involving repeated interpo-
lation to the final output. Maintaining image quality such as
sharpness during image registration is crucial in many medical



studies. In anatomical pathology studies, abnormalities (e.g.,
tumors and lesions) in blurred images will be more challenging
to localize due to weak edge information, thus affecting the
accuracy of subsequent diagnosis. Likewise, the precision of
functional pathology diagnosis (e.g., Alzheimer’s disease) also
relies on the integrity of the image information. Blurred images
often lose their high-frequency components, making it difficult
to measure variations in functional signals.

Problem Definition. In this paper, we study the problem of
anti-blur deformable image registration, as shown in Figure 1.
Our goal is to accurately align the source image with a target
image, while maintaining the sharpness of the registered image
in the process.

Challenges. Despite its value and significance, the anti-blur
deformable image registration problem is very challenging due
to its unique characteristics listed below:

• Transform Estimation: Most conventional deformable im-
age registration methods [13]–[15], [18] accomplish this
task by directly predicting the transformation between
source and target images. However, estimating transfor-
mation with one-step prediction can limit the registration
accuracy, especially when there are complex and large
deformations between images. Moreover, when process-
ing high-dimensional images (e.g., 3D MRI and CT),
one-step transformation approaches require manipulating
larger voxel quantities, producing lower accuracy and
having limited capabilities.

• Repeated interpolations: Recent state-of-the-art meth-
ods [16], [17] use multi-stage design, which improves
the registration accuracy to a certain extent. However,
repeatedly transforming the image generated by the pre-
vious stage involves multiple interpolations of pixel/voxel
value, which can result in a loss of image information.
Specifically, the high-frequency components of the image
will be smooth by multiple interpolations, leading to a
blurred image.

• Error Accumulation: Conventional multi-stage registra-
tion methods [16], [17] are based on cascade design,
which can cause errors to accumulate. An inaccurate
deformation estimation from the previous stage can result
in artifacts on the output image being propagated into the
following stages, rendering an irreversible error. For ex-
ample, if some regions of the input image are mistakenly
moved out, the information contained in these regions
cannot be recovered in the following stages.

In order to tackle these issues, we propose an Anti-Blur
Network (ABN) for multi-stage deformable registration. Fig-
ure 2 illustrates the comparison between our approach and
the state-of-the-art methods. Specifically, inspired by Long
Short-Term Memory (LSTM), we introduce a pair of short-
term registration and long-term memory networks to learn
the nonlinear deformations at each stage, where the short-
term registration network is used to capture the deformation
between current warped (registered) and target images, and the
long-term memory network combines all the previous defor-
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Fig. 2: Comparing different solutions to the deformable image
registration problem.

mations so that the transformations (involving interpolation) in
subsequent stages consistently act on the source image, thus
preserving the sharpness of the registered image to a greater
extent. Empirical studies on natural and medical image regis-
tration tasks demonstrated that ABN outperform both single-
stage and multi-stage existing methods in terms of image
registration accuracy and sharpness. The main contributions
are summarized as follows:

• To the best of our knowledge, this is the first work to
study anti-blurring problem in multi-stage deformable im-
age registration, which allows nonlinear transformations
to be consistently performed on the source image in a
multi-stage setting.

• We identify a new criterion to evaluate the performance
of image registration by measuring the sharpness of reg-
istered image from information completeness viewpoint.

• Extensive experiments are conducted on the 2D face
image registration task and 3D brain MRI registration
task, and the results indicate that our proposed method
significantly outperforms state-of-the-art alternatives in
terms of both registration accuracy and image sharpness.

II. PRELIMINARIES

In this section, we first introduce related concept and nota-
tions, then define the anti-blur deformable image registration
problem formally.

A. Notations and Definitions

In this paper, we mainly consider two scenarios: the 2D
face registration and 3D brain MRI registration. In the fol-
lowing discussion, we introduce the concept of deformable



registration using 3D brain MRI images, and it can be easily
generalized to 2D image registration scenarios.
Definition 1 (Source and target images). Suppose we are
given a training dataset D = {(Si,Ti)}Zi=1 that contains Z
pairs of training samples. Each pair contains a source image
Si ∈ RW×H×D (e.g., the MRI scan of a patient’s brain)
and a target Ti ∈ RW×H×D (e.g., a standard template of
the brain). Here W , H and D denote the width, height and
depth dimensions of the 3D images. Without loss of generality,
here we assume that the source and target images are resized
to the same dimension, i.e., W × H × D. Typically, in the
dataset D, the target images in different pairs can be different.
For example, in the human face registration task [19], we
need to align the distorted image (i.e., source image) with
the normal image (i.e., target image) for each person, where
different people will have different face images. In the brain
MRI registration task, however, all pairs in D can share a
same target image, which is another case of the dataset D.
For example, in brain network studies [4], the functional
MRI images (i.e., source images) of all patients need to be
aligned with a same template image (i.e., target image), e.g.,
MNI 152. We study both cases of D in this paper, and the
experimental results are shown in the Section IV. In the
following discussion, we omit the subscript i of Si and Ti

for simplicity.
Definition 2 (Deformation field and warped image). Defor-
mation field Φ ∈ RW×H×D×3 is a tensor used to parame-
terized the nonlinear (deformable) transformation between S
and T. It defines how each voxel in S is displaced (in the X-,
Y-, and Z-directions) with respect to its original position in T.
The warped image W = T (S,Φ) is generated by applying
the deformable transformation on the source image S, where
T (·, ·) is the warping operator. The voxel value of W at the
3D coordinate (x, y, z) can be conceptually calculated as:

W(x, y, z) = S(x+∆x, y +∆y, z +∆z), (1)

where

∆x = Φ(x, y, z, 1), ∆y = Φ(x, y, z, 2), ∆z = Φ(x, y, z, 3).
(2)

Typically, (∆x,∆y,∆z) is a vector of continuous values, so
is the 3D coordinate (x+∆x, y+∆y, z+∆z). As a result, the
voxel value W(x, y, z) cannot be directly calculated by Eq (1).
Instead, the image sampling kernel, e.g., trilinear sampling
(linear interpolation in the 3D coordinate space), is resorted
to estimate the voxel value. Figure 3 demonstrates an example
of deformable mapping and interpolation.

B. Problem Formulation

In this work, we consider the deformable registration task as
a learning problem on neural networks. This is often modeled
by learning a function: fθ : RW×H×D × RW×H×D →
RW×H×D×3. Specifically, the function fθ(·, ·) takes the
source image S and the target image T to predict the defor-
mation field Φ̂, and the warped image is Ŵ = T (S, Φ̂). The
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Fig. 3: An example of deformable image registration in 2D
space. On the left, the yellow lines denote the coordinate cor-
respondences between the warped image and the source image:
(x, y) 7→ (x+∆x, y+∆y) . In the middle, the blue lines represent
the pixel value of each grid point of the warped image filling
by a corresponding interpolated point from the source image:
S(x+∆x, y +∆y) 7→ W(x, y). On the right, the pixel value of
an interpolated point is estimated from its adjacent points.

optimal parameters θ∗ can be found by solving the following
optimization problem:

θ∗ = argmin
θ

∑
(S,T)∈D

[
L
(
Ŵ,T

)]
= argmin

θ

∑
(S,T)∈D

[
L
(
T
(
S, fθ (S,T)

)
,T

)]
,

(3)

where the image pair (S,T) is sampled from the training
dataset D, and L(·, ·) is image dissimilarity criteria, e.g., mean
square error.

Recent studies [16], [17] proposed to solve Problem (3)
in a multi-stage fashion to achieve high registration accuracy,
which consist of N cascaded networks {fk}Nk=1. In the k-
th cascaded stage, Φk = fk

(
Wk−1,T

)
, where Wk−1 =

T
(
Wk−2,Φk−1

)
is the intermediate warped image. However,

the warping operator T involves an interpolation, e.g., trilinear
sampling; thus, the final result WN can be blurred by N
warping operations (i.e., N times interpolation).

Our aim is to boost the performance of deformable image
registration while preserving the sharpness of registered im-
ages to ensure their information integrity. Specifically, we seek
a novel multi-stage solution Φk = fk

(
Wk−1 ⊗ S,T

)
that

allows to jointly use the source image S and the warped image
Wk−1 = T

(
S,Φk−1

)
to minimize the sharpness loss during

the successive warping processes. Notice that the warping
operation always performs on the source image S instead of
the previous warped images. Therefore, only one interpolation
is needed to produce the final warped image WN , which
preserves the sharpness of WN .

III. OUR APPROACH

Overview. Figure 4 presents an overview of the proposed
ABN framework for anti-blur deformable image registration.
Our method is a multi-stage deep neural network consisting of
three main components: 1) Short-Term Registration Network
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Fig. 4: An overview of ABN for multi-stage deformable image registration. In each stage k, the Short-Term Registration Network
fS predicts the current deformation field Φk

i between the previous warped image Wk−1 and target image T; Long-Term Memory
Network fL fuses current deformation field Φk

i and previous combined deformation field Φk−1
c to generate the updated combined

deformation field Φk
c ; Spatial Transformation Layer (ST Layer) performs the nonlinear transformation on the source image S using

Φk
c to produce the warped image Wk. The final warped registered image is WN .

takes the previous warped image Wk−1 and the target image
T as inputs, and generates a current deformation field Φk

i ;
2) Long-Term Memory Network takes the previous combined
deformation field Φk−1

c and the current deformation field Φk
i

as input, and generates an updated combined deformation field
Φk

c ; and 3) Spatial Transformation Layer performs the nonlin-
ear transformation on the source image S using Φk

c to produce
the warped image Wk. The whole framework is trained using
backpropagation in an end-to-end and unsupervised fashion.
Next we introduce the details of each component and the
training process.

A. Short-Term Registration Network: fS

The short-term registration network fS(·, ·) is designed to
gradually deform the source image to maximize its similarity
with the target image. At each stage, it predicts a current
deformation field Φk

i and only relies on the previous warped
image Wk−1 and the target image T. Decomposing a complex
registration task into multiple simple short-term registration
tasks can substantially reduce the burden on the network,
allowing it to control the deformation process more locally and
accurately and avoid under- or over-deformation of the image.
Specifically, we adopt U-Net [20] as the base network to
learn fS(·, ·), which is the state-of-the-art architecture widely
used in image registration and semantic segmentation. fS(·, ·)
follows a shared-weight design, which means that fS(·, ·) is
repetitively applied across stages with the same parameters. It
can be formalized as:

Φk
i = fS

(
Wk−1,T

)
, (4)

where Φk
i is the outputted deformation field in the k-th stage

for k = 1, · · · , N and W0 = S.

B. Long-Term Memory Network: fL

In each stage, after obtaining the current deformation field
Φk

i from fS(·, ·), we are seeking a function to fuse all previous
deformations that allows to jointly use the source image S
and the previous warped image Wk−1 to preserve the image
sharpness for better details. In other words, this function
needs to recursively combines the current deformation with
all previous deformations in order to learn the transformation
mapping between S and T at each stage. Therefore, the
estimation of image pixel/voxel values (i.e., trilinear sampling)
will be allowed to be directly performed on S to avoid image
sharpness loss caused by multiple interpolations. To achieve
this goal, we design a long-term memory network fL(·, ·) to
predict the combined deformation field Φk

c as follows:

Φk
c = fL

(
Φk−1

c ,Φk
i

)
. (5)

When k = 1, an initialized deformation field Φ0
c with zero

displacements and the current deformation field Φ1
i are inputs

of fL(·, ·). This layer serves as a bridge between the regis-
tration module and the spatial transformation module. Notice
that fL(·, ·) is the main component for anti-blur, otherwise,
the spatial transformation can only act on Wk−1.

Similar to fS(·, ·), we adopt an U-Net based CNNs to learn
fL(·, ·) with a weight sharing across each stage.

C. Spatial Transformation Layer

An essential step required for image registration is to
reconstruct the warped image from the source image by the
warping operator. Based on the combined deformation Φk

c ,
we introduce a spatial transformation layer that resamples
pixels/voxels from the source image into the uniform grid to



obtain a warped image through Wk = T (S,Φk
c ). Based on

the definition of warping operator in Eq. (1), we have

Wk(x, y, z) = S(x+∆xk, y +∆yk, z +∆zk), (6)

where ∆xk = Φk
c (x, y, z, 1), ∆yk = Φk

c (x, y, z, 2), and
∆zk = Φk

c (x, y, z, 3).
To enable the success of gradient propagation in this pro-

cess, we employ a differentiable warping operator based on
trilinear interpolation inspired by [21]. That is,

Wk(x, y, z) =

W∑
n

H∑
m

D∑
l

S(n,m, l)max(0, 1− |x+∆xk − n|)

max(0, 1− |y +∆yk −m|)max(0, 1− |z +∆zk − l|).
(7)

Notice that Eq. (6) always performs nonlinear warping on the
original source image S, instead of the warped image gener-
ated by the previous stage. Therefore, only one interpolation is
needed to yield a warped image WN to preserve its sharpness.

D. Unsupervised End-to-End Training
We train our ABN model in an unsupervised setting by

minimizing the following objective function

min
Φ1

c ,··· ,ΦN
c

Lsim

(
WN ,T

)
+

N∑
k=1

λR(Φk
c ), (8)

where Lsim(·, ·) is a loss function measuring the similarity be-
tween the registered image WN and the target image T. R(·)
is the regularization term, which determines the smoothness of
the deformation, and λ is a regularization parameter. Here we
use the mean square error (MSE) as loss function for 2D face
registration task (every source image has its corresponding
target image), due to the same pixel intensity distribution
between WN and T. For 3D brain MRI registration (all source
images share one target image, i.e., a template image), we use
the negative cross-correlation loss (NCC), which is robust to
intensity variations often found across scans and datasets [18].
We call the registration problem unsupervised if the ground
truths of transformation (deformation field Φ) are not provided
in the training set. Otherwise, it is supervised, such as [22]–
[26]. In our proposed method, no transformation ground truth
is given during the training.

Deformable image registration is an ill-posed problem, and
requires an additional constraint (regularization) to enforce
a spatially smooth deformation. Such regularization highly
influences the estimated deformation fields as pointed out by
previous studies [17], [27]. For the purpose of both effective
and efficient estimation, we use the ℓ2-norm of the second-
order derivative of Φk

c as the regularization term:

R(Φk
c ) =

∑
∥∇2Φk

c ∥2. (9)

More importantly, this enables to better capture the global
movement as it puts zero penalty for affine transformations
and only non-affine transformation is penalized [7].

Benefiting from the differentiability of each component of
this design, our model can be cooperatively and progressively
optimized across each stage in an end-to-end manner.

TABLE I: Summary of compared methods.
Methods Anti-blur Multi-stage Nonlinear Deep learning

Affine [5] ✓ ✗ ✗ ✗
BSpline [7] ✓ ✗ ✓ ✗
Demons [8] ✓ ✗ ✓ ✗
Elastic [9] ✗ ✓ ✓ ✗
SyN [10] ✗ ✓ ✓ ✗
VM [18] ✓ ✗ ✓ ✓
CRN [16] ✗ ✓ ✓ ✓
ABN-L (ours) ✓ ✓ ✓ ✓
ABN (ours) ✓ ✓ ✓ ✓

IV. EXPERIMENTS

A. Datasets

In order to evaluate the performance of our method on image
registration tasks, we conduct experiments on three different
datasets, one with natural images (2D) and two with medical
images (3D).
• Flickr-Faces-HQ (FFHQ) [28]: We used a subset of the
FFHQ dataset, which contains 400 human face images, ran-
domly sampled from the whole dataset. In order to construct
pairs of source and target images, similar to [26], we random
transform each face image using a random deformation field.
We use the deformed image as the target image and the raw
image as the source image. Each image is dealigned using a
random deformation field smoothed by a Gaussian filter. We
set the standard deviation for Gaussian kernel, σ = 18, and a
scale factor of displacement, α = 800, to ensure a reasonable
deformation. We resize all images to 64 × 64, and randomly
split the image pairs into training and test sets with the ratio
of 80% and 20%, respectively.
• LPBA40 [29]: This dataset consists of 40 T1-weighted 3D
brain MRI scans and the corresponding segmentation ground
truth of 56 anatomical structures. The ground truth is used to
evaluate the registration accuracy. Same as [16], [18], we focus
on atlas-based registration in this experiment, in which the
first scan in the dataset is the target image and the remaining
scans need to be aligned with the target image. Among the
39 scans, 30 scans are used for training and 9 scans are
used for testing. All scans are resized to 96 × 96 × 96 after
cropping. Standard pre-processing steps have been completed
in the dataset, including brain extraction and affine spatial
normalization.
• MindBoggle101 [30]: This dataset contains 101 T1-weighted
3D brain MRI scans and the corresponding annotation of 25
cortical regions, but only 62 scans have their valid segmenta-
tion ground truth. Following the recent work [31], we focus
on atlas-based registration using 41 scans for training and
20 scans for testing. All scans are resized to 96 × 96 × 96
after cropping. Same as the LPBA40 dataset, the standard
pre-processing steps for the MindBoggle101 dataset have been
completed.

B. Compared Methods

We compare our approach to seven state-of-the-art methods,
as shown in Table I.
• Affine registration (Affine) [5]: This method breaks the image
registration task into a composition of a linear transformation



and a translation. We use existing affine implementation in
the publicly available software package - ANTsPy 1 with the
default setting.
• BSpline transform (BSpline) [7]: This method uses control
points and spline functions to describe the nonlinear geometric
transformation domain. We use existing BSpline implementa-
tion in the publicly available software package - SimpleITK
(SITK) 2. Each pair of images is optimized with a order of 3,
and a gradient tolerance of 1× 10−10 for 200 iterations.
• Demons algorithm (Demons) [8]: This method is inspired
by the optical flow equations and considers non-rigid image
registration as a diffusion process. We use existing Demons
implementation in the publicly available software package -
SimpleITK (SITK) 2. Each pair of images is optimized with
a smooth regularization of 2, and a gradient tolerance of 1×
10−10 for 50 iterations.
• Elastic registration (Elastic) [5], [9]: This method estimates
the elastic geometric deformation by updating transformation
parameters iteratively. Elastic is included in the ANTsPy 1

software package. We run the elastic registration with the
default setting.
• Symmetric normalization (SyN) [10]: This is a top-
performing traditional method for deformable image registra-
tion [18], [32]. This method optimizes the space of diffeo-
morphic maps by maximizing the cross-correlation between
images. We run SyN via ANTsPy 1 with a default setting.
• VoxelMorph (VM) [18]: This is an unsupervised single-
stage registration method, which use one network to predict
the deformation between images. For network architectures,
we use the latest version, VoxelMorph-2, and configure 10
convolutional layers with 16, 32, 32, 64, 64, 64, 32, 32, 32
and 16 filters. The kernel size of each convolutional layer is
3× 3. The ratio of regularization is set to λ = 10.
• Cascaded Registration Networks (CRN) [16]: This is a state-
of-the-art method for unsupervised image registration with
a multi-stage design. In different stages, the source image
is repeatedly deformed to align with a target image. The
number of stages is set to 10. In each stage, we configure
10 convolutional layers with 16, 32, 32, 64, 64, 64, 32, 32, 32
and 16 filters. The kernel size of each convolutional layer is
3× 3. The ratio of regularization is set to λ = 10.
• Anti-Blur Networks (ABN): This is our proposed model which
consists of two sub-networks at each stage, the short-term
registration and long-term memory networks. The number of
stages is set to 10. We configure 10 convolutional layers in
each sub-network with 16, 32, 32, 64, 64, 64, 32, 32, 32 and
16 filters. The kernel size of each convolutional layer is 3×3.
The ratio of regularization is set to λ = 10.
• Anti-Blur Networks-Long (ABN-L): ABN-L is a variant
of ABN, which only contains a long-term memory network
fL(·, ·) at each stage. The network handle the registration and
combination of deformations simultaneously. The number of
stages is set to 10. The long-term memory network has 3

1https://github.com/ANTsX/ANTsPy
2https://simpleitk.org/

inputs, thus we increase the filters of convolutional layers to
32, 64, 64, 128, 128, 128, 64, 64, 64, and 32. The kernel size
of each convolutional layer is 3×3. The ratio of regularization
is set to λ = 10.

C. Evaluation Metrics

We use two metrics to assess the registered image quality:
registration accuracy and image sharpness, which are detailed
as follows.

1) Registration Accuracy: The 2D face dataset only con-
tains the pairs of source and target images. To evaluate the
registration accuracy, we measure the image similarity by
cross-correlation (CC) [33] and structural similarity (SSIM)
[34] between the final warped image and the target image.

The brain MRI datasets contain the segmentation ground
truth of anatomical structures, which is location labels of
different tissues in the brain. If the two images are well-
aligned, then their anatomical structures should overlap with
each other. Thus, it is reasonable to use the structure overlap
between the final warped image and the target image to
evaluate the registration performance. Similar to [16]–[18], we
used Dice score and Jaccard coefficient to measure the overlap
between two structures (warped and target). The final score is
the average of the dice score of the each structure.

2) Image Sharpness: We quantify the sharpness of the
final warped image by Sum Modulus Difference (SMD) [35]
and Tenengrad [36], [37]. Those are popular no-reference
sharpness evaluation metrics. SMD evaluated the sharpness
of an image by summing the differences between adjacent
pixels. If the image is sharp, then we expect the difference
is larger than that of a blurred image. Tenengrad evaluated
the sharpness of an image by extracting its edge information.
The image edge is the region where the intensity of the image
signal changes rapidly, and the sharper the image, the faster
the edge changes.

D. Experiment Setting.

We split the datasets into training and test sets as described
in the Datasets section. For 2D face registration, models are
trained with a batch size of 16 for 5k epochs. For 3D brain
MRI registration, we reduce the batch size to 1 to address GPU
memory limitation and models were trained for 1k epochs. For
both tasks, models are optimized using Adam optimizer [38]
with a learning rate of 1× 10−4. The source code is available
at https://github.com/anonymous3214/ABN.

E. Experimental Results

We evaluate the proposed method in 2D face registration and
3D brain MRI registration tasks. For each task, we quantify the
performance of registration accuracy and the image sharpness
by their corresponding metrics. Across all of these metrics,
we find that ABN achieves higher registration accuracy and
image sharpness than the state-of-the-art methods.



Source Target VM CRN ABN-L ABN

Fig. 5: Visual comparisons in 2D face registration task. The first
column shows source images, the second column shows target
images. For each comparison method, final registered images
(left) and deformation grids (right) are shown.

TABLE II: Results for 2D face registration. The results are
reported as performance(mean ± std). “↑” point out “the larger
the better”.

Methods Registration Accuracy Sharpness

SSMI ↑ CC ↑ SMD ↑ Tenengrad ↑

VM [18] 0.653 ± 0.080 0.902 ± 0.052 1.887 ± 0.398 2.382 ± 0.954
CRN [16] 0.921 ± 0.049 0.985 ± 0.016 2.535 ± 0.537 2.518 ± 0.935
ABN-L (ours) 0.911 ± 0.035 0.981 ± 0.012 2.719 ± 0.558 2.542 ± 0.931
ABN (ours) 0.956 ± 0.020 0.992 ± 0.006 2.786 ± 0.586 2.565 ± 0.939

1) Results on 2D Face Registration: Table II summarizes
the results of four methods on 2D face registration task. It
can be seen that ABN clearly outperforms all the baselines in
terms of both registration accuracy (SSMI and CC) and image
sharpness (SMD and Tenengrad). We observed a gain in SSMI
of roughly 3.8% and in SMD up to 9.9% compared to the
best baseline method CRN. Notably, the registration accuracy
of ABN-L is lower than that of ABN since ABN-L only
contains a long-term memory network, which is insufficient
for obtaining a high quality registration result.

Figure 5 shows visual comparisons of 2D face registration
results. Upon inspection, we can see that the final warped
image of ABN is more similar to the target image than those
of VM, CRN and ABN-L. Most notably, in terms of sharpness,
ABN-L and ABN clearly outperform CRN. VM does not
appear to have a loss in sharpness, but it is significantly worse
than other methods in registration accuracy. Furthermore, we
also compare the intermediate warped results of our method
with other multi-stage method (i.e., CRN), as shown in Figure
6. It is clear that both methods allow the warped/registered
images to progressively align to the target image with the help
of a multi-stage fashion. However, the registration accuracy
improvement of CRN is accompanied by a loss of image
sharpness, while ABN gives much sharper images than CRN.

2) Results on 3D Brain MRI Registration: Table III shows
the results of nine methods on two respective datasets:
LPBA40 and Mindboggle101. In this task, Dice score and
Jaccard are used to evaluate registration accuracy, while SMD
and Tenengrad are used to assess sharpness performance.
The results of each method are shown with its average
performance with standard deviation and its ranking among
all other methods. Based on the global competition in both

TargetSource Registered
Stage

1 2 3 4 5 6 7 8 9
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Fig. 6: Comparing the intermediate and final results of different
multi-stage methods in 2D face image registration. We use the 10-
stage CRN and ABN as examples to demonstrate the performance
of registration at each stage.

datasets, the average ranking of ABN outperforms that of all
baselines. Specifically, ABN achieves superior performance
against all compared methods on registration accuracy, while
achieving competitive results in image sharpness persevering.
We observe that almost all multi-stage methods outperform the
single-stage methods on registration accuracy, but only ABN-
L and ABN are on par with single-stage methods in terms of
image sharpness persevering. Again, the overall performance
of ABN-L was slightly inferior to that of ABN, indicating that
the short-term registration network is crucial and beneficial to
improve registration accuracy.

Figure 8 shows the visual comparisons of one sample of the
3D brain MRI registration task on the LPBA40 dataset. We
can observe that our ABN method is more accurate in aligning
the source image to the target image. Notably, although CRN
has an impressive performance in registration accuracy, the
warped registered image is obviously blurred, which can be
verified with the focused example of the anatomical structure.
Although single-stage methods (Affine, BSpline, Demons,
Elastic, SyN, and VM) involve only one interpolation and o
dnot suffer from image blurring problem, they are inferior
to the multi-stage methods (CRN, ABN-L and ABN) in
terms of registration performance. These results indicate that
our proposed method effectively achieves a higher level of
registration accuracy while preserving image sharpness.

We also compared the registration speed among the tra-
ditional and learning-based methods, as shown in Figure 9.
The run time is measured on the same machine with a Intel®

Xeon® E5-2667 v4 CPU and an NVIDIA Tesla V100 GPU.
To clearly show the time of all baselines in the chart, we
omitted method Demons, which takes the longest time for
registration: 81.98 seconds on the LPBA40 dataset and 100.95
seconds on the Mindboggle 101 dataset. Upon observation, it
is clear that all traditional methods consumes much more time
compared to learning-based methods. Specifically, all learning-
based methods can achieve real-time registration within one
second. Compared with the most accurate non-learning method
Elastic, our proposed ABN achieves even higher accuracy and
only uses 2.5% time of Elastic. No GPU implementations



TABLE III: Results for 3D brain MRI registration. The results are reported as performance(mean ± std (rank)). The “Avg. Rank”
column shows the average rank of each method across all metric. “↑” point out “the larger the better” and “↓” point out “the
smaller the better”.

Dataset Methods Registration Accuracy Sharpness Avg. Rank ↓
Dice ↑ Jaccard ↑ SMD ↑ Tenengrad ↑

LPBA40

Affine [5] 0.631 ± 0.012 (9) 0.469 ± 0.016 (8) 0.053 ± 0.004 (4) 2.846 ± 0.237 (3) 6.0
BSpline [7] 0.644 ± 0.012 (8) 0.480 ± 0.014 (7) 0.054 ± 0.004 (3) 2.765 ± 0.227 (5) 5.8
Demons [8] 0.653 ± 0.064 (6) 0.495 ± 0.066 (5) 0.054 ± 0.003 (2) 2.746 ± 0.355 (6) 4.8
Elastic [9] 0.674 ± 0.012 (3) 0.514 ± 0.013 (3) 0.051 ± 0.003 (5) 2.494 ± 0.190 (9) 5.0
SyN [10] 0.670 ± 0.011 (4) 0.510 ± 0.014 (4) 0.053 ± 0.004 (4) 2.679 ± 0.209 (7) 4.8
VM [18] 0.652 ± 0.017 (7) 0.490 ± 0.018 (6) 0.055 ± 0.003 (1) 2.889 ± 0.194 (1) 3.8
CRN [16] 0.669 ± 0.013 (5) 0.510 ± 0.014 (4) 0.046 ± 0.002 (6) 2.647 ± 0.144 (8) 5.8
ABN-L (ours) 0.676 ± 0.017 (2) 0.518 ± 0.018 (2) 0.054 ± 0.003 (2) 2.830 ± 0.178 (4) 2.5
ABN (ours) 0.684 ± 0.015 (1) 0.527 ± 0.017 (1) 0.054 ± 0.003 (2) 2.847 ± 0.181 (2) 1.5

Mindboggle101

Affine [5] 0.340 ± 0.017 (9) 0.209 ± 0.012 (9) 0.077 ± 0.007 (3) 4.329 ± 0.775 (1) 5.5
BSpline [7] 0.349 ± 0.016 (8) 0.215 ± 0.012 (8) 0.078 ± 0.007 (2) 4.247 ± 0.741 (2) 5.0
Demons [8] 0.454 ± 0.025 (2) 0.300 ± 0.010 (2) 0.084 ± 0.008 (1) 4.078 ± 0.736 (5) 2.5
Elastic [9] 0.426 ± 0.013 (6) 0.275 ± 0.010 (6) 0.075 ± 0.007 (4) 3.864 ± 0.670 (8) 6.0
SyN [10] 0.399 ± 0.013 (7) 0.253 ± 0.010 (7) 0.078 ± 0.007 (2) 4.025 ± 0.698 (6) 5.5
VM [18] 0.433 ± 0.021 (5) 0.281 ± 0.017 (5) 0.078 ± 0.007 (2) 4.000 ± 0.663 (7) 4.8
CRN [16] 0.440 ± 0.023 (4) 0.287 ± 0.018 (4) 0.062 ± 0.006 (5) 3.339 ± 0.550 (9) 5.5
ABN-L (ours) 0.444 ± 0.018 (3) 0.290 ± 0.015 (3) 0.078 ± 0.007 (2) 4.084 ± 0.677 (4) 3.0
ABN (ours) 0.466 ± 0.030 (1) 0.309 ± 0.025 (1) 0.078 ± 0.007 (2) 4.099 ± 0.696 (3) 1.8

(a) Accuracy by Dice (b) Accuracy by Jaccard (c) Sharpness by SMD (d) Sharpness by Tenengrad

Fig. 7: Performance of multi-stage methods with different number of stages on 3D brain MRI registration task.

of BSpline, Demons, Elastic and SyN have been found in
previous works [5], [9], [10], [16], [18].

3) Influence of Parameters.: We study the performance
of all multi-stage methods at different stage number settings
using the LPBA40 dataset. For multi-stage methods, the
number of stages corresponds to the depth of the network
and the number of warping operations. In other words, more
stages mean more refinements of the alignment, which is
usually beneficial to the improvement of registration accuracy.
However, a larger number of stages also consumes more GPU
memory and increase the computation time. To investigate the
influence of different stage settings, we compared 10 different
versions of the CRN, ABN-L, and ABN, with the number of
stages varies from 1 to 10.

As illustrated in Figure 7(a) and 7(b), both ABN-L and ABN
significantly outperform CRN in the registration accuracy as
the number of stages increases. In addition, ABN-L and ABN
consistently preserve the image sharpness, as observed in
Figures 7(c) and 7(d). Notably, in this task, the effectiveness
of CRN in both registration accuracy and image sharpness
decreases significantly when the number of stages increases.
This supports our intuition that recursively deforming the
image obtained from the previous stage will result in image
blurring and signal attenuation, which causes the registration
accuracy to further deteriorate. Thus, our methods ABN-L

and ABN outperform CRN in the multi-stage case in both
registration accuracy and sharpness preserving.

V. RELATED WORK

This section briefly reviews the previous works for image
registration. Traditional image registration methods [5], [6],
[9], [10] optimize similarity between images by iteratively
updating transformation parameters. The goal of this optimiza-
tion is to ensure that the source image and the target image can
be aligned to the greatest extent while ensuring the rationality
of transformation. To this end, different similarity measures
have been proposed for various registration scenarios. For
example, Mean Square Error (MSE) on intensity differences
is commonly used for image pairs with a similar intensity
distribution. However, Normalized Cross-Correlation (NCC)
and Mutual Information (MI) usually perform better when
it comes to multi-modal registration, e.g., brain CT/MRI
image registration for tumor localization. Furthermore, it is
necessary to smooth the deformation field to avoid folds in
the transformation [7], [39]. Unfortunately, the optimization of
these traditional registration methods is usually performed in
a high-dimensional parameter space, which is computationally
expensive and time-consuming, limiting their uses in clinical
workflows.
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Fig. 8: Visual comparisons in 3D brain MRI registration task. The first two columns on the left correspond to the source image and
the target image, respectively. From top to bottom, each row shows the predicted deformation field, the deformation grid, the final
warped image, a focused example of anatomical structure, and the segmentation label for each comparison method. Deformation
fields are displayed by placing the displacements of x, y, z into RGB channels respectively. Segmentation labels are used for the
evaluation of registration accuracy.

To address the potential limitations of traditional image
registration, deep learning-based methods [13], [14], [16]–
[18], [22]–[25], [40] are being studied more and more exten-
sively in medical image registration. Among them, supervised
learning methods depend on the ground truth of transformation
mappings. In fact, the acquisition of high-quality ground truth
in medical practices is often considerately expensive. As a
result, the ground truth of supervised learning mainly coming
from traditional methods [22], [23] or synthesis [24]–[26]. To
overcoming this limitation, unsupervised learning approaches
have recently gained more attention, which learns image
deformation by maximizing the similarity between the warped
image and the target image. Benefiting from the success of
STN [21], the gradient can be successfully back-propagated
during the training. Several studies registered images by a
single-stage design [13]–[15], [18]. Nonetheless, it is difficult
to achieve desirable registration results with this schema,
especially when there are complex and large distortions be-
tween images. Recently, multi-stage methods [16], [17] have
been proposed to improve the registration accuracy - they
decompose a complex transformation step-by-step, recursively
warp the source image until that image is well-aligned with
the target image. However, the above multi-stage registration
methods are devoted to improving registration accuracy despite
the exposure to information retention failure. In this work,
we pursue registration accuracy and information retention
simultaneously.
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Fig. 9: Registration time on 3D brain MRI registration task.

VI. CONCLUSION

This paper presents a novel multi-stage neural network
method called ABN for anti-blur deformable image registra-
tion. Different from previous works, our proposed method can
accurately register images nonlinearly while preserving the
image sharpness. Specifically, ABN improves the registration
accuracy incrementally by a multi-stage design. At the same
time, a combined deformation of all previous stages is learned
simultaneously. This deformation is applied directly to the
source image to preserve the image sharpness, avoiding in-
formation loss caused by multiple interpolations. Compared to
all other state-of-the-art methods, experimental results demon-
strated that ABN consistently generates a comparatively high
level of accurate and sharp registered images in both 2D face
registration and 3D brain MRI registration tasks.
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