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Abstract

Physics-informed neural networks (PINNs) can offer approximate multidimen-
sional functional solutions to the Helmholtz equation that are flexible, require low
memory, and have no limitations on the shape of the solution space. However, the
neural network (NN) training can be costly and the cost dramatically increases as
we train for multi-frequency wavefields by adding frequency to the NN multidi-
mensional function, as the variation of the wavefield with frequency adds more
complexity to the NN training. Thus, we propose a new loss function for the NN
multidimensional input training that allows us to seamlessly include frequency
as a dimension. We specifically utilize the linear relation between frequency and
wavenumber (the wavefield space representation) to incorporate a reference fre-
quency scaling to the loss function. As a result, the effective wavenumber of
the wavefield solution as a function of frequency remains stationary reducing the
learning burden on the NN function. We demonstrate the effectiveness of this
modified loss function on a layered model.

1 Introduction

Frequency-domain wave equation modeling based on the Helmholtz equation, is quite common and
of great importance in modeling many physical phenomena, e.g., electromagnetic and seismic wave
propagation. However, in inverting for the subsurface properties, we have to solve the Helmholtz
equation for many frequencies to recover fine-scale details, like in ultrasound medical imaging,
ground penetrating radar, and seismic full waveform inversion. Consequently, an accurate and
efficient multi-frequency solution is extremely important in many scientific and industrial applications.
However, when the size of the subsurface model is large and the frequency is high, the computational
cost of classical methods such as finite difference, finite element, and spectral methods is high.
Besides, the complexity of wave equation in elastic or anisotropic media can considerably add to the
computational burden. The recently developed physics-informed neural network (PINN) for solving
for the Helmholtz equation showed considerable potential in modeling because of its flexibility, low
memory requirement, and no limitations are imposed on the shape of the solution space. However,
it is hard to train, admitting less than optimal solutions for practical size neural network models. A
major challenge is that when we increase the dimension of the input (like including frequency), the
complexity of the wavefield increases, yielding poor convergence of PINN. Reducing the complexity
of the PINN optimization problem is an important objective.

Here we propose to use a reference frequency based loss function to train a neural network (NN)
for multi-frequency wavefield representation using PINN. The reference frequency allows us to
effectively mitigate the change in spatial wavenumber over frequency by adapting the spatial scale to
frequency, thus, reducing the complexity of the wavefield as if it was representing a single frequency.
This is important, as the PINN convergence depends highly on the complexity of the wavefield. We
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apply our method using the frequency-domain scattered wave equation to predict multi-frequency
wavefields. Compared to the traditional PINN with multi-frequency loss, our approach yields more
accurate and efficient wavefield solutions.

2 Related Work

Physics-informed neural networks play a vital role in surrogate modeling with potential applications
in many fields [9, 13, 11, 3, 5]. For wavefields, when the solution domain is large or the frequency
is high, the complexity of the solution requires a large-size neural network, which is hard to train.
To address the limitations of PINN, e.g., convergence, especially its convergence in scenarios with
a large solution domain and high-frequency, Wang et al. [14] made use of Fourier input feature to
solve the optimization using trigonometric functions. Liu et al. [7] proposed multi-scale deep neural
networks with a PINN loss to improve the convergence. Recently, domain decomposition has gained
attention [6, 4, 8] in which we divide the problem into many sub-domains. For inverse problems, we
also need multi-frequency solutions and all these methods have not addressed this need. Alkhalifah et
al. [1] demonstrated the multi-dimensional wavefield solutions potential of PINNs, but the accuracy
over the range of frequencies was not good.

3 Single Reference Frequency Loss

3.1 Helmholtz equation for scattered wavefield

In this section, we briefly revisit several key concepts of the frequency-domain scattered wavefield
representation using PINN. To reduce the spatial samples needed for training the 2-D frequency-
domain acoustic wave equation (Helmholtz equation), and mitigate the source singularity of the
frequency-domain wavefield, we use the scattered wavefield instead, given by:

ω2mδU +∇2δU + ω2δmU0 = 0, (1)

where m is the squared slowness, ω is the angular frequency, U is the frequency-domain wavefield
as a function of (x, z) due to the source term s = (sx, sz) and ∇ is the gradient operator, U0 is
the background wavefield, δU = U −U0 [2] is the scattered wavefield, and δm = m −m0 is
the squared slowness perturbation. Considering the background velocity to be constant, U0 can be
directly calculated using the constant background squared slowness m0 with an analytical relation
[10]:

U0(x, z) =
i

4
H

(2)
0 (ω

√
m0{(x− sx)2 + (z − sz)2} (2)

where H
(2)
0 is the zero-order Hankel function of the second kind. To find a neural network represen-

tation Φ(θ,x) satisfying the physical constraint (PINN), where θ represents the model parameters
and x = (x, z, sx, ω), we use the physical multi-frequency loss function defined as:

L =
1

N

N∑
i=1

∣∣ω2miΦ(θ,xi) +∇Φ(θ,xi) + ω2δmiU i0
∣∣2
2
, (3)

3.2 Relationship between frequency upscaling and spatial rescaling

From equation 1, we observe that when we double the frequency, the first and the third term will
quadruple. To keep equation 1 stationary, we need the second term (The Laplacian operator acting on
δU) to quadruple, as well. To do so, we rescale the spatial axes to maintain the effective wavenumber.
So when we double the frequency, we rescale the spatial coordinates by a half. For simplicity we use
three frequency-domain wavefields (Figure 1) to demonstrate the process. We immediately arrive to
the conclusion that the wavefield by the frequency upscaling (8Hz wavefield) and the wavefield by
spatial rescaling (4Hz wavefield after spatial rescaling) share similar wavenumber content satisfying
the Helmholtz equation, which means we just need one frequency here to describe two wavefields
with different frequencies.
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δU1(ω1 = 2π × 4Hz)

ω21mδU1 + ∇2δU1 + ω21δmU0(4Hz) = 0,

δU2(ω2 = 2π × 8Hz)

ω22mδU2 + ∇2δU2 + ω22δmU0(8Hz) = 0,

Spatial rescaling
δU1(SR)(ω1 = 2π × 4Hz)

ω22mδU1(SR) + ∇2δU1(SR) + ω22δmU0(4Hz) = 0,
Share the same frequency

Frequency upscaling

Figure 1: The original 4Hz wavefield based on a simple layered model (left), the wavefield after
frequency upscaling (double the frequency), which is 8Hz wavefield (middle), and the wavefield after
spatial rescaling (reducing the spatial scale for each coordinate by half), which looks like the 4Hz
wavefield but only changes the scale (right). The Helmholtz equations based on wavefields of the
middle and the right ones share the same frequency.

3.3 Dynamic frequency weighting derivation

The relationship between a frequency upscaling and spatial rescaling can be established to maintain a
stationary wavenumber of the wavefield over the frequency range. However, we do so by literally
rescaling the spatial coordinates as a function of frequency will admit nonuniform space dimension
range for the various frequencies, in which the higher frequency component space dimension will
be larger than the low frequency one. This dimension will non uniformity add complexity in the
implementation of PINN.

To implement this stationary wavenumber concept, we introduce a frequency weighting approach
which up-weights the derivation of low-frequency wavefields. The frequency weighting is dynamically
determined by the ratio of current frequency of the training sample to the reference frequency, and as
a result, the gradient of the scattered wavefield is given by:

gradient(δU) =
∂δU

∂(αx)
, (4)

where α is the scaling factor, equal to the ratio of the current frequency to a reference frequency.
Inserting equation 4 into 1, we have the new loss function:

L =
1

N

N∑
i=1

∣∣∣∣ω2
refm

iΦ(θ,xi) +
∂2Φ(θ,xi)

∂2(αxi)
+ ω2

refδm
iU i0

∣∣∣∣2
2

, (5)

where ωref is the reference angular frequency. In practice, we implement equation 5 by utilizing a
computational graph (shown in Algorithm 1).

Algorithm 1: Training with the single reference frequency loss function.

Draw N points {xi}Ni=1 sampled from the 4-D model region, and no boundary points.
Initiate: model parameters θ
for each epoch do

Compute the xref = (x, z, sx × ω
ωref

)

Then the input of the NN: x = (xref × ωref

ω , ω)
normalize x and feed them into the network to get Φ(θ,x)

automatic differentiation:∂
2Φ(θ,x)
∂2xref

calculate the loss function of equation 5
Update: model parameters θ

4 Experiments

In this section, we show the effectiveness of our proposed loss function for the scattered wave
equation, and compare the accuracy of wavefield and the corresponding velocity. We compare the
performances of conventional PINN using the multi-frequency loss function and PINN utilizing our
single reference frequency loss function.
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Based on a simple layered model covering an area of 2.5× 2.5km2, we generate 1280000 random
samples from our four dimensional wavefield, with f , the frequency, ranging from 3.0 Hz to 8.0
Hz, along with δm for squared slowness perturbation, m0 for background squared slowness at
these points. The depth of sources sz is set to 0.025 km. The background wavefield is calculated
analytically for a background velocity of 1.5km/s. The reference frequency here is 8.0 Hz. The basic
network architecture for both methods is a Multi-Layer Perception with three hidden layers, as well
as positional encoding [5]. The inputs include {x, z, sx, ω} and the hidden layers are of the size
{512, 512, 512} from shallow to deep.

We use an Adam optimizer to train our networks. During training, we set the batch size to 40000. The
initial learning rate is chosen to be 1e−3 and it is gradually decreased to 5e−5. We have trained our
model with these settings for 15000 epochs. To evaluate the results, we solve the Helmholtz equation
numerically for specific frequencies and source locations and use the solution as reference, and these
solutions are provided in the 2.5× 2.5km2 area using 100 samples in both the x and z directions. For
Figure 2, the source is located at a depth of 0.025 km and lateral distance of 1.0 km. Figure 2 shows

3Hz (imagenary part) 4Hz (imagenary part) 5Hz (imagenary part) 6Hz (real part) 7Hz (real part) 8Hz (real part)
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Figure 2: Predicted multi-frequency wavefields using numerical solutions (on the top, considered
ground truth), conventional PINN (in the middle), and the PINN with our method (on the bottom).
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Figure 3: The estimated velocities from the multi-frequency wavefields.

the predicted wavefield for various frequencies. It is obvious that with one more input dimension,
the representation of NNs for the wavefield becomes harder to obtain via conventional training. On
the other hand, our proposed loss function provided reasonable results considering the larger (four)
dimensional space the PINN is expected to predict. We also calculated the velocity models from
the PINN predictions using equation 1[12], as shown in Figure 3. We can observe that the PINN
with our proposed loss function reconstructs the details of the velocity model much better than the
conventional method.

5 Conclusion

We proposed using a reference frequency based loss function to train the NN for multi-frequency
wavefield representation and we demonstrated that this approach admitted superior performance
and wavefield accuracy. The reference frequency loss function implicitly embeds the relationship
between frequency upscaling and spatial rescaling into the network, which makes the network easier
to train and improves its representation. The method has the potential to solve multi-frequency
Helmholtz equation even in a large and complex model. The method can be generalized to other
physical problems, which may include a multi-frequency or multi-scale component.
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