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Abstract

We introduce BO4Mob, a new benchmark framework for high-dimensional
Bayesian Optimization (BO), driven by the challenge of origin-destination (OD)
travel demand estimation in large urban road networks. Estimating OD travel
demand from limited traffic sensor data is a difficult inverse optimization prob-
lem, particularly in real-world, large-scale transportation networks. This problem
involves optimizing over high-dimensional continuous spaces where each objec-
tive evaluation is computationally expensive, stochastic, and non-differentiable.
BO4Mob comprises five scenarios based on real-world San Jose, CA road networks,
with input dimensions scaling up to 10,100. These scenarios utilize high-resolution,
open-source traffic simulations that incorporate realistic nonlinear and stochastic
dynamics. We demonstrate the benchmark’s utility by evaluating five optimization
methods: three state-of-the-art BO algorithms and two non-BO baselines. This
benchmark is designed to support both the development of scalable optimization al-
gorithms and their application for the design of data-driven urban mobility models,
including high-resolution digital twins of metropolitan road networks. Code and
documentation are available at https://github. com/UMN-Choi-Lab/B04Mob.

1 Introduction

1.1 Motivation

Cities worldwide are increasingly developing digital twins of their urban mobility systems. This is due
to the increasing complexity of the systems: numerous stakeholders (e.g., travelers, public and private
sector mobility service operators, governmental agencies), numerous interacting mobility services
(e.g., on-demand ride-sharing, public transportation services), and the shift towards dynamic (e.g.,
real-time, time-dependent) service operations (e.g., surge pricing for on-demand services, dynamic
congestion pricing, real-time speed limits, traffic-responsive traffic signal strategies).

Urban mobility digital twins rely on a high-resolution description of traffic dynamics provided by
what are known as traffic simulators. These simulators describe the behavior of both demand and
supply in detail. On the demand side, individual vehicles have their own technology (e.g., electric,
autonomous, connected), and individual travelers have their own behavior (e.g., aggressive drivers,
business travelers with a high value of time, different willingness to shift to new travel modes).
On the supply side, the operations of the city’s infrastructure (e.g., traffic signal plans, congestion
pricing policies, fleet of public transportation vehicles) and of the available mobility services (e.g.,
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Figure 1: Illustration of the overall workflow for OD estimation using BO, where sensor data and
traffic simulation are used to evaluate the quality of candidate OD demands and guide the optimization
process.

taxi offerings, bike-sharing, on-demand ride-hailing) are also modeled in detail. The underlying
demand models that govern the choices of travelers such as mode choice, departure time choice,
route choice, and lane choice, are most often based on well-established probabilistic models (e.g.,
random utility models). Hence, the realization of the trip of an individual involves sampling from
a number of probability distributions. The resulting simulation of the urban mobility system then
involves simulating the trips of a large (e.g., tens or hundreds of thousands) population of vehicles
and travelers. This combination makes the simulator inherently stochastic, and computationally
expensive. For example, simulating a large network with tens to hundreds of thousands of agents can
take up to 10 hours. Moreover, the simulator’s mapping of inputs (e.g., travel demand) to outputs
(e.g., traffic and congestion statistics) is non-differentiable.

As a result, optimization tasks involving these simulators naturally fall under the category of high-
dimensional black-box optimization with a computationally expensive oracle. Evaluating a
candidate solution (e.g., demand profile or policy intervention) requires a compute-costly simulation
run. Moreover, transportation budget and operational constraints can lead to intricate feasible regions
defined by nonlinear inequality constraints, or even simulation-based constraints. Hence, there
is potential for the research communities of sample-efficient optimization, and more specifically
Bayesian optimization (BO), to contribute to advancing the science and the practice of urban mobility
planning and operations. Especially, recent advances in high-dimensional BO have introduced
techniques that are well-suited for problems like origin-destination (OD) travel demand estimation
in large-scale urban road networks, where the objective is to estimate travel demand (OD matrix)
between origin and destination pairs that best matches the observed traffic counts on road links
throughout the network. Despite its potential, there is no established benchmark connecting
BO methods to realistic urban mobility problems. This lack of standardization hinders both
methodological progress and practical adoption.

1.2 Contributions

This paper discusses the, arguably, most important and difficult open optimization problem in the
development of digital twins for urban mobility systems. Specifically, we present a new reproducible
real-world benchmark framework for high-dimensional OD travel demand estimation, also referred to
as OD estimation or OD calibration, using BO as illustrated in Figure[I} We refer to this benchmark
as BO4Mob. Our main contributions are as follows.

* The proposed BO4Mob bridges black-box optimization and transportation engineering by intro-
ducing a standardized benchmark that brings BO research closer to impactful real-world mobility
problems and inspires further development within the BO community.

* The benchmark includes five road network instances (see Figure[2]and Table[T)) that are the building
blocks of any freeway network. These instances are constructed with increasing levels of complexity,
enabling systematic evaluation across different scales, which is a particularly time-intensive and
uncommon effort in this field.



* We implement realistic traffic scenarios using the open-source SUMO simulator [Lopez et al.| [2018]],
which models nonlinear and stochastic dynamics, and incorporate real-world sensor placements
and observation periods to reflect actual urban sensing conditions.

» All datasets, simulation setups, and evaluation tools are released as open-source to promote
reproducibility and extensibility. This level of integration remains uncommon in transportation
research despite relying on public data sources.

2 Related work

2.1 Bayesian optimization benchmarks

Existing high-dimensional BO methods rely on a relatively narrow set of benchmark families,
limiting the breadth of empirical insights that can be obtained. One such category of benchmarks
comprises analytic global optimization test functions. Canonical examples in this category include
analytic functions like Ackley, Rastrigin, Styliblinksi-Tang, together with the broader Black-Box
Optimization Benchmarking (BBOB) suite [Binois and Wycoff, [2022] [Finck et al.,[2010]]. Despite
having the nice property of being inexpensive to evaluate, these functions are unrealistic proxies of
real-world optimization problems. Their standard form contains no noise, constraints, or complex
inter-dependencies inherent in real-world problems. A second widely adopted evaluation setting in
BO papers revolves around hyperparameter optimization of machine learning models [Eggensperger
et al., [2021]]. However, these benchmarks are usually restricted to fewer than 10 dimensions and focus
primarily on mixed (discrete-continuous) and conditional search space structures. Consequently,
their utility for stress-testing scalability in the high-dimensional continuous space regime is limited.
LassoBench [Sehi¢ et al.,[2022] is a recent benchmark for hyperparameter optimization in weighted
lasso regression. While this benchmark contains problems over high-dimensional inputs, it has
been shown in recent work that only a small subset of the input variables significantly influence the
objective value [Papenmeier et al., [2025]]. Recently, poli [Gonzalez-Duque et al., 2024 introduced
a set of high-dimensional benchmarks for protein and small-molecule optimization tasks, but they
focus only on discrete sequences.

2.2 High-dimensional Bayesian optimization

BO becomes particularly challenging in high-dimensional settings, which typically involve more
than 20 variables, due to the curse of dimensionality [Frazier, 2018| Nayebi et al.,2019]]. Although
recent work has scaled BO to problems with hundreds or even up to 20,000 dimensions [Zhang et al.}
2019], surrogate models like Gaussian processes often lose predictive accuracy and become harder to
optimize as dimensionality increases, which reduces sample efficiency.

To mitigate these challenges, various methods modify the optimization procedure or impose structural
assumptions such as sparsity, decomposability, or locality. Notable approaches include additive
models [Kandasamy et al., 2015} |Rolland et al., 2018]], subspace embeddings [Wang et al., 2016,
Letham et al.| 2020, [Papenmeier et al.| 2022]], sparse-input priors [Eriksson and Jankowiak, |[2021]],
trust region methods [Eriksson et al.| 2019], latent-variable models [Oh et al., 2018]], and neural
surrogates [Springenberg et al.| 2016]. The effectiveness of these methods depends on how well their
assumptions reflect the structure of the problem. However, recent studies suggest such assumptions
may not be necessary. With proper prior scaling, robust initialization, and simple local search
strategies, standard BO can remain competitive in thousands of dimensions [Hvarfner et al.| 2024,
Xu et al.} 20254, [Papenmeier et al., 2025].

2.3 Urban mobility problems & OD estimation

Urban mobility systems involve many interacting agents, services, and infrastructure, making them
complex and dynamic. In response, digital twins have emerged as a promising framework for
real-time monitoring, prediction, and decision-making by maintaining a continuous feedback loop
between the physical network and its virtual representation [Jones et al., 2020]. OD estimation is a
key component of these systems, providing demand inputs for traffic simulation [Kusic et al.| 2023].
Recent studies have explored deep learning approaches [Min et al., 2024] and hybrid simulation
models that combine microscopic and macroscopic layers [Xu et al., 2025b].



Because OD demand cannot be directly observed from sparse and noisy traffic data, the task becomes
a high-dimensional, under-determined inverse optimization problem. To improve sample efficiency,
recent methods incorporate structural or analytical priors. For instance, |(Osorio| [2019]] propose a
metamodel-based approach that embeds analytical models to reduce simulation cost. Other ap-
proaches leverage macroscopic relationships, such as the macroscopic fundamental diagram (MFD),
or integrate data sources like probe vehicle and transit data [Dantsuji et al.| 2022].

3 Bayesian optimization benchmark for high-dimensional urban mobility
problem

3.1 Preliminaries - Bayesian Optimization

BO is a sample-efficient global optimization strategy for solving black-box functions that are expen-
sive to evaluate. Formally, given an unknown objective function f : X — R defined over a compact
domain X C RP, the goal is to find
x* = arg min f(x 1
g min f(x), ¢y
under the constraint that f can only be queried point-wise and is expensive to evaluate (e.g., through
simulation or experiment), and that gradients are unavailable.

BO constructs a probabilistic surrogate model, typically a Gaussian Process (GP), to model the

distribution over functions:
f(x) ~ GP(u(x), k(x,x)), 2)

where 1i(+) is the mean function and k(-, -) is the kernel function capturing the correlation between
function values.

An acquisition function o : X — R is then used to guide the selection of the next query point by
balancing exploration and exploitation:

= . D
Xi1 = argmax a(x; Dy), 3)

where D; = {(x;, f(x;))}i_, is the set of observed data. Common acquisition functions include
Expected Improvement (EI), Upper Confidence Bound (UCB), and Probability of Improvement (PI).

This iterative process continues until a budget constraint (e.g., number of queries or computational
time) is reached.

3.2 Problem formulation

In OD estimation problems, a metropolitan area is typically divided into traffic analysis zones (TAZes),
and the goal is to infer a high-dimensional vector of travel demands between selected OD pairs so that
simulated traffic statistics align closely with observed field data. The number of OD pairs determines
the dimensionality of the problem.

The problem can be formulated as follows,

2
min} (v — E[Yi(x;p)]), )
ieT
where y&T denotes a statistic obtained from ground-truth (GT) (i.e., field) traffic data, such as average
traffic count, speed, travel time, on a given link ¢, and E[Y;(x; p)] denotes the simulated counterpart
derived from the traffic simulator. The latter depends on the vector of travel demands x, a vector of
additional parameters p (e.g., road attributes such as number of lanes, speed limits, etc.), and the set
of link indices in the network where traffic data or measurements are available, denoted Z. In its
simplest form, the feasible region €2 consists of simple upper and lower bound constraints.

This formulation aims to minimize the squared distance between the historical traffic statistics and
the corresponding simulated counterparts. The inverse optimization community will recognize
Problem (4) as an inverse optimization problem. The challenges of tackling this problem are: (i) x
is high-dimensional (upto tens or hundreds of thousands), (ii) E[Y;(x; p)] is an unknown, costly to
compute, function that can only be estimated via stochastic simulation.



(a) Simple Ramp
TAZ /g
: ) \&
- ~__.— Sensor
IS
Patia _— 5
(c) ~—————————— (b) One-Way Corridor
(a) (e)
(c) Junction = (d) Small Region — (e) Full Region

Figure 2: Freeways extracted from the San Francisco Bay Area network, including a total of eight
freeways. To evaluate the performance of BO algorithms, five subnetworks are utilized: (a) Simple
Ramp, (b) One-Way Corridor, (c) Junction, (d) Small Region, and (e) Full Region.

3.3 Benchmark networks

To systematically evaluate algorithmic performance at varying scales of complexity, we extract five
subnetworks from the San Francisco Bay Area network. Figure 2] provides a visual overview of the
subnetworks, and Table |I| lists their key characteristics (e.g., number of nodes, links, TAZes, OD
pairs (x), sensors). Below, we summarize the design rationale and main features of each subnetwork.

Simple Ramp: This network is the smallest and simplest subnetwork that consists of a small
linear topology network and single pair of ramps (one on-ramp and one off-ramp). This problem is
the only deterministic case. This serves as a test environment to validate modeling assumptions,
parameter settings, and/or initial algorithmic prototypes before scaling up.

One-Way Corridor: This subnetwork offers an unidirectional freeway corridor with multiple
links and ramps. Although still moderate in complexity, it introduces overlapping OD pairs and
ramp interactions. This network tests the robustness of calibration or optimization algorithms in
scenarios where congestion may propagate over several links.

Junction: This network represents a freeway junction where two major freeways intersect, con-
nected via both on-/off-ramps and direct freeway-to-freeway connectors. The merging and diverging
flows create complex local interactions, making it a suitable scenario to test whether calibration
algorithms can handle localized congestion, sharp flow transitions, and flow redistribution across
multiple paths.

Small Region: This network spans a broader area than the previous subnetworks and includes
multiple corridors and junctions. Compared to more localized settings, it features more distributed
OD demand and increased interaction across different parts of the network. This setting is well-
suited for evaluating the scalability of calibration algorithms under higher spatial complexity.

Full Region: This network encompasses the entire freeway system of the region, covering all
major corridors and junctions. It involves high-dimensional OD demand and complex spatial
interactions across a large urban area. This setting presents a realistic and challenging scenario for
evaluating the generalization and efficiency of calibration algorithms at full scale.



Table 1: Network size and simulation run time (average and standard deviation) computed over 20
simulation runs.

Type Size of network Simulation run time (sec)
Nodes Links TAZes OD pairs (x) Sensors (y) Avg SD
Simple Ramp 10 10 3 3 3 0.80 0.29
One-Way Corridor 66 68 7 21 5 5.94 1.34
Junction 137 152 9 44 18 11.88 2.70
Small Region 251 270 16 151 27 82.72 7.53
Full Region 1,977 2,173 101 10,100 219 40,099.05 1,555.37
34 Data

As shown in Table [T} our benchmark includes five network configurations of varying scales and
complexity: Simple Ramp, One-Way Corridor, Junction, Small Region, and Full Region. The
simulation network is based on the preprocessed SUMO traffic simulation model provided in the
Supplementary Note 2 of Ambiihl et al. [2023]E] For this benchmark, we extract the freeway network
centered near San Jose, CA. Each network differs in the number of nodes, links, TAZes, OD pairs,
and sensors.

To provide realistic and reproducible traffic count observations, we incorporate real-world traffic
detector data from the Caltrans Performance Measurement System (PeMS)[|California Department
of Transportation|]. This data is often called PEMS-BAY data and is widely used as short-term traffic
forecasting benchmark data [Wu et al.| 2019, |Choi et al., [2025]]. PeMS collects extensive traffic state
data across the state of California using double loop detectors, including traffic counts (or traffic
count; the number of vehicles passing a given location during a fixed time interval) and traffic speeds
averaged over 5-minute intervals. While our main analysis focuses on a representative day, we also
provide traffic count and average speed data from various dates and other hourly periods to support
extensibility of the analysisE]

These traffic count measures are used as the GT values (yST) in Equation (@). We focus exclusively
on “Main Line” (ML) detectors that are placed along freeway links rather than on ramp links.

To align the sensor data with the simulation network, we perform a sensor-to-link matching process.
Each sensor is mapped to the closest freeway link in the network using metadata including its location
and freeway travel direction. This ensures that observed traffic counts are accurately assigned to
corresponding network links with consistent spatial and directional alignment. In Table|l} the Sensors
column lists the number of sensors retained after applying data quality and spatial resolution filtering.
The detailed filtering procedures are described in Appendix B

3.5 Baseline methods

To assess the relevance and difficulty of the proposed benchmark, we evaluate a set of optimization
methods that represent a variety of approaches to high-dimensional black-box optimization. The
selection includes both a classical baseline and recent methods that incorporate structural assumptions,
as well as a simple random search baseline for reference.

* Simultaneous Perturbation Stochastic Approximation (SPSA) [Spall, 1992, 2005]: A standard
non-BO baseline widely used in OD calibration tasks [Osoriol 2019, |Dantsuji et al.| 2022]. SPSA
approximates gradients via simultaneous perturbations across all input dimensions, requiring only
two function evaluations per iteration. This makes it well-suited for simulation-based optimization
under limited evaluation budgets.

* Vanilla Bayesian Optimization (Vanilla BO) [Jones et al., 1998]: A standard BO baseline
without explicit structural assumptions. It provides a reference point for evaluating the impact of
structure-aware models in high-dimensional spaces.

*https://www.research-collection.ethz.ch/handle/20.500.11850/584669
*preprocessing code available athttps://github. com/UMN-Choi-Lab/PeMS-BAY-2022


https://www.research-collection.ethz.ch/handle/20.500.11850/584669
https://github.com/UMN-Choi-Lab/PeMS-BAY-2022

* Sparse Axis-Aligned Subspace Bayesian Optimization (SAASBO) [Eriksson and Jankowiak,
2021]: Incorporates sparsity-inducing priors in the surrogate model to identify and focus on the
most relevant input dimensions, improving efficiency in high-dimensional settings.

* Trust Region Bayesian Optimization (TuRBO) [Eriksson et al.; 2019]]: Performs BO within
adaptive trust regions, enabling scalable optimization in high dimensions by focusing on local
modeling.

All BO baseline methods were implemented using the BoTorch framework [Balandat et al., [2020],
following or slightly adapting available tutorials [BoTorch]. Detailed implementation settings are
provided in Appendix [C|

4 Experiments

4.1 Evaluation metric

To assess the accuracy of the estimated OD x, we employ the normalized root mean squared error
(NRMSE) between simulated and GT traffic counts across all links with sensors Z. NRMSE is defined
as:

1 GT i 2
v ier (U7 —yim (%))
1 GT ’
w ez Vi
where y™ (x) represents the simulated traffic counts based on the OD estimate x, it is as an estimate

)

of E[Y;(x;p)] in Problem (@), while n = |Z| denotes the number of links with sensors. This
formulation allows for consistent comparison of estimation quality across networks of varying scales.

NRMSE(x) = (%)

To highlight the performance gain achieved by each optimization method, we compute the percentage
improvement:

min

NRMSE(xnit )

min

_ NRMSE(x™ ) — NRMSE(x"*")

Improvement(x**") x 100%, 6)

where x*' = arg minyex,, NRMSE(x) denotes the best-performing solution within a single

optimization run, selected among all candidates evaluated throughout the process. Here, Xy =
Xt U Uz;l X, where X, is the set of initial candidate solutions, X; is the set of solutions
evaluated at epoch ¢, and T is the total number of epochs. The initialization baseline x"! =
arg minye x,, NRMSE(x) is shared across all methods. This metric quantifies the relative reduction
in error achieved by each optimization model from a common initialization.

4.2 Simulation setup

Traffic simulations were conducted using the SUMO traffic simulator. For each candidate OD, we
generated trip files based on TAZes, applied predefined routing adjustments to expedite simulation
runs, and conducted full network simulations to produce simulated traffic counts on links with
sensors. Simulations were executed in mesoscopic simulation mode to accelerate computation while
preserving traffic count fidelity at the network level. To ensure reproducibility, each simulation run
used a fixed random seed.

Table T]reports the corresponding simulation run times for each network, highlighting the increasing
computational cost as network size grows. Simulation time scales sharply with network size, ranging
from under one second for the Simple Ramp network to over 40,000 seconds for the Full Region
network. All simulation run times were measured on a high-performance server equipped with dual
AMD EPYC Milan 7643 CPUs (96 cores total), and 1'TB DDR4 memory. SUMO simulations were
executed without GPU acceleration, utilizing up to six parallel processes via Python’s multiprocessing
module. More detailed simulation configurations, including simulation time windows and sensor
observation periods, are summarized in Appendix

4.3 Analysis results

Enhancing OD estimation via Bayesian optimization Table [2| reports average NRMSE (x>°t)
and Improvement(x*) across multiple independent runs per network. The average NRMSE of the
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Figure 3: Convergence behavior across optimization methods. NRMSE is plotted on a logarithmic
scale. Solid lines represent the mean, with error bars denoting one standard deviation over multiple
runs.

initial solution is also reported for reference. Improvements are computed per run as the relative
reduction from the best initial candidate to the best final solution. Run counts and optimization
budgets per network are listed in Table[3] Initial candidate pools were independently sampled per run
and shared across methods to ensure fairness. BO methods consistently outperform random search
and SPSA, confirming the benefit of surrogate modeling in noisy, high-dimensional settings. These
results underscore BO’s potential as a sample-efficient framework for OD estimation across diverse
networks.

Impact of network complexity As network size increases, OD calibration problem tends to become
more difficult. The minimum NRMSE among initial candidates rises from 0.167 (Simple Ramp) to
0.847 (Small Region). After optimization, NRMSE tends to remain higher and improvements smaller
on complex networks, suggesting reduced optimization leverage. For the Full Region, only a few
runs per method were conducted with reduced optimization settings due to high computational cost
(over 40,000 seconds per simulation; see Table|[I)), but all four models did not yield any performance
improvement. These results highlight that OD calibration remains increasingly challenging in
high-dimensional settings, emphasizing the need for scalable and sample-efficient optimization
approaches.

Comparative method analysis Figure [3|summarizes the convergence behaviors of each method
across networks, with the x-axis denoting epochs and the y-axis showing NRMSE on a logarithmic
scale. The figure aggregates multiple runs per method, where the solid line shows the mean and
shaded areas indicate variability across seeds. The corresponding final NRMSE values are reported in
Table[2] Applying existing optimization methods to the OD calibration benchmarks, we observe that
TuRBO generally delivers the strongest performance. It achieves the best results on the Simple Ramp
and Small Region networks, and performs comparably to the top method on the other networks, with
only minor differences in best NRMSE and convergence profiles. Vanilla BO performs competitively,
especially on mid- to large-scale networks such as Junction and Small Region, where it outperforms
SAASBO. SAASBO shows its strongest performance on the One-Way Corridor network, but tends to

Table 2: Average NRMSE of the initial solution is reported for reference, followed by the average
best NRMSE values across five network types and five optimization models. Values in parentheses
indicate the average percentage improvement. Both averaged across independent runs.

Network* Initial solution Model

Avg Min Random search SPSA Vanilla BO SAASBO TuRBO

Simple Ramp 0.396 0.167 0.071(57.43%) 0.121 (27.10%) 0.003 (97.81%) 0.017 (88.87%) 0.001 (99.47 %)
One-Way Corridor  0.524  0.316  0.145(37.83%) 0.196 (15.61%) 0.105 (53.12%) 0.07 (68.56%) 0.09 (61.25%)
Junction 0.636  0.509  0.436 (14.29%) 0.495(2.83%)  0.233 (54.15%) 0.302 (40.54%) 0.234 (53.96%)
Small Region 0.882 0.847 0.598 (29.43%) 0.825(2.59%)  0.437 (48.50%) 0.477 (43.60%) 0.258 (69.54%)

*Full Region was evaluated under a reduced optimization setting (see TableE}, but all four models did not yield any
performance improvement.
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Figure 4: Fit to GT link traffic counts for the Small Region network. Each black dot represents the
mean of GT link traffic counts corresponding to the OD that yielded the minimum loss for a given
random seed. Error bars denote one standard deviation across seeds.

underperform on more complex scenarios. In contrast, random search and SPSA consistently show
limited convergence across networks, regardless of size.

Alignment between simulated and ground-truth traffic counts To assess the quality of OD
calibration, we compare the simulated traffic counts generated from the optimized OD x"*' with
the observed GT traffic counts. Figure ] shows the alignment between simulated and GT traffic
counts on the Small Region network, where the x-axis represents GT link traffic counts and the
y-axis represents simulated link traffic counts. The diagonal line indicates perfect agreement. TuURBO
achieves the closest alignment to GT traffic counts, producing near-linear correspondence across
a wide range of traffic counts. Vanilla BO and SAASBO show similar alignment patterns, both
exhibiting underestimation across most sensors. SPSA exhibits more pronounced underestimation
and larger deviations overall, reflecting its limited optimization effectiveness. Additional fit plots for
other networks are provided in Appendix [E]

5 Discussion

In the transportation literature, it is well established that there is a need to develop sample-efficient
methods to tackle the high-dimensional real-world OD estimation instances. The communities of
black-box optimization, and particularly that of BO, are well-equipped to contribute to this challenge.
Our benchmark, BO4Mob, is designed to support future research by providing a realistic testbed
for advancing BO techniques inspired by challenges in urban transportation systems. We describe
multiple future research directions that can leverage BO4Mob below.

Impactful research directions include the formulation and use of uncertainty quantification methods
for OD estimation. Since OD estimation is an under-determined problem (i.e., there is a continuum
of ODs that fit equally well the field traffic data), sensor noise and missing measurements further
distort the objective landscape, making it difficult for BO to recover the true OD matrix. It is
therefore important to account for this input uncertainty when using the simulation models for
downstream tasks (e.g., to evaluate the impact of the deployment of a future transportation policy,
such as traffic management or congestion pricing). This would enable transportation practitioners to
use the simulators to perform robust counterfactual analysis. Similarly, uncertainty quantification
methods allow us to quantify the level of under-determination of the instance. This can also be used
to identify optimal sensor placements, guiding transportation practitioners on the type and location of
new sensors such as to reduce the level of under-determination, and thereby increase counterfactual
robustness.

A major challenge of standard BO methods is their lack of scalability: they do not perform well for
high-dimensional instances. There is a wealth of suitable (e.g., inexpensive to compute, differentiable)
surrogate models that stem from the transportation literature that can be used to embed traffic physics
and capture the strong spatial dependencies inherent to transportation networks, thereby providing
structural information for a black-box solver. These surrogates can be used to enhance the scalability
of standard BO techniques by designing physics-informed kernels for BO [Tay and Osorio, [2022] or
to physics-informed prior function distributions. The performance of standard BO solvers is highly
sensitive to the initial sample. The use of traffic-physics to define tailored sampling mechanisms, such
as in|{Tay and Osorio|[2024], is a promising research direction that becomes particularly important in



high-dimensional instances. Such advancements in sample efficiency can now be rigorously tested
with BO4Mob.

Additionally, the loss function of Equation (@) maps to a scalar. In order to exploit more detailed
information from the expensive-to-run simulations, one can consider multi-output formulations where
each term in the sum of squares is an output. In this case, multi-output GPs can be an interesting
modeling choice, and one can resort to existing BO solvers that can tackle multi-dimensional outputs.
This multi-output modeling becomes particularly relevant for time-dependent OD estimation problems
(known as dynamic OD estimation problems), where the goal is to estimate a time-ordered sequence
of ODs, rather than a single OD. This allows for the description of the temporal variations in travel
demand.

Beyond methodological enhancements, the benchmark itself is designed to support easy extensions.
Multi-objective formulations can incorporate additional metrics such as average link travel speed
or travel time alongside link traffic counts. Demand can also be stratified by transportation mode
(e.g., separate OD demand for trucks, buses, and passenger cars). The framework generalizes to a
wide range of network types and sizes, supporting its applicability to diverse urban contexts. These
directions open up opportunities for both more realistic modeling and broader benchmarking.

6 Conclusion

We present a benchmark suite for high-dimensional OD estimation based on realistic traffic simulation
models. OD estimation is a core yet challenging component of urban mobility modeling, particularly
in large-scale networks where the dimensionality of the problem makes direct optimization intractable.
OD estimation in such systems is high-dimensional (up to thousands of variables), non-differentiable
due to the stochastic nature of simulators, black-box and computationally expensive (e.g., a Full
Region simulation takes over 11 hours), and under-determined since multiple ODs may explain the
same sensor data. Such characteristics closely match the challenges that BO is designed to address,
as it builds sample-efficient surrogate models, selects candidates through acquisition functions, and
effectively handles noisy and black-box objectives. However, evaluating BO under these realistic and
computationally demanding conditions has been difficult due to the lack of standardized benchmarks
that connect optimization methods with real-world transportation models. Our benchmark fills this
gap by integrating real-world sensor data, scalable network instances, and BO methods to evaluate
sample efficiency in complex urban mobility settings. Empirical results show that BO methods
outperform conventional baselines, though performance degrades as dimensionality increases. The
Full Region case in particular highlights the computational and methodological challenges of scaling
BO to urban-scale problems.

10



Acknowledgements

Seunghee Ryu and Donghoon Kwon are affiliated with the Department of Civil, Environmental and
Architectural Engineering, Korea University, South Korea, and are supported by the Basic Science
Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry
of Education, South Korea (RS-2020-NR049594), and by the BK21 FOUR (Brain Korea 21 Four)
Project; Support Program for Outstanding Graduate Students’ International Joint Training. Seongjin
Choi is supported by the Department of Civil, Environmental and Geo-Engineering and Center for
Transportation Studies at the University of Minnesota. Seungmo Kang is supported by the Basic
Science Research Program through the NRF, funded by the Ministry of Education, South Korea
(RS-2020-NR049594).

References

Pablo Alvarez Lopez, Michael Behrisch, Laura Bieker-Walz, Jakob Erdmann, Yun-Pang Flotterod,
Robert Hilbrich, Leonhard Liicken, Johannes Rummel, Peter Wagner, and Evamarie WielBner. Mi-
croscopic traffic simulation using sumo. In The 21st IEEE International Conference on Intelligent
Transportation Systems. IEEE, 2018. URL https://elib.dlr.de/124092/.

Mickael Binois and Nathan Wycoff. A survey on high-dimensional gaussian process modeling
with application to bayesian optimization. ACM Transactions on Evolutionary Learning and
Optimization, 2(2):1-26, 2022.

Steffen Finck, Nikolaus Hansen, Raymond Ros, and Anne Auger. Real-parameter black-box opti-
mization benchmarking 2009: Presentation of the noiseless functions. Technical report, Citeseer,
2010.

Katharina Eggensperger, Philipp Miiller, Neeratyoy Mallik, Matthias Feurer, René Sass, Aaron
Klein, Noor Awad, Marius Lindauer, and Frank Hutter. Hpobench: A collection of reproducible
multi-fidelity benchmark problems for hpo. arXiv preprint arXiv:2109.06716, 2021.

Kenan Sehié, Alexandre Gramfort, Joseph Salmon, and Luigi Nardi. Lassobench: A high-dimensional
hyperparameter optimization benchmark suite for lasso. In International Conference on Automated
Machine Learning, pages 2—1. PMLR, 2022.

Leonard Papenmeier, Matthias Poloczek, and Luigi Nardi. Understanding high-dimensional bayesian
optimization, 2025. URL https://arxiv.org/abs/2502.09198,

Miguel Gonzélez-Duque, Richard Michael, Simon Bartels, Yevgen Zainchkovskyy, Sgren Hauberg,
and Wouter Boomsma. A survey and benchmark of high-dimensional bayesian optimization of
discrete sequences. arXiv preprint arXiv:2406.04739, 2024.

Peter 1. Frazier. A Tutorial on Bayesian Optimization, July 2018. URL http://arxiv.org/abs/
1807.02811. arXiv:1807.02811 [stat].

Amin Nayebi, Alexander Munteanu, and Matthias Poloczek. A framework for Bayesian optimization
in embedded subspaces. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings
of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pages 4752—4761. PMLR, 09-15 Jun 2019. URL https://proceedings.
mlr.press/v97/nayebil9a.htmll

Miao Zhang, Huiqi Li, and Steven Su. High dimensional bayesian optimization via supervised
dimension reduction, 2019. URL https://arxiv.org/abs/1907.08953,

Kirthevasan Kandasamy, Jeff Schneider, and Barnabas Péczos. High dimensional bayesian optimi-
sation and bandits via additive models. In International conference on machine learning, pages
295-304. PMLR, 2015.

Paul Rolland, Jonathan Scarlett, Ilija Bogunovic, and Volkan Cevher. High-dimensional bayesian

optimization via additive models with overlapping groups. In International conference on artificial
intelligence and statistics, pages 298-307. PMLR, 2018.

11


https://elib.dlr.de/124092/
https://arxiv.org/abs/2502.09198
http://arxiv.org/abs/1807.02811
http://arxiv.org/abs/1807.02811
https://proceedings.mlr.press/v97/nayebi19a.html
https://proceedings.mlr.press/v97/nayebi19a.html
https://arxiv.org/abs/1907.08953

Ziyu Wang, Frank Hutter, Masrour Zoghi, David Matheson, and Nando De Feitas. Bayesian
optimization in a billion dimensions via random embeddings. Journal of Artificial Intelligence
Research, 55:361-387, 2016.

Ben Letham, Roberto Calandra, Akshara Rai, and Eytan Bakshy. Re-examining linear embeddings
for high-dimensional bayesian optimization. Advances in neural information processing systems,
33:1546-1558, 2020.

Leonard Papenmeier, Luigi Nardi, and Matthias Poloczek. Increasing the scope as you learn: Adaptive
bayesian optimization in nested subspaces. Advances in Neural Information Processing Systems,
35:11586-11601, 2022.

David Eriksson and Martin Jankowiak. High-dimensional bayesian optimization with sparse axis-
aligned subspaces. In Uncertainty in Artificial Intelligence, pages 493-503. PMLR, 2021.

David Eriksson, Michael Pearce, Jacob Gardner, Ryan D Turner, and Matthias Poloczek. Scalable
global optimization via local bayesian optimization. Advances in neural information processing
systems, 32, 2019.

ChangYong Oh, Efstratios Gavves, and Max Welling. Bock: Bayesian optimization with cylindrical
kernels. In International Conference on Machine Learning, pages 3868—-3877. PMLR, 2018.

Jost Tobias Springenberg, Aaron Klein, Stefan Falkner, and Frank Hutter. Bayesian optimization with
robust bayesian neural networks. Advances in neural information processing systems, 29, 2016.

Carl Hvarfner, Erik Orm Hellsten, and Luigi Nardi. Vanilla bayesian optimization performs great in
high dimensions. arXiv preprint arXiv:2402.02229, 2024.

Zhitong Xu, Haitao Wang, Jeff M. Phillips, and Shandian Zhe. Standard gaussian process is all you
need for high-dimensional bayesian optimization. In The Thirteenth International Conference on
Learning Representations, 2025a. URL https://openreview.net/forum?id=kX8h23UG6v.

David Jones, Chris Snider, Aydin Nassehi, Jason Yon, and Ben Hicks. Characterising the digital twin:
A systematic literature review. CIRP journal of manufacturing science and technology, 29:36-52,
2020.

Kresimir Ku$i¢, René Schumann, and Edouard Ivanjko. A digital twin in transportation: Real-
time synergy of traffic data streams and simulation for virtualizing motorway dynamics. Ad-
vanced Engineering Informatics, 55:101858, 2023. ISSN 1474-0346. doi: https://doi.org/10.
1016/j.2ei.2022.101858. URL https://www.sciencedirect.com/science/article/pii/
S51474034622003160.

Donggyu Min, Hyunsoo Yun, Seung Woo Ham, and Dong-Kyu Kim. Real-time estimation of
origin—destination matrices using a deep neural network for digital twins. Transportation Research
Record, page 03611981241266837, 2024.

Guanhao Xu, Jianfei Chen, Zejiang Wang, Anye Zhou, Max Schrader, Joshua Bittle, and Yunli
Shao. Enhancing traffic safety analysis with digital twin technology: Integrating vehicle dynamics
and environmental factors into microscopic traffic simulation. arXiv preprint arXiv:2502.09561,
2025b.

Carolina Osorio. High-dimensional offline origin-destination (od) demand calibration for stochastic
traffic simulators of large-scale road networks. Transportation Research Part B: Methodological,
124:18-43, 2019.

Takao Dantsuji, Nam H Hoang, Nan Zheng, and Hai L Vu. A novel metamodel-based framework
for large-scale dynamic origin—destination demand calibration. Transportation Research Part C:
Emerging Technologies, 136:103545, 2022.

Lukas Ambiihl, Monica Menendez, and Marta C Gonzélez. Understanding congestion propagation

by combining percolation theory with the macroscopic fundamental diagram. Communications
Physics, 6(1):26, 2023.

12


https://openreview.net/forum?id=kX8h23UG6v
https://www.sciencedirect.com/science/article/pii/S1474034622003160
https://www.sciencedirect.com/science/article/pii/S1474034622003160

California Department of Transportation. Caltrans performance measurement system (pems). https:
//pems.dot.ca.govl Accessed: 2025-02-03.

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. Graph wavenet for deep
spatial-temporal graph modeling. arXiv preprint arXiv:1906.00121, 2019.

Seongjin Choi, Nicolas Saunier, Vincent Zhihao Zheng, Martin Trepanier, and Lijun Sun. Scalable
dynamic mixture model with full covariance for probabilistic traffic forecasting. Transportation
Science, 2025.

James C Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient
approximation. IEEE transactions on automatic control, 37(3):332-341, 1992.

James C Spall. Introduction to stochastic search and optimization: estimation, simulation, and
control. John Wiley & Sons, 2005.

Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimization of expensive
black-box functions. Journal of Global optimization, 13:455-492, 1998.

Maximilian Balandat, Brian Karrer, Daniel Jiang, Samuel Daulton, Ben Letham, Andrew G Wil-
son, and Eytan Bakshy. Botorch: A framework for efficient monte-carlo bayesian optimiza-
tion. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in
Neural Information Processing Systems, volume 33, pages 21524-21538. Curran Associates,
Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/
£5b1b89d98b7286673128a5fbl12cb9a-Paper . pdf.

BoTorch. Botorch tutorials. URL https://botorch.org/docs/tutorials/. Accessed: 2025-
04-09.

Timothy Tay and Carolina Osorio. Bayesian optimization techniques for high-dimensional simulation-
based transportation problems. Transportation Research Part B: Methodological, 164:210-243,
2022.

Timothy Tay and Carolina Osorio. A sampling strategy for high-dimensional, simulation-based
transportation optimization problems. Transportation Science, 58(5):947-972, 2024.

Ramachandran Balakrishna, Moshe Ben-Akiva, and Haris N Koutsopoulos. Offline calibration of
dynamic traffic assignment: simultaneous demand-and-supply estimation. Transportation Research
Record, 2003(1):50-58, 2007.

Vikrant Vaze, Constantinos Antoniou, Yang Wen, and Moshe Ben-Akiva. Calibration of dynamic
traffic assignment models with point-to-point traffic surveillance. Transportation Research Record,
2090(1):1-9, 2009.

Ernesto Cipriani, Michael Florian, Michael Mahut, and Marialisa Nigro. A gradient approximation
approach for adjusting temporal origin—destination matrices. Transportation Research Part C:
Emerging Technologies, 19(2):270-282, 2011.

Moshe E Ben-Akiva, Song Gao, Zheng Wei, and Yang Wen. A dynamic traffic assignment model
for highly congested urban networks. Transportation research part C: emerging technologies, 24:
62-82, 2012.

Xavier Ros-Roca, Lidia Montero, Jaume Barceld, and Klaus Nokel. Dynamic origin-destination
matrix estimation with ict traffic measurements using spsa. In 2021 7th International Conference
on Models and Technologies for Intelligent Transportation Systems (MT-1TS), pages 1-8. IEEE,
2021.

Steve Galgano, Mohamad Talas, Keir Opie, Michael Marsico, Andrew Weeks, Yixin Wang, David
Benevelli, Robert Rausch, Kaan Ozbay, Satya Muthuswamy, et al. Connected vehicle pilot
deployment program phase 1: Performance measurement and evaluation support plan: New york
city. Technical report, United States. Department of Transportation. Intelligent Transportation ...,
2021.

13


https://pems.dot.ca.gov
https://pems.dot.ca.gov
https://proceedings.neurips.cc/paper_files/paper/2020/file/f5b1b89d98b7286673128a5fb112cb9a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/f5b1b89d98b7286673128a5fb112cb9a-Paper.pdf
https://botorch.org/docs/tutorials/

Mohamad Talas, Keir Opie, Jingqin Gao, Kaan Ozbay, Di Yang, Robert Rausch, David Benevelli,
Samuel Sim, et al. Connected vehicle pilot deployment program phase 3—system performance
report-new york city. Technical report, United States. Department of Transportation. Intelligent
Transportation ..., 2021.

Jeff Ban, Ohay Angah, Yiran Zhang, Qiangqiang Guo, et al. A multiscale simulation platform for
connected and automated transportation systems. 2022.

Constantinos Antoniou, Carlos Lima Azevedo, Lu Lu, Francisco Pereira, and Moshe Ben-Akiva.
W-spsa in practice: Approximation of weight matrices and calibration of traffic simulation models.
Transportation Research Procedia, 7:233-253, 2015.

Athina Tympakianaki, Haris N Koutsopoulos, and Erik Jenelius. c-spsa: Cluster-wise simultaneous
perturbation stochastic approximation algorithm and its application to dynamic origin—destination
matrix estimation. Transportation Research Part C: Emerging Technologies, 55:231-245, 2015.

Moeid Qurashi, Tao Ma, Emmanouil Chaniotakis, and Constantinos Antoniou. Pc—spsa: Employing
dimensionality reduction to limit spsa search noise in dta model calibration. IEEE Transactions on
Intelligent Transportation Systems, 21(4):1635-1645, 2019.

Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan, Hanna Wallach,
Hal Daumé Iii, and Kate Crawford. Datasheets for datasets. Communications of the ACM, 64(12):
86-92, 2021.

14



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the paper’s contribution of introduc-
ing a new benchmark that connects Bayesian optimization and transportation engineering.
The benchmark spans network levels, from Simple Ramp to Full Region (see Table[T|and
Table [2), and utilizes the open-source traffic simulator SUMO. All code and data will be
released on GitHub for reproducibility.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Appendix [[]discusses key limitations, including the fixed set of predefined
subnetworks, which limits flexibility, and the high computational cost of the Full Region,
which prevented thorough experimentation.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include any theoretical results or formal proofs. It only
defines the loss function and evaluation metric (NRMSE) used in the empirical study.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides all necessary details to reproduce the experiments. Exact
parameter settings are listed in Appendix [Cland Appendix [D] The code, which uses standard
libraries such as BoTorch, has been made publicly available and is identical to the version
used to produce the results in the paper.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code and data have been publicly released via a GitHub repository.
The repository includes detailed instructions, scripts, and configuration files necessary to
reproduce all experimental results. Additional explanations and parameter settings are
provided in Appendix [C|and Appendix [D] As this is a benchmark paper, open access to
these resources is central to the contribution.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies all necessary experimental details. Model-specific parame-
ters are listed in Appendix [C} and network configurations, including simulation time and
related settings, are provided in Appendix D] These details are sufficient to understand and
reproduce the reported results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [Yes]

Justification: The paper reports standard deviations for all key experimental results. Table|[T]
presents the mean and standard deviation of simulation runtimes across networks. Figure 3|
shows average NRMSE values per model, with shaded regions indicating one standard
deviation around the average. Figured]and Appendix [E]report mean simulated link traffic
counts with error bars representing one standard deviation.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or

figures symmetric error bars that would yield results that are out of range (e.g. negative

error rates).

If error bars are reported in tables or plots, The authors should explain in the text how

they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Simulation runtimes for each network are reported in Table[I] The hardware
specifications, including CPU and memory configuration, are described in Section 4.2
These details provide sufficient information to reproduce the computational setup of the
experiments.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and ensured that our work
complies with its guidelines. The paper does not involve human subjects or private data, and
we do not identify any foreseeable risks of harm, unfairness, or misuse.
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Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper introduces a benchmark that connects black-box optimization with
real-world transportation problems, supporting the development of data-driven traffic man-
agement systems. While no direct negative impacts are anticipated, misuse could potentially
reinforce inequities in mobility. We encourage responsible use and open evaluation.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper presents a benchmark that does not involve models or data with
high risk of misuse. Therefore, no safeguards are necessary.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.
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12.

13.

14.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All external assets used in the paper, including SUMO, the road network

source, traffic count data, and the BoTorch library, are properly cited. License terms for
these resources are respected, and detailed licensing information is provided in Appendix [M]

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: This paper introduces a new benchmark comprising a dataset, codebase, and
experiment scripts. All assets have been publicly released via a GitHub repository, which
includes documentation and usage examples to support reproducibility and ease of adoption.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve any crowdsourcing activities or research involving
human subjects.

Guidelines:
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15.

16.

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve human subjects or crowdsourcing, and therefore
IRB or equivalent ethical review is not required.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This research does not involve the use of LLMs as part of the core methodology
or scientific contributions.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A OD pair generation

For each benchmark network, OD pairs are generated based on a partitioning of the network into
TAZes. Each TAZ may contain source nodes, sink nodes, or both (see Figure EI) A TAZ with at least
one source node can serve as an origin, and one with at least one sink node can serve as a destination.
To ensure full OD connectivity, we construct TAZes such that each zone contains at least one source
node and at least one sink node, except in one-way networks (e.g., Simple Ramp, One-Way Corridor)
where directional flow constraints may lead some TAZes to contain only sources or only sinks. This
guarantees that every TAZ can act as both an origin and a destination. The granularity of the TAZ
configuration can be adjusted: finer partitions allow for detailed spatial demand analysis, while
coarser ones support higher-level planning.

Let 7 denote the number of TAZes in a given network. Once TAZes are defined, OD pairs are
constructed by treating each TAZ as a potential origin and destination. Since our benchmark adopts
relatively fine-grained TAZ definitions, we assume that intra-TAZ trips (i.e., trips with the same origin
and destination zone) are excluded. Under this assumption, the theoretical maximum number of OD
pairs is 7(7 — 1).

In practice, not all OD pairs are feasible due to network topology constraints. In some subnetworks,
there may exist no valid path between certain origin and destination TAZes under the given routing
assumptions. Figure [6]illustrates such a case: taz_85 includes two source nodes and one sink node,
but due to road directionality and the limited network extent, trips from taz_85 can only reach
taz_1, and trips to taz_85 can only originate from taz_1. As a result, OD pairs involving other
zones such as taz_31 are infeasible. To systematically identify and exclude such pairs, we use the
od2trips tool from SUMO, which attempts to generate trip plans based on network connectivity and
routing rules. We run od2trips 1,000 times with randomized trip samples and retain only those OD
pairs with at least one valid route. This filtering process ensures that all OD pairs included in the
benchmark are feasible, and as a result, the actual number of OD pairs per network may be smaller
than the theoretical maximum of 7(7 — 1). Table([I] summarizes the number of TAZes and retained
OD pairs for each benchmark network.
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Figure 5: TAZ configuration example with source and sink nodes.

Junction
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Figure 6: An example of infeasible OD pairs. Due to network directionality and scope, taz_85
can only exchange demand with taz_1, making OD pairs involving other zones such as taz_31
infeasible.
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B Sensor filtering under data reliability and TAZ granularity constraints

To ensure the validity of our benchmark experiments, we filtered PeMS sensor data based on two
main criteria: (1) physical consistency of traffic count patterns, and (2) structural ambiguity arising
from TAZ definitions. This appendix describes our sensor exclusion methodology in detail.

B.1 Sensor reliability filtering based on traffic count conservation principles

Traffic counts are expected to obey conservation principles on freeway networks. In particular, ML
counts are expected to increase as traffic flows past on-ramps, due to merging vehicles, and decrease
after off-ramps, due to diverging vehicles. To validate the reliability of sensor measurements, we
checked whether these traffic count relationships held across time and space.

Let M, and Mgown denote the ML count observed upstream and downstream of a ramp, respectively.
We applied the following consistency checks, as illustrated in Figure

* At on-ramps, we expect: My, < Myown
* At off-ramps, we expect: Myp > Maown
Count values that frequently violated these conditions—i.e., where the inequality was reversed—were
flagged as inconsistent. Such violations suggest potential issues such as sensor misalignment,
malfunction, or measurement noise. We removed all sensors associated with these links from the
dataset to maintain physical plausibility in the OD calibration process. Note that the set of remaining

sensors after this filtering step may vary depending on the date and time, as it is determined by the
observed traffic counts.

Mup Mdawn Mup Mdawn

¢ > o = ¢ 6= &+ o

Figure 7: An illustration of traffic count conservation.

B.2 Sensor filtering induced by TAZ granularity limitations

A second source of inconsistency stems from the coarse spatial resolution of TAZes. In our setting,
each OD pair is defined at the TAZ level; however, multiple freeway access points (e.g., on-ramps and
off-ramps) can exist within a single TAZ. This creates ambiguity when mapping OD flows to observed
traffic counts, particularly when multiple access points from the same TAZ feed into different freeway
links.

To address this issue, we identified and excluded sensors that lie: (1) between multiple on-ramps
associated with a single origin TAZ (i.e., where source trips from the same TAZ may enter the freeway
through different ramps), (2) between multiple off-ramps associated with a single destination TAZ
(i.e., where sink trips may exit the freeway through different ramps). Such sensors may observe
only a subset of the flows associated with a TAZ-level OD pair, leading to incomplete or misleading
traffic count data. An illustrative case is shown in Figure[8] Removing these sensors ensures a more
consistent correspondence between observed counts and counts from modeled OD, thereby improving
the interpretability and fairness of the benchmark evaluation.

TAZ TAZ
e = ® — 6 e« —8§_ © Q=0

Sensor On-ramp oﬁ_N Sensor \
Source node Sink node

Figure 8: An example of sensor exclusion due to TAZ granularity issues.
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C Implementation details

We summarize the configurations used for each optimization method evaluated in our main experi-
ments.

C.1 SPSA

At each iteration k, a random perturbation vector Ay, € {—1, +1}¢ is sampled, with each coordinate
independently drawn with equal probability. The loss function is evaluated at two symmetric points
di £ cx Ak, and the gradient is approximated as

f(dg + cxAg) — f(di — e Ay)

Jr. = VAYS
9k 20k k

The next iterate is given by
dj41 = di — args,

where a and ¢, = W are decaying sequences controlling the step size and

_ a
k= A
perturbation magnitude.

We use the recommended settings « = 0.602 and v = 0.101 [Spall, 2005]. The parameter A
is set to 10% of the total number of iterations, and ¢ = 0.1. The parameter a is computed as
a =0.1x (14 A)*, and rounded to two decimal places. All iterates dj, are clipped to the normalized
domain [0, 1]¢, and the initial point is selected as the best solution from the initial design.

C.2 Vanilla BO

We use a standard BO method with a Gaussian process surrogate and a Matérn 5/2 kernel with
automatic relevance determination (ARD). Lengthscales are constrained to [0.005, 4.0], and a
Gaussian likelihood is used with noise variance inferred in [10~®, 1073]. Inputs are normalized
to [0, 1]%, and outputs are standardized. The acquisition function is q-Log Expected Improvement
(qLogEI).

C.3 SAASBO

We use the SAASBO method, implemented via BoTorch’s SaasFullyBayesianSingleTaskGP.
The model places a hierarchical horseshoe prior over the inverse lengthscales of a Matérn 5/2 kernel
to induce sparsity. Fully Bayesian inference is performed using the No-U-Turn Sampler (NUTS),
with 32 warm-up steps, 16 posterior samples, and thinning interval of 16. The acquisition function is
g-Expected Improvement (qEI). Inputs are normalized to [0, 1]%, and outputs are standardized.

C4 TuRBO

We implement TuRBO with a single trust region. The region is initialized with length 0.8 and dynam-
ically adjusted based on optimization performance: it is doubled after 3 consecutive improvements
and halved after a failure count reaching [max(4/b, d/b)], where b is the batch size. A restart is
triggered if the region length drops below 0.57, and the maximum length is capped at 1.6.

The region is anisotropic, shaped by the GP’s learned lengthscales normalized by both their arithmetic
and geometric means. The surrogate model uses a Matérn 5/2 kernel with ARD, with lengthscales
constrained to [0.005, 4.0], and a Gaussian likelihood with noise bounded in [1078, 10~3]. Can-
didates are generated using Sobol sequences with masked perturbations, where each dimension is
perturbed with probability min(20/d, 1), and selection is performed via Thompson sampling. All
inputs are normalized to [0, 1]¢, and outputs are standardized.

24



D Benchmark configurations

Table 3| summarizes the simulation and BO parameters used for each benchmark network. All net-
works use OD demand values bounded between 1 and 2,000 (or 2,500 for Simple Ramp). Simulation
times, sensor observation times, OD generation time, and BO hyperparameters such as batch size and
number of restarts are scaled according to network complexity.

Table 3: Simulation and BO configurations for the five benchmark networks.

Simulation Sensor OD Init.  Epochs Batch  Num. Raw Sample
Network . . . . . Runs
time (sec) time (sec) time (sec) points T size  restarts samples  shape
Simple Ramp 0-3600 0-3600 0-3300 10 50 2 8 128 64 10
One-Way Corridor 0-3900 300-3900 0-3600 20 100 3 16 256 64 10
Junction 0-3900 300-3900 0-3600 30 200 4 32 512 128 10
Small Region 0-4200 600-4200 0-3600 50 600 5 64 1024 128 3
Full Region* 0-4800 12004800  0-3600 20 5 2 32 512 128 1

*Reduced settings were used for Full Region due to computational constraints.

Column descriptions:

* Simulation time (sec): Total duration of the traffic simulation.

* Sensor time (sec): Time window during which traffic sensors collect observations.
* OD time (sec): Time interval over which OD demand is generated.

* Init. points: Number of initial samples before optimization model starts.

* Epochs T": Total number of optimization model iterations.

* Batch size: Number of candidate evaluations per epoch.

* Num. restarts: Number of restarts used for optimizing the acquisition function.

* Raw samples: Number of raw samples used to seed acquisition optimization.

» Sample shape: Number of posterior samples used to estimate the acquisition function via Monte
Carlo. Relevant only for Vanilla BO.

* Runs: Number of independent optimization runs, each using a different random seed.

E Detailed experimental results

Figure [9]illustrates the alignment between simulated and GT traffic counts for the four networks
other than the Small Region discussed in the main text. Black dots represent the mean values, and
the lengths of the error bars indicate one standard deviation. As in the Small Region case, SPSA
consistently demonstrates the poorest performance across all networks. In the Simple Ramp network
(see Figure[Da)), the simulated link traffic counts closely match the GT values for all BO models. For
the One-Way Corridor (see Figure [Ob), all BO models exhibit nearly linear correspondence. In the
Junction network (see Figure[9c)), all BO models show near-linear alignment, except for a few points
slightly deviating from the diagonal. Vanilla BO and TuRBO achieve better overall performance,
while SAASBO shows relatively longer error bars, indicating greater variability.

Table 4: NRMSE range and average for each model on the Full Region, excluding the initial solution.
Results are based on the minimum loss observed over 5 epochs.

Value Model
SPSA VanillaBO SAASBO TuRBO
Minimum  0.782 0.771 0.775 0.769
Maximum 0.792 0.793 0.791 0.787
Average 0.787 0.784 0.784 0.779
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Figure 9: Fit to GT link traffic counts for (a) Simple Ramp, (b) One-Way Corridor, (C) Junction, and
(d) Full Region.

Despite an average NRMSE of 0.783 and a minimum of 0.765 among the 20 initial samples, the
optimization process in the Full Region setting failed to achieve any reduction beyond the initial
solutions (see Table[d)). These results exclude the initial solution and reflect performance after the
first epoch. While TuURBO produced the lowest NRMSE among the models tested, the differences
across models were marginal and not statistically meaningful.

Inspection of Figure[9d|reveals that, in many cases, the simulated link counts were consistently lower
than the GT values. One possible explanation is that large OD demand values may have led to traffic
congestion in the simulation, preventing vehicles from reaching the sensors within the active sensor
collection period. To address this issue, we suggest refining key simulation and demand-related

26



parameters. This includes calibrating the upper bound of OD demand values, which is currently
set to 2,000, to avoid excessive congestion, and adjusting simulation settings such as simulation
time, sensor time, and OD time (see Table@ to ensure consistency between demand generation and
measurement.

F Effect of excluding unobservable OD pairs on optimization performance

To evaluate the impact of including OD pairs that do not contribute to sensor measurements, we
conduct an experiment comparing optimization performance with and without such unobservable OD
pairs. These pairs correspond to OD flows that are not routed through any links with active sensors
and therefore do not directly influence any measured traffic.

We conduct this analysis on a different time window than the main experiments. Accordingly, the OD
upper bound was scaled down to 1,138 in proportion to the total sensor-measured traffic counts, which
were lower than in the main setting. Out of the 21 OD pairs in the One-Way Corridor network, 4 were
identified as unobservable. These correspond to OD flows from taz_0 to taz_60, from taz_61 to
taz_62, from taz_63 to taz_64, and from taz_64 to taz_1. These OD pairs are visualized in

Figure [10]

Direction

@ Source node

@ Sink node

mm Sensor location

---+ Unobservable OD pair

Figure 10: Visualization of the 4 unobservable OD pairs in the One-Way Corridor network. These
OD flows do not pass through any sensor-instrumented link and were excluded in the filtered setting.

We compare two settings: one using the full set of 21 OD pairs, and another using a filtered set of 17
OD pairs with unobservable pairs excluded. For each setting, we ran 10 independent experiments
using the same initialization, enabling a controlled and fair comparison of optimization performance.
Notably, even though the initial candidate pool is shared, excluding unobservable OD pairs can alter
simulation dynamics, since these flows, while not directly observed, may still influence congestion
dynamics that affect sensor readings indirectly. As a result, initial NRMSE values may differ between
the two settings.

Table[5]and Figure [T1]summarize the optimization outcomes for each model comparing the inclusion
and exclusion of unobservable OD pairs. The filtered setting, despite starting with a higher initial
NRMSE on average, consistently achieved greater improvement across all models. While the best
NRMSE of SPSA slightly increased when unobservable OD pairs were excluded, all Bayesian
optimization methods exhibited improved estimation performance. In particular, TURBO and Vanilla
BO showed substantial reductions in best NRMSE, with TuURBO achieving the most dramatic
improvement. SAASBO also benefited from the exclusion, though the magnitude of improvement
was more modest. These results suggest that removing unobservable OD variables not only improves
sample efficiency but can also enhance final estimation quality, particularly for surrogate-based
methods whose performance can deteriorate in the presence of irrelevant input dimensions. This
highlights the value of aligning the OD parameter space with sensor-observable flows, which can lead
to more robust and efficient optimization outcomes. At the same time, the presence of unobservable
OD pairs also underscores the need for adaptive feature selection strategies that can selectively filter
such variables during optimization.
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Figure 11: Comparison of optimization performance including and excluding unobservable OD pairs.
Solid lines represent the mean, with error bars denoting one standard deviation over 10 runs.

Table 5: Average best NRMSE values for each model on the One-Way Corridor network, compar-
ing settings with and without unobservable OD pairs. Values in parentheses indicate the average
percentage improvement. Both metrics are averaged across 10 independent runs.

Unobservable Initial solution Model
OD pairs

Avg Min SPSA Vanilla BO SAASBO TuRBO

Included 0.722  0.434  0.352(18.03%) 0.187 (56.72%)  0.161 (62.50%)  0.233 (49.04%)
Excluded 0.815 0.505 0.410(18.64%) 0.094 (80.62%) 0.132 (71.54%) 0.032 (93.81%)

G Effect of kernel selection on optimization performance

An additional experiment is conducted to analyze how the choice of GP kernel affects BO performance.
The experimental setup is identical to that used for the main results in Table 2] with all conditions
kept the same except for the kernel selection. Three GP kernels, Matérn 3/2, Matérn 5/2, and RBF,
are evaluated across four network types and three BO variants (Vanilla BO, SAASBO, and TuRBO).
SAASBO is implemented using the SaasFullyBayesianSingleTaskGIﬂ which employs a Matérn 5/2
by default, so this variant is tested only with that kernel. The Matérn 5/2 results are consistent with
those reported in Table[2] except for the Small Region case, where a smaller number of runs is used in
this supplementary experiment. The additional results for Matérn 3/2 and RBF kernels are included
here for comparison (Table[6)). Overall, the results indicate that although the Matérn 3/2 kernel shows
a slight performance advantage in several cases, the differences among kernels remain small.

Table 6: Average best NRMSE across four network types and three BO models under different GP
kernels. The number of independent runs for each network is indicated in the Runs column.

Vanilla BO SAASBO TuRBO
Network Runs
Matérn 3/2 Matérn 5/2 RBF  Matém 5/2 Matérn 3/2 Matérm 5/2  RBF
Simple Ramp 10 0.0011 0.0033 0.0074 0.0166 0.0002 0.0007 0.0012
One-Way Corridor 10 0.0981 0.1055 0.1121 0.0703 0.0840 0.0898 0.0934
Junction 10 0.2344 0.2326 0.2362 0.3017 0.2376 0.2337 0.2354
Small Region 1 0.3412 0.5006 0.4558 0.5413 0.2074 0.1483 0.1260

H Verification of the high-dimensionality of BO4Mob

To verify that the BO4Mob problems exhibit genuinely high-dimensional characteristics, we analyze
the influence of each input variable (i.e., each OD pair) on the objective function. Following the

https://botorch.readthedocs.io/en/latest_modules/botorch/models/fully_bayesian.
html#SaasFullyBayesianSingleTaskGP
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approach proposed in [Papenmeier et al.| [2025], we identify dominant and secondary variables
based on input sensitivity. Table [/| summarizes the average number of dominant and secondary
variables for each network instance. Unlike the commonly used high-dimensional benchmarks such
as LassoBench [gehié et al.| [2022] and MOPTAOS [Eriksson and Jankowiak, 2021f], where many
variables are found to have negligible effects, our results indicate that BO4Mob problems involve
a much higher proportion of influential variables. For example, in the Small Region network with
151 OD variables, over 95% (144.3 on average) are identified as dominant. This suggests that
BO4Mob captures truly high-dimensional and complex optimization settings, where most input
features significantly affect the objective. Overall, the results confirm that BO4Mob encompasses
complex and high-dimensional optimization settings suitable for evaluating the performance of
black-box optimization algorithms.

I Configurability and extensibility of the benchmark framework

The BO4Mob benchmark offers high configurability, allowing users to easily set up diverse experi-
mental conditions through flexible command-line arguments and a modular experiment design. Users
can specify the network type, optimization model, GP kernel, simulation date and time window, and
evaluation measure. As illustrated in Appendix [G] the framework supports several representative GP
kernels, including Matérn 1.5, Matérn 2.5, and RBE. While the main experiments in the paper used
link counts as the evaluation measure, the benchmark can also be configured to use average speed for
performance assessment. This configurability enables users to explore a broad range of experimental
settings without code modification, ensuring fair comparisons across models.

The BO4Mob framework is designed to support extensibility through clearly documented imple-
mentation guides. The released codebase provides instructions on how the network and sensor
data were prepared, allowing users to apply the framework to additional networks by following
the same preprocessing steps with their own data. It also includes guidelines for integrating newly
developed optimization methods or GP kernels into the existing pipeline. While the benchmark
currently implements Matérn 1.5, Matérn 2.5, and RBF kernels, the modular structure enables users to
substitute or add domain-specific alternatives as needed. This extensibility allows BO4Mob to serve
as a foundation for future research exploring novel BO methods and applications in transportation
modeling.

J SPSA as a non-BO baseline

SPSA is adopted as a non-BO baseline because it is widely used for OD estimation in both academic
studies [Balakrishna et al., 2007, Vaze et al., |2009| [Cipriani et al., 2011, [Ben-Akiva et al., 2012,
Ros-Roca et al., 2021]] and real-world applications [Galgano et al., 2021} [Talas et al., |2021}, Ban
et al.| 2022]], including projects funded by the USDOT. Traditional approaches in the transportation
literature often rely on SPSA and its variants, which approximate gradients under noisy simulation
settings. The method remains attractive due to its algorithmic simplicity, low evaluation cost, and
suitability for simulation-based optimization. However, SPSA’s limitations in high-dimensional and
noisy environments are well documented [Antoniou et al., 2015} Tympakianaki et al., 2015} |Qurashi
et al,|2019], including unstable gradient estimates and the absence of explicit structural modeling.
Although advanced variants such as W—SPSA [Antoniou et al., 2015]], c-SPSA [Tympakianaki et al.|
2015]], and PC-SPSA [Qurashi et al., [2019] address some of these issues, they typically require
prior parameter tuning, access to historical data, or manual design of weight matrices, and still face
challenges when applied at scale.

Table 7: Average counts of dominant and secondary OD variables across network types.

Network # Dominant # Secondary
Simple Ramp 3.0 0.0
One-Way Corridor 19.3 1.7
Junction 35.6 8.4
Small Region 144.3 6.7

29



K Comparison of evaluation measures: link count vs. average speed

To examine the effect of the evaluation measure on optimization identifiability, we conduct a simple
experiment on the Simple Ramp configuration, which contains only three deterministic OD pairs.
All other settings are identical, and only the evaluation measure (either link count or average speed)
is varied. As summarized in Table|8} the count-based experiment rapidly converges from an initial
best NRMSE of 0.1408 to 0.0043, successfully reconstructing the GT OD demands. In contrast,
when average speed is used, the optimization shows almost no improvement in NRMSE (remaining
around 0.023 throughout) and yields unrealistic OD estimates, where the first two OD pairs reach
the minimum feasible value of 1 while the third saturates at the upper bound of 2500. These results
suggest that, while the framework supports both count- and speed-based evaluation options, the use
of link counts is generally more informative and is therefore recommended for OD estimation within
BO4Mob.

Table 8: Comparison of OD estimation results using different evaluation measures.

Type IstOD 2ndOD 3rd OD Initial best NRMSE Final best NRMSE
GT 2092 609 386 - -

Count 20749  629.5 408.3 0.1408 0.0043
Average speed 1 1 2500 0.0239 0.0233

L Limitations

A limitation of our benchmark is that it includes only five predefined subnetworks from a single
region (the San Francisco Bay Area), including the Full Region. Users cannot flexibly extract
arbitrary subnetworks, which limits adaptability to custom or unseen scenarios beyond the provided
configurations.

Another limitation is related to the computational cost of simulating the Full Region. Due to its
high memory usage and long simulation time, we were only able to run a limited number of epochs.
Although increasing the batch size would help explore a wider range of solutions, it also significantly
increases memory consumption. In practice, we set the batch size to 2 to fit within resource constraints,
but this led to incomplete results within the allocated runtime. This suggests that running optimization
over the Full Region requires sufficient RAM and prior analysis of SUMO’s peak memory usage to
choose an appropriate batch size.

M License

This benchmark incorporates external resources that are redistributed or referenced in accordance
with their original licenses:

* Road network files: Provided by ETH Zurich and licensed under the Creative Commons
Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).

* Traffic sensor data (PeMS): Traffic count data is sourced from PeMS. Use of this data is subject
to the Caltrans Conditions of Use: https://dot.ca.gov/conditions-of-use.

* Traffic simulation (SUMO): We use the open-source SUMO traffic simulator (version 1.12),
which is distributed under the Eclipse Public License 2.0 (EPL-2.0).

» Bayesian optimization library (BoTorch): Our implementation uses BoTorch, which is licensed
under the MIT License.
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N Datasheet

We adopt the datasheet framework introduced by |Gebru et al.|[2021]] to document our benchmark
datasets.

N.1 Motivation

For what purpose was the dataset created? Was there a specific task in mind? Was there a
specific gap that needed to be filled? Please provide a description.

The datasets in this benchmark were constructed to support the evaluation and comparison of
optimization-based methods for OD demand estimation in transportation networks. By simulating
five predefined networks with known GT and sensor configurations, the benchmark enables controlled,
reproducible experiments. In particular, it is designed to facilitate the development and analysis of
BO techniques by providing a structured setting.

Who created the dataset (for example, which team, research group) and on behalf of which
entity (for example, company, institution, organization)?

This dataset was created by Seunghee Ryu, Donghoon Kwon, Seongjin Choi, Aryan Deshwal,
Seungmo Kang, Carolina Osorio, who are researchers affiliated with University of Minnesota, Korea
University, HEC Montréal.

Who funded the creation of the dataset? If there is an associated grant, please provide the name
of the grantor and the grant name and number.

Seunghee Ryu and Donghoon Kwon are affiliated with the Department of Civil, Environmental and
Architectural Engineering, Korea University, South Korea, and are supported by the Basic Science
Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry
of Education, South Korea (RS-2020-NR049594), and by the BK21 FOUR (Brain Korea 21 Four)
Project; Support Program for Outstanding Graduate Students’ International Joint Training. Seongjin
Choi is supported by the Department of Civil, Environmental and Geo-Engineering and Center for
Transportation Studies at the University of Minnesota. Seungmo Kang is supported by the Basic
Science Research Program through the NRF, funded by the Ministry of Education, South Korea
(RS-2020-NR049594).

N.2 Composition

What do the instances that comprise the dataset represent (for example, documents, photos,
people, countries)? Are there multiple types of instances (for example, movies, users, and
ratings; people and interactions between them; nodes and edges)? Please provide a description.

The dataset consists of two types of instances: (1) network-related files required to run SUMO traffic
simulations, including XML files for the network structure, OD, TAZ, and additional simulation
parameters, as well as a CSV file describing the routes between TAZes; (2) link traffic count and
average speed data originally obtained from the Caltrans PeMS. This data was post-processed by the
researchers to match each sensor reading to a corresponding link in the SUMO simulation network,
resulting in link-level traffic count information.

How many instances are there in total (of each type, if appropriate)?

The entire freeway network includes 1,977 nodes and 2,173 links, from which five subnetworks of
varying sizes were derived, including the Full Region network. For traffic sensing, 4,080 sensors were
available on October 22, 2022; 219 sensors were selected based on predefined filtering criteria (see
Appendix [B). To support extended analysis and benchmarking, the dataset includes traffic count data
collected over a 14-day period (October 8-21, 2022), covering three daily time windows: 6:00-7:00
a.m., 8:00-9:00 a.m., and 5:00-6:00 p.m.

Does the dataset contain all possible instances or is it a sample (not necessarily random) of
instances from a larger set? If the dataset is a sample, then what is the larger set? Is the sample
representative of the larger set (e.g., geographic coverage)? If so, please describe how this
representativeness was validated/verified.
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The dataset represents a curated subset extracted from a larger real-world dataset. The networks are
derived from freeway segments in the San Jose area, and the sensor data is selected from within these
network boundaries. Specifically, we use only the ML detectors as defined in the original data source.

What data does each instance consist of? ''Raw'' data (for example, unprocessed text or images)
or features? In either case, please provide a description.

The dataset includes lightly processed raw inputs. For the networks, the Full Region corresponds to
a subset of the San Francisco Bay Area freeway network around San Jose, extracted from a larger
SUMO network. Four additional subnetworks were constructed by selecting smaller subregions. For
the sensor data, raw ML sensor locations (latitude and longitude) from PeMS were projected onto the
network and matched to specific links. While the original data sources are raw, these instances have
been curated to support simulation and analysis.

Is there a label or target associated with each instance? If so, please provide a description.

Yes. Each instance includes link traffic count (or average speed) values that serve as target outputs in
the optimization process. These values represent the observed traffic count (or average speed) on
each link and are used to evaluate the quality of OD demand estimates during optimization.

Is any information missing from individual instances? If so, please provide a description,
explaining why this information is missing (for example, because it was unavailable).

No.

Are relationships between individual instances made explicit (for example, users’ movie ratings,
social network links)? If so, please describe how these relationships are made explicit.

Yes, relationships between sensor data and the network are made explicit. Each traffic sensor is
associated with a specific link in the road network, allowing observed traffic counts (or average speed)
to be directly mapped to network topology. These link-level associations are predefined and included
as part of the dataset.

Are there recommended data splits (for example, training, development/validation, testing)? If
so, please provide a description of these splits, explaining the rationale behind them.

No predefined data splits are provided. The dataset is intended to be used as a benchmark for
evaluating black-box optimization algorithms on OD demand estimation tasks.

Are there any errors, sources of noise, or redundancies in the dataset? If so, please provide a
description.

Yes, the raw sensor data from PeMS may include noise or inconsistent measurements. However,
filtering criteria were applied to exclude unreliable sensors.

Is the dataset self-contained, or does it link to or otherwise rely on external resources (for
example, websites, tweets, other datasets)?

Yes, the dataset is self-contained.

Does the dataset contain data that might be considered confidential (for example, data that is
protected by legal privilege or by doctor-patient confidentiality, data that includes the content
of individuals’ non-public communications)? If so, please provide a description.

No, all data is derived from publicly available sources.

Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening,
or might otherwise cause anxiety? If so, please describe why.

No, the dataset contains no offensive or disturbing content.

N.3 Collection process

How was the data associated with each instance acquired? Was the data directly observable
(for example, raw text, movie ratings), reported by subjects (for example, survey responses),
or indirectly inferred/derived from other data (for example, part-of-speech tags, model-based
guesses for age or language)?
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Each instance includes a combination of directly observed and derived data. The sensor data originates
from Caltrans PeMS, and the network files were adapted from Supplementary Note 2 of Ambiihl et al.
[2023]].

What mechanisms or procedures were used to collect the data (for example, hardware appara-
tuses or sensors, manual human curation, software programs, software APIs)?

Sensor lists, traffic count, and average speed data were downloaded from the Caltrans PeMS websiteE]
The network files were obtained from a previous study [[Ambiihl et al.| 2023|] and further processed.
The matching between sensors and network links was performed manually by the researchers.

If the dataset is a sample from a larger set, what was the sampling strategy (for example,
deterministic, probabilistic with specific sampling probabilities)?

The dataset is a deterministic sample. Subnetworks were selected based on geographic coverage and
scalability, and sensors were filtered using predefined criteria such as location type (ML) and data
reliability (see Appendix [B).

Who was involved in the data collection process (for example, students, crowdworkers, contrac-
tors) and how were they compensated (for example, how much were crowdworkers paid)?

The data collection and processing were performed by the researchers involved in this study. No
external contributors were involved or compensated.

Over what timeframe was the data collected? Does this timeframe match the creation timeframe
of the data associated with the instances (e.g., recent crawl of old news articles)? If not, please
describe the timeframe in which the data associated with the instances was created.

The sensor data was collected over two weeks from October 8 to October 21, 2022. For each day,
traffic counts and average speed were extracted for three time windows: 6:00-7:00 a.m., 8:00-9:00
a.m., and 5:00-6:00 p.m. The metadata used to associate sensors with specific network links is based
on the configuration as of October 22, 2022. The network files were sourced directly from those
provided in |Ambiihl et al.| [2023]], which were released as part of the supplementary material on
December 5, 2022.

Were any ethical review processes conducted (for example, by an institutional review board)?

No ethical review was required, as the dataset does not involve human subjects or sensitive informa-
tion.

N.4 Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of the data done (for example, discretization or buck-
eting, tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances,
processing of missing values)?

Yes. The network is a cropped subset of the San Francisco Bay Area freeway network, adapted from
the traffic simulation dataset provided by |JAmbiihl et al.[[2023]]. Traffic count and average speed data
from the Caltrans PeMS system were aggregated to 5-minute intervals. Only sensors labeled as ML
were used. Each sensor’s location was matched to the nearest freeway link with the same direction of
traffic (as indicated by the “dir”” column) to ensure accurate alignment with the network structure.

Was the "raw'' data saved in addition to the preprocessed/cleaned/labeled data (for example, to
support unanticipated future uses)?

No, the raw data is not included in the released dataset. However, the original sensor data
can be downloaded from the Caltrans PeMS website (https://pems.dot.ca.gov/), and the origi-
nal network files are available from the ETH Zurich research repository (https://www.research-
collection.ethz.ch/handle/20.500.11850/584669).

Is the software that was used to preprocess/clean/label the data available? If so, please provide
a link or other access point.

No. The code used for preprocessing is not included in the released dataset.

*https://pems.dot.ca.gov/
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N.5 Uses

Has the dataset been used for any tasks already?

Yes. Parts of the network have been used in prior work on OD estimation frameworks, but different
subregions were used, and the PeMS data was from a different date than ours.

Is there a repository that links to any or all papers or systems that use the dataset?

Yes. The dataset and code are available at |[https://github.com/UMN-Choi-Lab/BO4Mob],
and a dedicated repository listing the dataset is maintained at |[https://github.com/UMN-Choi-
Lab/BO4Mob_data].

What (other) tasks could the dataset be used for?

While this dataset is used for OD estimation within traffic simulation in this study, it could also
support other traffic simulation research tasks.

Is there anything about the composition of the dataset or the way it was collected and prepro-
cessed/cleaned/labeled that might impact future uses?

The dataset has been preprocessed and is ready for direct use. It includes five predefined network
levels, which support multi-scale analysis but do not allow user-defined regions. Additionally, sensor
readings may contain noise due to equipment or environmental factors.

Are there tasks for which the dataset should not be used? If so, please provide a description.

No, there are no known tasks for which the dataset should not be used.

N.6 Distribution

Will the dataset be distributed to third parties outside of the entity (for example, company,
institution, organization) on behalf of which the dataset was created?

Yes. The dataset has been publicly released and is available to third parties via a GitHub repository.

How will the dataset be distributed (for example, tarball on website, API, GitHub)? Does the
dataset have a digital object identifier (DOI)?

The code and dataset used in our benchmark study have been made publicly available via a public
GitHub repository at |[https://github.com/UMN-Choi-Lab/BO4Mob]. A DOI is not provided.

When will the dataset be distributed?
On May 15, 2025.

Will the dataset be distributed under a copyright or other intellectual property (IP) license,
and/or under applicable terms of use (ToU)? If so, please describe this license and/or ToU, and
provide a link or other access point to.

Yes. The benchmark dataset is released under the CC BY 4.0 International License (https://
creativecommons.org/licenses/by/4.0). The code implementation is released under the MIT
License (https://opensource.org/license/MIT).

Have any third parties imposed IP-based or other restrictions on the data associated with the
instances? If so, please describe these restrictions, and provide a link or other access point to,
or otherwise reproduce, any relevant licensing terms, as well as any fees associated with these
restrictions.

No. There are no IP-based restrictions known, but users should refer to the original sources—Caltrans
PeMS (https://pems.dot.ca.gov/) and the ETH Zurich research repository (https://www,
research-collection.ethz.ch/handle/20.500.11850/584669)—for their respective terms
of use.

Do any export controls or other regulatory restrictions apply to the dataset or to individual
instances? If so, please describe these restrictions, and provide a link or other access point to,
or otherwise reproduce, any supporting documentation.

No.
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N.7 Maintenance

Who will be supporting/hosting/maintaining the dataset?

The dataset will be maintained by the authors of this paper.

How can the owner/curator/manager of the dataset be contacted (for example, email address)?
Please contact the following email address: chois@umn.edu

Is there an erratum? If so, please provide a link or other access point.

Any future corrections or updates will be documented in the GitHub repository.

Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete instances)?
If so, please describe how often, by whom, and how updates will be communicated to dataset
consumers (e.g., mailing list, GitHub)?

Yes. Any updates will be managed by the authors and documented in the GitHub repository.

If the dataset relates to people, are there applicable limits on the retention of the data associated
with the instances (e.g., were the individuals in question told that their data would be retained
for a fixed period of time and then deleted)? If so, please describe these limits and explain how
they will be enforced.

The dataset does not contain any data relating to people.

Will older versions of the dataset continue to be supported/hosted/maintained? If so, please
describe how. If not, please describe how its obsolescence will be communicated to dataset
consumers.

Yes. If updates are made, older versions of the dataset will remain available and accessible through
the GitHub repository.

If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for
them to do so? If so, please provide a description. Will these contributions be validated/verified?
If so, please describe how. If not, why not? Is there a process for communicating/distributing
these contributions to dataset consumers? If so, please provide a description.

Yes. Others can contribute by opening a GitHub issue or by contacting the corresponding author by
email.
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