

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TRANSPORT CLUSTERING: SOLVING LOW-RANK OPTIMAL TRANSPORT VIA CLUSTERING

Anonymous authors

Paper under double-blind review

ABSTRACT

Optimal transport (OT) finds a least cost transport plan between two probability distributions using a cost matrix over pairs of points. Constraining the rank of the transport plan yields low-rank OT, which improves **statistical stability and interpretability** compared to full-rank OT. Further, low-rank OT naturally induces co-clusters between distributions and generalizes K -means clustering. Reversing this direction, we show that solving a clustering problem on a set of *correspondences*, termed *transport clustering*, solves low-rank OT. This connection between low-rank OT and transport clustering relies on a *transport registration* of the cost matrix which registers the cost matrix via the transport map. We show that the reduction of low-rank OT to transport clustering yields polynomial-time, constant-factor approximation algorithms for low-rank OT. Specifically, we show that for the low-rank OT problem this reduction yields a $(1 + \gamma)$ -approximation algorithm for metrics of negative-type and a $(1 + \gamma + \sqrt{2\gamma})$ -approximation algorithm for kernel costs where $\gamma \in [0, 1]$ denotes the approximation ratio to the optimal full-rank solution. We demonstrate that transport clustering outperforms existing low-rank OT methods on several synthetic benchmarks and large-scale, high-dimensional real datasets.

1 INTRODUCTION

Optimal transport finds a transport plan between two distributions in a space M provided an appropriate cost function $c : M \times M \rightarrow \mathbb{R}$ between pairs of points in the space. When c is the squared Euclidean cost, the cost of this optimal map is known as the Wasserstein distance or Earth Mover's distance, $W_2^2(\mu, \nu)$, and is one of the most natural and popular metrics for assessing the distance between any two probability distributions μ, ν supported on M .

OT has gained popularity in machine learning and scientific applications for its ability to resolve correspondences between unregistered datasets. In machine learning, optimal transport has found applications in generative modeling (Tong et al., 2023; Korotin et al., 2023; 2021), self-attention (Tay et al., 2020; Sander et al., 2022; Geshkovski et al., 2023), unpaired data translation (Korotin et al., 2021; Bortoli et al., 2024; Tong et al., 2024; Klein et al., 2024), and alignment problems in transformers and LLMs (Melnyk et al., 2024; Li et al., 2024). Moreover, OT has become an essential tool in science, with wide-ranging applications from biology (Schiebinger et al., 2019; Yang et al., 2020; Zeira et al., 2022; Bunne et al., 2023; Halmos et al., 2025c; Klein et al., 2025) to particle physics (Komiske et al., 2019; Ba et al., 2023; Manole et al., 2024).

Low-rank optimal transport (Fornow et al., 2019; Scetbon and Cuturi, 2020; Lin et al., 2021; Scetbon and Cuturi, 2022; Scetbon et al., 2023; Halmos et al., 2024) has emerged as an alternative to full-rank OT that additionally constrains the rank of the transport plan. Low-rank optimal transport brings structural benefits for statistical robustness and co-clustering. Specifically, the low-rank structure serves as a strong regularizer on the transport plan, producing estimators of Wasserstein distances that are more robust to outliers and sparse sampling and achieving sharper statistical rates (Fornow et al., 2019; Lin et al., 2021). Further, by implicitly forcing transport to factor through a low rank or a set of latent "anchor" points, it jointly partitions the source and target samples and aligns the resulting groups (Fornow et al., 2019; Lin et al., 2021). Interestingly, K -means appears as a special case when only one dataset is considered (Scetbon and Cuturi, 2022) so that low-rank optimal transport offers a strict generalization of K -means to multiple datasets.

054 However, several practical and theoretical factors limit low-rank OT. First, as low-rank OT is
 055 non-convex and NP-hard, similar to NMF (Lee and Seung, 2000), it is sensitive to the choice of
 056 initialization (Scetbon and Cuturi, 2022) and produces highly variable low-rank factors. Second,
 057 current algorithms, which rely on local optimization through mirror-descent (Scetbon et al., 2021;
 058 Halmos et al., 2024) or Lloyd-type (Forrow et al., 2019; Lin et al., 2021) approaches, consist
 059 of a complex optimization over three or more variables. Finally, although preliminary work has
 060 characterized theoretical properties of the low-rank OT problem (Forrow et al., 2019; Scetbon and
 061 Cuturi, 2022), existing algorithms lack provable guarantees beyond convergence to stationary points.
 062 This contrasts with standard tools for K -means clustering that offer robust $\mathcal{O}(\log K)$ (Arthur and
 063 Vassilvitskii, 2007) and $(1 + \epsilon)$ -approximation factors (Kumar et al., 2004) in addition to statistical
 064 guarantees (Zhuang et al., 2023).

065 **Contributions.** We show that low-rank OT reduces to a simple clustering problem on correspondences
 066 called *transport clustering*. In detail, we reduce low-rank OT from a co-clustering problem
 067 to a generalized K -means problem (Scetbon and Cuturi, 2022) via a *transport registration* of the
 068 cost matrix. This registers the cost with the solution to a convex optimization problem: the optimal
 069 full-rank transport plan. Transport clustering eliminates the auxiliary variables used in existing
 070 low-rank solvers and converts the low-rank OT problem into a single clustering subroutine: one
 071 low-rank factor is given by solving the generalized K -means problem on the registered cost, and the
 072 second factor is automatically obtained from the first. We prove constant-factor guarantees for this
 073 reduction: for kernel costs the approximation factor is $(1 + \gamma + \sqrt{2\gamma})$ and for negative-type metrics
 074 it is $(1 + \gamma)$ where $\gamma \in [0, 1]$ is the ratio of the optimal rank K and full-rank OT costs. Because the
 075 reduced problem is a (generalized) K -means instance, transport clustering inherits the algorithmic
 076 stability and approximation guarantees of modern K -means and K -medians solvers. In addition to
 077 its theoretical guarantees, transport clustering (TC) is a simple and practically effective algorithm for
 078 low-rank OT that obtains lower transport cost on a range of real and synthetic datasets.

079 2 BACKGROUND

080 Suppose $X = \{x_1, \dots, x_n\}$ and $Y = \{y_1, \dots, y_m\}$ are datasets with n and m data points in a space
 081 M . Letting $\Delta_n = \{\mathbf{p} \in \mathbb{R}_+^n : \sum_j p_j = 1\}$ denote the probability simplex over n elements, one
 082 may represent dataset each explicitly over the support with probability measures $\mu = \sum_{i=1}^n \mathbf{a}_i \delta_{x_i}$
 083 and $\nu = \sum_{j=1}^m \mathbf{b}_j \delta_{y_j}$ for probability vectors $\mathbf{a} \in \Delta_n$ and $\mathbf{b} \in \Delta_m$. The optimal transport framework
 084 (Peyré et al., 2019) aims to find the least-cost mapping between these datasets $\mu \mapsto \nu$ as quantified
 085 via a cost function $c : X \times Y \rightarrow \mathbb{R}$.

086 **Optimal Transport.** The *Monge formulation* (Monge, 1781) of optimal transport finds a map
 087 $T^* : M \rightarrow M$ of least-cost between the measures μ and ν , $T^* = \arg \min_{T: T_\# \mu = \nu} \mathbb{E}_\mu c(x, T(x))$.
 088 Here, $T_\# \mu$ denotes the pushforward measure of μ under T , defined by $T_\# \mu(B) := \mu(T^{-1}(B))$
 089 for any measurable set $B \subset M$. Define the set of couplings $\Gamma(\mu, \nu)$ to be all joint distri-
 090 butions γ with marginals given by μ and ν . The *Kantorovich problem* (Kantorovich, 1942)
 091 relaxes the Monge-problem by instead finding a coupling of least-cost γ^* between μ and ν :
 092 $\gamma^* \in \arg \min_{\gamma \in \Gamma(\mu, \nu)} \mathbb{E}_\gamma c(x, y)$. This relaxation permits mass-splitting and guarantees the ex-
 093 istence of a solution between any pair of measures μ and ν (Peyré et al., 2019).
 094

095 In the discrete setting, the Kantorovich problem is equivalent to the linear optimization

$$096 \min_{\mathbf{P} \in \Pi(\mathbf{a}, \mathbf{b})} \sum_{i=1}^n \sum_{j=1}^m \mathbf{P}_{ij} c(x_i, y_j) = \min_{\mathbf{P} \in \Pi_{\mathbf{a}, \mathbf{b}}} \langle \mathbf{C}, \mathbf{P} \rangle_F, \quad (1)$$

097 over the *transportation polytope* $\Pi(\mathbf{a}, \mathbf{b}) \triangleq \{\mathbf{P} \in \mathbb{R}_+^{n \times m} : \mathbf{P} \mathbf{1}_m = \mathbf{a}, \mathbf{P}^\top \mathbf{1}_n = \mathbf{b}\}$ defined by
 098 marginals $\mathbf{a} \in \Delta_n$ and $\mathbf{b} \in \Delta_m$. $\langle \mathbf{A}, \mathbf{B} \rangle_F = \text{tr } \mathbf{A}^\top \mathbf{B}$ denotes the Frobenius inner product and
 099 $[c(x_i, y_j)] = (\mathbf{C})_{ij} \in \mathbb{R}^{n \times m}$ is the cost matrix evaluated at all point pairs in X, Y .

100 **Low-rank Optimal Transport.** Low-rank optimal transport (OT) constrains the non-negative rank
 101 of the transport plan \mathbf{P} to be upper bounded by a specified constant K . This has computational
 102 (Scetbon et al., 2021; Scetbon and Cuturi, 2022; Halmos et al., 2024), statistical (Forrow et al.,
 103 2019), and interpretability benefits (Forrow et al., 2019; Lin et al., 2021; Halmos et al., 2025a),
 104 with the drawback that it results in a non-convex and NP-hard optimization problem. For a matrix

108 $\mathbf{M} \in \mathbb{R}_+^{n \times m}$, the *nonnegative rank* (Cohen and Rothblum, 1993) is $\text{rank}_+(\mathbf{M}) \triangleq \min\{K : \mathbf{M} =$
 109 $\sum_{i=1}^K \mathbf{q}_i \mathbf{r}_i^\top, \mathbf{q}_i, \mathbf{r}_i \geq 0\}$, or the minimum number of nonnegative rank-one matrices which sum to
 110 \mathbf{M} . The *low-rank Kantorovich problem* (Scetbon et al., 2022; 2023; Halmos et al., 2024) is then
 111

$$112 \quad \min_{\mathbf{P} \in \Pi(\mathbf{a}, \mathbf{b})} \{ \langle \mathbf{C}, \mathbf{P} \rangle_F : \text{rank}_+(\mathbf{P}) \leq K \} \quad (2)$$

114 which constrains the (nonnegative) rank of the *transport plan* \mathbf{P} to be at most K . Following (Cohen
 115 and Rothblum, 1993; Scetbon et al., 2021), the low-rank Kantorovich problem (2) is equivalent to
 116

$$117 \quad \min_{\substack{\mathbf{Q} \in \Pi(\mathbf{a}, \mathbf{g}), \mathbf{R} \in \Pi(\mathbf{b}, \mathbf{g}) \\ \mathbf{g} \in \Delta_K}} \langle \mathbf{C}, \mathbf{Q} \text{ diag}(\mathbf{g}^{-1}) \mathbf{R}^\top \rangle_F, \quad (3)$$

119 which explicitly parameterizes the low-rank plan \mathbf{P} as the product of two rank K transport plans \mathbf{Q} and
 120 \mathbf{R} with outer marginals $\mathbf{Q} \mathbf{1}_K = \mathbf{a}$, $\mathbf{R} \mathbf{1}_K = \mathbf{b}$ and a shared inner marginal $\mathbf{g} = \mathbf{Q}^\top \mathbf{1}_n = \mathbf{R}^\top \mathbf{1}_m$.
 121

122 **K -Means and Generalized K -Means.** Given a dataset X , the K -means problem finds a partition
 123 $\pi = \{\mathcal{C}_k\}_{k=1}^K$ of X with K clusters and means $\boldsymbol{\mu}_1, \dots, \boldsymbol{\mu}_K$ such that the total distance of each point
 124 to its nearest mean is minimized. Letting the k -th cluster mean be $\boldsymbol{\mu}_k = \frac{1}{|\mathcal{C}_k|} \sum_{i \in \mathcal{C}_k} x_i$, the K -means
 125 problem minimizes the distortion

$$126 \quad \min_{\pi} \sum_{\mathcal{C}_k \in \pi} \sum_{i \in \mathcal{C}_k} \|x_i - \boldsymbol{\mu}_k\|_2^2. \quad (4)$$

129 Using the identity $|\mathcal{C}_k| \sum_{i \in \mathcal{C}_k} \|x_i - \boldsymbol{\mu}_k\|_2^2 = \frac{1}{2} \sum_{i, j \in \mathcal{C}_k} \|x_i - x_j\|_2^2$ yields an equivalent *mean-free*
 130 formulation of (4) in terms of pairwise distances:
 131

$$132 \quad \min_{\pi} \sum_{\mathcal{C}_k \in \pi} \frac{1}{|\mathcal{C}_k|} \sum_{i, j \in \mathcal{C}_k} \frac{1}{2} \|x_i - x_j\|_2^2. \quad (5)$$

135 Define the assignment matrix $n \mathbf{Q} \in \{0, 1\}^{n \times K}$ by $\mathbf{Q}_{ik} = \frac{1}{n}$ if $i \in \mathcal{C}_k$ and 0 otherwise. Then, (5)
 136 is equivalently expressed (up to the constant factor n) as a sum over all assignment variables with
 137 cluster proportions given by $|\mathcal{C}_k| / n = \sum_i \mathbf{Q}_{ik}$:

$$138 \quad \langle \mathbf{C}_{\ell_2^2}, \mathbf{Q} \text{ diag}(1/\mathbf{Q}^\top \mathbf{1}_n) \mathbf{Q}^\top \rangle_F = \sum_{i=1}^n \sum_{j=1}^n \sum_{\mathcal{C}_k \in \pi} \frac{1}{2} \|x_i - x_j\|_2^2 \mathbf{Q}_{ik} \frac{n}{|\mathcal{C}_k|} \mathbf{Q}_{jk} \quad (6)$$

142 where $(\mathbf{C}_{\ell_2^2})_{ij} = (1/2) \|x_i - x_j\|_2^2$. In the preceding assignment form, (6) is the cost of the rank K
 143 transport plan $\mathbf{P} = \mathbf{Q} \text{ diag}(\mathbf{g}^{-1}) \mathbf{R}^\top$ where $\mathbf{R} = \mathbf{Q}$ and $\mathbf{g} = \mathbf{Q}^\top \mathbf{1}_n$. Following this observation,
 144 Scetbon and Cuturi (2022) introduced *generalized K -means* as the extension of (4) to arbitrary cost
 145 functions $c(x_i, x_j)$ by replacing $\mathbf{C}_{\ell_2^2}$ in the mean-free formulation (6) with a general cost \mathbf{C} . Let \sqcup
 146 denote the disjoint set union operator. In *partition form* this yields the following problem.

147 **Definition 1.** Given a cost matrix $\mathbf{C}_{ij} = c(x_i, x_j) \in \mathbb{R}^{n \times n}$, the generalized K -means problem is to
 148 minimize over partitions $\pi = \{\mathcal{C}_k\}_{k=1}^K$ the distortion:

$$150 \quad \min_{\pi} \left\{ \sum_{k=1}^K \frac{1}{|\mathcal{C}_k|} \sum_{i, j \in \mathcal{C}_k} c(x_i, x_j) : \bigsqcup_{k=1}^K \mathcal{C}_k = [n] \right\} \quad (7)$$

153 Define the set of *hard transport plans* to be $\Pi_\bullet(\mathbf{a}, \mathbf{b}) \triangleq \{\mathbf{P} \in \mathbb{R}_+^{n \times K} : \mathbf{P} \mathbf{1}_K = \mathbf{a}, \mathbf{P}^\top \mathbf{1}_n =$
 154 $\mathbf{b}, \|\mathbf{P}\|_0 = n\}$, where $\|\mathbf{P}\|_0 = |\{(i, j) : \mathbf{P}_{ij} > 0\}|$. Then, (7) is equivalent to the optimization
 155 problem

$$157 \quad \min_{\mathbf{Q} \in \Pi_\bullet(\mathbf{u}_n, \cdot)} \langle \mathbf{C}, \mathbf{Q} \text{ diag}(1/\mathbf{Q}^\top \mathbf{1}_n) \mathbf{Q}^\top \rangle_F, \quad (8)$$

159 where $\mathbf{u}_n = \frac{1}{n} \mathbf{1}_n$ is the uniform marginal. Interestingly, when $X = Y$, $\mathbf{a} = \mathbf{b} = \mathbf{u}_n$, and $\mathbf{C} = \mathbf{C}_{\ell_2^2}$,
 160 the optimal solution $(\mathbf{Q}, \mathbf{R}, \mathbf{g})$ of (3) always has $\mathbf{Q} = \mathbf{R} \in \Pi_\bullet(\mathbf{u}_n, \mathbf{g})$ following Proposition 9
 161 in Scetbon and Cuturi (2022). Consequently, K -means strictly reduces to low-rank OT (see also
 Corollary 3 in Scetbon and Cuturi (2022)), proving that the low-rank OT problem (3) is NP-hard.

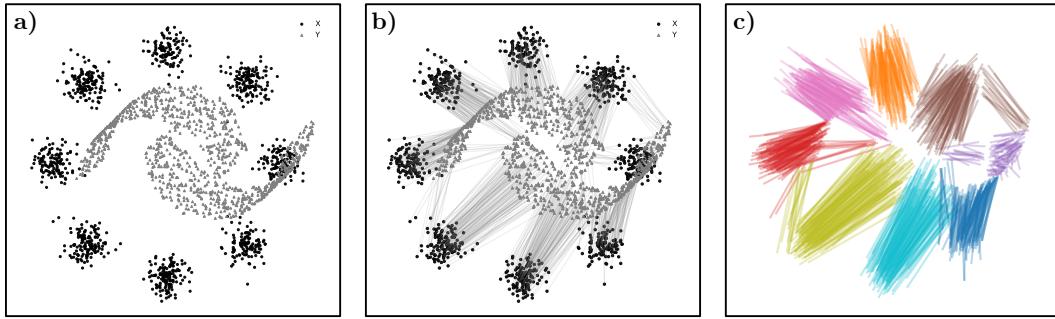


Figure 1: TC on (a) a synthetic 2-Moons (X) and 8-Gaussians (Y) dataset ($n = m = 1024$) from Tong et al. (2023) with the (b) Monge map alignment of X and $Y = \sigma(X)$ using Halmos et al. (2025b). TC reduces low-rank OT (co-clustering) to (c) clustering a single set of Monge registered correspondences using generalized K -means.

3 TRANSPORT CLUSTERING

We introduce a hard assignment variant of the low-rank OT problem and argue that it naturally generalizes K -means to co-clustering two datasets. We introduce *Monge registration* of the cost matrix as a tool for reducing low-rank OT to generalized K -means and discuss approximation guarantees for the reduction. Finally, we introduce *Kantorovich registration* as the analogue of Monge registration for the soft assignment low-rank OT problem (3). As this reduction converts low-rank OT from a co-clustering problem to a clustering problem, we refer to the procedure as *transport clustering*.

Clustering methods such as K -Means output hard assignments of points to clusters to represent a partition. The extension of (3) to co-clustering with a bipartition then requires the low rank factors to represent hard co-cluster assignments. Specifically, we require that the transport plans \mathbf{Q} and \mathbf{R} in (3) lie in the set of hard transport plans $\Pi_{\bullet}(\mathbf{a}, \mathbf{b})^1$ instead of $\Pi(\mathbf{a}, \mathbf{b})$, mirroring the assignment version of K -means in Section 2.

Definition 2. Given a cost matrix $\mathbf{C}_{ij} = c(x_i, y_j) \in \mathbb{R}^{n \times n}$, the assignment form of the (hard) low-rank optimal transport problem is to solve:

$$\min_{\substack{\mathbf{Q}, \mathbf{R} \in \Pi_{\bullet}(\mathbf{a}_n, \mathbf{g}) \\ \mathbf{g} \in \Delta_K}} \langle \mathbf{C}, \mathbf{Q} \operatorname{diag}(1/\mathbf{g}) \mathbf{R}^\top \rangle_F. \quad (9)$$

There is an equivalent partition-form of (9) which parallels the partition form of K -means in Zhuang et al. (2023). In particular, one finds a pair of partitions $\pi_X = \{\mathcal{C}_{X,k}\}$, $\pi_Y = \{\mathcal{C}_{Y,k}\}$ minimizing the distortion:

$$\min_{\pi_X \times \pi_Y} \left\{ \sum_{k=1}^K \frac{1}{|\mathcal{C}_k|} \sum_{i \in \mathcal{C}_{X,k}} \sum_{j \in \mathcal{C}_{Y,k}} c(x_i, y_j) : |\mathcal{C}_{X,k}| = |\mathcal{C}_{Y,k}|, \bigsqcup_{k=1}^K \mathcal{C}_{X,k} = \bigsqcup_{k=1}^K \mathcal{C}_{Y,k} = [n] \right\}. \quad (10)$$

This form (10) solves for a bipartition, implying (9) is a form of co-clustering (Appendix A.1). When the sets X and Y are distinct, (10) provides a natural generalization of K -means for co-clustering: (i) there are K co-clusters, (ii) each dataset receives a distinct partition π_X , π_Y , (iii) co-cluster sizes are matched $|\mathcal{C}_{X,k}| = |\mathcal{C}_{Y,k}|$, and (iv) one minimizes a distortion $c(x_i, y_j)$. When $X = Y$ and $\mathcal{C}_{X,k} = \mathcal{C}_{Y,k}$, observe that this exactly recovers the generalized K -means problem.

As an example, the decomposition of (10) for the squared Euclidean cost can be written as

$$\min_{\pi_X \times \pi_Y} \sum_{k=1}^K \sum_{i \in \mathcal{C}_{X,k}} \|x_i - \boldsymbol{\mu}_k^X\|_2^2 + \sum_{k=1}^K \sum_{j \in \mathcal{C}_{Y,k}} \|y_j - \boldsymbol{\mu}_k^Y\|_2^2 + \sum_{k=1}^K |\mathcal{C}_k| \|\boldsymbol{\mu}_k^X - \boldsymbol{\mu}_k^Y\|_2^2$$

¹A well-known result on network flows (see Peyré et al. (2019)) states that vertices of the (soft) transportation polytope $\Pi(\mathbf{a}, \mathbf{b})$ have $\leq n + K - 1$ non-zero entries, implying that the solutions of the (soft) low-rank OT problem (3) are nearly hard transport plans.

216 where $\mu_k^Z = \frac{1}{|\mathcal{C}_{Z,k}|} \sum_{i \in \mathcal{C}_{Z,k}} x_i$ for $Z = X, Y$ (see Remark 1). While (4) finds a single centroid per
 217 cluster, this is a natural generalization for optimizing two: one minimizes two K -means distortions
 218 of μ_k^X, μ_k^Y on X and Y , and an additional distortion between the cluster centers μ_k^X, μ_k^Y . When
 219 $X = Y$ and $\mu_k^X = \mu_k^Y$, this collapses to K -means.
 220

221 To solve the low-rank OT problem (9)-(10), we propose a reparameterization trick motivated by the
 222 assignment form (9). Specifically, as the matrices $\mathbf{Q}, \mathbf{R} \in \Pi_{\bullet}(\mathbf{u}_n, \mathbf{g})$ are hard assignment matrices
 223 with matching column and row sums there exists a permutation of the rows of \mathbf{R} (resp. \mathbf{Q}) that
 224 takes \mathbf{R} to \mathbf{Q} . Formally, for any feasible \mathbf{Q}, \mathbf{R} , there exists a permutation matrix $\mathbf{P}_{\sigma} \in \mathcal{P}_n$ with
 225 $\mathbf{R} = \mathbf{P}_{\sigma}^{\top} \mathbf{Q}$. With this reparameterization, we reformulate (9) as follows,
 226

$$\begin{aligned} \min_{\substack{\mathbf{Q}, \mathbf{R} \in \Pi_{\bullet}(\mathbf{u}_n, \mathbf{g}), \\ \mathbf{g} \in \Delta_K}} \langle \mathbf{C}, \mathbf{Q} \operatorname{diag}(\mathbf{g}^{-1}) \mathbf{R}^{\top} \rangle_F &= \min_{\substack{\mathbf{Q} \in \Pi_{\bullet}(\mathbf{u}_n, \mathbf{g}), \\ \mathbf{P}_{\sigma} \in \mathcal{P}_n, \\ \mathbf{g} \in \Delta_K}} \langle \mathbf{C}, \mathbf{Q} \operatorname{diag}(\mathbf{g}^{-1}) (\mathbf{P}_{\sigma}^{\top} \mathbf{Q})^{\top} \rangle_F, \\ &= \min_{\substack{\mathbf{Q} \in \Pi_{\bullet}(\mathbf{u}_n, \cdot), \\ \mathbf{P}_{\sigma} \in \mathcal{P}_n}} \langle \mathbf{C} \mathbf{P}_{\sigma}^{\top}, \mathbf{Q} \operatorname{diag}(1/\mathbf{Q}^{\top} \mathbf{1}_n) \mathbf{Q}^{\top} \rangle_F, \end{aligned} \quad (11)$$

227 where \mathcal{P}_n is the set of permutation matrices. This reformulation of (9) might appear to offer little:
 228 the optimization remains over a difficult and non-convex pair of variables $(\mathbf{Q}, \mathbf{P}_{\sigma})$. However, the
 229 reformulation (11) offers a new perspective: for \mathbf{P}_{σ} fixed, (11) is a symmetric optimization problem
 230 over a single assignment matrix \mathbf{Q} with respect to the *registered* cost matrix $\mathbf{C} \mathbf{P}_{\sigma}^{\top}$.
 231

232 In fact, when \mathbf{P}_{σ} is fixed in (11) the result is exactly the generalized K -means problem (7) discussed
 233 in Section 2. Unfortunately, however, the reduction from (9) to (7) requires a priori knowledge of the
 234 optimal choice for this unknown permutation \mathbf{P}_{σ} . This leads us to ask:
 235

236 *Is there an efficiently computable choice of permutation matrix \mathbf{P}_{σ} that accurately
 237 reduces low-rank optimal transport to the generalized K -means problem?*

238 We answer this question in the *affirmative*. Specifically, we show that taking the optimal Monge
 239 map \mathbf{P}_{σ} as the choice of \mathbf{P}_{σ} yields a constant-factor approximation algorithm (Algorithm 1) for
 240 (hard) low-rank OT given an algorithm for solving the generalized K -means problem (Section 4).
 241 The resulting *transport clustering* (TC) algorithm first finds a correspondence between X and Y and
 242 then clusters the transport registered cost, effectively clustering on the correspondences (Figure 1).
 243

244 **Algorithm 1 (Transport Clustering).**

- 245 (i) *Compute the optimal Monge map by solving $\mathbf{P}_{\sigma^*} \triangleq n \cdot \arg \min_{\mathbf{P} \in \Pi(\mathbf{u}_n, \mathbf{u}_n)} \langle \mathbf{C}, \mathbf{P} \rangle_F$.*
- 246 (ii) *Register the cost matrix $\tilde{\mathbf{C}} = \mathbf{C} \mathbf{P}_{\sigma^*}^{\top}$ and solve the generalized K -means problem with
 247 $\tilde{\mathbf{C}}$ for $\mathbf{Q} = \arg \min_{\mathbf{Q} \in \Pi_{\bullet}(\mathbf{u}_n, \cdot)} \langle \tilde{\mathbf{C}}, \mathbf{Q} \operatorname{diag}(1/\mathbf{Q}^{\top} \mathbf{1}_n) \mathbf{Q}^{\top} \rangle_F$.*
- 248 (iii) *Output the pair $(\mathbf{Q}, \mathbf{P}_{\sigma^*}^{\top} \mathbf{Q})$.*

249 Using standard algorithms for the Monge problem such as the Hungarian algorithm (Kuhn, 1955) or
 250 the Sinkhorn algorithm (Cuturi, 2013), ones easily implements step (i) in polynomial time. For step
 251 (ii), we propose two algorithms for generalized K -means problem based upon (1) mirror descent and
 252 (2) semidefinite programming based algorithms for K -means (Peng and Wei, 2007; Fei and Chen,
 253 2018; Zhuang et al., 2023).

254 Given a $(1 + \epsilon)$ -approximation algorithm \mathcal{A} for K -means, an appropriate initialization for step (ii)
 255 of Algorithm 1 maintains the constant factor approximation guarantee with an additional $(1 + \epsilon)$
 256 factor. An analogous statement holds for metric costs where the K -means solver \mathcal{A} is replaced with a
 257 K -medians solver, yielding polynomial-time constant-factor approximations for low-rank OT with
 258 metric and kernel costs independent of an algorithm for generalized K -means (Section 4).

259 Finally, we note that an analogous notion of *Kantorovich registration* exists for the soft assignment
 260 variant of the low-rank OT problem (3) with arbitrary marginals \mathbf{a}, \mathbf{b} supported on X and Y with
 261 $n \neq m$. In this setting, rather than register via the Monge permutation, one registers by the optimal
 262 Kantorovich plan \mathbf{P}^* using either $\mathbf{Q} = \mathbf{P}^* \operatorname{diag}(1/\mathbf{b}) \mathbf{R}$ or $\mathbf{R} = (\mathbf{P}^*)^{\top} \operatorname{diag}(1/\mathbf{a}) \mathbf{Q}$. When solving
 263 with respect to \mathbf{Q} , this results in a (soft) generalized K -means problem:
 264

$$\min_{\mathbf{Q} \in \Pi(\mathbf{a}, \cdot)} \langle \mathbf{C} \mathbf{P}^{*,\top} \operatorname{diag}(1/\mathbf{a}), \mathbf{Q} \operatorname{diag}(1/\mathbf{Q}^{\top} \mathbf{1}_n) \mathbf{Q}^{\top} \rangle_F.$$

270 To obtain \mathbf{R} , one applies the conjugation $\mathbf{R} = (\mathbf{P}^*)^\top \text{diag}(1/\mathbf{a}) \mathbf{Q}$, which ensures that $\mathbf{R} \mathbf{1}_K =$
 271 $(\mathbf{P}^*)^\top \text{diag}(1/\mathbf{a}) \mathbf{Q} \mathbf{1}_K = \mathbf{b}$ and $\mathbf{R}^\top \mathbf{1}_n = \mathbf{Q}^\top \text{diag}(1/\mathbf{a}) \mathbf{P}^* \mathbf{1}_n = \mathbf{g}$.
 272

274 4 THEORETICAL RESULTS

277 **Approximation of low-rank optimal transport by generalized K -means.** In this section, we justify
 278 the reduction from the low-rank optimal transport problem (3) to the generalized K -means problem
 279 (7) by proving that solving the proxy problem (7) incurs at most a constant factor in cost. All proofs
 280 are found in Appendix A.1.

281 In detail, we derive a $(2 + \gamma)$ approximation ratio for any cost $c(\cdot, \cdot)$ satisfying the triangle inequality
 282 and a $(1 + \gamma + \sqrt{2\gamma})$ approximation ratio for any cost induced by a kernel, which includes the
 283 squared Euclidean cost. For metrics of negative type, we provide an improved approximation ratio of
 284 $(1 + \gamma)$. Examples of negative type metrics include all ℓ_p metrics for $p \in [1, 2]$ and weighted linear
 285 transformations thereof (see Theorem 3.6 Meckes (2013)). Any metric embeddable in ℓ_p , $p \in [1, 2]$,
 286 is also of negative type. For example, tree metrics are exactly embeddable in ℓ_p while shortest path
 287 metrics are approximately embeddable in ℓ_p with small distortion (Abraham et al., 2005).

288 To state our results, we write that a cost matrix \mathbf{C} is *induced* by a cost $c(\cdot, \cdot)$ if there exists points
 289 $X = \{x_1, \dots, x_n\}$ and $Y = \{y_1, \dots, y_n\}$ such that $\mathbf{C}_{ij} = c(x_i, y_j)$. A cost $c(\cdot, \cdot)$ is a *kernel cost* if
 290 $c(x, y) = \|\phi(x) - \phi(y)\|_2^2$ for some feature-map $\phi : X \rightarrow \mathbb{R}^d$. A cost function $c(\cdot, \cdot)$ is *conditionally*
 291 *negative semidefinite* if $\sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j c(x_i, x_j) \leq 0$ for all x_1, \dots, x_n and $\alpha_1, \dots, \alpha_n$ such
 292 that $\sum_{i=1}^n \alpha_i = 0$. Equivalently, this requires all cost matrices \mathbf{C} induced by $c(\cdot, \cdot)$ to be negative
 293 semidefinite $\mathbf{C} \preceq 0$ over $\mathbf{1}_n^\perp = \{\xi \in \mathbb{R}^n : \langle \xi, \mathbf{1}_n \rangle = 0\}$. A cost function $c(\cdot, \cdot)$ is said to be of
 294 *negative type* if it is a metric and conditionally negative semidefinite.
 295

296 **Theorem 1.** *Let $\mathbf{C} \in \mathbb{R}^{n \times n}$ be a cost matrix either induced by i) a metric of negative type, ii) a
 297 kernel cost, or iii) a cost satisfying the triangle inequality. If \mathbf{P}_{σ^*} denotes the full-rank optimal
 298 transport plan for \mathbf{C} and $\tilde{\mathbf{C}} = \mathbf{C} \mathbf{P}_{\sigma^*}^\top$ is the Monge registered cost, then*

$$\begin{aligned}
 & \min_{\mathbf{Q} \in \Pi_\bullet(\mathbf{u}_n, \cdot)} \langle \tilde{\mathbf{C}}, \mathbf{Q} \text{diag}(1/\mathbf{Q}^\top \mathbf{1}_n) \mathbf{Q}^\top \rangle_F \\
 & \leq (1 + \gamma) \cdot \min_{\substack{\mathbf{Q}, \mathbf{R} \in \Pi_\bullet(\mathbf{u}_n, \mathbf{g}), \\ \mathbf{g} \in \Delta_K}} \langle \mathbf{C}, \mathbf{Q} \text{diag}(\mathbf{g}^{-1}) \mathbf{R}^\top \rangle_F, \quad (\text{Metrics of Negative Type}) \\
 & \leq (1 + \gamma + \sqrt{2\gamma}) \cdot \min_{\substack{\mathbf{Q}, \mathbf{R} \in \Pi_\bullet(\mathbf{u}_n, \mathbf{g}), \\ \mathbf{g} \in \Delta_K}} \langle \mathbf{C}, \mathbf{Q} \text{diag}(\mathbf{g}^{-1}) \mathbf{R}^\top \rangle_F, \quad (\text{Kernel Costs}) \\
 & \leq (1 + \gamma + \rho) \cdot \min_{\substack{\mathbf{Q}, \mathbf{R} \in \Pi_\bullet(\mathbf{u}_n, \mathbf{g}), \\ \mathbf{g} \in \Delta_K}} \langle \mathbf{C}, \mathbf{Q} \text{diag}(\mathbf{g}^{-1}) \mathbf{R}^\top \rangle_F, \quad (\text{General Metrics})
 \end{aligned}$$

311 where $\gamma \in [0, 1]$ is the ratio of the cost of the optimal rank n and rank K solutions and $\rho \in [0, 1]$ is
 312 the min-ratio of the cluster-variances defined in Lemma 4.

314 Note that the approximation ratio $\gamma \leq 1$ as the optimal cost decreases monotonically with the rank.
 315 Consequently, the upper bound in Theorem 1 is at worst a 2-approximation for negative type metric
 316 costs and at worst a $(2 + \sqrt{2})$ -approximation for kernel costs. Further, following the argument in
 317 (Scetbon and Cuturi, 2022), γ is typically much smaller than one, especially for small $r \ll n$. Finally,
 318 we note that the statements of Theorem 1 holds even when \mathbf{g} is held fixed in both the upper and lower
 319 bounds. This follows from analyzing the proof of the theorem.

320 Next, we show that the derived approximation ratios are essentially tight and cannot be further
 321 improved without additional assumptions. Specifically, we show that when \mathbf{g} is fixed, the upper
 322 bound in Theorem 1 is realized by explicit examples in \mathbb{R}^2 . We provide separate examples for the
 323 Euclidean and squared Euclidean distances (Appendix A.2). Formally, we have the following result.

324 **Proposition 1.** For all $\epsilon > 0$, there exists an integer n and datasets X, Y of size n such that for the
 325 cost matrix $\mathbf{C} \in \mathbb{R}_+^{n \times n}$ induced on these points by either the Euclidean or squared Euclidean cost,
 326

$$\begin{aligned} 327 \quad & \min_{\mathbf{Q} \in \Pi_{\bullet}(\mathbf{u}_n, \mathbf{g})} \langle \tilde{\mathbf{C}}, \mathbf{Q} \operatorname{diag}(\mathbf{g}^{-1}) \mathbf{Q}^\top \rangle_F \\ 328 \quad & \geq (2 - \epsilon) \cdot \min_{\mathbf{Q}, \mathbf{R} \in \Pi_{\bullet}(\mathbf{u}_n, \mathbf{g})} \langle \mathbf{C}, \mathbf{Q} \operatorname{diag}(\mathbf{g}^{-1}) \mathbf{R}^\top \rangle_F, & \text{(Euclidean Metric)} \\ 329 \quad & \geq (3 - \epsilon) \cdot \min_{\mathbf{Q}, \mathbf{R} \in \Pi_{\bullet}(\mathbf{u}_n, \mathbf{g})} \langle \mathbf{C}, \mathbf{Q} \operatorname{diag}(\mathbf{g}^{-1}) \mathbf{R}^\top \rangle_F, & \text{(Squared-Euclidean Distance)} \\ 330 \end{aligned}$$

331 for some $\mathbf{g} \in \Delta_K$ and $\tilde{\mathbf{C}} = \mathbf{C} \mathbf{P}_{\sigma^*}^\top$ the Monge registered cost.
 332

333 The preceding lower bounds rely on (1) *unstable* arrangements of points, where the Monge map
 334 changes dramatically upon an ϵ -perturbation, and (2) a limit where the size of a the sets of the
 335 points X, Y is taken to ∞ as $|X| \uparrow \infty, |Y| \uparrow \infty$. In finite settings with stable Monge maps, the
 336 approximation ratios in Theorem 1 may be greatly improved.
 337

338 **Guarantees from Transport registered initialization with K -means and K -medians.** In the pre-
 339 ceding section, we derived constant factor approximation guarantees by reducing low-rank OT to gen-
 340 eralized K -means via Algorithm 1. However, $\tilde{\mathbf{C}}$ does not necessarily express a matrix of intra-dataset
 341 distances, so that even for kernel costs and metrics one cannot directly solve generalized K -means us-
 342 ing K -means or K -medians. In Theorem 2, we show that by solving K -means or K -medians cluster-
 343 ing optimally on X, Y separately to yield $\mathbf{Q}_X, \mathbf{R}_Y$ and taking the *minimum* of the Monge-registered
 344 solutions $(\mathbf{Q}_X, \mathbf{P}_{\sigma^*}^\top \mathbf{Q}_X)$ and $(\mathbf{P}_{\sigma^*} \mathbf{R}_Y, \mathbf{R}_Y)$ in cost $(\mathbf{Q}, \mathbf{R}) \rightarrow \langle \mathbf{C}, \mathbf{Q} \operatorname{diag}(1/\mathbf{Q}^\top \mathbf{1}_n) \mathbf{R}^\top \rangle$, the
 345 constant factor approximation guarantees are preserved. In other words, using the best initialization in
 346 generalized K -means between $\mathbf{Q}^{(0)} = \mathbf{Q}_X$ and $\mathbf{Q}^{(0)} = \mathbf{P}_{\sigma^*} \mathbf{R}_Y$ by solving K -means or K -medians
 347 already ensures a constant-factor approximation to low-rank OT on initialization, which only requires
 348 an algorithm for generalized K -means with a local descent guarantee to maintain the approximation.
 349

350 Let $\mathcal{A}_1, \mathcal{A}_2$ denote blackbox $(1 + \epsilon)$ -approximation algorithms for K -means and K -medians. For
 351 example, such polynomial time approximation algorithms exist when the dimension is fixed for K -
 352 means (Kumar et al., 2004), and $(1 + \epsilon)$ approximation algorithms exist for K -medians (Kolliopoulos
 353 and Rao, 2007). Then, we have the following guarantee for Algorithm 1 when using Algorithm 2 to
 354 implement step (ii) of the procedure.

355 **Theorem 2.** Let \mathbf{C} be a n -by- n cost matrix either induced by i) a metric of negative type, ii) a kernel
 356 cost, or iii) a cost satisfying the triangle inequality. Let $(\mathbf{Q}^*, \mathbf{R}^*)$ be the solution output by using
 357 Algorithm 2 for step (ii) of Algorithm 1 with oracles \mathcal{A}_1 and \mathcal{A}_2 . Then,

$$\begin{aligned} 358 \quad & (1 + \epsilon)^{-1} \cdot \langle \mathbf{C}, \mathbf{Q}^* \operatorname{diag}(1/(\mathbf{Q}^*)^\top \mathbf{1}_n) (\mathbf{R}^*)^\top \rangle_F \\ 359 \quad & \leq (2 + 2\gamma) \cdot \min_{\substack{\mathbf{Q}, \mathbf{R} \in \Pi_{\bullet}(\mathbf{u}_n, \mathbf{g}), \\ \mathbf{g} \in \Delta_K}} \langle \mathbf{C}, \mathbf{Q} \operatorname{diag}(\mathbf{g}^{-1}) \mathbf{R}^\top \rangle_F & \text{(Metrics of Negative Type)} \\ 360 \quad & \leq (1 + \gamma + \sqrt{2\gamma}) \cdot \min_{\substack{\mathbf{Q}, \mathbf{R} \in \Pi_{\bullet}(\mathbf{u}_n, \mathbf{g}), \\ \mathbf{g} \in \Delta_K}} \langle \mathbf{C}, \mathbf{Q} \operatorname{diag}(\mathbf{g}^{-1}) \mathbf{R}^\top \rangle_F & \text{(Kernel Costs)} \\ 361 \quad & \leq (2 + 2\gamma + 2\rho) \cdot \min_{\substack{\mathbf{Q}, \mathbf{R} \in \Pi_{\bullet}(\mathbf{u}_n, \mathbf{g}), \\ \mathbf{g} \in \Delta_K}} \langle \mathbf{C}, \mathbf{Q} \operatorname{diag}(\mathbf{g}^{-1}) \mathbf{R}^\top \rangle_F & \text{(General Metrics)} \\ 362 \end{aligned}$$

363 where $\gamma, \rho \in [0, 1]$ are defined as in Theorem 1.
 364

365 **Generalized K -means Solver.** To solve the generalized K -means problem we propose (1) a mirror-
 366 descent algorithm called GKMS that solves generalized K -means locally, like Lloyd's algorithm, and
 367 (2) a semidefinite programming based approach. GKMS solves a sequence of diagonal, one-sided
 368 Sinkhorn projections (Cuturi, 2013) of a classical exponentiated gradient update. Suppose $(\gamma_k)_{k=1}^\infty$ is
 369 a positive sequence of step sizes for a mirror-descent with respect to the KL divergence. Then, the
 370 update for $\mathbf{Q}^{(k)}$ is given by:
 371

$$\mathbf{Q}^{(k+1)} \leftarrow P_{\mathbf{u}_n, \cdot} \left(\mathbf{Q}^{(k)} \odot \exp(-\gamma_k \nabla_{\mathbf{Q}} \mathcal{F} |_{\mathbf{Q}^{(k)}}) \right), \quad (12)$$

372 where $\mathcal{F}(\mathbf{Q}) \triangleq \langle \tilde{\mathbf{C}}, \mathbf{Q} \operatorname{diag}(1/\mathbf{Q}^\top \mathbf{1}_n) \mathbf{Q}^\top \rangle_F$ and $P_{\mathbf{u}_n, \cdot}(\mathbf{X}) = \operatorname{diag}(\mathbf{u}_n / \mathbf{X} \mathbf{1}_K) \mathbf{X}$ is a Sinkhorn
 373 projection onto the set of positive matrices with marginal \mathbf{u}_n , $\Pi(\mathbf{u}_n, \cdot) = \{\mathbf{X} \in \mathbb{R}_+^{n \times K} : \mathbf{X} \mathbf{1}_K =$

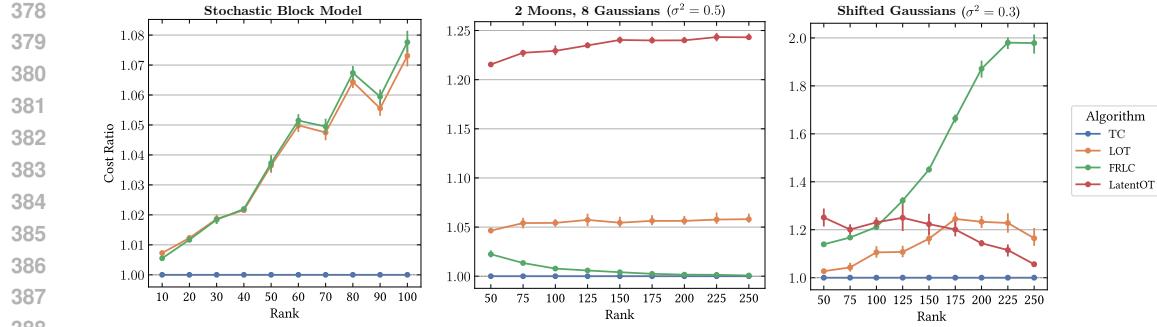


Figure 2: The relative cost of the rank $K \in \{50, 75, \dots, 250\}$ transport plan inferred LOT, FRLC, and LatentOT compared to the cost of the transport plan inferred by TC across 315 synthetic instances (lower is better). Each dataset contains $n = m = 5000$ data points. LatentOT is excluded from the stochastic block model evaluation as it takes as input a squared Euclidean cost matrix.

u_n . Observe that solving low-rank OT (9) with the constant-factor guarantees of Theorem 2 only requires (12) to decrease the cost from the initialization of Algorithm 2. We show in Proposition 3 that assuming a δ lower bound on $\mathbf{Q}^\top \mathbf{1}_n$ (similar to Scetbon et al. (2021); Halmos et al. (2024)), relative-smoothness to the entropy mirror-map ψ holds $\|\nabla \mathcal{F}^{(k+1)} - \nabla \mathcal{F}^{(k)}\|_F \leq \beta \|\nabla \psi^{(k+1)} - \nabla \psi^{(k)}\|_F$ for $\beta = \text{poly}(n, \|\mathbf{C}\|_F, \delta)$. By the descent lemma (Lu et al., 2018), this implies that Theorem 2 provides upper bounds on the quality of the final solution of GKMS. See Appendix A.4.1 for more details on the GKMS algorithm and Appendix A.4.2 for a semidefinite programming approach

Complexity Analysis. The time and space complexity of Algorithm 1 depends on the complexity of optimal transport and generalized K-means. Procedures such as Agarwal et al. (2024) and Halmos et al. (2025b) permit OT to scale with $\tilde{\mathcal{O}}(n)$ time and $\mathcal{O}(n)$ space complexity for constant dimension d . GKMS requires $\mathcal{O}(ndr)$ iteration complexity if the cost is factorized $\mathbf{C} = \mathbf{U}_d \mathbf{V}_d^\top$ and $\mathcal{O}(nr)$ space to store \mathbf{Q} . In addition, recent SDP approaches for K -means using the Burer-Monteiro factorization Zhuang et al. (2023) likewise provide linear time and space complexity for generalized K -means.

5 NUMERICAL EXPERIMENTS

We present numerical experiments for three synthetic and two real datasets to demonstrate the effectiveness of transport clustering (TC) for low-rank OT and co-clustering. Implementation details are provided in Appendix B.1.

Synthetic Validation. We constructed three synthetic datasets to evaluate low-rank OT methods and evaluated transport clustering against three existing low-rank OT methods: LOT (Scetbon et al., 2021), FRLC (Halmos et al., 2024), and LatentOT (Lin et al., 2021). The three synthetic datasets are referred to as 2-Moons and 8-Gaussians (2M-8G) (Tong et al., 2023; Scetbon et al., 2021), shifted Gaussians (SG), and the stochastic block model (SBM). The 2M-8G dataset contained three instances at noise levels $\sigma^2 \in \{0.1, 0.25, 0.5\}$, the SG dataset contained three instances at noise levels $\sigma^2 \in \{0.1, 0.2, 0.3\}$, and the SBM dataset contained a single instance. Each instance contained $n = m = 5000$ points and methods were evaluated across a spectrum of ranks $K \in \{50, 75, \dots, 250\}$ and $K \in \{10, \dots, 100\}$ with five random seeds $s \in \{1, 2, 3, 4, 5\}$. In total, each algorithm was ran on 64 instances for 5 random seeds. Synthetic dataset simulation details are provided in Appendix B.2.

To evaluate the low-rank OT methods, we computed the relative cost of the low-rank OT plans output by existing methods compared to the cost of the low-rank OT plan output by TC. Across all synthetic datasets, TC was consistently the best performing method in terms of minimizing the low-rank OT cost (Figure 2). On the 2M-8G dataset, TC outperformed all methods in the highest noise setting (Figure 2, 7) and was slightly ($\leq 1\%$ difference) outperformed by FRLC in the low noise, high rank setting. On the SG dataset, TC was the top performing method and obtained an average relative improvement of 23% compared to the next best performing method LOT (Figure 2, 5). On the SBM dataset, TC outperformed all methods and obtained an average relative improvement of 4% compared to the next best performing method LOT (Figure 2, 4).

432 Table 1: Comparison of low-rank OT methods across three datasets: CIFAR-10 ($n = 60,000$),
 433 smallest mouse embryo split ($n = 18,819$), and largest mouse embryo split ($n = 131,040$).

435	Dataset	Method	Rank	OT Cost ↓	AMI (A/B) ↑	ARI (A/B) ↑	CTA ↑
436	CIFAR-10 (60,000)	TC	10	231.200	0.478 / 0.476	0.358 / 0.356	0.412
		FRLC	10	235.950	0.411 / 0.407	0.281 / 0.277	0.351
		LOT	10	234.733	0.430 / 0.427	0.306 / 0.303	0.358
439	Mouse embryo E8.5 → E8.75 (18,819)	TC	43	0.506	0.639 / 0.617	0.329 / 0.307	0.722
		FRLC	43	0.553	0.556 / 0.531	0.217 / 0.199	0.525
		LOT	43	0.520	0.605 / 0.592	0.283 / 0.272	0.611
442	Mouse embryo E9.5 → E9.75 (131,040)	TC	80	0.389	0.554 / 0.551	0.172 / 0.169	0.564
		FRLC	80	0.399	0.491 / 0.487	0.116 / 0.115	0.447
		LOT	80	—	— / —	— / —	—

445
 446
 447 To evaluate co-cluster recovery, we computed the ARI/AMI with reference to the ground truth clusters
 448 when the rank K matched the true number of clusters ($K = 250$ for SG, $K = 100$ for SBM). On
 449 the SG dataset, TC was the second best performing method (Figure 5) with a slightly worse average
 450 ARI/AMI than LatentOT (TC 0.97/0.99; LOT 0.94/0.98; FRLC 0.60/0.88; LatentOT: 1.00/1.00).
 451 On the SBM dataset, TC was the best performing method (Figure 4) and obtained the highest average
 452 ARI/AMI (TC 0.09/0.20; LOT 0.02/0.02; FRLC 0.02/0.01).

453 **Co-Clustering on CIFAR10.** Following Zhuang et al. (2023) we applied low-rank OT methods to
 454 the CIFAR-10 dataset, which contains 60,000 images of size $32 \times 32 \times 3$ across 10 classes. We use a
 455 ResNet to embed the images to $d = 512$ (He et al., 2016) and apply a PCA to $d = 50$, following the
 456 procedure of Zhuang et al. (2023). We perform a stratified 50:50 split of the images into two datasets
 457 of 30,000 images with class-label distributions matched. We co-cluster these two datasets using the
 458 methods which scale to it: TC, FRLC (Halmos et al., 2024), and LOT Scetbon et al. (2021). We set the
 459 rank $K = 10$ to match the number of labels. For TC we solve for \mathbf{P}_{σ^*} with Halmos et al. (2025b) and
 460 solve generalized K -means with GKMS. On this 60k point alignment, TC attains the lowest OT cost of
 461 231.20 vs. LOT (234.73) and FRLC (235.95). To evaluate the co-clustering performance of TC we
 462 evaluate the AMI and ARI of the labels derived from the asymmetric factors against the ground-truth
 463 class label assignments (Table 1). TC shows stronger agreement on both marginals (AMI/ARI: split A
 464 0.478/0.358, split B 0.476/0.356) than LOT (0.430/0.306, 0.427/0.303) or FRLC (0.411/0.281,
 465 0.407/0.277). To assess the accuracy of co-clustering across distinct domains, we computing the
 466 class-transfer accuracy (CTA): the fraction of mass aligned between ground-truth classes *across*
 467 *datasets* over the total (for ρ the class-class transport matrix, this is $\text{tr } \rho / \sum \rho_{k,k'}$). TC attains a CTA
 468 of 0.412, compared to LOT (0.358) and FRLC (0.351), indicating more accurate cross-domain label
 469 transfer. See Section B.3 for more details.

470 **Large-Scale Single-Cell Transcriptomics.** Recent single-cell datasets have sequenced millions
 471 of nuclei from model organisms such as the mouse (Qiu et al., 2024; 2022) and zebrafish (Liu
 472 et al., 2022) across time to characterize cell-differentiation and stem-cell reprogramming. Optimal
 473 transport has emerged as the canonical tool for aligning single-cell datasets (Schiebinger et al., 2019;
 474 Zeira et al., 2022; Liu et al., 2023; Halmos et al., 2025c; Klein et al., 2025), and low-rank optimal
 475 transport has recently emerged as a tool to co-cluster or link cell-types across time, allowing one to
 476 infer a map of cell-type differentiation (Halmos et al., 2025a; Klein et al., 2025). We benchmark
 477 the co-clustering and alignment performance of TC, LOT, and FRLC on a recent, massive-scale
 478 dataset of single-cell mouse embryogenesis Qiu et al. (2024) measured across 45 timepoint bins
 479 with combinatorial indexing (sci-RNA-seq3). We align 7 time-points with $n = 18819-131040$ cells
 480 (stages E8.5-E10.0) for a total of 6 pairwise alignments (Table 1, Supplementary Table 2). We set the
 481 rank $K \in \{43, 53, 57, 67, 80, 77\}$ to be the number of ground-truth cell-types. While LOT runs up to
 482 E8.75-9.0 (30240 cells) and fails to compute an alignment past E9.0-E9.25 (45360 cells), we find TC
 483 and FRLC scale to all pairs. Transport clustering yields lower OT cost, higher AMI, and higher ARI
 484 than both LOT and FRLC on all dataset pairs (Supplementary Table 2). Notably, the co-clustering
 485 performance is also improved for all timepoints: as an example, on E8.5-8.75 TC achieves a CTA
 486 of 0.722 and correctly maps the majority of mass between recurring cell-types across the different
 487 datasets, compared to LOT (0.611) and FRLC (0.525). See Section B.4 for more details on this
 488 experiment.

486 REFERENCES
487

488 Ittai Abraham, Yair Bartal, Jon Kleinberg, T-HH Chan, Ofer Neiman, Kedar Dhamdhere, Aleksandrs
489 Slivkins, and Anupam Gupta. Metric embeddings with relaxed guarantees. In *46th Annual IEEE*
490 *Symposium on Foundations of Computer Science (FOCS'05)*, pages 83–100. IEEE, 2005.

491 Pankaj K. Agarwal, Sharath Raghvendra, Pouyan Shirzadian, and Keegan Yao. *Fast and Accurate*
492 *Approximations of the Optimal Transport in Semi-Discrete and Discrete Settings*, page 45144529.
493 Society for Industrial and Applied Mathematics, January 2024. ISBN 9781611977912. doi: 10.
494 1137/1.9781611977912.159. URL <http://dx.doi.org/10.1137/1.9781611977912.159>.

495 David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seeding. In *Proceedings*
496 *of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms*, SODA '07, page
497 10271035, USA, 2007. Society for Industrial and Applied Mathematics. ISBN 9780898716245.

498 Demba Ba, Akshunna S. Dogra, Rikab Gambhir, Abiy Tasissa, and Jesse Thaler. Shaper: can you
499 hear the shape of a jet? *Journal of High Energy Physics*, 2023(6), June 2023. ISSN 1029-8479. doi:
500 10.1007/jhep06(2023)195. URL [http://dx.doi.org/10.1007/JHEP06\(2023\)195](http://dx.doi.org/10.1007/JHEP06(2023)195).

501 Valentin De Bortoli, Iryna Korshunova, Andriy Mnih, and Arnaud Doucet. Schrodinger bridge flow
502 for unpaired data translation. In *The Thirty-eighth Annual Conference on Neural Information*
503 *Processing Systems*, 2024. URL <https://openreview.net/forum?id=1F32iCJFFa>.

504 Yann Brenier. Polar factorization and monotone rearrangement of vector-valued functions. *Communications on pure and applied mathematics*, 44(4):375–417, 1991.

505 Charlotte Bunne, Stefan G. Stark, Gabriele Gut, Jacobo Sarabia del Castillo, Mitch Levesque,
506 Kjong-Van Lehmann, Lucas Pelkmans, Andreas Krause, and Gunnar Rätsch. Learning single-
507 cell perturbation responses using neural optimal transport. *Nature Methods*, 20(11):1759–1768,
508 September 2023. ISSN 1548-7105. doi: 10.1038/s41592-023-01969-x. URL <http://dx.doi.org/10.1038/s41592-023-01969-x>.

509 Sinho Chewi, Jonathan Niles-Weed, and Philippe Rigollet. Statistical optimal transport. *arXiv*
510 *preprint arXiv:2407.18163*, 3, 2024.

511 Joel E Cohen and Uriel G Rothblum. Nonnegative Ranks, Decompositions, and Factorizations of
512 Nonnegative Matrices. *Linear Algebra and its Applications*, 190:149–168, 1993.

513 Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. *Advances in Neural*
514 *Information Processing Systems*, pages 2292–2300, 2013.

515 Inderjit S Dhillon, Yuqiang Guan, and Brian Kulis. Kernel k-means: spectral clustering and nor-
516 malized cuts. In *Proceedings of the tenth ACM SIGKDD international conference on Knowledge*
517 *discovery and data mining*, pages 551–556, 2004a.

518 Inderjit S. Dhillon, Yuqiang Guan, and Brian Kulis. Kernel k-means: spectral clustering and normal-
519 ized cuts. In *Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge*
520 *Discovery and Data Mining*, KDD '04, page 551556, New York, NY, USA, 2004b. Associa-
521 tion for Computing Machinery. ISBN 1581138881. doi: 10.1145/1014052.1014118. URL
522 <https://doi.org/10.1145/1014052.1014118>.

523 Yingjie Fei and Yudong Chen. Hidden integrality of sdp relaxations for sub-gaussian mixture models.
524 In *Conference On Learning Theory*, pages 1931–1965. PMLR, 2018.

525 Aden Forrow, Jan-Christian Hütter, Mor Nitzan, Philippe Rigollet, Geoffrey Schiebinger, and Jonathan
526 Weed. Statistical Optimal Transport via Factored Couplings. In Kamalika Chaudhuri and Masashi
527 Sugiyama, editors, *Proceedings of the Twenty-Second International Conference on Artificial*
528 *Intelligence and Statistics*, volume 89 of *Proceedings of Machine Learning Research*, pages
529 2454–2465. PMLR, 16–18 Apr 2019. URL <https://proceedings.mlr.press/v89/forrow19a.html>.

530 Borjan Geshkovski, Cyril Letrouit, Yury Polyanskiy, and Philippe Rigollet. A mathematical perspec-
531 tive on Transformers. *arXiv preprint arXiv:2312.10794*, 2023.

540 Peter Halmos, Xinhao Liu, Julian Gold, and Benjamin Raphael. Low-Rank Optimal Transport
 541 through Factor Relaxation with Latent Coupling. In *The Thirty-eighth Annual Conference on*
 542 *Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=hGgkdFF2hR>.

543

544 Peter Halmos, Julian Gold, Xinhao Liu, and Benjamin J. Raphael. Learning latent trajectories in
 545 developmental time series with Hidden-Markov optimal transport. In *International Conference on*
 546 *Research in Computational Molecular Biology*, pages 367–370. Springer, 2025a.

547

548 Peter Halmos, Julian Gold, Xinhao Liu, and Benjamin J. Raphael. Hierarchical refinement: Optimal
 549 transport to infinity and beyond. *arXiv preprint arXiv:2503.03025*, 2025b.

550

551 Peter Halmos, Xinhao Liu, Julian Gold, Feng Chen, Li Ding, and Benjamin J. Raphael. DeST-OT:
 552 Alignment of spatiotemporal transcriptomics data. *Cell Systems*, January 2025c. ISSN 2405-4712.
 553 doi: 10.1016/j.cels.2024.12.001. URL <http://dx.doi.org/10.1016/j.cels.2024.12.001>.

554

555 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 556 recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 557 pages 770–778, 2016.

558 L Kantorovich. On the Translocation of Masses: Doklady akademii nauk ussr. 1942.

559

560 Dominik Klein, Théo Uscidda, Fabian J Theis, and marco cuturi. Generative entropic neural optimal
 561 transport to map within and across space, 2024. URL <https://openreview.net/forum?id=gBLEHzKOfF>.

562

563 Dominik Klein, Giovanni Palla, Marius Lange, Michal Klein, Zoe Piran, Manuel Gander, Laetitia
 564 Meng-Papaxanthos, Michael Sterr, Lama Saber, Changying Jing, Aimée Bastidas-Ponce, Perla
 565 Cota, Marta Tarquis-Medina, Shrey Parikh, Ilan Gold, Heiko Lickert, Mostafa Bakhti, Mor
 566 Nitzan, Marco Cuturi, and Fabian J. Theis. Mapping cells through time and space with moscot.
 567 *Nature*, January 2025. ISSN 1476-4687. doi: 10.1038/s41586-024-08453-2. URL <http://dx.doi.org/10.1038/s41586-024-08453-2>.

568

569 Stavros G. Kolliopoulos and Satish Rao. A nearly linear-time approximation scheme for the eu-
 570 clidean k-median problem. *SIAM Journal on Computing*, 37(3):757782, January 2007. ISSN
 571 1095-7111. doi: 10.1137/s0097539702404055. URL <http://dx.doi.org/10.1137/S0097539702404055>.

572

573 Patrick T. Komiske, Eric M. Metodiev, and Jesse Thaler. Metric space of collider events. *Phys. Rev.*
 574 *Lett.*, 123:041801, Jul 2019. doi: 10.1103/PhysRevLett.123.041801. URL <https://link.aps.org/doi/10.1103/PhysRevLett.123.041801>.

575

576 Alexander Korotin, Lingxiao Li, Aude Genevay, Justin M. Solomon, Alexander Filippov, and Evgeny
 577 Burnaev. Do neural optimal transport solvers work? a continuous wasserstein-2 benchmark.
 578 In *NeurIPS*, pages 14593–14605, 2021. URL <http://dblp.uni-trier.de/db/conf/nips/neurips2021.html#KorotinLGSFB21>.

579

580

581 Alexander Korotin, Daniil Selikhanovich, and Evgeny Burnaev. Neural optimal transport. In *The Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=d8CBR1WNkqH>.

582

583

584 Harold W. Kuhn. The Hungarian Method for the Assignment Problem. *Naval Research Logistics*
 585 *Quarterly*, 2(1–2):83–97, March 1955. doi: 10.1002/nav.3800020109.

586

587 A. Kumar, Y. Sabharwal, and S. Sen. A simple linear time $(1 + \epsilon)$ -approximation algorithm
 588 for k-means clustering in any dimensions. In *45th Annual IEEE Symposium on Foundations of*
 589 *Computer Science*, pages 454–462, 2004. doi: 10.1109/FOCS.2004.7.

590

591 Daniel D. Lee and H. Sebastian Seung. Algorithms for non-negative matrix factorization. In Todd K.
 592 Leen, Thomas G. Dietterich, and Volker Tresp, editors, *Advances in Neural Information Processing*
 593 *Systems 13, Papers from Neural Information Processing Systems (NIPS) 2000, Denver, CO, USA*,
 pages 556–562. MIT Press, 2000. URL <https://proceedings.neurips.cc/paper/2000/hash/f9d1152547c0bde01830b7e8bd60024c-Abstract.html>.

594 Xuhong Li, Jiamin Chen, Yekun Chai, and Haoyi Xiong. GiLOT: Interpreting generative language
 595 models via optimal transport. In *Forty-first International Conference on Machine Learning*, 2024.
 596 URL <https://openreview.net/forum?id=qKL25sGjxL>.

597 Chi-Heng Lin, Mehdi Azabou, and Eva L Dyer. Making transport more robust and interpretable by
 598 moving data through a small number of anchor points. *Proceedings of machine learning research*,
 600 139:6631, 2021.

601 Chang Liu, Rui Li, Young Li, Xiumei Lin, Kaichen Zhao, Qun Liu, Shuowen Wang, Xueqian Yang,
 602 Xuyang Shi, Yuting Ma, Chenyu Pei, Hui Wang, Wendai Bao, Junhou Hui, Tao Yang, Zhicheng
 603 Xu, Tingting Lai, Michael Arman Berberoglu, Sunil Kumar Sahu, Miguel A Esteban, Kailong
 604 Ma, Guangyi Fan, Yuxiang Li, Shiping Liu, Ao Chen, Xun Xu, Zhiqiang Dong, and Longqi Liu.
 605 Spatiotemporal mapping of gene expression landscapes and developmental trajectories during
 606 zebrafish embryogenesis. *Dev. Cell*, 57(10):1284–1298.e5, May 2022.

607 Xinhao Liu, Ron Zeira, and Benjamin J Raphael. Partial alignment of multislice spatially resolved
 608 transcriptomics data. *Genome Research*, 33(7):1124–1132, 2023.

609

610 Haihao Lu, Robert M. Freund, and Yurii Nesterov. Relatively smooth convex optimization by
 611 first-order methods, and applications. *SIAM Journal on Optimization*, 28(1):33354, January
 612 2018. ISSN 1095-7189. doi: 10.1137/16m1099546. URL <http://dx.doi.org/10.1137/16M1099546>.

613

614 Tudor Manole, Patrick Bryant, John Alison, Mikael Kuusela, and Larry Wasserman. Background
 615 modeling for double higgs boson production: Density ratios and optimal transport, 2024. URL
 616 <https://arxiv.org/abs/2208.02807>.

617

618 Mark W Meckes. Positive definite metric spaces. *Positivity*, 17(3):733–757, 2013.

619

620 Igor Melnyk, Youssef Mroueh, Brian Belgodere, Mattia Rigotti, Apoorva Nitsure, Mikhail Yurochkin,
 621 Kristjan Greenewald, Jiri Navratil, and Jarret Ross. Distributional preference alignment of LLMs
 622 via optimal transport. In *The Thirty-eighth Annual Conference on Neural Information Processing
 623 Systems*, 2024. URL <https://openreview.net/forum?id=2Lctgfn6Ty>.

624

625 Gaspard Monge. Mémoire sur la théorie des déblais et des remblais. *Mem. Math. Phys. Acad. Royale
 626 Sci.*, pages 666–704, 1781.

627

628 Jiming Peng and Yu Wei. Approximating k-means-type clustering via semidefinite programming.
 629 *SIAM journal on optimization*, 18(1):186–205, 2007.

630

631 Jiming Peng and Yu Xia. A new theoretical framework for k-means-type clustering. In *Foundations
 632 and advances in data mining*, pages 79–96. Springer, 2005.

633

634 Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data
 635 science. *Foundations and Trends® in Machine Learning*, 11(5-6):355–607, 2019.

636

637 Chengxiang Qiu, Junyue Cao, Beth K Martin, Tony Li, Ian C Welsh, Sanjay Srivatsan, Xingfan
 638 Huang, Diego Calderon, William Stafford Noble, Christine M Disteche, Stephen A. Murray, Malte
 639 Spielmann, Cecilia B. Moens, Cole Trapnell, and Jay Shendure. Systematic reconstruction of
 640 cellular trajectories across mouse embryogenesis. *Nature genetics*, 54(3):328–341, 2022.

641

642 Chengxiang Qiu, Beth K Martin, Ian C Welsh, and et al. Daza. A single-cell time-lapse of mouse
 643 prenatal development from gastrula to birth. *Nature*, 626(8001):1084–1093, 2024.

644

645 C. Radhakrishna Rao. Convexity properties of entropy functions and analysis of diversity. *Lecture
 646 Notes-Monograph Series*, 5:68–77, 1984. ISSN 07492170. URL <http://www.jstor.org/stable/4355484>.

647

648 Michael E. Sander, Pierre Ablin, Mathieu Blondel, and Gabriel Peyré. Sinkformers: Transformers
 649 with Doubly Stochastic Attention. In Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera,
 650 editors, *Proceedings of The 25th International Conference on Artificial Intelligence and Statistics*,
 651 volume 151 of *Proceedings of Machine Learning Research*, pages 3515–3530. PMLR, 28–30 Mar
 652 2022. URL <https://proceedings.mlr.press/v151/sander22a.html>.

648 Meyer Scetbon and Marco Cuturi. Linear time sinkhorn divergences using positive features. *Advances*
 649 *in Neural Information Processing Systems*, 33:13468–13480, 2020.

650

651 Meyer Scetbon and Marco Cuturi. Low-rank Optimal Transport: Approximation, Statistics and
 652 Debiasing. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors,
 653 *Advances in Neural Information Processing Systems*, 2022. URL <https://openreview.net/forum?id=4btNeXKFAQ>.

654

655 Meyer Scetbon, Marco Cuturi, and Gabriel Peyré. Low-Rank Sinkhorn Factorization. In *International*
 656 *Conference on Machine Learning*, 2021. URL <https://api.semanticscholar.org/CorpusID:232147563>.

657

658 Meyer Scetbon, Gabriel Peyré, and Marco Cuturi. Linear-time Gromov Wasserstein Distances
 659 using Low Rank Couplings and Costs. In *International Conference on Machine Learning*, pages
 660 19347–19365. PMLR, 2022.

661

662 Meyer Scetbon, Michal Klein, Giovanni Palla, and Marco Cuturi. Unbalanced Low-rank Optimal
 663 Transport Solvers, 2023.

664

665 Geoffrey Schiebinger, Jian Shu, Marcin Tabaka, Brian Cleary, Vidya Subramanian, Aryeh Solomon,
 666 Joshua Gould, Siyan Liu, Stacie Lin, Peter Berube, et al. Optimal-Transport Analysis of Single-Cell
 667 Gene Expression Identifies Developmental Trajectories in Reprogramming. *Cell*, 176(4):928–943,
 668 2019.

669

670 I. J. Schoenberg. Metric spaces and positive definite functions. *Transactions of the American*
 671 *Mathematical Society*, 44(3):522–536, 1938. ISSN 00029947, 10886850. URL <http://www.jstor.org/stable/1989894>.

672

673 Richard Sinkhorn. A relationship between arbitrary positive matrices and stochastic matrices.
 674 *Canadian Journal of Mathematics*, 18:303–306, 1966.

675

676 Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, and Da-Cheng Juan. Sparse Sinkhorn Atten-
 677 tion. In Hal Daumé III and Aarti Singh, editors, *Proceedings of the 37th International Confer-
 678 ence on Machine Learning*, volume 119 of *Proceedings of Machine Learning Research*, pages
 679 9438–9447. PMLR, 13–18 Jul 2020. URL <https://proceedings.mlr.press/v119/tay20a.html>.

680

681 Alexander Tong, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-Brooks, Kilian
 682 Fatras, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
 683 with minibatch optimal transport. In *ICML Workshop on New Frontiers in Learning, Control, and
 684 Dynamical Systems*, 2023.

685

686 Alexander Tong, Kilian FATRAS, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-
 687 Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
 688 with minibatch optimal transport. *Transactions on Machine Learning Research*, 2024. ISSN 2835-
 689 8856. URL <https://openreview.net/forum?id=CD9Snc73AW>. Expert Certification.

690

691 Karren Dai Yang, Karthik Damodaran, Saradha Venkatachalam, Ali C Soylemezoglu, GV Shiv-
 692 ashankar, and Caroline Uhler. Predicting cell lineages using autoencoders and optimal transport.
 693 *PLoS computational biology*, 16(4):e1007828, 2020.

694

695 Ron Zeira, Max Land, Alexander Strzalkowski, and Benjamin J Raphael. Alignment and integration
 696 of spatial transcriptomics data. *Nature Methods*, 19(5):567–575, 2022.

697

698 Yubo Zhuang, Xiaohui Chen, and Yun Yang. Sketch-and-lift: scalable subsampled semidefinite
 699 program for k-means clustering. In *International Conference on Artificial Intelligence and Statistics*,
 700 pages 9214–9246. PMLR, 2022.

701

702 **A APPENDIX**
 703

704 **A.1 APPROXIMATION GUARANTEES FOR LOW-RANK OPTIMAL TRANSPORT**
 705

706 To prove the approximation guarantees stated in Theorem 1, we start by proving the equivalence
 707 between the partition formulation (10) and the assignment formulation (9) of the (hard) low-rank OT
 708 problem.

709 Throughout, we assume that \mathbf{C} is induced by a cost matrix $c(\cdot, \cdot)$ on $X = \{x_1, \dots, x_n\}$ and
 710 $Y = \{y_1, \dots, y_n\}$, matching the assumptions in Theorem 1. Denote the set of partitions of $\{1, \dots, n\}$
 711 as \mathcal{P}_n and the set of partitions of size K as \mathcal{P}_n^K . Define the cost $\mathcal{J}(\mathcal{X}, \mathcal{Y})$ of two partitions $\mathcal{X}, \mathcal{Y} \in \mathcal{P}_n^K$
 712 as

$$713 \quad \mathcal{J}(\mathcal{X}, \mathcal{Y}) \triangleq \sum_{k=1}^K \frac{1}{|X_k|} \sum_{i \in X_k} \sum_{j \in Y_k} c(x_i, y_j).$$

714 Then, the assignment formulation (9) is equivalent to the following partition formulation over the
 715 datasets X and Y :

$$716 \quad \min_{\substack{\mathcal{X} = \{X_k\}_{k=1}^K \\ \mathcal{Y} = \{Y_k\}_{k=1}^K}} \{\mathcal{J}(\mathcal{X}, \mathcal{Y}) : |X_k| = |Y_k|, \mathcal{X}, \mathcal{Y} \in \mathcal{P}_n^K\}. \quad (13)$$

717 The form (13) is a concise form of (10) that is used in the proofs. To see the equivalence, note that
 718 the cost of a solution $(\mathbf{Q}, \mathbf{R}, \mathbf{g})$ equals

$$719 \quad \begin{aligned} & \langle \mathbf{C}, \mathbf{Q} \operatorname{diag}(\mathbf{g}^{-1}) \mathbf{R}^\top \rangle \\ &= \sum_{i=1}^n \sum_{j=1}^n \mathbf{C}_{ij} [\mathbf{Q} \operatorname{diag}(\mathbf{g}^{-1}) \mathbf{R}^\top]_{ij} = \sum_{i=1}^n \sum_{j=1}^n \mathbf{C}_{ij} \sum_{k=1}^K \frac{\mathbf{Q}_{ik} \mathbf{R}_{jk}}{g_k} \\ &= \sum_{k=1}^K \frac{1}{g_k} \sum_{i=1}^n \sum_{j=1}^n \mathbf{C}_{ij} \mathbf{Q}_{ik} \mathbf{R}_{jk} = \sum_{k=1}^K \frac{1}{g_k} \sum_{i \in X_k} \sum_{j \in Y_k} c(x_i, y_j) \end{aligned}$$

720 where $X_k = \{i : \mathbf{Q}_{ik} > 0\}$, $Y_k = \{i : \mathbf{R}_{ik} > 0\}$ are partitions in \mathcal{P}_n due to the constraints on \mathbf{Q} and
 721 \mathbf{R} . Rescaling the objective by n , we have that $ng_k^{-1} = |X_k| = |Y_k|$. Thus, every feasible solution
 722 of $(\mathbf{Q}, \mathbf{R}, \mathbf{g})$ of (9) induces a solution of (13) with equivalent cost, up to a constant factor n . For the
 723 other direction, observe that any solution of (13) induces a solution of (9) with equal cost, again up to
 724 the factor of n , by following the equalities in the opposite order.

725 When $\mathbf{R} = \mathbf{P}_\sigma^\top \mathbf{Q}$ for a permutation matrix σ , it follows that $Y_k = \sigma(X_k)$. Thus, fixing \mathbf{P}_σ in
 726 the low-rank OT problem (11) is equivalent to requiring that $Y_k = \sigma(X_k)$. Consequently, any
 727 approximation guarantee for the partition formulation (13) carries directly over to (9). Formally, we
 728 have the following statement.

729 **Lemma 1.** *For any $\alpha > 0$ and permutation σ , the inequality*

$$730 \quad \min_{\substack{\mathbf{Q} \in \Pi_\bullet(\mathbf{u}_n, \mathbf{g}, \\ \mathbf{P}_\sigma \in \mathcal{P}_n, \\ \mathbf{g} \in \Delta_K}} \langle \mathbf{Q} \operatorname{diag}(\mathbf{g}^{-1}) \mathbf{Q}^\top, \tilde{\mathbf{C}} \rangle_F \leq \alpha \cdot \min_{\substack{\mathbf{Q}, \mathbf{R} \in \Pi_\bullet(\mathbf{u}_n, \mathbf{g}, \\ \mathbf{g} \in \Delta_K}} \langle \mathbf{Q} \operatorname{diag}(\mathbf{g}^{-1}) \mathbf{R}^\top, \mathbf{C} \rangle_F,$$

731 where $\tilde{\mathbf{C}} = \mathbf{C} \mathbf{P}_\sigma^\top$ holds if and only if

$$732 \quad \min_{\mathcal{X} \in \mathcal{P}_n^K} \mathcal{J}(\mathcal{X}, \sigma(\mathcal{X})) \leq \alpha \cdot \min_{\substack{\mathcal{X} = \{X_k\}_{k=1}^K \\ \mathcal{Y} = \{Y_k\}_{k=1}^K}} \{\mathcal{J}(\mathcal{X}, \mathcal{Y}) : |X_k| = |Y_k|, \mathcal{X}, \mathcal{Y} \in \mathcal{P}_n^K\}.$$

733 This states that in order to prove Theorem 1 it suffices to prove the analogous inequality for the
 734 partition formulation (13).

735 We now start the proof of Theorem 1. In the case where $c(\cdot, \cdot)$ is a metric we prove both of the results
 736 together, as many of the components are shared. The case where $c(\cdot, \cdot)$ is induced by a kernel is
 737 handled separately, as the triangle inequality is lost, and naïve application of the doubled triangle
 738 inequality results in a worse guarantee.

739 We start by proving the following upper bound on twice $\min_{\mathcal{X} \in \mathcal{P}_n^K} \mathcal{J}(\mathcal{X}, \sigma(\mathcal{X}))$, which holds for
 740 arbitrary metrics.

756 **Lemma 2.** Let $\mathcal{X} = \{X_1, \dots, X_K\}, \mathcal{Y} = \{Y_1, \dots, Y_K\}$ be a feasible solution to the optimization
 757 problem (13) and suppose that $c(\cdot, \cdot)$ is a metric. Then, for any permutation σ ,
 758

$$759 \quad \mathcal{J}_1 + \mathcal{J}_2 \leq 2M_\sigma + \sum_{k=1}^K \frac{1}{|X_k|} \sum_{i,j \in X_k} c(x_i, x_j) + \sum_{k=1}^K \frac{1}{|Y_k|} \sum_{i,j \in Y_k} c(y_i, y_j), \quad (14)$$

762 where $M_\sigma = \sum_{i=1}^n c(x_i, y_{\sigma(i)})$, $\mathcal{J}_1 = \mathcal{J}(\sigma^{-1}(\mathcal{Y}), \mathcal{Y})$, and $\mathcal{J}_2 = \mathcal{J}(\mathcal{X}, \sigma(\mathcal{X}))$.
 763

764 *Proof.* Consider the solution $\sigma^{-1}(\mathcal{Y}) = \{\sigma^{-1}(Y_k)\}_{k=1}^K, \mathcal{Y} = \{Y_k\}_{k=1}^K$ to the optimization problem
 765 (13): this is a feasible solution as σ^{-1} preserves the size of sets. Using the triangle inequality, we
 766 have that $c(x_i, y_j) \leq c(x_i, z_i) + c(z_i, y_j)$, so that taking $z_i := y_{\sigma(i)}$ we can bound the cost of \mathcal{J}_1 as:
 767

$$\begin{aligned} 768 \quad \mathcal{J}_1 &= \sum_{k=1}^K \frac{1}{|Y_k|} \sum_{i \in \sigma^{-1}(Y_k)} \sum_{j \in Y_k} c(x_i, y_j) \\ 769 \\ 770 \quad &\leq \sum_{k=1}^K \frac{1}{|Y_k|} \sum_{i \in \sigma^{-1}(Y_k)} \sum_{j \in Y_k} [c(x_i, y_{\sigma(i)}) + c(y_{\sigma(i)}, y_j)] \\ 771 \\ 772 \quad &= \sum_{k=1}^K \frac{|Y_k|}{|Y_k|} \sum_{i \in \sigma^{-1}(Y_k)} c(x_i, y_{\sigma(i)}) + \sum_{k=1}^K \frac{1}{|Y_k|} \sum_{i \in \sigma^{-1}(Y_k)} \sum_{j \in Y_k} c(y_{\sigma(i)}, y_j). \end{aligned} \quad (15)$$

773 Using the fact that $\sigma^{-1}(\mathcal{Y})$ partitions $\{1, \dots, n\}$ and performing a change of variables with σ , the
 774 upper bound (15) becomes
 775

$$776 \quad \mathcal{J}_1 \leq \sum_{i=1}^n c(x_i, y_{\sigma(i)}) + \sum_{k=1}^K \frac{1}{|Y_k|} \sum_{i,j \in Y_k} c(y_i, y_j). \quad (16)$$

777 We then apply a symmetric argument to the feasible solution $(\mathcal{X}, \sigma(\mathcal{X}))$ of (13) by using the bound
 778 $c(x_i, y_j) \leq c(x_i, x_{\sigma^{-1}(j)}) + c(x_{\sigma^{-1}(j)}, y_j)$. This yields
 779

$$780 \quad \mathcal{J}_2 \leq \sum_{i=1}^n c(x_i, y_{\sigma(i)}) + \sum_{k=1}^K \frac{1}{|X_k|} \sum_{i,j \in X_k} c(x_i, x_j), \quad (17)$$

781 and adding the bounds together completes the proof. ■
 782

783 The preceding result yields the aforementioned upper bound as $\min_{\mathcal{X} \in \mathcal{P}_n^K} \mathcal{J}(\mathcal{X}, \sigma(\mathcal{X})) \leq$
 784 $\min\{\mathcal{J}_1, \mathcal{J}_2\}$. We now state two well-known folklore results relating the sum of intra- and inter-
 785 dataset distances. For completeness, we provide proofs of the both statements.

786 Metrics of negative type form an interesting class of metrics as they satisfy the following relationship
 787 between the intra-cluster and inter-cluster variances.
 788

789 **Lemma 3.** Suppose $c(\cdot, \cdot)$ is conditionally negative semidefinite. Then, for all sets of points $X =$
 790 $\{x_1, \dots, x_n\}$ and $Y = \{y_1, \dots, y_n\}$,

$$791 \quad \sum_{i=1}^n \sum_{j=1}^n c(x_i, x_j) + \sum_{i=1}^n \sum_{j=1}^n c(y_i, y_j) \leq 2 \cdot \sum_{i=1}^n \sum_{j=1}^n c(x_i, y_j). \quad (18)$$

803 *Proof.* Let $Z = X \cup Y$. Define the matrix $D \in \mathbb{R}^{2n \times 2n}$ by $D_{z,z'} = c(z, z')$. Then, since $c(\cdot, \cdot)$
 804 is conditionally negative semidefinite, $\alpha^\top D \alpha \leq 0$ for all α s.t. $\alpha^\top \mathbf{1}_{2n} = 0$. Set $\bar{\alpha}_z = \mathbb{1}(z \in$
 805 $X) - \mathbb{1}(z \in Y)$. Then, since $|X| = |Y|$ we have $\bar{\alpha}^\top \mathbf{1}_{2n} = 0$ and therefore

$$806 \quad \bar{\alpha}^\top D \bar{\alpha} = \sum_{i=1}^n \sum_{j=1}^n c(x_i, x_j) + \sum_{i=1}^n \sum_{j=1}^n c(y_i, y_j) - 2 \cdot \sum_{i=1}^n \sum_{j=1}^n c(x_i, y_j) \leq 0.$$

807 This completes the proof. ■
 808

810 For arbitrary metrics, the preceding bound holds with an extra factor of 2.

811 **Lemma 4.** *Suppose $c(\cdot, \cdot)$ is a metric. Then, for all sets of points $X = \{x_1, \dots, x_n\}$ and $Y = \{y_1, \dots, y_n\}$,*

$$814 \quad \sum_{i=1}^n \sum_{j=1}^n c(x_i, x_j) + \sum_{i=1}^n \sum_{j=1}^n c(y_i, y_j) \leq 2(1 + \rho) \cdot \sum_{i=1}^n \sum_{j=1}^n c(x_i, y_j), \quad (19)$$

817 for $\rho \in [0, 1]$ defined to be the minimum ratio of intra-dataset distances:

$$818 \quad \rho \triangleq \min \left\{ \frac{\sum_{i=1}^n \sum_{j=1}^n c(x_i, x_j)}{\sum_{i=1}^n \sum_{j=1}^n c(y_i, y_j)}, \frac{\sum_{i=1}^n \sum_{j=1}^n c(y_i, y_j)}{\sum_{i=1}^n \sum_{j=1}^n c(x_i, x_j)} \right\}. \quad (20)$$

821 *Proof.* Applying the triangle inequality gives the two inequalities

$$823 \quad c(x_i, x_j) \leq c(x_i, y_k) + c(y_k, x_j) \quad \text{and} \quad c(y_i, y_j) \leq c(y_i, x_k) + c(x_k, y_j) \quad (21)$$

824 for all $i, j, k \in \{1, \dots, n\}$. Taking the sum over i, j, k from 1 to n and applying symmetry of the cost
825 $c(\cdot, \cdot)$ to the first inequality in (21) yields

$$826 \quad n \cdot \sum_{i=1}^n \sum_{j=1}^n c(x_i, x_j) \leq n \cdot \sum_{i=1}^n \sum_{k=1}^n c(x_i, y_k) + n \cdot \sum_{k=1}^n \sum_{j=1}^n c(y_k, x_j)$$

829 which holds if and only if

$$831 \quad \sum_{i=1}^n \sum_{j=1}^n c(x_i, x_j) \leq 2 \cdot \sum_{i=1}^n \sum_{j=1}^n c(x_i, y_j). \quad (22)$$

833 Applying a symmetric argument to the second inequality in (21) and adding the two inequalities
834 shows

$$836 \quad \sum_{i=1}^n \sum_{j=1}^n c(x_i, x_j) + \sum_{i=1}^n \sum_{j=1}^n c(y_i, y_j) \leq 4 \cdot \sum_{i=1}^n \sum_{j=1}^n c(x_i, y_j).$$

838 When asymmetry $\rho \neq 1$ is present, the preceding bound is tightened by refining the bound on the
839 smaller term in the left hand side of the preceding equation to $2\rho \cdot \sum_{i=1}^n \sum_{j=1}^n c(x_i, y_j)$. This
840 completes the proof. \blacksquare

842 The proof of Theorem 1 in the metric case is then a corollary of Lemma 1, 2, 3, and 4. The details are
843 described in the subsequent proof.

845 *Proof of Theorem 1 (Metric Costs).* Applying the fact that $(\sigma^{-1}(\mathcal{Y}^*), \mathcal{Y}^*)$ and $(\mathcal{X}^*, \sigma(\mathcal{X}^*))$ are fea-
846 sible solutions together with the inequality $2 \cdot \min\{a, b\} \leq a + b$, we have

$$847 \quad \min_{\mathcal{X} \in \mathcal{P}_n^K} \mathcal{J}(\mathcal{X}, \sigma(\mathcal{X})) \leq \min\{\mathcal{J}_1, \mathcal{J}_2\} \leq (1/2)(\mathcal{J}_1 + \mathcal{J}_2).$$

849 Applying Lemma 2 with the optimal solution of $\mathcal{X}^* = \{X_1^*, \dots, X_K^*\}$ and $\mathcal{Y}^* = \{Y_1^*, \dots, Y_K^*\}$ to
850 the right hand side of the preceding inequality then yields the bound

$$852 \quad \min_{\mathcal{X} \in \mathcal{P}_n^K} \mathcal{J}(\mathcal{X}, \sigma(\mathcal{X})) \leq M_\sigma + \sum_{k=1}^K \frac{1}{2|X_k^*|} \sum_{i,j \in X_k^*} c(x_i, x_j) + \sum_{k=1}^K \frac{1}{2|Y_k^*|} \sum_{i,j \in Y_k^*} c(y_i, y_j), \quad (23)$$

855 which upper bounds the cost in terms of the intra-dataset costs of \mathcal{X}^* and \mathcal{Y}^* .

856 When $c(\cdot, \cdot)$ is negative semidefinite, applying Lemma 3 to (23) shows that

$$858 \quad \min_{\mathcal{X} \in \mathcal{P}_n^K} \mathcal{J}(\mathcal{X}, \sigma(\mathcal{X})) \leq M_\sigma + \sum_{k=1}^K \frac{1}{|X_k^*|} \sum_{i \in X_k^*} \sum_{j \in Y_k^*} c(x_i, y_j) = M_\sigma + \mathcal{J}(\mathcal{X}^*, \mathcal{Y}^*), \quad (24)$$

861 proving the claim. When $c(\cdot, \cdot)$ is a metric, applying Lemma 4 to (23) yields the weaker bound

$$862 \quad \min_{\mathcal{X} \in \mathcal{P}_n^K} \mathcal{J}(\mathcal{X}, \sigma(\mathcal{X})) \leq M_\sigma + (1 + \rho) \cdot \mathcal{J}(\mathcal{X}^*, \mathcal{Y}^*). \quad (25)$$

863 Combining these two bounds with the equivalence in Lemma 1 completes the proof. \blacksquare

864 For kernel costs of the form $c(x_i, y_j) = \|\phi(x_i) - \phi(y_j)\|_2^2$, the squared norm $\|\cdot\|_2^2$ is not a metric
 865 and the preceding argument no longer applies. While the proof of Theorem 1 does go through upon
 866 replacing applications of the triangle inequality with applications of the doubled triangle inequality
 867 $\|x - y\|_2^2 \leq 2(\|x - z\|_2^2 + \|z - y\|_2^2)$, it reduces the quality of the bound to $2 + 2\gamma$. To slightly
 868 improve this bound, we derive an analog of Lemma 2 for kernel costs by applying Young's inequality
 869 at a different point in the argument and optimizing the bound over the introduced parameter t .

870 As a preliminary, we will make use of the following relationship between the cross cluster cost
 871 between X and Y to the intra-cluster cost of Y .

872 **Lemma 5.** *Let $X = \{x_1, \dots, x_n\}$ and $Y = \{y_1, \dots, y_n\}$. Then,*

$$874 \frac{1}{n} \sum_{i=1}^n \sum_{j=1}^n \|x_i - y_j\|_2^2 = \sum_{i=1}^n \|x_i - \mu(Y)\|_2^2 + \frac{1}{2n} \sum_{i=1}^n \sum_{j=1}^n \|y_i - y_j\|_2^2, \quad (26)$$

875 where $\mu(Y) = \frac{1}{n} \sum_{i=1}^n y_i$.

876 *Proof.* Inserting $\mu(Y) - \mu(Y)$ into the left hand side summation and expanding the result yields:

$$877 \begin{aligned} \frac{1}{n} \sum_{i=1}^n \sum_{j=1}^n \|x_i - y_j\|_2^2 &= \frac{1}{n} \sum_{i=1}^n \sum_{j=1}^n \|x_i - \mu(Y) + \mu(Y) - y_j\|_2^2 \\ 878 &= \frac{1}{n} \sum_{i=1}^n \sum_{j=1}^n \|x_i - \mu(Y)\|_2^2 + \frac{1}{n} \sum_{i=1}^n \sum_{j=1}^n \|\mu(Y) - y_j\|_2^2 \\ 879 &\quad + \frac{1}{n} \sum_{i=1}^n \sum_{j=1}^n \langle x_i - \mu(Y), \mu(Y) - y_j \rangle \\ 880 &= \sum_{i=1}^n \|x_i - \mu(Y)\|_2^2 + \frac{1}{2n} \sum_{i=1}^n \sum_{j=1}^n \|y_i - y_j\|_2^2. \end{aligned}$$

881 The second equality follows from the identity $\sum_{i=1}^n \|y_i - \mu(Y)\|_2^2 = \frac{1}{2n} \sum_{i=1}^n \sum_{j=1}^n \|y_i - y_j\|_2^2$ and
 882 the identity:

$$883 \frac{1}{n} \sum_{i=1}^n \sum_{j=1}^n \langle x_i - \mu(Y), \mu(Y) - y_j \rangle = \sum_{i=1}^n \left\langle x_i - \mu(Y), \frac{1}{n} \sum_{j=1}^n (\mu(Y) - y_j) \right\rangle = 0.$$

884 This completes the proof. ■

885 Next, we have the following analog of Lemma 2 specialized to the squared Euclidean cost. The
 886 key trick is to expand one of the inner-products, and to apply both Cauchy-Schwarz and Young's
 887 inequality term-wise only after performing the decomposition from Lemma 5 to obtain an improved
 888 constant.

889 **Lemma 6.** *Let $\mathcal{X} = \{X_1, \dots, X_K\}$, $\mathcal{Y} = \{Y_1, \dots, Y_K\}$ be a feasible solution to the optimization
 890 problem (13) and suppose that $c(x_i, y_j) = \|x_i - y_j\|_2^2$. Then, for all $t > 0$*

$$891 \mathcal{J}_1 + \mathcal{J}_2 \leq 2 \cdot (1 + 1/t) M_\sigma + (2 + t) \left[\sum_{k=1}^K \frac{1}{2|X_k|} \sum_{i,j \in X_k} \|x_i - x_j\|_2^2 + \sum_{k=1}^K \frac{1}{2|Y_k|} \sum_{i,j \in Y_k} \|y_i - y_j\|_2^2 \right] \quad (27)$$

892 In the preceding, $M_\sigma = \sum_{i=1}^n c(x_i, y_{\sigma(i)})$, $\mathcal{J}_1 = \mathcal{J}(\sigma^{-1}(\mathcal{Y}), \mathcal{Y})$, and $\mathcal{J}_2 = \mathcal{J}(\mathcal{X}, \sigma(\mathcal{X}))$.

893 *Proof.* By Lemma 5, the cost \mathcal{J}_1 is equal to

$$894 \begin{aligned} \mathcal{J}_1 &= \sum_{k=1}^K \frac{1}{|Y_k|} \sum_{i \in \sigma^{-1}(Y_k)} \sum_{j \in Y_k} \|x_i - y_j\|_2^2 \\ 895 &= \sum_{k=1}^K \left[\sum_{i \in \sigma^{-1}(Y_k)} \|x_i - \mu(Y_k)\|_2^2 + \sum_{i \in Y_k} \|y_i - \mu(Y_k)\|_2^2 \right], \end{aligned} \quad (28)$$

918 where $\mu(Y_k) \triangleq \frac{1}{|Y_k|} \sum_{i \in Y_k} y_i$. Next, we expand the inner-product of the left hand side term in (28).
 919 This yields
 920

$$\begin{aligned}
 921 \quad & \sum_{k=1}^K \sum_{i \in \sigma^{-1}(Y_k)} \|x_i - \mu(Y_k)\|^2 = \sum_{k=1}^K \sum_{i \in \sigma^{-1}(Y_k)} \|x_i - y_{\sigma(i)} + y_{\sigma(i)} - \mu(Y_k)\|^2 \\
 922 \quad & = \sum_{k=1}^K \sum_{i \in \sigma^{-1}(Y_k)} (\|x_i - y_{\sigma(i)}\|_2^2 + \|y_{\sigma(i)} - \mu(Y_k)\|^2 + 2 \langle x_i - y_{\sigma(i)}, y_{\sigma(i)} - \mu(Y_k) \rangle) \\
 923 \quad & = M_\sigma + \sum_{k=1}^K \sum_{i \in \sigma^{-1}(Y_k)} \|y_{\sigma(i)} - \mu(Y_k)\|^2 + \sum_{k=1}^K \sum_{i \in \sigma^{-1}(Y_k)} 2 \langle x_i - y_{\sigma(i)}, y_{\sigma(i)} - \mu(Y_k) \rangle
 \end{aligned}$$

930 By an application of the Cauchy-Schwarz inequality to each inner product term followed by an
 931 application of Young's inequality, we obtain

$$\begin{aligned}
 932 \quad & \sum_{k=1}^K \sum_{i \in \sigma^{-1}(Y_k)} 2 \langle x_i - y_{\sigma(i)}, y_{\sigma(i)} - \mu(Y_k) \rangle \leq \sum_{k=1}^K \sum_{i \in \sigma^{-1}(Y_k)} 2 \|x_i - y_{\sigma(i)}\|_2 \|y_{\sigma(i)} - \mu(Y_k)\|_2 \\
 933 \quad & \leq \sum_{k=1}^K \sum_{i \in \sigma^{-1}(Y_k)} \left(\frac{1}{t} \|x_i - y_{\sigma(i)}\|^2 + t \|y_{\sigma(i)} - \mu(Y_k)\|^2 \right) \\
 934 \quad & = \frac{M_\sigma}{t} + t \cdot \sum_{k=1}^K \sum_{i \in \sigma^{-1}(Y_k)} \|y_{\sigma(i)} - \mu(Y_k)\|^2,
 \end{aligned}$$

941 for any parameter $t > 0$. Combining with (28), \mathcal{J}_1 is upper bounded as

$$\begin{aligned}
 942 \quad & \mathcal{J}_1 \leq (2+t) \cdot \sum_{k=1}^K \sum_{i \in Y_k} \|y_i - \mu(Y_k)\|_2^2 + (1+1/t)M_\sigma \\
 943 \quad & = (2+t) \cdot \sum_{k=1}^K \frac{1}{2|Y_k|} \sum_{i,j \in Y_k} \|y_i - y_j\|_2^2 + (1+1/t)M_\sigma
 \end{aligned}$$

948 The latter part of the equality follows from the identity:

$$\sum_{i \in Y_k} \|y_i - \mu(Y_k)\|_2^2 = \frac{1}{2|Y_k|} \sum_{i,j \in Y_k} \|y_i - y_j\|_2^2.$$

952 Applying a symmetric argument to derive an upper bound on \mathcal{J}_2 yields

$$\mathcal{J}_2 \leq (2+t) \cdot \sum_{k=1}^K \frac{1}{2|X_k|} \sum_{i,j \in X_k} \|x_i - x_j\|_2^2 + (1+1/t)M_\sigma$$

956 Summing the two bounds then completes the proof. ■

958 *Proof of Theorem 1 (Squared Euclidean and Kernel Costs).* Replicating the argument of the metric
 959 case of Theorem 1, we evaluate \mathcal{J}_1 and \mathcal{J}_2 on the sets $(\sigma^{-1}(\mathcal{Y}^*), \mathcal{Y}^*)$ and $(\mathcal{X}^*, \sigma(\mathcal{X}^*))$ where the
 960 optimal solution to (13) is $\mathcal{X}^* = \{X_1^*, \dots, X_K^*\}$ and $\mathcal{Y}^* = \{Y_1^*, \dots, Y_K^*\}$. This yields
 961

$$\min_{\mathcal{X} \in \mathcal{P}_n^K} \mathcal{J}(\mathcal{X}, \sigma(\mathcal{X})) \leq \frac{1}{2} \cdot (\mathcal{J}_1(\sigma^{-1}(\mathcal{Y}^*), \mathcal{Y}^*) + \mathcal{J}_2(\mathcal{X}^*, \sigma(\mathcal{X}^*))). \quad \square$$

964 By Lemma 6 and Lemma 3, the right-hand side is upper-bounded by

$$\begin{aligned}
 965 \quad & (1+1/t) \cdot M_\sigma + (1+t/2) \cdot \left[\sum_{k=1}^K \frac{1}{2|X_k^*|} \sum_{i,j \in X_k^*} \|x_i - x_j\|_2^2 + \sum_{k=1}^K \frac{1}{2|Y_k^*|} \sum_{i,j \in Y_k^*} \|y_i - y_j\|_2^2 \right] \\
 966 \quad & \leq (1+1/t) \cdot M_\sigma + (1+t/2) \cdot \sum_{k=1}^K \frac{1}{|X_k^*|} \sum_{i \in X_k^*, j \in Y_k^*} \|x_i - y_j\|_2^2 \\
 967 \quad & = (1+1/t) \cdot M_\sigma + (1+t/2) \cdot \mathcal{J}(\mathcal{X}^*, \mathcal{Y}^*).
 \end{aligned}$$

972 Since this holds for arbitrary $t > 0$, we optimize the bound with respect to t and find the optimal
 973 value $t = \sqrt{2\gamma}$. Thus, the tightest bound has coefficient
 974

$$(1 + 1/\sqrt{2\gamma})\gamma + (1 + \sqrt{2\gamma}/2) = 1 + \gamma + \sqrt{2\gamma},$$

975 concluding the proof. ■
 976

977 Next, we show that the approximation guarantees of Theorem 1 hold with an additional $(1 + \epsilon)$ factor
 978 for kernel costs (resp. metric costs) when using Algorithm 2 to solve step (ii) in Algorithm 1. For
 979 both metric and kernel costs, the proof of the approximation guarantees follows from analyzing the
 980 proof of Theorem 1.
 981

982 **Algorithm 2.**

- 983 (i) Compute assignment matrices $\mathbf{Q}, \mathbf{R} \in \Pi_{\bullet}(\mathbf{u}_n, \cdot)$ by applying \mathcal{A}_1 (resp. \mathcal{A}_2) to X and
 984 Y independently.
- 985 (ii) If $\langle \mathbf{C}, \mathbf{Q} \operatorname{diag}(1/\mathbf{Q}^\top \mathbf{1}_n)(\mathbf{P}_{\sigma^*} \mathbf{Q}) \rangle_F \leq \langle \mathbf{C}, (\mathbf{P}_{\sigma^*} \mathbf{R}) \operatorname{diag}(1/\mathbf{R}^\top \mathbf{1}_n) \mathbf{R}^\top \rangle_F$, set $\mathbf{Q}^{(0)} \leftarrow \mathbf{Q}$. Otherwise, set $\mathbf{Q}^{(0)} \leftarrow \mathbf{P}_{\sigma^*} \mathbf{R}$.
- 986 (iii) Perform local optimization for the generalized K -means problem on the cost $\tilde{\mathbf{C}}$ with the
 987 initialization $\mathbf{Q}^{(0)}$.

991 We start with the proof for squared Euclidean and kernel cost functions.
 992

993 *Proof of Theorem 2 (Squared Euclidean and Kernel Costs).* Let $\mathcal{X} = \{X_1, \dots, X_K\}$ and $\mathcal{Y} =$
 994 $\{Y_1, \dots, Y_K\}$ be $(1 + \epsilon)$ optimal solutions to the K -means problem emitted by \mathcal{A}_1 for X and
 995 Y respectively. Let $\mathcal{X}^* = \{X_1^*, \dots, X_K^*\}$ and $\mathcal{Y}^* = \{Y_1^*, \dots, Y_K^*\}$ be the optimal solution to (13).
 996 Then, by the $(1 + \epsilon)$ optimality of \mathcal{X} and \mathcal{Y} and Lemma 3, we have
 997

$$\begin{aligned} & \sum_{k=1}^K \frac{1}{2|Y_k|} \sum_{i,j \in X_k} \|x_i - x_j\|_2^2 + \sum_{k=1}^K \frac{1}{2|Y_k|} \sum_{i,j \in Y_k} \|y_i - y_j\|_2^2 \\ & \leq (1 + \epsilon) \cdot \left(\sum_{k=1}^K \frac{1}{2|X_k^*|} \sum_{i,j \in X_k^*} \|x_i - x_j\|_2^2 + \sum_{k=1}^K \frac{1}{2|Y_k^*|} \sum_{i,j \in Y_k^*} \|y_i - y_j\|_2^2 \right) \\ & \leq (1 + \epsilon) \cdot \mathcal{J}(\mathcal{X}^*, \mathcal{Y}^*). \end{aligned}$$

1005 By Lemma 6, and the preceding inequality it then follows that for all $t > 0$
 1006

$$\frac{1}{2}(\mathcal{J}(\mathcal{X}, \sigma(\mathcal{X})) + \mathcal{J}(\sigma^{-1}(\mathcal{Y}), \mathcal{Y})) \leq (1 + 1/t) \cdot M_\sigma + (1 + \epsilon)(1 + t/2) \cdot \mathcal{J}(\mathcal{X}^*, \mathcal{Y}^*).$$

1007 Optimizing the parameter t as in the proof of Theorem 1 and taking the minimum over the two
 1008 solutions completes the proof. ■
 1009

1011 An analogous proof technique to Theorem 2 applies to the metric case with the additional application
 1012 of the basic inequality:
 1013

$$\min_j \sum_{i=1}^n c(x_i, x_j) \leq \frac{1}{n} \sum_{i=1}^n \sum_{j=1}^n c(x_i, x_j) \leq 2 \cdot \min_j \sum_{i=1}^n c(x_i, x_j).$$

1016 This inequality relates the K -medians objective to the intra-cluster cost $\sum_{i=1}^n \sum_{j=1}^n c(x_i, x_j)$ used
 1017 in Lemma 2 and picks up an additional factor of 2. ■
 1018

1019 **A.2 LOWER BOUNDS FOR THEOREM 1**
 1020

1021 In this section, we construct an explicit family of examples that realize the upper bounds in Theorem
 1022 1 for the Euclidean and squared Euclidean cost functions. Both constructions rely on unstable
 1023 arrangements of points, where upon slight perturbation, the Monge map changes dramatically.
 1024 Making use of this instability, the constructions are set up to have the optimal Monge map be a poor
 1025 choice for co-clustering while there is a near-optimal non-Monge map that is substantially better for
 co-clustering.

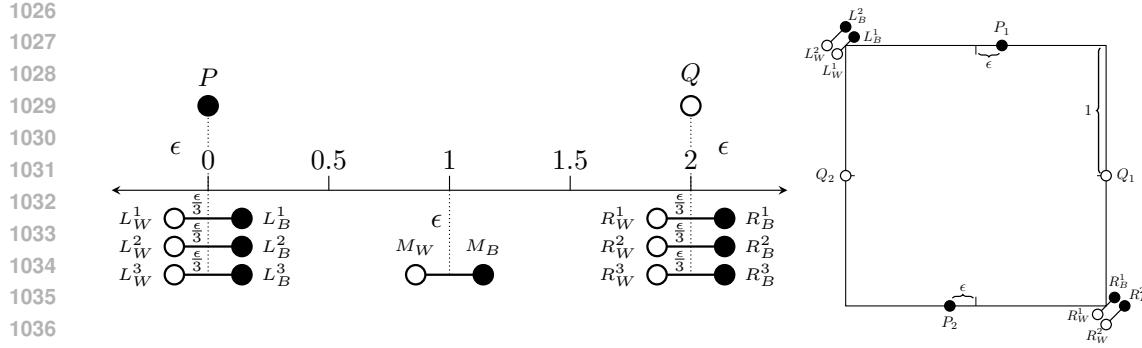


Figure 3: Geometric constructions providing lower bounds for Theorem 1 in the case of **(left)** Euclidean cost ($k = 3$) and **(right)** squared Euclidean cost ($k = 2$). Points in X are colored black and points in Y are colored white. Points connected by a line segment have identical coordinates and are separated for ease of visualization.

Euclidean Metric Cost. Fix $\epsilon > 0$. The construction consists of two datasets X and Y each with $2k + 2$ points placed near the line segment $[0, 2] \times \{0\}$. The first two points $P = (0, \epsilon)$ and $Q = (2, \epsilon)$ are near the ends of the line segment. The next pair of points $M_W = M_B = (1, -\epsilon)$ are slightly below the middle of the segment. Finally, $2k$ points $L_W^i = L_B^i = (0, -\frac{i\epsilon}{k})$ are at the left end of the segment and $2k$ points $R_W^i = R_B^i = (2, -\frac{i\epsilon}{k})$ are at the right end of the segment. Datasets X and Y are then defined as $X = \{P, M_B\} \cup \{L_B^i\}_{i=1}^k \cup \{R_B^i\}_{i=1}^k$ and $Y = \{Q, M_W\} \cup \{L_W^i\}_{i=1}^k \cup \{R_W^i\}_{i=1}^k$. A diagram of the construction is provided in Figure 3 for the case of $k = 3$.

First, observe that under the Euclidean cost metric, the points have a unique Monge map $\sigma : X \rightarrow Y$ defined as $\sigma(P) = Q$, $\sigma(M_B) = M_W$, $\sigma(L_B^i) = L_W^i$, and $\sigma(R_B^i) = R_W^i$. The preceding Monge map σ has cost 2 since the distance between P and Q is 2 while the distance between the remaining mapped points is 0. Next, consider an optimal Monge map σ' with $\sigma'(P) \neq Q$. Since there are $k + 1$ black points $\{L_B^i\}_{i=1}^k$ and P and k points $\{L_W^i\}_{i=1}^k$, at least one black point $\{L_B^i\}_{i=1}^k$ or P must map to M_W or $\{R_W^i\}_{i=1}^k$ via σ' . If P is such a point, we must have that P maps to M_W , as otherwise it would obtain a cost greater than 2. However, this yields a contradiction as M_B must map to a point of distance at least 1 and the cost of mapping $\sigma'(P) = M_W$ is strictly greater than 1. Applying a similar argument to the point L_B^i together with the fact that the cost of mapping $\sigma'(P) = L_B^i$ is greater than ϵ proves the optimality and uniqueness of σ .

Second, consider an optimal solution $\mathcal{X}^* = \{X_1, X_2\}, \mathcal{Y}^* = \{Y_1, Y_2\}$ to the partition reformulation (13) of the ($K = 2$) low-rank OT problem where $\sigma(X_i) = Y_i$, $i = 1, 2$, and the cluster sizes are balanced: $|X_1| = |X_2| = |Y_1| = |Y_2|$. We will argue that the cost of such a solution $\mathcal{J}(\mathcal{X}^*, \mathcal{Y}^*)$ is lower bounded by $\frac{4k+2}{k+1}$. In contrast, taking the solution $X_1 = \{P\} \cup \{L_B^i\}_{i=1}^k$, $X_2 = \{M_B\} \cup \{R_B^i\}_{i=1}^k$ and $Y_1 = \{M_W\} \cup \{L_W^i\}_{i=1}^k$, $Y_2 = \{Q\} \cup \{R_W^i\}_{i=1}^k$, which does not satisfy $\sigma(X_i) = Y_i$, we have that the cost

$$\mathcal{J}(\{X_1, Y_1\}, \{X_2, Y_2\}) = \frac{1}{k+1} \left(\sum_{x \in X_1} \sum_{y \in Y_1} \|x - y\|_2 + \sum_{x \in X_2} \sum_{y \in Y_2} \|x - y\|_2 \right) = 2 + \mathcal{O}(\epsilon).$$

Consequently, taking the limits $\epsilon \rightarrow 0$ and $k \rightarrow \infty$ shows that the constant factor $(1 + \gamma)$ stated in Theorem 1 is tight and arbitrarily close to 2.

Finally, we argue that the cost of any solution $\mathcal{X}^* = \{X_1, X_2\}, \mathcal{Y}^* = \{Y_1, Y_2\}$ with $\sigma(X_i) = Y_i$ has $\mathcal{J}(\mathcal{X}^*, \mathcal{Y}^*) \geq \frac{4k+2}{k+1}$. Without loss of generality, assume that $P \in X_1$. Since $\sigma(P) = Q$ and $\sigma(X_1) = Y_1$, it follows that $Q \in Y_1$. Let l denote the size of the set $\{i : L_B^i \in X_1\}$. We analyze the two cases $M_B \in X_1$ and $M_B \notin X_1$ separately.

Case 1 ($M_B \in X_1$). Since the set sizes are balanced and $M_B \in X_1$, we have $p = k + 1 - (l + 2)$ is equal to the size of the set $\{i : R_B^i \in X_1\}$. Consequently, the cost of the solution is lower bounded

1080 by:
 1081

$$\begin{aligned} (k+1) \cdot \mathcal{J}(\mathcal{X}^*, \mathcal{Y}^*) &\geq (4 + 3p + 2l(p+1)) + 2(k-p)(k-l) \\ &= -4l^2 - (5 - 4k)l + (5k + 1) \end{aligned}$$

1085 To see this, note that the cost of mapping point $P \in X_1$ to Y_1 is at least $3 + 2p$ as P must map to the
 1086 p points R_W^i , M_W , and Q . The cost of mapping the l points L_B^i to Y_1 is at least $2l(p+1)$ and the
 1087 cost of mapping M_B to Y_1 is at least $p+1$. Since the size of $X_2 \cap \{L_B^i\}_{i=1}^k$ is $k-l$ and the size
 1088 of $X_2 \cap \{R_B^i\}_{i=1}^k$ is $k-p$, the cost of mapping X_2 to Y_2 is at least $2(k-p)(k-l)$. Adding the
 1089 lower bounds gives the first bound and algebraic manipulation the second. Since the lower bound is a
 1090 concave quadratic function in l , it is minimized at either $l = 0$ or $l = k-1$. Evaluating both yields
 1091 the lower bound $\mathcal{J}(\mathcal{X}^*, \mathcal{Y}^*) \geq \frac{4k+2}{k+1}$.

1092 **Case 2** ($M_B \notin X_1$). Since the set sizes are balanced and $M_B \notin X_1$, we have $p = k-l$ is equal to
 1093 the size of the set $\{i : R_B^i \in X_1\}$. By a similar argument to the previous case, we have that the cost
 1094 of the solution is lower bounded by:
 1095

$$\begin{aligned} (k+1) \cdot \mathcal{J}(\mathcal{X}^*, \mathcal{Y}^*) &\geq 2 + 2p + 2l(p+1) + 2lp + 2(k-l+k-p) + 4(k-l)(k-p) \\ &= -8l^2 + 8kl + (4k+2). \end{aligned}$$

1096 Since the lower bound is again a concave quadratic function in l , it is minimized at either $l = 0$ or
 1097 $l = k$. Evaluating both yields the lower bound $\mathcal{J}(\mathcal{X}^*, \mathcal{Y}^*) \geq \frac{4k+2}{k+1}$. This completes the proof of the
 1098 first part of Proposition 1. \blacksquare
 1099

1100 **Squared Euclidean Cost.** Fix $1 > \epsilon > 0$. The construction consists of two datasets X and Y
 1101 each with $2k+2$ points placed along the edges of the square $[0, 2] \times [0, 2]$. The first two points
 1102 $P_1 = (1+\epsilon, 2)$ and $P_2 = (1-\epsilon, 0)$ are on the top and bottom edges of the square. The second two
 1103 points $Q_1 = (0, 1)$ and $Q_2 = (2, 1)$ are set on the left and right edges of the square. Finally, $2k$
 1104 points $L_W^i = L_B^i = (0, 2)$ and $R_W^i = R_B^i = (2, 0)$ are placed along the top left and bottom right
 1105 corners of the square. The sets X and Y are then defined as $X = \{P_1, P_2\} \cup \{L_B^i\}_{i=1}^k \cup \{R_B^i\}_{i=1}^k$
 1106 and $Y = \{Q_1, Q_2\} \cup \{L_W^i\}_{i=1}^k \cup \{R_W^i\}_{i=1}^k$. A diagram of the construction is provided in Figure 3
 1107 for the case when $k = 2$.
 1108

1109 First, we show that under the squared Euclidean cost function there is a unique Monge map $\sigma : X \rightarrow$
 1110 Y defined as $\sigma(P_i) = Q_i$, $\sigma(L_B^i) = L_W^i$, and $\sigma(R_B^i) = R_W^i$, up to a relabeling of the corner points
 1111 $\{L_B^i\}_{i=1}^k \cup \{R_B^i\}_{i=1}^k$. The preceding Monge map has cost equal to $4 + 2\epsilon^2 - 4\epsilon < 4$ as $\epsilon^2 < \epsilon$. Next,
 1112 suppose that there is a distinct (up to a relabeling of the corner points) Monge map σ' with equal (or
 1113 lower) cost. Note that since σ' is an optimal Monge map, then $\sigma'(L_B^i) \neq R_W^j$ for any j , as the cost
 1114 of mapping point L_B^i to R_W^j is 8. Similarly, L_B^i cannot map to Q_1 . Therefore, if $\sigma' \neq \sigma$ it must be
 1115 the case that $\sigma'(L_B^i) = Q_2$ for some i . Then, either $\sigma'(P_1) = Q_1$ or $\sigma'(P_2) = Q_1$, but in either case
 1116 mapping the remaining point results in a cost of at least 4, a contradiction to the optimality of σ' .
 1117

1118 Second, consider an optimal solution $\mathcal{X}^* = \{X_1, X_2\}$, $\mathcal{Y}^* = \{Y_1, Y_2\}$ to the partition reformulation
 1119 (13) of the ($K = 2$) low-rank OT problem where $\sigma(X_i) = Y_i$, $i = 1, 2$, and the cluster sizes are
 1120 balanced: $|X_1| = |X_2| = |Y_1| = |Y_2|$. We will argue that the cost of such a solution $\mathcal{J}(\mathcal{X}^*, \mathcal{Y}^*)$
 1121 is lower bounded by $\frac{12k+4}{k+1} + \mathcal{O}(\epsilon)$. In contrast, taking the solution $X_1 = \{P_1\} \cup \{L_B^i\}_{i=1}^k$, $X_2 =$
 1122 $\{P_2\} \cup \{R_B^i\}_{i=1}^k$ and $Y_1 = \{Q_2\} \cup \{L_W^i\}_{i=1}^k$, $Y_2 = \{Q_1\} \cup \{R_W^i\}_{i=1}^k$, which does not satisfy
 1123 $\sigma(X_i) = Y_i$, we obtain the cost

$$\mathcal{J}(\{X_1, Y_1\}, \{X_2, Y_2\}) = 4 + \mathcal{O}(\epsilon).$$

1124 Consequently, taking the limits $\epsilon \rightarrow 0$ and $k \rightarrow \infty$ shows that the constant factor stated in Theorem 1
 1125 is lower bounded by 3 in the worst case.

1126 Finally, we argue that the cost of any solution $\mathcal{X}^* = \{X_1, X_2\}$, $\mathcal{Y}^* = \{Y_1, Y_2\}$ with $\sigma(X_i) = Y_i$
 1127 has $\mathcal{J}(\mathcal{X}^*, \mathcal{Y}^*) \geq \frac{12k+4}{k+1}$. Without loss of generality, assume that $P_1 \in X_1$. Since $\sigma(P_1) = Q_1$ and
 1128 $\sigma(X_1) = Y_1$, it follows that $Q_1 \in Y_1$. Let l denote the size of the set $\{i : L_B^i \in X_1\}$. We analyze the
 1129 two cases $P_2 \in X_1$ and $P_2 \notin X_1$ separately.

1134 **Case 1** ($P_2 \notin X_1$). In this case, the size of the set $\{i : R_B^i \in X_1\}$ is $p = k - l$ following the fact that
 1135 $|X_1| = k + 1$ and $P_2 \notin X_1$. Then, the cost of the solution is lower bounded by:
 1136

$$\begin{aligned} 1137 \quad (k+1) \cdot \mathcal{J}(\mathcal{X}^*, \mathcal{Y}^*) &\geq (8lp + 5l) + (8lp + p) + (2 + l + 5p) + (8(k-l)(k-p) + k-l) + \\ 1138 \quad &\quad (8(k-l)(k-p) + 5(k-p)) + (2 + 5(k-l) + k-p) \\ 1139 \quad &= -32l^2 + 32kl + 4(1+3k). \end{aligned}$$

1140 To derive the previous bound, we explicitly tabulate the cost between all types of points. Specifically,
 1141 the cost of mapping $\{L_B^i : L_B^i \in X_1\}$ to all points in Y_1 is at least $8lp + 5l$. The cost of mapping
 1142 $\{R_B^i : R_B^i \in X_1\}$ to all points in Y_1 is at least $8lp + p$. The cost of mapping P_1 in Y_1 is $2 + l + 5p$.
 1143 Proceeding in this way for the points in X_2 yields the first inequality. Algebra with the substitution
 1144 $p = k - l$ yields the equality. Since the lower bound is a concave quadratic function in l , it is
 1145 either optimized at $l = 0$ or $l = k$. Evaluating the lower bound at these points yields the inequality
 1146 $\mathcal{J}(\mathcal{X}^*, \mathcal{Y}^*) \geq \frac{12k+4}{k+1}$.
 1147

1148 **Case 2** ($P_2 \in X_1$). In this case, the size of the set $\{i : R_B^i \in X_1\}$ is $p = k - l - 1$ following the fact
 1149 that $|X_1| = k + 1$ and $P_2 \notin X_1$. Then, the cost of the solution is lower bounded by:

$$\begin{aligned} 1150 \quad (k+1) \cdot \mathcal{J}(\mathcal{X}^*, \mathcal{Y}^*) &\geq (l + 5l + 8lp) + (4 + l + 5p) + (4 + 5l + p) \\ 1151 \quad &\quad + (8lp + 5p + p) + 2 \cdot 8(k-p)(l-l) \\ 1152 \quad &= -25l^2 + (-25 + 25k)l + 28k - 4. \end{aligned}$$

1153 This follows an explicit tabulation of the cost between all types of points. Since the lower bound is
 1154 a concave quadratic function in l , it is either optimized at $l = 0$ or $l = k - 1$. Evaluating the lower
 1155 bound at these points yields the inequality $\mathcal{J}(\mathcal{X}^*, \mathcal{Y}^*) \geq \frac{28k+4}{k+1} \geq \frac{12k+4}{k+1}$. This completes the proof
 1156 of the second part of Proposition 1. \blacksquare
 1157

1158 A.3 PROOF OF CONNECTION BETWEEN LOW-RANK OPTIMAL TRANSPORT AND K -MEANS

1159 We provide a brief proof of the connection between low-rank optimal transport and K -means stated
 1160 in the main text. The statement and proof are attached below.

1161 **Remark 1.** Suppose $\mu_k^X = \frac{1}{|\mathcal{C}_k|} \sum_{i \in \mathcal{C}_{X,k}} x_i$, $\mu_k^Y = \frac{1}{|\mathcal{C}_k|} \sum_{j \in \mathcal{C}_{Y,k}} y_j$ where $|\mathcal{C}_{X,k}| = |\mathcal{C}_{Y,k}| = |\mathcal{C}_k|$.
 1162 Then, for the squared Euclidean cost (10) is equal to a pair of K -means distortions on X, Y and a
 1163 term quantified the separation between assigned means μ_k^X, μ_k^Y

$$\begin{aligned} 1164 \quad &\sum_{k=1}^K \frac{1}{|X_k|} \sum_{i \in X_k} \sum_{j \in Y_k} \|x_i - y_j\|_2^2 \\ 1165 \quad &= \sum_{k=1}^K \left(\sum_{i \in \mathcal{C}_{X,k}} \|x_i - \mu_k^X\|_2^2 + \sum_{j \in \mathcal{C}_{Y,k}} \|y_j - \mu_k^Y\|_2^2 + |\mathcal{C}_k| \|\mu_k^X - \mu_k^Y\|_2^2 \right) \end{aligned}$$

1166 *Proof.* Starting from the definition of the partition form of the low-rank cost $\mathbf{C}^{\ell_2^2}$, we have

$$\sum_{k=1}^K \frac{1}{|X_k|} \sum_{i \in X_k} \sum_{j \in Y_k} \|x_i - y_j\|_2^2 = \sum_{k=1}^K \sum_{i \in \mathcal{C}_{X,k}} \|x_i\|_2^2 + \sum_{j \in \mathcal{C}_{Y,k}} \|y_j\|_2^2 - 2 \cdot |\mathcal{C}_k| \langle \mu_k^X, \mu_k^Y \rangle$$

1167 By adding and subtracting $|\mathcal{C}_k| \|\mu_k^X\|_2^2$ and $|\mathcal{C}_k| \|\mu_k^Y\|_2^2$, we find the right hand side is equal to

$$\begin{aligned} 1168 \quad &\sum_{k=1}^K \left(\sum_{i \in \mathcal{C}_{X,k}} \|x_i\|_2^2 - |\mathcal{C}_k| \|\mu_k^X\|_2^2 + \sum_{j \in \mathcal{C}_{Y,k}} \|y_j\|_2^2 - |\mathcal{C}_k| \|\mu_k^Y\|_2^2 \right. \\ 1169 \quad &\quad \left. + |\mathcal{C}_k| (\|\mu_k^X\|_2^2 - 2 \cdot \langle \mu_k^X, \mu_k^Y \rangle + \|\mu_k^Y\|_2^2) \right) \end{aligned}$$

1170 We conclude by observing $\sum_{k=1}^K \sum_{i \in \mathcal{C}_{X,k}} \|x_i\|_2^2 - |\mathcal{C}_k| \|\mu_k^X\|_2^2 = \sum_{k=1}^K \sum_{i \in \mathcal{C}_{X,k}} \|x_i - \mu_k^X\|_2^2$ (resp.
 1171 for Y) and identifying $\|\mu_k^X\|_2^2 - 2 \cdot \langle \mu_k^X, \mu_k^Y \rangle + \|\mu_k^Y\|_2^2$ as a difference between means. This results

1188 in the following form for the right hand side:

$$1190 \quad \sum_{k=1}^K \left(\sum_{i \in \mathcal{C}_{X,k}} \|x_i - \boldsymbol{\mu}_k^X\|_2^2 + \sum_{j \in \mathcal{C}_{Y,k}} \|y_j - \boldsymbol{\mu}_k^Y\|_2^2 + |\mathcal{C}_k| \|\boldsymbol{\mu}_k^X - \boldsymbol{\mu}_k^Y\|_2^2 \right),$$

1193 and completes the proof. \blacksquare

1195 A.4 GENERALIZED K -MEANS ALGORITHMS

1196 A.4.1 MIRROR DESCENT (GKMS)

1198 Here we present an algorithm for generalized K -means – which we call (GKMS) – that solves
1199 generalized K -means locally using mirror-descent. GKMS consists of a sequence of mirror-descent
1200 steps with the neg-entropy mirror map $\psi(q) = -\sum q_{ij} \log q_{ij}$ with KL as the proximal function. This
1201 results in a sequence of exponentiated gradient steps with Sinkhorn projections onto a single marginal
1202 Sinkhorn (1966). Notably, Lloyd’s algorithm for K -means, which is the most popular local heuristic
1203 for minimizing the K -means objective, alternates between an update to means $\{\boldsymbol{\mu}_k\}_{k=1}^K \subset \mathbb{R}^d$ and
1204 hard-cluster assignments $\mathbf{Z} \in \{0, 1\}^{n \times K}$. This algorithm only optimizes cluster assignments for a
1205 fixed cost \mathbf{C} , lacking an explicit notion of points or centers in \mathbb{R}^d . Moreover, it permits dense initial
1206 conditions $\mathbf{Q}^{(0)}$ and represents $\mathbf{Q} \in \mathbb{R}_+^{n \times K}$. As the loss lacks entropic regularization, in theory the
1207 sequence $(\mathbf{Q}^{(n)})_{n=1}^\infty$ converges in ℓ_2 to sparse solutions, but requires a final rounding step to ensure
1208 it lies in the set of hard couplings.

1209 We state the generalized K -means problem with its constraints explicitly as:

$$1211 \quad \min_{\mathbf{Q} \in \mathbb{R}^{n \times K}} \langle \mathbf{C}^\dagger, \mathbf{Q} \operatorname{diag}(1/\mathbf{Q}^\top \mathbf{1}_n) \mathbf{Q}^\top \rangle_F \\ 1212 \quad \text{s.t. } \mathbf{Q} \mathbf{1}_K = \mathbf{u}_n, \mathbf{Q} \geq \mathbf{0}_{n \times K}.$$

1214 To derive the associated KKT conditions, one introduces the associated dual variables $\boldsymbol{\lambda} \in \mathbb{R}^n$ and a
1215 non-negative matrix $\boldsymbol{\Omega} \in \mathbb{R}_+^{n \times K}$. From this, we derive a lower bound to the primal by constructing
1216 the Lagrangian L as

$$1217 \quad L(\mathbf{Q}, \boldsymbol{\Omega}, \boldsymbol{\lambda}) = \langle \mathbf{C}^\dagger, \mathbf{Q} \operatorname{diag}(1/\mathbf{Q}^\top \mathbf{1}_n) \mathbf{Q}^\top \rangle_F + \langle \boldsymbol{\lambda}, \mathbf{Q} \mathbf{1}_K - \mathbf{u}_n \rangle - \operatorname{tr} \boldsymbol{\Omega}^\top \mathbf{Q}$$

1219 Denote $\mathbf{D}^{-1} = \operatorname{diag}(1/\mathbf{Q}^\top \mathbf{1}_n)$. For arbitrary directions $\mathbf{V} \in \mathbb{R}^{n \times K}$ one has the direction derivative
1220 in \mathbf{Q} for \mathcal{F} is

$$1221 \quad D \langle \mathbf{C}^\dagger, \mathbf{Q} \mathbf{D}^{-1} \mathbf{Q}^\top \rangle_F [\mathbf{V}] = \langle \mathbf{C}^\dagger, \mathbf{V} \mathbf{D}^{-1} \mathbf{Q}^\top \rangle_F + \langle \mathbf{C}^\dagger, \mathbf{Q} \mathbf{D}^{-1} \mathbf{V}^\top \rangle_F + \langle \mathbf{C}^\dagger, \mathbf{Q} \mathbf{D} \operatorname{diag}(1/\mathbf{Q}^\top \mathbf{1}_n) [\mathbf{V}] \mathbf{Q}^\top \rangle_F \\ 1223 \quad \text{by symmetry in } \mathbf{Q}, \text{ this is}$$

$$1224 \quad = \langle \mathbf{C}^{\dagger, \top} + \mathbf{C}^\dagger, \mathbf{Q} \mathbf{D}^{-1} \mathbf{V}^\top \rangle_F + \frac{1}{2} \langle (\mathbf{C}^\dagger + \mathbf{C}^{\dagger, \top}), \mathbf{Q} \mathbf{D} \operatorname{diag}(1/\mathbf{Q}^\top \mathbf{1}_n) [\mathbf{V}] \mathbf{Q}^\top \rangle_F \\ 1225 \quad = \langle \mathbf{S} \mathbf{Q} \mathbf{D}^{-1}, \mathbf{V} \rangle - \frac{1}{2} \langle \mathbf{1}_n \operatorname{diag}^{-1}(\mathbf{Q}^\top \mathbf{D}^{-1} \mathbf{S} \mathbf{Q} \mathbf{D}^{-1}) \mathbf{V} \rangle_F$$

1228 So that for $\mathbf{S} = (1/2)(\mathbf{C}^{\dagger, \top} + \mathbf{C}^\dagger)$ the symmetrization of \mathbf{C}^\dagger we find

$$1229 \quad \nabla_{\mathbf{Q}} L = \mathbf{S} \mathbf{Q} \mathbf{D}^{-1} - \frac{1}{2} \mathbf{1}_n \operatorname{diag}^{-1}(\mathbf{Q}^\top \mathbf{D}^{-1} \mathbf{S} \mathbf{Q} \mathbf{D}^{-1}) - \boldsymbol{\lambda} \mathbf{1}_K^\top - \boldsymbol{\Omega}$$

1232 Thus, one may summarize the KKT conditions for generalized K -means by

$$1233 \quad \mathbf{S} \mathbf{Q} \mathbf{D}^{-1} - \frac{1}{2} \mathbf{1}_n \operatorname{diag}^{-1}(\mathbf{Q}^\top \mathbf{D}^{-1} \mathbf{S} \mathbf{Q} \mathbf{D}^{-1}) - \boldsymbol{\lambda} \mathbf{1}_K^\top - \boldsymbol{\Omega} = \mathbf{0}_{n \times K}, \\ 1234 \\ 1235 \quad \mathbf{Q} \mathbf{1}_K = \frac{1}{n} \mathbf{1}_n, \\ 1236 \\ 1237 \quad \mathbf{Q} \geq \mathbf{0}_{n \times K}, \\ 1238 \\ 1239 \quad \boldsymbol{\Omega} \odot \mathbf{Q} = \mathbf{0}_{n \times K}.$$

1240 Next, let us suppose we consider a mirror-descent on the generalized K -means loss with respect
1241 to the mirror-map given by the neg-entropy $\psi = -H(p)$, and associated divergence $D_\psi(p \mid q) =$
1242 $\operatorname{KL}(p \parallel q)$.

1242 **Proposition 2.** Suppose $(\gamma_k)_{k \geq 0}$ is a positive sequence of step-sizes for a mirror-descent with respect
 1243 to the KL divergence on the variable \mathbf{Q} in (7). That is, using the update rule
 1244

$$1245 \quad \mathbf{Q}^{(k+1)} \triangleq \arg \min_{\mathbf{Q} \in \Pi(\mathbf{u}_n, \cdot)} \langle \mathbf{Q}, \nabla_{\mathbf{Q}} \mathcal{F} |_{\mathbf{Q}^{(k)}} \rangle_F + \frac{1}{\gamma_k} \text{KL}(\mathbf{Q} || \mathbf{Q}^{(k)}), \quad (29)$$

1246 where we define the generalized K-means loss function as

$$1247 \quad \mathcal{F}(\mathbf{Q}) \triangleq \langle \mathbf{C}^\dagger, \mathbf{Q} \text{diag}(1/\mathbf{Q}^\top \mathbf{1}_n) \mathbf{Q}^\top \rangle_F.$$

1248 Then the updates are of exponentiated-gradient form with one-sided Sinkhorn projections,
 1249

$$1250 \quad \mathbf{Q}^{(k+1)} \leftarrow P_{\mathbf{u}_n, \cdot} \left(\mathbf{Q}^{(k)} \odot \exp \left(-\gamma_k \nabla_{\mathbf{Q}} \mathcal{F} |_{\mathbf{Q}^{(k)}} \right) \right), \quad (30)$$

1251 where $P_{\mathbf{u}_n, \cdot}(\mathbf{X}) = \text{diag}(\mathbf{u}_n / \mathbf{X} \mathbf{1}_K) \mathbf{X}$.
 1252

1253 *Proof.* From the first-order stationary condition, we have that

$$1254 \quad \nabla_{\mathbf{Q}} \mathcal{F} |_{\mathbf{Q} = \mathbf{Q}^{(k)}} - \boldsymbol{\lambda} \mathbf{1}_K^\top - \boldsymbol{\Omega} + \frac{1}{\gamma_k} \log \left[\frac{\mathbf{Q}}{\mathbf{Q}^{(k)}} \right] = \mathbf{0}_{n \times K}$$

$$1255 \quad \mathbf{Q} = \mathbf{Q}^{(k)} \odot \exp \left(\gamma_k \left(-\nabla_{\mathbf{Q}} \mathcal{F} |_{\mathbf{Q} = \mathbf{Q}^{(k)}} + \boldsymbol{\lambda} \mathbf{1}_K^\top + \boldsymbol{\Omega} \right) \right)$$

1256 For notational simplicity, denote $\mathbf{K}^\Omega = e^{-\gamma_k \nabla_{\mathbf{Q}} \mathcal{F} |_{\mathbf{Q}^{(k)}}} \odot e^{\gamma_k \boldsymbol{\Omega}}$. From the constraint, we deduce
 1257

$$1258 \quad \mathbf{Q} \mathbf{1}_K = \text{diag}(e^{\gamma_k \boldsymbol{\lambda}}) \left[\mathbf{Q}^{(k)} \odot \mathbf{K}^\Omega \right] \mathbf{1}_K = \mathbf{u}_n$$

$$1259 \quad \mathbf{Q}^{(k)} \odot \mathbf{K}^\Omega \mathbf{1}_K = \text{diag}(e^{-\gamma_k \boldsymbol{\lambda}}) \mathbf{u}_n = \frac{1}{n} e^{-\gamma_k \boldsymbol{\lambda}}$$

1260 So that we find the exponential of the dual variable to be
 1261

$$1262 \quad e^{\gamma_k \boldsymbol{\lambda}} = (1/n) \mathbf{1}_n \odot \left(\mathbf{Q}^{(k)} \odot \mathbf{K}^\Omega \mathbf{1}_K \right) = \mathbf{u}_n \odot \left(\mathbf{Q}^{(k)} \odot \mathbf{K}^\Omega \mathbf{1}_K \right)$$

1263 Thus, in the identification of $\mathbf{Q} \in \Pi_{\mathbf{u}_n, \cdot}$, we may evaluate the value of $e^{\gamma_k \boldsymbol{\lambda}}$ for dual variable $\boldsymbol{\lambda} \in \mathbb{R}^n$
 1264 and find the following update
 1265

$$1266 \quad \mathbf{Q} = \mathbf{Q}^{(k)} \odot \exp \left(\gamma_k \left(-\nabla_{\mathbf{Q}} \mathcal{F} |_{\mathbf{Q} = \mathbf{Q}^{(k)}} + \boldsymbol{\lambda} \mathbf{1}_K^\top + \boldsymbol{\Omega} \right) \right)$$

$$1267 \quad = \text{diag}(e^{\gamma_k \boldsymbol{\lambda}}) \mathbf{Q}^{(k)} \odot \exp \left(\gamma_k \left(-\nabla_{\mathbf{Q}} \mathcal{F} |_{\mathbf{Q} = \mathbf{Q}^{(k)}} + \boldsymbol{\Omega} \right) \right)$$

$$1268 \quad = \text{diag} \left(\mathbf{u}_n / \left(\mathbf{Q}^{(k)} \odot \mathbf{K}^\Omega \mathbf{1}_K \right) \right) \left(\mathbf{Q}^{(k)} \odot \mathbf{K}^\Omega \right)$$

1269 Supposing $Q_{ij}^{(0)} > 0$ and supposing $\nabla_{\mathbf{Q}} \mathcal{F}$ is bounded, it directly follows that the entries of \mathbf{Q} are
 1270 positive and thus from the complementary slackness condition, $\boldsymbol{\Omega}_{ij} Q_{ij} = 0$, we find that the dual
 1271 multiplier $\boldsymbol{\Omega}_{ij} = 0$. It follows that $Q_{ij}^{(k)} > 0$ for all iterations k , and likewise $\boldsymbol{\Omega}_{ij}^{(k)} = 0$, so that
 1272 $\mathbf{K}^\Omega = e^{-\gamma_k \nabla_{\mathbf{Q}} \mathcal{F} |_{\mathbf{Q}^{(k)}}} \odot e^{\gamma_k \mathbf{0}} = e^{-\gamma_k \nabla_{\mathbf{Q}} \mathcal{F} |_{\mathbf{Q}^{(k)}}}$. Thus, for
 1273

$$1274 \quad \mathbf{K}^{(k)} = \mathbf{Q}^{(k)} \odot e^{-\gamma_k \nabla_{\mathbf{Q}} \mathcal{F} |_{\mathbf{Q}^{(k)}}} \quad (31)$$

1275 we conclude that the update is given by
 1276

$$1277 \quad \mathbf{Q}^{(k+1)} = \text{diag} \left(\mathbf{u}_n / \mathbf{K}^{(k)} \mathbf{1}_K \right) \mathbf{K}^{(k)} \quad (32)$$

1278 \blacksquare

1279 Since the mirror-descent (29) is a case of the classical exponentiated gradient and Bregman-projection
 1280 on the KL-proximal function Peyré et al. (2019), one can also derive this by the stationary condition
 1281 for the kernel
 1282

$$1283 \quad 0 = \nabla_{\mathbf{Q}} \mathcal{F} |_{\mathbf{Q} = \mathbf{Q}^{(k)}} + \frac{1}{\gamma_k} \log \mathbf{K} \oslash \mathbf{Q}^{(k)}$$

$$1284 \quad - \frac{1}{\gamma_k} \log \mathbf{K} \oslash \mathbf{Q}^{(k)} = \nabla_{\mathbf{Q}} \mathcal{F} |_{\mathbf{Q} = \mathbf{Q}^{(k)}}$$

1285 With an update for the positive kernel \mathbf{K} given by $\mathbf{K} := \mathbf{Q}^{(k)} \odot \exp \left(-\gamma_k \nabla_{\mathbf{Q}} \mathcal{F}(\mathbf{Q}^{(k)}) \right)$, The
 1286 associated Bregman projection with respect to the KL-divergence Peyré et al. (2019) is therefore
 1287 $\min_{\mathbf{Q} \in \Pi_{\mathbf{u}_n, \cdot}} \text{KL}(\mathbf{Q} || \mathbf{K})$, which coincides with the projection in (32).
 1288

1289 To address convergence, let us recall the definition of relative smoothness.
 1290

1296 **Definition 3** (Relative smoothness). Let $L > 0$ and let $f \in \mathcal{C}^1(\mathbb{R}^n, \mathbb{R})$. Additionally, for reference-
 1297 function ω let D_ω be its associated distance generating (prox) function. f is then L -smooth relative
 1298 to ω if:

$$1299 \quad f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + LD_\omega(y, x)$$

1300 In general, if an objective f is L -relatively smooth to ψ , the descent lemma applied to mirror-descent
 1301 guarantees that for $\gamma_k \leq 1/L$ one decreases the loss. In particular, one has

$$1303 \quad f(x^{k+1}) \leq f(x^k) + \langle \nabla f(x^k), x^{k+1} - x^k \rangle + LD_\psi(x^{k+1}, x^k) \quad (33)$$

1305 Where, since we have

$$1306 \quad x^{k+1} := \arg \min_x \langle \nabla f(x^k), x \rangle + \frac{1}{\gamma_k} D_\psi(x, x^k) \\ 1307 \quad \langle \nabla f(x^k), x^{k+1} \rangle + \frac{1}{\gamma_k} D_\psi(x^{k+1}, x^k) \leq \langle \nabla f(x^k), x^k \rangle + \frac{1}{\gamma_k} D_\psi(x^k, x^k) = \langle \nabla f(x^k), x^k \rangle$$

1311 The property of L -smoothness and taking $\gamma_k \leq 1/L$ implies descent, as

$$1312 \quad f(x^{k+1}) \leq f(x^k) + \langle \nabla f(x^k), x^{k+1} \rangle + \frac{1}{\gamma_k} D_\psi(x^{k+1}, x^k) - \langle \nabla f(x^k), x^k \rangle + \left(L - \frac{1}{\gamma_k} \right) D_\psi(x^{k+1}, x^k) \\ 1313 \quad \leq f(x^k) + \langle \nabla f(x^k), x^k \rangle - \langle \nabla f(x^k), x^k \rangle + \left(L - \frac{1}{\gamma_k} \right) D_\psi(x^{k+1}, x^k) \\ 1314 \quad = f(x^k) + \left(L - \frac{1}{\gamma_k} \right) D_\psi(x^{k+1}, x^k)$$

1319 Where $D_\psi(x^{k+1}, x^k) \geq 0$ and $\gamma_k \leq 1/L$ implies a decrease. Thus, we next aim to show that the
 1320 proposed mirror-descent, under light regularity conditions, is L -smooth and thus guarantees local
 1321 descent for appropriate choice of step-size γ_k .

1323 **Proposition 3.** Suppose that for the neg-entropy mirror-map, $\psi(\mathbf{Q}) = \sum_{ij} \mathbf{Q}_{ij} \log \mathbf{Q}_{ij}$, one considers
 1324 the loss $\mathcal{F} := \langle \mathbf{S}, \mathbf{Q} \mathbf{D}^{-1} \mathbf{Q}^\top \rangle_F$ for \mathbf{Q} in the set $\Pi(\mathbf{u}_n, \cdot)$ and $\mathbf{D}^{-1} = \text{diag}(1/\mathbf{Q}^\top \mathbf{1}_n)$. Moreover,
 1325 suppose the following floor conditions hold: $\mathbf{Q}_{ij} \geq \epsilon > 0$, $(\mathbf{Q}^\top \mathbf{1}_n)_k \geq \delta > 0$. Then, \mathcal{F} is L -smooth
 1326 relative to ψ :

$$1327 \quad \|\nabla_{\mathbf{Q}}^{(k+1)} - \nabla_{\mathbf{Q}}^{(k)}\|_F \leq \left(L_A + \frac{L_A \sqrt{n}}{\delta} \right) \|\nabla \psi^{(k+1)} - \nabla \psi^{(k)}\|_F, \quad (34)$$

$$1330 \quad L_A := \left(\frac{\|\mathbf{S}\|_F}{\delta} + \frac{\sqrt{n} \|\mathbf{S}\|_F}{\delta^2} \right) \quad (35)$$

1332 *Proof.* Following Scetbon et al. (2021) or Halmos et al. (2024), by either strictly enforcing a lower-
 1333 bound on the entries of \mathbf{g} or adding an entropic regularization (e.g. a KL-divergence to a fixed
 1334 marginal, such as \mathbf{u}_τ , with a sufficiently high penalty τ), one may assume floors of the form
 1335

$$1336 \quad \mathbf{Q}_{ij} \geq \epsilon > 0, \quad (\mathbf{Q}^\top \mathbf{1}_n)_k \geq \delta > 0 \\ 1337 \quad \|\text{diag}(\mathbf{Q}^\top \mathbf{1}_n)^{-1}\|_{\text{op}} \leq \frac{1}{\delta}$$

1340 Additionally, note that $\mathbf{Q}_{ik} \in [0, 1/n]$ and $\|\mathbf{Q}\|_F^2 = \sum_{ik} \mathbf{Q}_{ik}^2 < \sum_{ik} \mathbf{Q}_{ik} = 1$. Now, starting from

$$1341 \quad \nabla_{\mathbf{Q}} := \nabla_{\mathbf{Q}}^{(A)} + \nabla_{\mathbf{Q}}^{(B)} = \mathbf{S} \mathbf{Q} \mathbf{D}^{-1} - \frac{1}{2} \mathbf{1}_n \text{diag}^{-1}(\mathbf{Q}^\top \mathbf{D}^{-1} \mathbf{S} \mathbf{Q} \mathbf{D}^{-1})$$

1343 We see

$$1344 \quad \|\nabla_{\mathbf{Q}}^{(k+1)} - \nabla_{\mathbf{Q}}^{(k)}\|_F \leq \underbrace{\|\mathbf{S} \mathbf{Q}^{(k+1)} \mathbf{D}_{k+1}^{-1} - \mathbf{S} \mathbf{Q}^{(k)} \mathbf{D}_k^{-1}\|_F}_{\text{Term 1}} \\ 1345 \quad + \frac{1}{2} \underbrace{\left\| \mathbf{1}_n \left(\text{diag}^{-1}(\mathbf{Q}^{(k+1), \top} \mathbf{D}_{k+1}^{-1} \mathbf{S} \mathbf{Q}^{(k+1)} \mathbf{D}_{k+1}^{-1}) - \text{diag}^{-1}(\mathbf{Q}^{(k), \top} \mathbf{D}_k^{-1} \mathbf{S} \mathbf{Q}^{(k)} \mathbf{D}_k^{-1}) \right) \right\|_F}_{\text{Term 2}}$$

1350 From the first term, one finds

$$\begin{aligned} 1351 \quad & \|\mathbf{S}\mathbf{Q}^{(k+1)}\mathbf{D}_{k+1}^{-1} - \mathbf{S}\mathbf{Q}^{(k)}\mathbf{D}_k^{-1}\|_F \leq \|\mathbf{S}\|_F \|\mathbf{Q}^{(k+1)}\mathbf{D}_{k+1}^{-1} - \mathbf{Q}^{(k)}\mathbf{D}_k^{-1}\|_F \\ 1352 \quad & \leq \|\mathbf{S}\|_F \left(\|\mathbf{Q}^{(k+1)}\|_F \|\mathbf{D}_{k+1}^{-1} - \mathbf{D}_k^{-1}\|_F + \|\mathbf{D}_k^{-1}\|_F \|\mathbf{Q}^{(k+1)} - \mathbf{Q}^{(k)}\|_F \right) \\ 1353 \quad & \end{aligned}$$

1354 As one has $\|\mathbf{D}_{k+1}^{-1} - \mathbf{D}_k^{-1}\|_F = \|\mathbf{D}_k^{-1}\mathbf{D}_{k+1}^{-1}(\mathbf{D}_{k+1} - \mathbf{D}_k)\|_F \leq \delta^{-2}\|\mathbf{D}_{k+1} - \mathbf{D}_k\|_F$ and since

$$1355 \quad \|\mathbf{Q}^{(k+1)} - \mathbf{Q}^{(k)}\|_F \leq \sqrt{n}\|\mathbf{Q}^{(k+1)} - \mathbf{Q}^{(k)}\|_F \quad (36)$$

1356 One collects a bound on the first term of the form

$$1357 \quad \leq \left(\frac{\|\mathbf{S}\|_F}{\delta} + \frac{\sqrt{n}\|\mathbf{S}\|_F}{\delta^2} \right) \|\mathbf{Q}^{(k+1)} - \mathbf{Q}^{(k)}\|_F := L_A \|\mathbf{Q}^{(k+1)} - \mathbf{Q}^{(k)}\|_F \quad (37)$$

1358 For the second, observe that

$$\begin{aligned} 1359 \quad & \|\mathbf{1}_n \text{diag}^{-1} \mathbf{X}\|_F^2 = \text{tr}(\mathbf{1}_n \text{diag}^{-1} \mathbf{X})^\top (\mathbf{1}_n \text{diag}^{-1} \mathbf{X}) \\ 1360 \quad & = n \|\text{diag}^{-1} \mathbf{X}\|_2^2 \leq n \|\mathbf{X}\|_F^2 \\ 1361 \quad & \end{aligned}$$

1362 So that $\|\mathbf{1}_n \text{diag}^{-1} \mathbf{X}\|_F \leq \sqrt{n}\|\mathbf{X}\|_F$. Thus, we find the second term is bounded by

$$\begin{aligned} 1363 \quad & \leq \frac{\sqrt{n}}{2} \left\| \mathbf{Q}^{(k+1),\top} \mathbf{D}_{k+1}^{-1} \mathbf{S} \mathbf{Q}^{(k+1)} \mathbf{D}_{k+1}^{-1} - \mathbf{Q}^{(k),\top} \mathbf{D}_k^{-1} \mathbf{S} \mathbf{Q}^{(k)} \mathbf{D}_k^{-1} \right\|_F \\ 1364 \quad & = \frac{\sqrt{n}}{2} \left\| \mathbf{Q}^{(k+1),\top} \mathbf{D}_{k+1}^{-1} \nabla_{\mathbf{Q}}^{(k+1,A)} - \mathbf{Q}^{(k),\top} \mathbf{D}_k^{-1} \nabla_{\mathbf{Q}}^{(k,A)} \right\|_F \\ 1365 \quad & \leq \frac{\sqrt{n}}{2} \|\mathbf{Q}^{(k+1)}\|_F \|\mathbf{D}_{k+1}^{-1}\|_F \|\nabla_{\mathbf{Q}}^{(k+1,A)} - \nabla_{\mathbf{Q}}^{(k,A)}\|_F + \frac{\sqrt{n}}{2} \|\nabla_{\mathbf{Q}}^{(k,A)}\|_F \|\mathbf{Q}^{(k+1),\top} \mathbf{D}_{k+1}^{-1} - \mathbf{Q}^{(k),\top} \mathbf{D}_k^{-1}\|_F \\ 1366 \quad & \end{aligned}$$

1367 Now, since we have already quantified the difference $\|\nabla_{\mathbf{Q}}^{(k+1,A)} - \nabla_{\mathbf{Q}}^{(k,A)}\|_F$ with smoothness
1368 constant L_A in (37), and also quantified $\|\mathbf{Q}^{(k+1),\top} \mathbf{D}_{k+1}^{-1} - \mathbf{Q}^{(k),\top} \mathbf{D}_k^{-1}\|_F$, we simply invoke both
1369 bounds from above to conclude the bound on the second term as

$$\begin{aligned} 1370 \quad & \leq \frac{L_A \sqrt{n}}{2\delta} \|\mathbf{Q}^{(k+1)} - \mathbf{Q}^{(k)}\|_F + \frac{\sqrt{n}}{2} \frac{1}{\delta} \left(\frac{\|\mathbf{S}\|_F}{\delta} + \frac{\sqrt{n}\|\mathbf{S}\|_F}{\delta^2} \right) \|\mathbf{Q}^{(k+1)} - \mathbf{Q}^{(k)}\|_F \\ 1371 \quad & = \left(\frac{L_A \sqrt{n}}{2\delta} + \frac{L_A \sqrt{n}}{2\delta} \right) \|\mathbf{Q}^{(k+1)} - \mathbf{Q}^{(k)}\|_F = \frac{L_A \sqrt{n}}{\delta} \|\mathbf{Q}^{(k+1)} - \mathbf{Q}^{(k)}\|_F \\ 1372 \quad & \end{aligned}$$

1373 Thus, we find the objective to be L -smooth with constant given in terms of L_A (37)

$$1374 \quad \leq L \|\mathbf{Q}^{(k+1)} - \mathbf{Q}^{(k)}\|_F, \quad L = \left(L_A + \frac{L_A \sqrt{n}}{\delta} \right)$$

1375 Lastly, for the entropy mirror-map ψ observe that for $\nabla\psi(x) = \log x$ one has for $\xi \in [\epsilon, 1]$ by the
1376 mean value theorem that $\log'(\xi)|u-v| = \xi^{-1}|u-v| = |\log u - \log v|$, so that following Scetbon
1377 et al. (2021) one concludes relative smoothness in ψ via the upper bound

$$1378 \quad \leq L \|\nabla\psi^{(k+1)} - \nabla\psi^{(k)}\|_F \quad \blacksquare$$

1379 **Corollary 1** (Guaranteed Descent). *By Proposition 3 one can ensure that \mathcal{F} is smooth relative to
1380 the entropy mirror-map ψ with constant L given in Proposition 3. For $\gamma_k \leq 1/L$, this guarantees
1381 descent on the objective and ensures the initialization guarantees of Theorem 2 are upper bounds on
1382 the final solution cost.*

1383 A.4.2 SEMIDEFINITE PROGRAMMING

1384 Here we present an algorithm for generalized K -means via semidefinite programming. The basic idea
1385 is that the semidefinite programming approaches for K -means (Peng and Xia, 2005; Peng and Wei,
1386 2007; Zhuang et al., 2022; 2023) apply immediately to the generalized K -means problem. First, by
1387 analyzing the argument in (Peng and Xia, 2005; Peng and Wei, 2007) for constructing an equivalent
1388 form of K -means, one observes that the generalized K -means problem (8) is equivalent to:

$$1389 \quad \min_{\mathbf{P} \geq 0} \left\{ \langle \mathbf{P}, \mathbf{C} \rangle_F : \text{tr}(\mathbf{P}) = K, \mathbf{P}\mathbf{1}_K = \mathbf{1}_n, \mathbf{P}^2 = \mathbf{P}, \mathbf{P} = \mathbf{P}^\top \right\}. \quad (38)$$

Replacing the non-convex constraint $\mathbf{P}^2 = \mathbf{P}$ with its relaxation $\mathbf{P} \succeq 0$, yields the semidefinite relaxation of generalized K -means problem (8),

$$\min_{\mathbf{P} \succeq 0} \left\{ \langle \mathbf{P}, \mathbf{C} \rangle_F : \text{tr}(\mathbf{P}) = K, \mathbf{P} \mathbf{1}_K = \mathbf{1}_n, \mathbf{P} \succeq 0 \right\}. \quad (39)$$

The only difference between the reformulation of generalized K -means (38) and the reformulation of K -means studied in (Peng and Xia, 2005; Peng and Wei, 2007) is the structure of the cost matrix \mathbf{C} . The advantages of the semidefinite programming approach compared to GKMS is that it provides higher quality solutions, does not depend on the initialization parameters, and provides a lower bound on the optimal cost. The disadvantage is the computational cost required to solve large semidefinite programming problems. Mildly alleviating the computational burden, we apply recent approaches from Zhuang et al. (2023) for solving the semidefinite programming problem (39).

A.5 EXACT REDUCTIONS OF GENERALIZED K -MEANS BY CLASS OF COST \mathbf{C}

A.5.1 NEARLY NEGATIVE SEMIDEFINITE COSTS

When \mathbf{C} is negative semidefinite, the generalized K -means problem (39) exactly coincides with the K -means problem. In these cases, approximation algorithms for K -means, such as established $(1 + \epsilon)$ approximations Kumar et al. (2004) and poly-time $\log K$ approximations (e.g. k-means++ Arthur and Vassilvitskii (2007)), directly transfer to the low-rank OT setting. However, by definition, such costs express symmetric distances between a dataset and itself and are not relevant to optimal transport between distinct measures.

Interestingly, direct reduction of generalized K -means to K -means holds for a more general class of asymmetric distances which may express costs between distinct datasets. In Proposition 5, we show such a strong condition: it is sufficient for the symmetrization of any cost \mathbf{C} , $\text{Sym}\mathbf{C}$, to be conditionally negative semi-definite.

Proposition 4. *Suppose we are given a cost matrix $\mathbf{C} \in \mathbb{R}^{n \times n}$ where the symmetrization of \mathbf{C} , $\text{Sym}(\mathbf{C}) := \mathbf{C}^\top + \mathbf{C}$ is conditionally negative-semidefinite so that $\text{Sym}\mathbf{C} \preceq 0$ on $\mathbf{1}_n^\perp$. Denote the double-centering $J = \mathbf{1} - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^\top$ and p.s.d. kernel $\mathbf{K} := -(1/2) J \text{Sym}\mathbf{C} J \succeq 0$. Then Problem 7 reduces to kernel k -means Dhillon et al. (2004a) on \mathbf{K} :*

$$\min_{\substack{\mathbf{Q} \in \Pi_{\bullet}(\mathbf{u}_n, \mathbf{g}), \\ \mathbf{g} \in \Delta_r}} \langle \mathbf{Q} \text{diag}(1/\mathbf{g}) \mathbf{Q}^\top, \mathbf{C} \rangle_F \equiv \max_{\mathbf{Q} \in \{0,1\}^{n \times r}} \text{tr} \mathbf{D}^{-1/2} \mathbf{Q}^\top \mathbf{K} \mathbf{Q} \mathbf{D}^{-1/2} \quad (40)$$

$\mathbf{D} := \text{diag}(\mathbf{g})$ denotes the diagonal matrix of cluster sizes and \mathbf{Q} the matrix of assignments.

Cost matrices induced by kernels, such as the squared Euclidean distance, are classically characterized by being conditionally negative semidefinite Schoenberg (1938); Rao (1984). For a satisfying cost \mathbf{C} , Proposition implies that 7 is equivalent to K -means with Gram matrix $\mathbf{K} = -(1/2) J \text{Sym}\mathbf{C} J$. This is a stronger statement than requiring $\mathbf{C} \preceq 0$. Observe that the Monge-conjugated matrix, $\text{Sym}\mathbf{C}^\dagger$ turns an asymmetric cost into a symmetric bilinear form on (i, j) . Moreover, as $\text{Sym}\mathbf{C}$ plays the role of a distance matrix in the conversion to \mathbf{K} , we offer it an appropriate name

Definition 4 (Monge Cross-Distance Matrix). *Let $\mathbf{C}^\dagger = \mathbf{C} \mathbf{P}_{\sigma^*}^\top$ for \mathbf{P}_{σ^*} the optimal Monge permutation. Denote its symmetrization by $\text{Sym}(\mathbf{C}^\dagger) = \mathbf{C} \mathbf{P}_{\sigma^*}^\top + \mathbf{P}_{\sigma^*} \mathbf{C}^\top$. In the $\mathbf{1}_n^\perp$ subspace, each element may be expressed as the cross-difference*

$$\mathbf{M}_{ij}^\dagger = \langle x_i - x_j, T(x_i) - T(x_j) \rangle \quad (41)$$

Thus, we refer to \mathbf{M}^\dagger as the Cross-Distance Matrix induced by the Monge map.

Proposition 5 implies that the reduction to K -means holds if and only if the bilinear forms of the Monge gram matrix admit an inner product in a Hilbert space \mathcal{H} . In other words, if there exists a function ψ so $\langle x, T(y) \rangle := \langle \psi(x), \psi(y) \rangle$. For clustering on any symmetric cost \mathbf{C} , one has that the Monge map is the identity $T = \mathbf{I}$, so that $\langle x_i - x_j, T(x_i) - T(x_j) \rangle$ immediately reduces to a EDM $\|x_i - x_j\|_2^2$. Notably, this also holds for a more general class of distributions without identity Monge maps – multivariate Gaussians in Bures-Wasserstein space $\text{BW}(\mathbb{R}^d)$ Chewi et al. (2024). These automatically admit CND cost matrices following Monge-conjugation for the squared Euclidean distance $\|\cdot\|_2^2$.

1458 **Remark 2.** $\langle x, T(y) \rangle := \langle \psi(x), \psi(y) \rangle$ holds universally for transport maps between any two
 1459 multivariate Gaussians Peyré et al. (2019). Let $\rho_1 = \mathcal{N}(\mu_1, \Sigma_1)$ and $\rho_2 = \mathcal{N}(\mu_2, \Sigma_2)$. The
 1460 transport map T such that $T \# \rho_1 = \rho_2$ is given by the affine transformation $T(x) = \mathbf{A}x + \mathbf{b}$ with
 1461 $\mathbf{A} = \Sigma_1^{-1/2} \left(\Sigma_1^{1/2} \Sigma_2 \Sigma_1^{1/2} \right) \Sigma_1^{-1/2} \succeq 0$ and $\mathbf{b} = \mu_2 - \mathbf{A}\mu_1$. Thus, for $\psi := \sqrt{\mathbf{A}}$
 1462

$$\langle x_i - x_j, \mathbf{A}x_i + \mathbf{b} - (\mathbf{A}x_j + \mathbf{b}) \rangle = \|\sqrt{\mathbf{A}}(x_i - x_j)\|_2^2$$

1463
 1464
 1465 In general, the conjugated cost \mathbf{M}^\dagger shifts \mathbf{C} to be nearer to a clustering distance matrix after
 1466 symmetrization: the diagonal entries are zero $\mathbf{M}_{jj}^\dagger = 0$, for squared Euclidean cost Brenier (1991)
 1467 the entries $\langle x_i - x_j, T(x_i) - T(x_j) \rangle \geq 0$, and \mathbf{M}^\dagger reduces to a matrix of kernel-distances on $x_i - x_j$
 1468 whenever $\text{Sym}(\mathbf{C}^\dagger)$ is CND. Moreover, for squared Euclidean cost one has $T = \nabla\varphi$ for a convex
 1469 potential $\varphi \in \text{cvx}(\mathbb{R}^d)$ Brenier (1991). Thus, to second-order, all entries may be expressed on $\mathbb{1}_n^\perp$ as
 1470 PSD forms $\langle x_i - x_j, T(x_i) - T(x_j) \rangle \sim \langle x_i - x_j, \nabla^2\varphi(x_j)(x_i - x_j) \rangle$ for $\nabla^2\varphi(x_j) \succeq 0$.
 1471

1472 While K -means reduces to a special case of low-rank optimal transport where $\mathbf{Q} = \mathbf{R}$, as has
 1473 been previously shown Scetbon and Cuturi (2022), the other direction is significantly less obvious:
 1474 it often appears that one can only gain by taking $\mathbf{Q} \neq \mathbf{R}$ and optimizing over a larger space of
 1475 solutions when \mathbf{C} is an asymmetric cost with respect to a pair of *distinct* datasets X, Y . We note
 1476 that when the conditions of Proposition 5 hold, generalized k -means exactly reduces to K -means, so
 1477 that step (ii) inherits its existing algorithmic guarantees. In particular, suppose $\mathbf{C} \in \mathbb{R}^{n \times n}$ satisfies
 1478 Proposition 5 and one may also solve K -means to $(1 + \epsilon)$ using algorithm \mathcal{A} . For the Gram-matrix
 1479 $\mathbf{K} = -(1/2)J \text{Sym}(\mathbf{C})J$ one may yield the eigen-decomposition $\mathbf{K} = \mathbf{U}\Lambda\mathbf{U}^\top$ and compute point
 1480 $\mathbf{Z} = \mathbf{U}\Lambda^{1/2}$. Then, given a solution to K -means on \mathbf{Z} , $\bar{\mathbf{Q}} := \mathcal{A}(\mathbf{Z})$, one automatically inherits
 1481 $(1 + \epsilon)$ -approximation of generalized K -means by the exact reduction. We detail the algorithm for
 1482 this special case in Algorithm 3 below.

1483 **Algorithm 3.**

- 1485 (i) Symmetrize the Monge-conjugated cost $\text{Sym}(\tilde{\mathbf{C}}) = \mathbf{C}\mathbf{P}_{\sigma^*}^\top + \mathbf{P}_{\sigma^*}\mathbf{C}^\top$
- 1486 (ii) Grammize as $G = -(1/2)J \text{Sym}(\tilde{\mathbf{C}})J$ for double-centering $J = \mathbb{1}_n - \frac{1}{n}\mathbb{1}_n\mathbb{1}_n^\top$
- 1487 (iii) Yield Z from eigen-decomposition of $G = ZZ^\top$
- 1488 (iv) Run K -Means on Z to yield \mathbf{Q}
- 1489 (v) Output the pair $(\mathbf{Q}, \mathbf{P}_{\sigma^*}^\top \mathbf{Q})$.

1492 Thus, for this class of cost, Algorithm 1 guarantees *optimal* solutions to generalized K -means by
 1493 reduction to optimal solvers for K -means.

1494 Observe two valuable invariants of the optimization problem (7): first we have an affine invariance,
 1495 naturally characterized by the optimal transport constraints; second, the symmetry of the coupling op-
 1496 timized introduces an invariance to asymmetric components of the cost itself, so that the optimization
 1497 (7) is equivalent to one on the symmetrization of the cost.

1498 **Lemma 7** (Invariances of Generalized K -Means.). *Suppose we are given a cost matrix $\mathbf{C} \in \mathbb{R}^{n \times n}$.
 1499 Then the generalized K -means problem*

$$\min_{\substack{\mathbf{Q} \in \Pi_\bullet(\mathbf{u}_n, \mathbf{g)}, \\ \mathbf{g} \in \Delta_K}} \langle \mathbf{Q} \text{diag}(1/\mathbf{g}) \mathbf{Q}^\top, \mathbf{C} \rangle_F \quad (42)$$

1504 Exhibits the following invariances:

1505 1. *Invariance to asymmetric components*

$$\arg \min_{\substack{\mathbf{Q} \in \Pi_\bullet(\mathbf{u}_n, \mathbf{g}), \\ \mathbf{g} \in \Delta_K}} \langle \mathbf{Q} \text{diag}(1/\mathbf{g}) \mathbf{Q}^\top, \mathbf{C} \rangle_F = \arg \min_{\substack{\mathbf{Q} \in \Pi_\bullet(\mathbf{u}_n, \mathbf{g}), \\ \mathbf{g} \in \Delta_K}} \langle \mathbf{Q} \text{diag}(1/\mathbf{g}) \mathbf{Q}^\top, \mathbf{S} \rangle_F \quad (43)$$

1506 1511 Where $\mathbf{C} = \mathbf{A} + \mathbf{S}$ for its symmetric component $\mathbf{S} \triangleq (1/2)(\mathbf{C} + \mathbf{C}^\top) \in \mathbb{S}^n$ and its
 1510 skew-symmetric component $\mathbf{A} := (1/2)(\mathbf{C} - \mathbf{C}^\top) \in \mathbb{A}^n$.

1512 2. Invariance to affine offsets $\mathbf{f}\mathbf{1}_n^\top + \mathbf{1}_n\mathbf{h}^\top$ and shifts $\gamma\mathbf{1}_n\mathbf{1}_n^\top$

1513

$$\min_{\substack{\mathbf{Q} \in \Pi_\bullet(\mathbf{u}_n, \mathbf{g}), \\ \mathbf{g} \in \Delta_K}} \langle \mathbf{Q} \operatorname{diag}(1/\mathbf{g}) \mathbf{Q}^\top, \mathbf{\Lambda} + \mathbf{f}\mathbf{1}_n^\top + \mathbf{1}_n\mathbf{h}^\top + \gamma\mathbf{1}_n\mathbf{1}_n^\top \rangle_F \quad (44)$$

1514

$$= \min_{\substack{\mathbf{Q} \in \Pi_\bullet(\mathbf{u}_n, \mathbf{g}), \\ \mathbf{g} \in \Delta_K}} \langle \mathbf{Q} \operatorname{diag}(1/\mathbf{g}) \mathbf{Q}^\top, \mathbf{\Lambda} \rangle_F + \mathbf{f}^\top \mathbf{u}_n + \mathbf{u}_n^\top \mathbf{h} + \gamma \quad (45)$$

1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3229
3230
3231
3232
3233
3234
3235
3236
3237

1566 **B EXPERIMENTAL DETAILS**
15671568 **B.1 IMPLEMENTATION DETAILS**
1569

1570 For the synthetic experiments we inferred the Monge map \mathbf{P}_{σ^*} by applying the Sinkhorn algorithm
 1571 implemented in `ott-jax` with the entropy regularization parameter $\epsilon = 10^{-5}$ and a maximum
 1572 iteration count of 10,000. For the real data experiments, we inferred the Monge map \mathbf{P}_{σ^*} using
 1573 `HiRef` (Halmos et al., 2025b), and used a low-rank version of `GKMS` which uses a factorization
 1574 of the cost $\mathbf{C} = \mathbf{A}\mathbf{B}^\top$ for scaling. The remaining implementation details are consistent across the
 1575 synthetic and real data experiments.

1576 For the `GKMS` algorithm, we used a `JAX` implementation of the `GKMS` algorithm with step size
 1577 $\gamma_k = 2$ for a fixed number 250 of iterations. To construct an initial solution, we first applied the
 1578 K -means algorithm implemented in `scikit-learn` on X and Y to obtain clustering matrices
 1579 \mathbf{Q}_X and \mathbf{Q}_Y . Then, using the Monge registered initialization procedure in Algorithm 2, we took
 1580 the best of the two solutions \mathbf{Q}_X and $\mathbf{P}_{\sigma^*}\mathbf{Q}_Y$ as \mathbf{Q} . Next, we performed a centering step by setting
 1581 $\mathbf{Q}^{(0)} = \lambda\mathbf{Q} + (1 - \lambda)\mathbf{Q}'$ where \mathbf{Q}' is a random matrix in $\Pi(\mathbf{u}_n, \cdot)$ generated from the initialization
 1582 procedure in Scetbon et al. (2021) with $\lambda = \frac{1}{2}$. Finally, we ran `GKMS` on the registered cost matrix
 1583 $\tilde{\mathbf{C}} = \mathbf{C}\mathbf{P}_{\sigma^*}^\top$ with $\mathbf{Q}^{(0)}$ as the initial solution.

1584 For the synthetic stochastic block model (SBM) example we applied the semidefinite programming
 1585 formulation of the generalized K -means problem described in Appendix A.4.2 with the solver from
 1586 Zhuang et al. (2023) to initialize $\mathbf{Q}^{(0)}$ prior to running `GKMS`.
 1587

1588 **B.2 SYNTHETIC EXPERIMENTS**
1589

1590 We constructed three synthetic datasets to evaluate existing low-rank OT methods. Each dataset was
 1591 constructed with $n = m = 5000$ datapoints, resulting in a cost matrix $\mathbf{C} \in \mathbb{R}^{5000 \times 5000}$.
 1592

1593 **2-Moons and 8-Gaussians (2M-8G).** In this experiment Tong et al. (2023), we generated two
 1594 datasets $X, Y \subset \mathbb{R}^2$ representing two spirals (X) and 8 isotropic Gaussians (Y). In particular,
 1595 we used the function `generate_moons` from the package `torchdyn.datasets` to generate
 1596 the two interleaving moons as the first dataset. These are defined as semi-circles with angles
 1597 $\theta_1 \sim \text{Unif}(0, \pi)$, $\theta_2 \sim \text{Unif}(0, \pi)$ and $(r \cos \theta_1 \ r \sin \theta_1) - \mathbf{c}$ and $(r \cos \theta_2 \ -r \sin \theta_2) + \mathbf{c}$ for
 1598 constant offset \mathbf{c} . We add isotropic Gaussian noise with variance 0.5. As in Tong et al. (2023), one
 1599 scales all points with $\tilde{Y} = aY + b$ for $a = 3, b = (-1 \ -1)$ to overlap visually with the 8 Gaussians.
 1600 For given variance $\sigma^2 = 1.0$, we generated $k \in [8]$ isotropic Gaussian clusters $\mathcal{N}(\boldsymbol{\mu}_k, \sigma^2 \mathbf{I}_2)$ with
 1601 means on the unit circle S^2 , given by

$$\begin{pmatrix} \boldsymbol{\mu}_1 \\ \vdots \\ \boldsymbol{\mu}_8 \end{pmatrix} = \begin{cases} (1, 0), \\ (-1, 0), \\ (0, 1), \\ (0, -1), \\ \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right), \\ \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right), \\ \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right), \\ \left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right) \end{cases}$$

1612 The 2-moons constitutes a simple non-linear manifold and the 8-Gaussians constitutes a simple
 1613 dataset with cluster structure.
 1614

1615 **Shifted Gaussians (SG).** To construct the SG synthetic datasets we placed $K = 250$ Gaussian
 1616 distributions with means $\boldsymbol{\mu}_1, \dots, \boldsymbol{\mu}_k \in \mathbb{R}^K$ at the basis vectors $e_1, \dots, e_K \in \mathbb{R}^K$. Similarly,
 1617 we constructed another set of means $\boldsymbol{\mu}'_1, \dots, \boldsymbol{\mu}'_k$ by perturbing the means $\boldsymbol{\mu}'_i = \boldsymbol{\mu}_i + \boldsymbol{\epsilon}_i$ with
 1618 $\boldsymbol{\epsilon}_i \sim \mathcal{N}(0, \frac{0.1}{\sqrt{n}} \mathbf{I}_K)$. Then, we randomly sampled groups of size m_1, \dots, m_K with $\sum_{k=1}^K m_k = n$ by
 1619 randomly sampling a partition of n of size K . Then, for both datasets X and Y , we assigned cluster
 1 to the first m_1 points, cluster 2 to the next m_2 points, ..., and cluster K to the final m_K points. For

1620 points in cluster k in dataset X , we sample m_k points from $\mathcal{N}(\boldsymbol{\mu}_k, \frac{\sigma^2}{\sqrt{n}} \mathbf{I}_K)$. Similarly, for points in
 1621 cluster k in dataset Y , we sample m_k points from $\mathcal{N}(\boldsymbol{\mu}'_k, \frac{\sigma^2}{\sqrt{n}} \mathbf{I}_K)$.
 1622

1623 To construct the cost matrix, we take $\mathbf{C}_{ij} = \|x_i - y_j\|_2^2$. We construct three instances using different
 1624 noise values $\sigma^2 \in \{0.1, 0.2, 0.3\}$.
 1625

1626 **Stochastic Block Model (SBM).** To construct the SBM instance, we generated a graph $G = (V, E)$
 1627 from a stochastic block model using within cluster probability $p = 0.5$ and between cluster probability
 1628 $q = 0.25$ over $K = 100$ clusters of fixed size $m = 50$. Edge weights w_e were generated by randomly
 1629 sampling weights from $\text{Unif}(1.0, 2.0)$. The cost matrix $\mathbf{C}_{ij} = d_G(i, j)$ was taken as the shortest path
 1630 distance between vertices i and j in G with the weight function w .
 1631

1632 B.3 CIFAR10

1633 We follow the protocol of Zhuang et al. (2023) in this experiment by comparing all low-rank OT
 1634 methods on the CIFAR-10 dataset, containing 60,000 images of size $32 \times 32 \times 3$ across 10 classes.
 1635 We use a ResNet (resnet18-f37072fd.pth) to embed the images to dimension $d = 512$ He et al. (2016)
 1636 and apply a PCA to $d = 50$, following the procedure of Zhuang et al. (2023). We then perform a
 1637 stratified 50/50 split of the images into two datasets of 30,000 images with class-label distributions
 1638 matched. We use a fixed seed for this, as well as for the low-rank OT solvers following the `ott-jax`
 1639 implementation of Scetbon et al. (2021). For low-rank OT, we set the rank to $K = 10$ to match the
 1640 number of class labels. To run `TC` we solve for the coupling \mathbf{P}_{σ^*} with Hierarchical Refinement due
 1641 to the size of the dataset Halmos et al. (2025b), and solve generalized K -means with mirror-descent.
 1642 In this experiment, we specialize to the squared-Euclidean cost $\|\cdot - \cdot\|_2^2$.
 1643

1644 For our evaluation metrics, we first compute the primal OT cost of each low-rank coupling as our
 1645 primary benchmark. We also evaluate AMI and ARI to the ground-truth marginal clusterings, given
 1646 by annotated class labels. We compute our predicted labels via the argmax assignment of labels
 1647 as $\hat{y}(i) = \arg \max_z \mathbf{Q}_{i,z}$ and $\hat{y}'(j) = \arg \max_z \mathbf{R}_{j,z}$. Lastly, we assess co-clustering performance
 1648 by using the class-transfer accuracy (CTA). Given a proposed coupling \mathbf{P} , define the class-to-class
 1649 density matrix for two ground-truth classes k, k' (distinguished from the predicted classes of the
 1650 arg-max of the low-rank factors) to be
 1651

$$(\rho)_{k,k'} = \sum_{ij} \mathbf{P}_{ij} \mathbb{1}_{i \in \mathcal{C}_k} \mathbb{1}_{j \in \mathcal{C}_{k'}}$$

1652 The class-transfer accuracy is then defined to be
 1653

$$\text{CTA}(\mathbf{P}) = \frac{\text{tr } \rho}{\sum \rho_{k,k'}} \quad (51)$$

1654 in other words, the fraction of mass transferred between ground-truth classes (i.e. the diagonal of ρ)
 1655 over the total mass transferred between all class pairs.
 1656

1657 B.4 SINGLE-CELL TRANSCRIPTOMICS OF MOUSE EMBRYOGENESIS

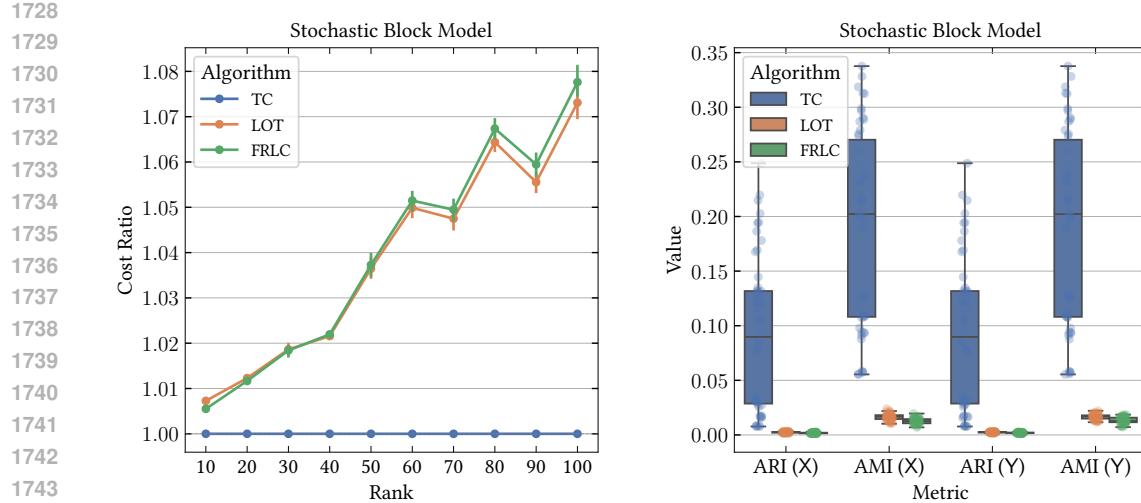
1658 We validate `TC` against `LOT` Scetbon et al. (2021) and `FRLC` Halmos et al. (2024) on a recent,
 1659 massive-scale dataset of single-cell mouse embryogenesis measured across 45 timepoint bins with
 1660 combinatorial indexing (sci-RNA-seq3) Qiu et al. (2024). In aggregate, this dataset contains 12.4
 1661 million nuclei across timepoints and various replicates. As our experiment, we align the first
 1662 replicate across 7 timepoints (E8.5, E8.75, E9.0, E9.25, E9.5, E9.75, E10.0) for a total of 6 adjacent
 1663 timepoint pairs. For each timepoint pair, we use `scipy` to read the h5ad file and follow standard
 1664 normalization procedures: `sc.pp.normalize_total` to normalize counts, `sc.pp.log1p`
 1665 to add pseudocounts for stability, and run `sc.tl.pca` to perform a PCA projection of the raw
 1666 expression data to the first $d = 50$ principle components (using SVD solver "randomized"). As we
 1667 use Halmos et al. (2025b) as the full-rank OT solver, subsampling each dataset slightly to ensure
 1668 that n has many divisors for hierarchical partitioning. Similarly to the CIFAR evaluation, we ensure
 1669 that the two datasets have a balanced proportion of classes – which, in this case, represent cell-types
 1670 annotated from `cell_id` in the `df_cell.csv` metadata provided in Qiu et al. (2024). We set the
 1671 rank K to be the minimum of the number of cell-types present at timepoint 1 and timepoint 2. We
 1672 run `LOT`, `FRLC`, and `TC` on this data with the squared Euclidean cost. In both cases, we input the data
 1673

1674
 1675 Table 2: Single-cell transcriptomics alignment on consecutive mouse embryo timepoints. We report
 1676 OT cost (lower is better), AMI/ARI for each split (A/B), and class-transfer accuracy (CTA; higher is
 1677 better).

Timepoints	Method	Rank	OT Cost ↓	AMI (A/B) ↑	ARI (A/B) ↑	CTA ↑	Runtime (s)
E8.5 → E8.75 (18,819 cells)	TC	43	0.506	0.639 / 0.617	0.329 / 0.307	0.722	63.38
	FRLC	43	0.553	0.556 / 0.531	0.217 / 0.199	0.525	16.45
	LOT	43	0.520	0.605 / 0.592	0.283 / 0.272	0.611	8.77
E8.75 → E9.0 (30,240 cells)	TC	53	0.384	0.597 / 0.598	0.231 / 0.230	0.545	177.12
	FRLC	53	0.405	0.534 / 0.541	0.174 / 0.178	0.492	16.92
	LOT	53	0.390	0.559 / 0.567	0.193 / 0.197	0.487	10.88
E9.0 → E9.25 (45,360 cells)	TC	57	0.452	0.563 / 0.554	0.190 / 0.187	0.500	286.95
	FRLC	57	0.481	0.524 / 0.515	0.158 / 0.155	0.471	19.31
	LOT	57	—	— / —	— / —	—	—
E9.25 → E9.5 (75,600 cells)	TC	67	0.411	0.562 / 0.567	0.191 / 0.194	0.565	470.61
	FRLC	67	0.431	0.484 / 0.488	0.129 / 0.130	0.441	33.91
	LOT	67	—	— / —	— / —	—	—
E9.5 → E9.75 (131,040 cells)	TC	80	0.389	0.554 / 0.551	0.172 / 0.169	0.564	806.81
	FRLC	80	0.399	0.491 / 0.487	0.116 / 0.115	0.447	58.58
	LOT	80	—	— / —	— / —	—	—
E9.75 → E10.0 (120,960 cells)	TC	77	0.361	0.559 / 0.560	0.180 / 0.181	0.475	741.91
	FRLC	77	0.379	0.502 / 0.502	0.130 / 0.130	0.437	52.02
	LOT	77	—	— / —	— / —	—	—

1697
 1698 as point clouds X, Y as opposed to instantiating the cost C explicitly and specialize to the squared
 1699 Euclidean cost.

1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727



1745 Figure 4: Comparison of low-rank OT methods on the stochastic block model dataset. **(Left)** Relative
1746 cost of the rank $K \in \{10, \dots, 100\}$ transport plan inferred by LOT and FRLC compared to the cost
1747 of the transport plan inferred by TC. **(Right)** Co-clustering accuracy (AMI/ARI) of TC, LOT, and
1748 FRLC at rank $K = 100$. The stochastic block model dataset consists of 100 clusters of size 50.

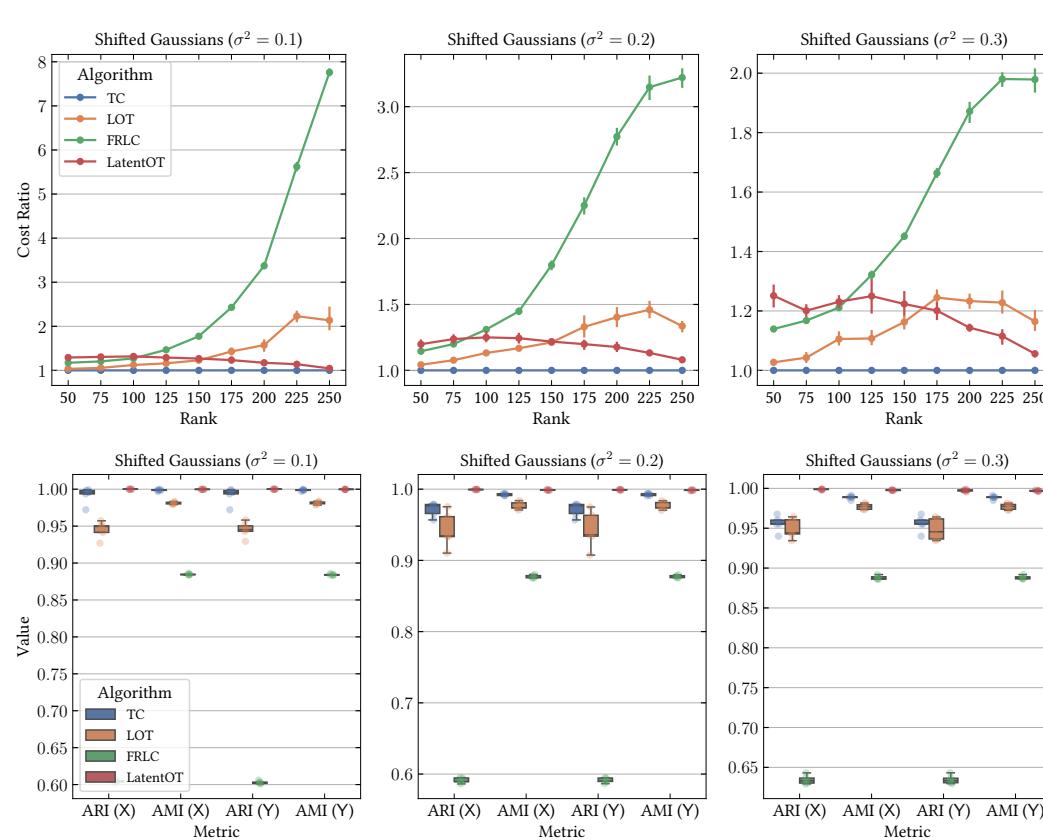
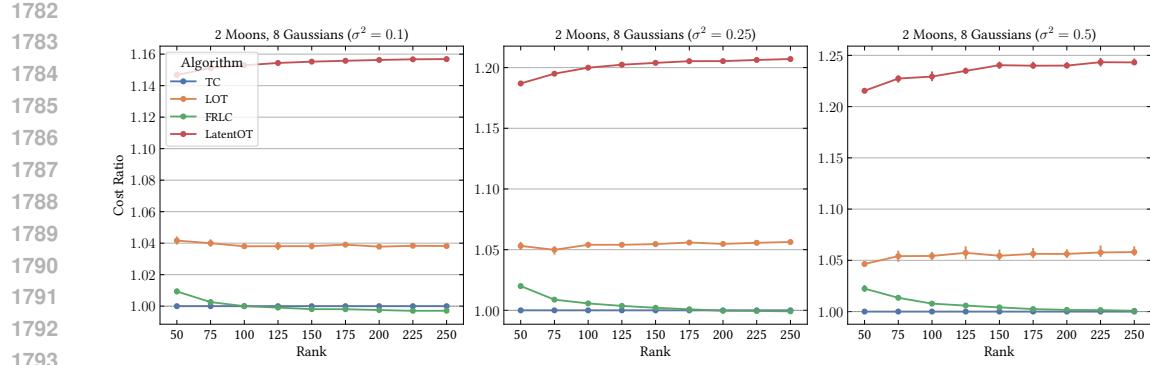


Figure 5: Comparison of low-rank OT methods on the shifted Gaussians dataset. **(Top)** Relative cost
of the rank $K \in \{50, 75, \dots, 250\}$ transport plan inferred by LOT, FRLC, and LatentOT compared
to the cost of the transport plan inferred by TC across noise levels $\sigma^2 \in \{0.1, 0.2, 0.3\}$. **(Bottom)**
Co-clustering accuracy (AMI/ARI) of TC, LOT, FRLC, and LatentOT at rank $K = 250$ across
noise levels $\sigma^2 \in \{0.1, 0.2, 0.3\}$. The shifted Gaussians dataset consists of 250 clusters of unequal
size.



1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Figure 6: Relative cost of the rank $K \in \{50, 75, \dots, 250\}$ transport plan inferred by LOT, FRLC, and LatentOT compared to the cost of the transport plan inferred by TC across noise levels $\sigma^2 \in \{0.1, 0.2, 0.3\}$ for the 2-Moons and 8-Gaussians (Tong et al., 2023) dataset.

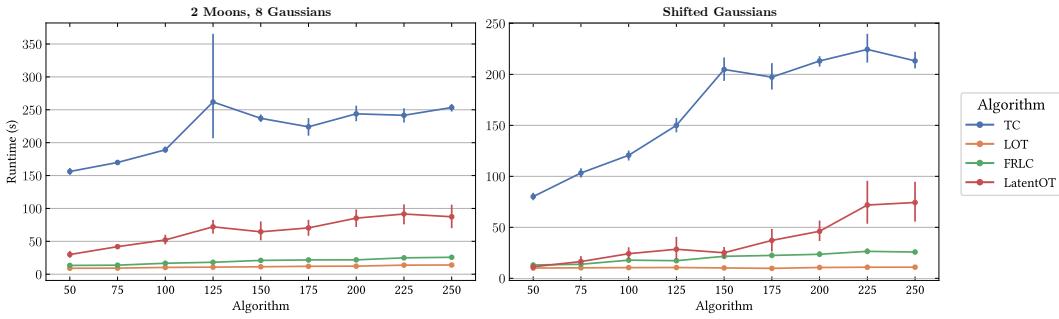


Figure 7: Runtime of TC, LOT, FRLC, and LatentOT versus the rank $K \in \{50, 75, \dots, 250\}$ for the 2-Moons and 8-Gaussians (Tong et al., 2023) dataset and the Shifted Gaussians dataset across all noise levels.

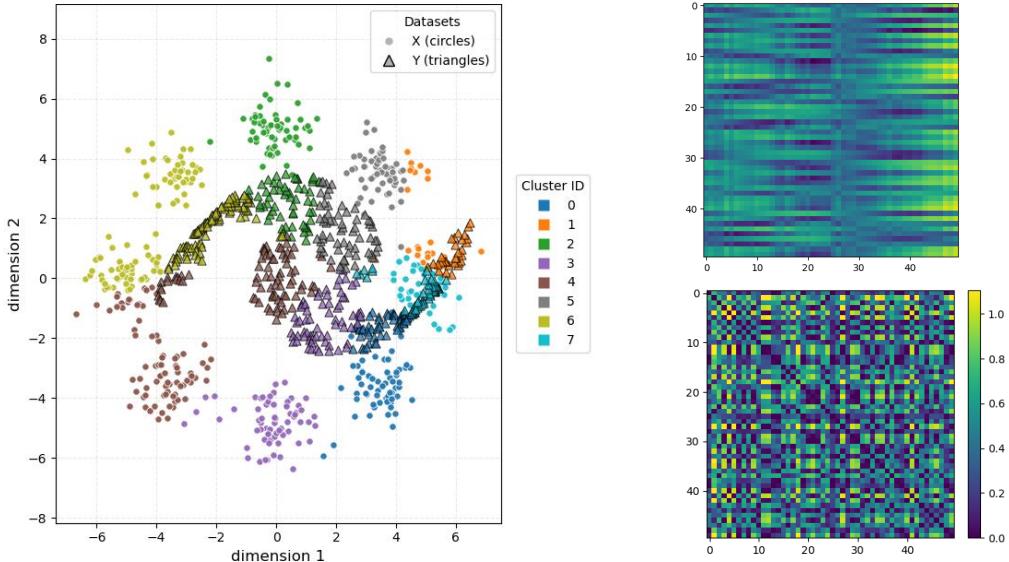


Figure 8: (Left) An example co-clustering of the two-moons 8-Gaussians dataset Tong et al. (2023) with Algorithm 3. (Right) A comparison between the raw cost matrix C (top), and the transport conjugated cost M^\dagger (bottom).

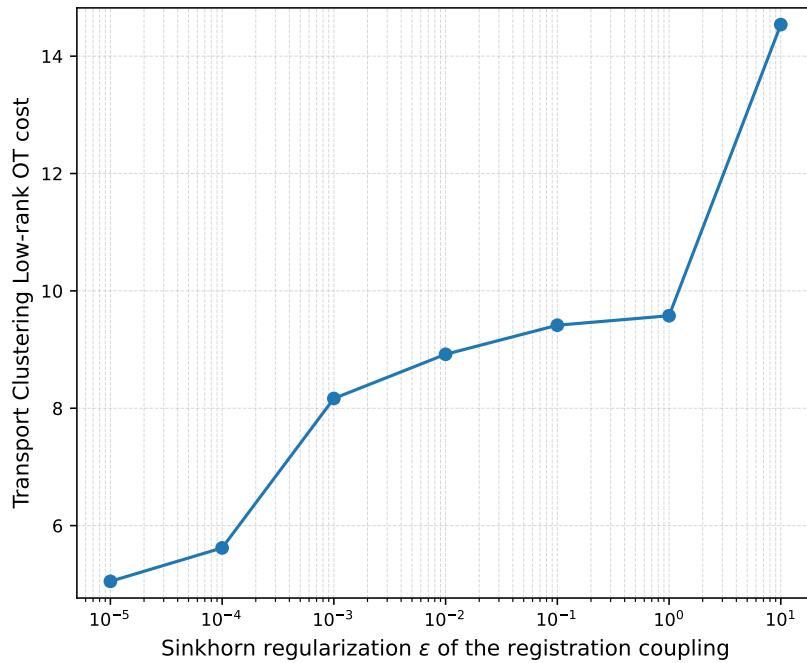


Figure 9: (Sensitivity of TC to error in the coupling) Low-Rank OT Cost of Transport Clustering as a function of entropy-regularization scale ϵ . Lower ϵ is closer to an optimal full-rank solution.