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Abstract—Quantum computing has garnered significant interest for
its potential to achieve exponential speedups over classical approaches.
However, in the Noisy Intermediate-Scale Quantum (NISQ) era, quantum
circuit scalability remains limited by gate fidelity and qubit counts,
restricting physical implementations to small-scale circuits. While prior
work has explored logic network structures for quantum circuit synthesis,
these methods often neglect the spatial structure intrinsic to Boolean
functions. In this paper, we leverage this spatial structure, encoded
by parallelotopes embedded in the hypercube defined by the Boolean
function, to access a broader optimization space, enhancing synthesis
efficiency and reducing circuit complexity. We propose the Spatial
Structure-based Hypercube Reduction (SSHR), a novel synthesis method
tailored for small-scale Boolean functions (≤ 8). SSHR extracts global
spatial features to minimize the use of Multi-Control Toffoli (MCT)
gates. To further exploit spatial correlations, we introduce two variants:
SSHR-H employs heuristic functions to accelerate synthesis runtime,
while SSHR-I integrates an Integer Linear Programming (ILP) solver
to maximize spatial structure utilization. Our approach outperforms
existing techniques in small-scale circuit synthesis, achieving 56% and
81% reductions in CNOT gate counts compared to the Exclusive
Sum-of-Products (ESOP) and Xor-And-Inverter Graph (XAG) methods,
respectively.

Index Terms—Quantum circuit synthesis, Spatial structure, Boolean
function

I. INTRODUCTION

Quantum computing is gaining significant attention due to its
potential for exponential speedup in certain computational tasks.
Many famous quantum algorithms have solved different problems due
to their ingenious design, e.g., Grover’s algorithm [1] for database
searching, Shor’s algorithm [2] for prime factorization, and Harrow-
Hassidim-Lloyd (HHL) algorithm for linear systems of equations [3].

The execution of quantum algorithms is realized through quantum
circuits. In the NISQ era, reducing the complexity of circuits is
crucial, as it helps us obtain higher experimental accuracy and execute
larger-scale quantum algorithms. Oracle, as a black-box function,
often plays an important role in many famous quantum algorithms,
such as Grover’s algorithm [1], Simon’s algorithm [4]. Therefore,
the synthesis of Oracle is crucial, which determines the testing of
quantum algorithms and attracts attention [5].

For a Boolean function Oracle f : {0, 1}n → {0, 1}, its quantum
circuit Of operates as described by the equation Of |x⟩ |y⟩ |0⟩k =
|x⟩ |y ⊕ f(x)⟩ |0⟩k for x ∈ {0, 1}n and y ∈ {0, 1} with k auxiliary
qubits [6]. Since Multi-Control Toffoli (MCT) gates are a universal
set of gates for classical logic and naturally satisfy reversibility,
quantum circuits usually implement Boolean functions through MCT
gates.

Currently, two common methods exist for implementing quantum
circuits for Boolean functions. Exclusive Sum of Products (ESOP)
is able to represent Boolean functions in a more concise form by
connecting multiple product terms (AND terms) through an Exclusive
OR (XOR) [7]. CNOT gates in quantum circuits correspond directly
to the XOR operation, while multi-control gates (e.g., Toffoli gates)

enable efficient implementation of the product terms. ESOPs allow
the result of each product term to be directly superimposed on the
target bit through the accumulative property of XOR. However, since
ESOP can utilize the global structure of Boolean functions, exact
methods that try to find an ESOP form with a minimum number
of product terms can hardly deal with large-scale Boolean variables
effectively. Xor-And-Inverter Graph (XAG) is the best quantum
circuit at the current state-of-the-art synthesis technique, which is
a logic network based on {⊕,∧, 1} [8]. XAG utilizes auxiliary
qubits to store intermediate results, reducing the number of Toffoli
gates in quantum circuit using local optimization. As a result, XAG
performs well in large-scale circuits. In addition to this, there are
many other methods for constructing special Boolean functions, such
as autosymmetric [9], symmetric functions [10], and others [11], [12].

Although we already have many quantum algorithms, it is very
difficult to execute large-scale quantum circuits on real quantum
computers due to the limitations from the number of qubits, fidelity,
coherence time, and so on. For example, Fallek et al. verified the
Bernstein–Vazirani algorithm with 3 qubits [13] and Debnath et al.
verified the Deutsch–Jozsa algorithm with 5 qubits [14]. It can be
seen that our practical applications of quantum computing are still at
a small scale for quantum query algorithms.

This naturally raises the question: can we combine the strengths of
both ESOP and XAG to develop a more efficient approach on small-
scale circuits? We give an affirmative answer and take the first step
in this direction. Specifically, we propose a method for implementing
Boolean functions using quantum circuits, which outperforms ESOP
and XAG. We extract the spatial structure of the coordinates within
the hypercube represented by the Boolean function and synthesize
a quantum circuit based on the structure of the parallelotopes. Then
we design Spatial Structure-based Hypercube Reduction (SSHR) that
can store intermediate results. Since we utilize the structure of the
Boolean function in the hypercube, our algorithm has access to the
global structure and thus performs well on small-scale circuits.

We have listed the relevant properties of SSHR, ESOP, and XAG in
Tab. I. ESOP offers a straightforward logical representation; however,
its inability to store intermediate logic limits its effectiveness in
quantum circuit synthesis. XAG has limited optimization on small-
scale circuits due to its heuristic strategy, which is more applicable
to large-scale circuits.

In this paper, we propose a quantum Boolean function synthesis
method SSHR according spatial structure. SSHR extract the global
spatial structure of Boolean functions and does not need to use
auxiliary qubits to store intermediate results. In addition, we statute
the synthesis problem of quantum circuits as a special set cover prob-
lem and solve it via Integer Linear Programming (ILP) solver. This
maximizes the use of the spatial structure of the Boolean functional
correlation prallelotopes, leading to better quantum circuits. Our main
contributions are as follows:
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TABLE I: Comparing SSHR to ESOP and XAG. We compared them
in terms of ancillary qubits, whether intermediate results are utilized,
whether global structure is used, variable scale, and the type of
quantum circuit gate.

ESOP XAG SSHR
Ancillary qubits ✘ ✔ ✘

Intermediate results ✘ ✔ ✔
Global structure ✔ ✘ ✔
Variable scale small large small

Gate type MCTs X,CNOT,Toffoli MCTs

• We designed a Spatial Structure-based Hypercube Reduc-
tion (SSHR) that utilizes the global spatial structure of paral-
lelotopes in Boolean function and stores it without the use of
auxiliary qubits.

• We propose two algorithms, SSHR-H and SSHR-I, to effectively
exploit the spatial structure. SSHR-H is a heuristic algorithm
designed for faster circuit generation. SSHR-I formulates the
quantum synthesis task as a Weighted Parity Set Covering
Problem (WP-SCP), optimizing spatial structure utilization via
ILP solver.

• The experimental results demonstrate that SSHR-H reduces
CNOT gates by 74.69% vs. XAG (6-bit) and scales better than
ESOP. SSHR-I reduces CNOT gates by 56% (vs. ESOP) and
81% (vs. XAG) for 5-bit, while both slash single-qubit gates
and auxiliary qubits, proving high efficiency.

II. PRELIMINARIES

This section begins with an introduction to Boolean functions and
NPN equivalence classes, followed by an overview of quantum Oracle
synthesis.

A. Boolean function and NPN equivalence

A Boolean function f : {0, 1}n → {0, 1} can be represented by a
truth table, which is a bit string f2n−1 · · · f1f0. Here, fx denotes the
output of f for a given input x. We refer to the hexadecimal value of
the bit string f2n−1 · · · f1f0 as the ID of f . An input x is considered
a minterm if f(x) = 1 [15]. For the sake of clarity, we refer to on-set
as those x values that yield f(x) = 1 and off-set as those x values
that yield f(x) = 0. The satisfaction count of f refers to the number
of minterms for which f evaluates to 1, denoted as |f |.

An n-bit Boolean function can be conceptualized as an n-
dimensional hypercube. The vertices of the cube correspond to
different coordinates, with those in the on-set labeled red and those
in the off-set labeled white. In this context, a parallelotope, as defined
in reference [16], plays a crucial role in this paper. A parallelogram
represents a 2-dimensional parallelotope, whereas a parallelepiped
represents a 3-dimensional parallelotope. In n-dimensional space, the
diagonals of parallelotope bodies intersect at a vertex and are bisected
by that vertex. Fig. 1(a) illustrates a 2-dimensional parallelotope in
3-dimensional space, while Fig. 1(b) depicts a general 3-dimensional
hyperparallelepiped. Similarly, we can extend this concept to define
an m-dimensional parallelotope in n-dimension space.

Let N = 2n, there are 2N n-bit Boolean functions in total.
This bi-exponential growth greatly increases the number of Boolean
functions, making analysis on a case-by-case basis impossible. For
instance, there are 256 functions when n = 3, and 22

4

= 65536
when n = 4. To simplify the analysis, we adopt the concept of NPN
equivalence. NPN equivalence, commonly used in the classification
of Boolean functions [17], [18], involves transformations of input

(a) A 2-dimensional paral-
lelotope in a 3-dimension
space.

(b) A 3-dimensional paral-
lelotope in a 4-dimension
space.

Fig. 1: Examples of low-dimensional parallelotope.
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Fig. 2: Hypercubes of three 3-variable Boolean functions. 3-majority
logic f1 and f2 are NPN equivalent, and their induced subgraphs
are isomorphic. f2 and f3 are not NPN equivalent, and their induced
subgraphs are non-isomorphic.

negation, input permutation, and output negation. It finds significant
applications in logic synthesis, technical mapping, and verification.

Fig. 2 illustrates equivalence and non-equivalence in hypercubes
[19]. Although there are 256 3-bit functions, it is evident that there
are only 14 functions in terms of NPN equivalence. For n = 4, with
a total of 22

4

= 65536 functions, NPN classification reduces them
to 222 functions. NPN is also a crucial concept in quantum query
complexity; if f and g are NPN equivalent, their query complexity
remains the same [20].

B. Quantum gate and circuit

Quantum circuits offer a graphical framework for executing quan-
tum computing operations through a sequence of quantum gates and
measurements [21]. This paper employs several fundamental quantum
gates, including the X-gate, H-gate, and T-gate, alongside the CNOT-
gate, Toffoli-gate, and MCT-gate [22]. The matrix representations and
circuit symbols of these gates are detailed in [21].

A Quantum Oracle is typically treated as a black box, with
the developers of quantum algorithms concentrating more on its
functionality than on its concrete implementation. A generalized
example is illustrated in Fig. 3. For a Boolean function, x denotes
the state of the n-qubit of the input, and y denotes the corresponding
output, which includes k auxiliary bits. The input states and auxiliary
bits remain unchanged after the Oracle, and the output value of the
Boolean function is stored in y.

|x⟩ /n

Uf

/n |x⟩

|y⟩ |y ⊕ f(x)⟩

|0⟩⊗k /k /k |0⟩⊗k

Fig. 3: Circuit demonstration of a Quantum Oracle where the input
is |x⟩ and the output result is stored on |y⟩, along with k auxiliary
qubits initialized to |0⟩.
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Due to the current limitations in the physical implementation
of quantum devices, most quantum computers achieve universality
through the construction of a universal set of gates [23]. Operations
involving three or more qubits are not directly implemented on
physical quantum devices; instead, they must be decomposed during
compilation into a sequence of gates from the existing gate set [24].
This set of gates typically comprises single-qubit and two-qubit
gates, which together provide the generality required for universal
quantum computation [23], [25]. To facilitate comparison with other
logic synthesis algorithms and ensure consistency in the metrics,
we compute the cost of the k-MCT gate according to [9], which
has been shown in Tab. II. Additionally, the fidelity of two-qubit
gate (usually CNOT gate) is often an order of magnitude lower
than that of single-qubit gates. Therefore, the number of CNOT
gates plays a crucial role in determining the fidelity of the final
implemented circuit. Moreover, quantum circuits require a significant
number of T-gates for fault-tolerant computation [26]. As T-gates
are non-Clifford gates that demand higher precision control, their
count becomes a critical factor to consider. Accordingly, SSHR
addresses this limitation by employing a set-valued objective function
to optimize for the number of T gates (T-counts) and other relevant
factors. This will be demonstrated in the experimental section, where
we optimize the number of CNOT gates and T-counts separately.

TABLE II: Cost of k-MCT gates in number of T, H and CNOT gates.

k T H CNOT Ancillary qubits
2 7 2 6 0
3 16 6 14 1

≥ 4 8k-8 8k-12 4k-6 ⌈ k−2
2

⌉

III. SPATIAL STRUCTURE

In this section, we first define the spatial structure of Boolean
functions. Building upon the concept of NPN equivalence, we then
present a method for generating quantum circuit blocks using this
spatial structure, along with a concrete algorithm to illustrate the
approach.

For clarity and ease of use in the following sections, we first
introduce several foundational concepts and operations.

• INIT CIRCUIT (n): Initializes a circuit with n qubits.
• INIT BLOCK LIST : Initializes an empty list to store cir-

cuit blocks.
• ADD CNOT (i, j): Adds a CNOT gate with control position

i and target position j.
• ADD X(i): Adds an X-gate at position i.
• ADD MCT (i, . . . , j, k): Adds an MCT gate with control

positions i, . . . , j, and k as the target position.
• ILP SOLV ER(A,S): Use the ILP solver to solve for the

solution that covers the minimum term A in the set S.

The core of our algorithm lies in utilizing the structure of paral-
lelotope forms embedded in the vector space. Let V be a vector space
over Rn, and let α1, α2, . . . , αk be k linearly independent vectors
in V . A parallelotpe is then defined as the Minkowski sum of line
segments, formally expressed as:

{v =
∑

tiαi | 0 ≤ ti ≤ 1}. (1)

These vectors represent the generating vertices of the parallelotope
P(α1, α2, . . . , αk) [16], [27]. The number of generating vectors
determines the dimension of the parallelotope, while the dimension
of each vector defines the dimension of the ambient space.

The preceding definition is situated in Euclidean space. We now
restrict the space V to the hypercube over n-variable Boolean func-
tions, where the coordinates take values in {0, 1} and αi ∈ {0, 1}n.
This imposes an additional constraint on the parallelotope: its basis
vectors must satisfy the condition specified in Lemma 1, which serves
as the foundation for the subsequent proof procedure.

Lemma 1. In a n-dimensional hypercube, the basis vectors that
constitute a k-dimensional parallelotope must satisfy the conditions:

αi · αj = 0 ∀1 ≤ i, j ≤ k, i ̸= j. (2)

Proof. Suppose that in a n-dimensional hypercube, there exists a k-
dimensional parallelotope that satisfies the following condition:

αi · αj ̸= 0 ∃1 ≤ i, j ≤ k, i ̸= j.

Without loss of generality, let α1 = (a1, a2, · · · , an) and α2 =
(b1, b2, · · · , bn), with α1 ·α2 ̸= 0. Then there must exist some index
i such that ai · bi ̸= 0, which implies ai + bi > 1. As a result,
certain vertex coordinates generated from Eqn. 1 will lie outside the
n-dimensional hypercube, leading to a contradiction.

According to Lemma 1, the basis vectors of the parallelotope must
satisfy the following property: for any fixed coordinate index, no two
vectors have the value 1 at that position simultaneously.

Theorem 1. For a Boolean function f : {0, 1}n → {0, 1}, if its on-
set contains 2m minterms that form an m-dimensional parallelotope,
then the corresponding oracle can be implemented by a quantum
circuit using one (n−m)-MCT gate.

Proof. To simplify the proof process, we express the basis vectors of
the parallelotope in a more straightforward and intuitive form using
the NPN concept. Without loss of generality, we select m vectors as
follows:

α1 = (

k1︷ ︸︸ ︷
1, 1, . . . , 1,

n−s1︷ ︸︸ ︷
0, 0, . . . , 0), (3)

α2 = (

s1︷ ︸︸ ︷
0, 0, . . . , 0,

k2︷ ︸︸ ︷
1, 1, . . . , 1,

n−s2︷ ︸︸ ︷
0, 0, . . . , 0), (4)

...

αm = (

sm−1︷ ︸︸ ︷
0, 0, . . . , 0,

km︷ ︸︸ ︷
1, 1, . . . , 1,

n−sm︷ ︸︸ ︷
0, 0, . . . , 0), (5)

where sj :=
∑j

i=1 ki.

Clearly, by setting the coordinates of the first vertex as (

n︷ ︸︸ ︷
0, 0, . . . , 0)

and applying the Minkowski sum defined in Eqn. 1, we can determine
the coordinates of the remaining vertices of the parallelotope.

Since the coordinates of the other vertices (a0, a1, . . . , an−1) are
obtained through addition, these vertices must satisfy the following
properties:

1) The first k1 values are identical, i.e.

a0 ⊕ a1 = a0 ⊕ a2 = · · · = a0 ⊕ as1−1. (6)

2) The middle k2 values are identical, i.e.

ak1 ⊕ ak1+1 = ak1 ⊕ ak1+2 = · · · = a0 ⊕ as2−1. (7)

3) Similar for k3 to km−1;
4) The last km values are identical, i.e.

asm−1 ⊕ asm−1+1 = asm−1 ⊕ asm−1+2

= · · · = asm−1 ⊕ asm−1.
(8)
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q0 : • • • • • •
q1 :
q2 :

...
...

...
qs1−1 :

qs1 : • • • • • •
qs1+1 :
qs1+2 :

...
...

...
qs2−1 :

other cases
...

...
...

qs2 : • • • • • •
qs2+1 :
qs2+2 :

...
...

...
qsm−1 :

common control qubits
...

qout :

Fig. 4: An example of Alg. 1.

Based on the aforementioned properties, we can use Alg. 1 to
synthesize quantum circuits. By applying Alg. 1, synthesizing the
2m minterms, which form an m-dimensional parallelotope in an n-
dimensional space, requires at most one (n−m)-MCT gate.

Algorithm 1 Synthesizing 2m minterms in on-set which form an
m-dimensional parallelotope in n-dimensional space.

Require: The input of bases that meet the above conditions of the
m-dimensional parallelotope.

Ensure: The circuit block is synthesized by the input.
1: circuit← INIT CIRCUIT (n+ 1)
2: st← 0
3: list← empty list
4: for j = 1 to m do
5: for i = 1 to kj do
6: ADD CNOT (st, st+ i)
7: Push st+ i to the back of list
8: end for
9: st← st+ kj

10: end for
11: for i ∈ list do
12: ADD X(i)
13: end for
14: ADD MCT (list, output)
15: for i ∈ list do
16: ADD X(i)
17: end for
18: return circuit

In Alg. 1, the first “for” loop of the double “for” loop is used to
traverse m dimensions of the parallelotope, and the second “for” loop
is used to indicate the kj values are identical where kj is determined
by the previously described and to add MCT gates to the circuit and
save the control positions in list. Subsequently, we add X gates to
implement a 0-controlled signal. The next step in the circuit is to
add an MCT gate based on the control qubits saved in the list, which
serves to ensure that the above conditions are satisfied simultaneously
and revert the 0-controlled signal at last.

This structure of a parallelotope obtained from the basis vectors is
global, since it depends on every coordinate in the vector. An example

of Alg. 1 is shown in Fig. 4. The CNOT gates and control signals
on qubits q0 to qs1−1 are based on the first basis vector obtained.
Similarly, the CNOT gates and control signals on qubits qs1 to qs2−1

are based on the second basis vector. Additionally, control qubits
corresponding to the common parts of these vectors are located on
the qubits qsm − qn−1.

The coordinates of these points satisfy the conditions of the basis
vectors. Using Alg. 1, we can derive the corresponding circuit block,
as shown in Fig. 4.

According to Theorem 1, we can find the following benefits of
spatial structure like parallelotope in hypercube:

1) The intermediate results are stored directly on the input qubits
through the action of CNOT gates and are recovered after use,
which leads to a stronger representation without the application
of auxiliary qubits.

2) This extraction of global structure is independent of order rela-
tions, ensuring that the final generated circuits are equivalent,
which enhances layer exchangeability.

IV. ALGORITHM

In this section, we design two algorithms, SSHR-H and SSHR-I,
to utilize the spatial structure described above. The first algorithm is
based on a greedy approach, offering a short runtime while ensuring
better results. The second algorithm generalizes to the Weighted
Parity Set Covering Problem (WP-SCP) and employs an ILP solver,
maximizing the use of spatial structure, while the objective function
provides greater flexibility.

A. SSHR-H

In this section, we design a heuristic algorithm to efficiently select
parallelotopes and maximize the utilization of spatial structure.

According to Tab. II, we observe that the cost of a k-MCT gate
increases with the number of control qubits k. At the same time,
as stated in Theorem 1, an increase in k reduces the number of
represented minterms, leading to a decrease in the representational
capacity of the corresponding parallelotope. This provides us with
design insights for heuristic algorithms. We can argue that selecting
a higher-dimensional parallelotope can effectively reduce the use of
k-MCT gates, thereby lowering the overall circuit cost. Based on
the spatial structure in S, we observe that when a parallelotope is
selected, the corresponding minterms in its truth table result in a
flip of the target qubit. Therefore, when we detect that the number
of points in the minterms satisfies a certain ratio R relative to the
number of minterms in the intersection of a given parallelotope, we
select this parallelotope and update the remaining set of minterms.

Based on the above idea, we propose a heuristic algorithm, SSHR-
H, whose detailed procedure is described in Alg. 2. Lines 1–2
initialize the quantum circuit and construct the initial set A, which
contains all the minterms in the on-set. Line 3 computes the set S of
all candidate parallelotopes associated with the minterms in A. Lines
4–12 constitute the core of the algorithm. The goal is to iteratively
cover all minterms in A, and the algorithm terminates once A = ∅ .
Within each iteration, the algorithm traverses the parallelotopes in S
and identifies those satisfying the selection condition |A∩P | ≥ R|P |,
where P denotes a parallelotope in S. Once such a parallelotope
is found, it may include minterms not currently in A, so A must
be updated accordingly by removing the minterms now covered.
The selected parallelotope is then synthesized in the circuit using
the procedure in Alg. 1 (lines 7–9). This greedy selection strategy
enables efficient coverage of minterms while reducing circuit cost by
prioritizing higher-dimensional parallelotopes whenever possible.
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Algorithm 2 SSHR-H

Require: The input of minterms of the f : {0, 1}n → {0, 1}.
Ensure: Quantum circuit of Boolean function

1: circuit← INIT CIRCUIT (n+ 1)
2: A← on-set
3: set S ← parallelotopes associated with A
4: while A is not empty do
5: for P ∈ S do
6: if |P ∩A|/|P | ≥ R then
7: qc← Algorithm 1(P )
8: Add qc to the circuit
9: update A

10: end if
11: end for
12: end while
13: return circuit

B. SSHR-I

Given the inherent complexity and richness of the spatial structure
in Boolean functions, which is often difficult to exhaustively char-
acterize or analytically prove, we reformulate the Boolean function
synthesis task as an instance of the WP-SCP. This formulation allows
us to explore the detailed synthesis capabilities of spatial structure in
a more flexible manner, enabling the use of optimization tools such
as integer linear programming (ILP) to guide circuit construction.

In essence, the goal is to ensure that each minterm in the on-
set is covered an odd number of times, while each minterm in the
off-set is covered an even number of times. This parity constraint
guarantees that the final output of the synthesized quantum circuit
correctly reflects the Boolean function. The process begins with the
initialization of the quantum circuit, where no operations are applied
and the output qubit is set to 0, corresponding to the quantum state
|0⟩. This serves as the baseline state from which all subsequent
transformations are applied.

Formally, let U = on-set, A = All minterms, A − U = off-set,
where the elements of each set correspond to the minterms of a
given Boolean function. We define a collection of subsets S =
{p1, p2..., pn}, where each pi represents a parallelotope, i.e., a
minterms subset of minterms derived from the spatial structure of the
Boolean function. Each pi is associated with a weight that reflects
the cost of implementing the corresponding quantum circuit block.
The objective is to find a subset X ⊂ S that minimizes the total cost
while satisfying the following parity constraints:

• Each minterm in the on-set U is covered an odd number of times
by the subsets in X .

• Each minterm in the off-set A− U is covered an even number
of times.

This problem formulation corresponds to a Weighted Parity Set
Covering Problem (WP-SCP), where the objective is to synthesize a
cost-efficient quantum circuit that faithfully implements the intended
Boolean function semantics. By transforming the Boolean function
synthesis task into a WP-SCP instance, we enable the application of
powerful integer linear programming (ILP) techniques, which can
efficiently compute optimal or near-optimal circuit constructions.
This modeling approach not only enhances synthesis accuracy but
also offers greater flexibility in incorporating various optimization
objectives and hardware constraints. It is evident that ESOP is a strict
subset of our proposed method in terms of representation capability.
Therefore, our method is guaranteed to produce a valid solution.

TABLE III: Weighted Parity SCP Notation

Input Parameters
S Set of parallelotopes
A Set of minterms of Boolean function
U on-set

Indices
i Index of subsets in S
j Index in U
k Index of minterm in A
l Index of inputs in A−B(the difference between set A and B)

Weighted Subsets
Ci The CNOT cost of subset Si

Gi The T gate cost of subset Si

Binary Decision Variables
xi Whether Si is selected
eij Whether minterm Uj ∈ Si

Integer Helper Variables
V Cover times of minterm v

yk Cover the minterm in A odd times
zl Cover the minterm in A−B even times

Real Decision Variables
TC Total cost of quantum circuit

The notation and problem formulation adopted in this work are
summarized in Tab. III. These definitions have been carefully aligned
with the standard set covering problem framework to ensure consis-
tency and clarity. This alignment facilitates the effective application
of existing ILP solvers and optimization techniques to address the
quantum circuit synthesis problem. The corresponding optimization
model is defined as follows:

Vj =
∑
i∈Si

xi · eij ∀i ∈ S,∀j ∈ U. (C1)

Vk = 2 · yk + 1 ∀k ∈ A. (C2)

Vl = 2 · zl ∀l ∈ A−B. (C3)

∀i ∈ S. (C4)

∀j ∈ U. (C5)

∀k ∈ A. (C6)

∀l ∈ A−B. (C7)

The final optimization goal is expressed in the objective function
(OBJ), which seeks to minimize the total cost associated with the
gates used in the quantum circuit.

min(TC). (OBJ)

The first group of constraints, denoted as (C1), calculates the num-
ber of times each minterm is covered by the selected parallelotopes.
Constraints (C2) and (C3) enforce the required parity conditions,
ensuring that minterms in the on-set are covered an odd number of
times, while those in the off-set are covered an even number of times.
These constraints are essential for preserving the logical correctness
of the synthesized quantum circuit. Constraints (C4) through (C7)
impose bounds on the indices of subsets, minterms, and decision
variables to ensure that all references remain within valid domains.
Together, these constraints guarantee that the optimization model
is structurally well-formed, semantically valid, and computationally
tractable.

The introduction of the cost function TC, as defined in Eqn. 9,
provides greater flexibility in quantum circuit synthesis. By designing
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Algorithm 3 SSHR-I

Require: The input of minterms of the f : {0, 1}n → {0, 1}.
Ensure: Quantum circuit of Boolean function.

1: circuit← INIT CIRCUIT (n+ 1)
2: A← on-set
3: set S ← parallelotope associated with A
4: select set = ILP SOLV ER(A,S)
5: for parallelotope P in select set do
6: qc← Algoritm 1(P )
7: Add qc to the circuit
8: end for
9: return circuit

different objective functions—such as minimizing the number of
CNOT gates, T gates, or other cost metrics—we can tailor the synthe-
sis process to meet various optimization goals. The effectiveness of
these cost-driven strategies is evaluated through experimental results
presented in later sections.

TC = α
∑
i∈S

Ci · xi + β
∑
i∈S

Gi · xi. (9)

C. Synthesis via SSHR-I

In this section, we present the complete execution flow of the
SSHR-I algorithm, as outlined in Alg. 3. Lines 1–2 are responsi-
ble for initializing the inputs and outputs of the quantum circuit,
while line 3 extracts the spatial structure associated with the on-set
minterms. Line 4 formulates and solves the corresponding Weighted
Set Cover Problem with Parity Constraints (WP-SCP) using an ILP
solver, which yields the selected set of parallelotopes. The selected
parallelotopes are then passed through Alg. 1 in lines 5–9 to generate
the corresponding quantum circuit blocks, which are subsequently
appended to the overall circuit. The final output is the composed
quantum circuit obtained by stitching together all circuit blocks.

Notably, since the order of the selected sets is arbitrary, the
execution order of the corresponding circuit blocks does not affect the
functional correctness of the final circuit. This property allows SSHR-
I to naturally support layer-swappable circuit synthesis, enabling
greater flexibility for subsequent optimization techniques, such as
depth minimization or gate reordering.

D. An Example

To illustrate the execution process of our proposed algorithm more
intuitively, we present a concrete example. Specifically, we aim to
synthesize a Boolean function with ID = 0x46B9. Its corresponding
representation in the hypercube is depicted in Fig. 5(a). This example
will serve to demonstrate the step-by-step operation of the algorithm
and highlight the role of spatial structure in the synthesis process.

We begin by computing the spatial structure embedded in the on-
set U of the Boolean function. This spatial structure, derived from
the geometric representation of the function’s minterms within the
hypercube, forms a collection of parallelotopes denoted as the set S.
For instance, we observe that the minterms [0011,0111,0000,0100]
constitute a 2-dimensional parallelotope (i.e., d = 2), as they satisfy
the Minkowski sum described in Eqn. 1. Each parallelotope in S
corresponds to a potential circuit block and is associated with a
different synthesis cost, which defines its weight in the WP-SCP
formulation. In accordance with the parity constraints, we must
ensure that each minterm in the on-set U is covered an odd number
of times, while each minterm in the off-set A−U is covered an even
number of times. These parity conditions are essential to preserving

the functional correctness of the synthesized quantum circuit, as
they reflect the required constructive or destructive interference of
quantum states.

Using an ILP solver, we obtain the optimal subset
of parallelotopes that satisfies the parity constraints with
minimal cost. In this example, the selected subsets are:
S1 = [0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111], S2 =
[0110, 1110], S3 = [0001, 0010, 1001, 1010]. Each subset Si

corresponds to a parallelotope extracted from the spatial structure of
the Boolean function. According to our synthesis framework, each of
these subsets can be implemented using a dedicated quantum circuit
block following the procedure described in Alg. 1. The resulting
circuit blocks are shown in Fig. 5(b).

By sequentially combining these blocks, we construct the complete
oracle for the Boolean function f . Notably, since the parity set
covering formulation ensures that the order of the selected subsets
does not affect the overall logic, the corresponding circuit blocks are
mutually exchangeable. This modularity offers enhanced flexibility
and paves the way for further circuit-level optimizations, such as
gate reordering.

1000 1100

1001

1101

01000000

0101
0001

0010

0011

0110

0111
1110

1111
1011

1010

(a) Function with ID = 0x46B9.

q0 :

q1 : •
q2 : • • •
q3 : •
q4 :

(b) Corresponding quantum circuit.
Fig. 5: An example of a quantum circuit for the oracle of a 4-bit
Boolean function.

V. EVALUATION

A. Environmental Setup

We implement the synthesis program in Python, using Gurobi [28]
for the ILP solving. The experiments are conducted on a server with
an Intel Xeon E5-2650 CPU and 512GB RAM. Since the SSHR-I
may be time-consuming, we have set a time limit of two minutes
for each ILP run. If it exceeds 2 minutes, the process will be halted,
and the best solution found so far will be output. We test SSHR
on all 3-bit and 4-bit Boolean functions, as well as 2000 randomly
generated 5-bit and 6-bit Boolean functions. To comprehensively
validate SSHR, the number of minterms in the truth tables of these
randomly generated n-bit Boolean functions is distributed between 1
and 2n−1. We compared the synthesis results with an ESOP-based
method [29] and an XAG-based method [30]. During the synthesis
process, to ensure a fair evaluation of the different algorithms, we
calculate the cost of each k-MCT gate based on the decomposition
costs outlined in Tab. II.

B. Results of SSHR-H

To control the selection criteria of candidate parallelotopes dur-
ing circuit synthesis, we set the intersection threshold parameter
R = 3

4
. That is, a parallelotope P is selected only if the number

of its minterms that intersect with the current working set A over
3
4
· |P |. This threshold balances two competing goals: maximizing

the efficiency of spatial representation while avoiding unnecessary
overlap and redundant computation. The rationale behind this choice
lies in the scale of the target circuits. When R is set too high (e.g.,
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TABLE IV: The number of gates used by the SSHR-H on Boolean functions of different variables.

N Algorithm X-gate CNOT 2-MCT 3-MCT/Ancillary 4-MCT 5-MCT 6-MCT

3
SSHR-H 1100 560 220 128 - - -

ESOP 1061 172 333 136 - - -
XAG 1824 774 1190 579 - - -

4
SSHR-H 2282 1094 249 218 90 - -

ESOP 2280 151 364 388 128 - -
XAG 4203 1620 2937 1466 - - -

5
SSHR-H 40898 22913 1624 3913 2933 486 -

ESOP 43434 443 3054 6693 4861 1118 -
XAG 77017 28338 64619 32292 - - -

6
SSHR-H 89626 53684 915 3641 6798 3331 503

ESOP 102740 303 2701 8543 11555 6997 1517
XAG 151132 59232 144197 72085 - - -

close to 1), a parallelotope must nearly be a subset of A to be eligible
for selection, which severely limits the algorithm’s ability to exploit
larger and higher-dimensional parallelotopes that may only partially
overlap with A. As a result, potentially efficient structures would be
ignored. Conversely, setting R too low (e.g., below 0.5) results in
the frequent selection of parallelotopes with overlap, leading to an
increase in the number of iterations. This causes excessive reuse of
overlapping spatial structures and generates redundant circuit compo-
nents, reducing overall synthesis efficiency. Based on this trade-off,
we empirically chose R = 3

4
as a suitable compromise for small-

scale Boolean functions. The validity of the heuristic threshold is
demonstrated in Tab. IV, where a dash (‘-’) indicates that certain gates
do not appear for the given number of input variables and the column
name: 3-MCT/Ancillary denotes Ancillary when the algorithm is
XAG and 3-MCT for the rest. We evaluate the performance of the
heuristic algorithm across various benchmark Boolean functions with
different numbers of input variables to assess its effectiveness.

We begin by analyzing the comparison between our proposed
SSHR-H algorithm and ESOP method. It is evident that SSHR-H re-
sults in significantly more CNOT gates than ESOP. This discrepancy
can be attributed to two primary reasons. First, the ESOP algorithm
directly targets the output qubit and applies CNOT gates only when
the on-set entries in the truth table exhibit a high degree of correla-
tion with specific input variables. In contrast, SSHR-H extensively
employs CNOT gates to store and propagate intermediate results
throughout the circuit, leading to a substantial increase in the total
number of CNOT operations. However, this trade-off is compensated
by SSHR-H’s superior handling of MCT (multi-controlled Toffoli)
gates. By leveraging intermediate computations stored via CNOTs,
SSHR-H is able to reduce the number of control qubits required for
MCT gates, which in turn leads to lower-cost circuit blocks. Since
the cost of implementing MCT gates grows exponentially with the
number of control qubits, reducing this number significantly improves
overall synthesis efficiency. As a result, despite the increased number
of CNOT gates, SSHR-H achieves better performance in terms of
total quantum cost.

Next, we consider the comparison with XAG, which utilizes logic
networks composed of {⊕,∧, 1}. XAG achieves its functionality by
storing intermediate values in auxiliary qubits via Toffoli gates. This
results in a higher demand for ancillary qubits compared to SSHR-
H. Notably, SSHR-H is designed to avoid the use of ancillary qubits
during synthesis—ancilla are introduced only when necessary during
the decomposition of high-control MCT gates. This feature makes
SSHR-H particularly suitable for near-term quantum architectures,
where the availability of clean ancilla is often limited.

Furthermore, our heuristic algorithm is scalable and can be applied
to Boolean functions with a larger number of variables. To evaluate its

performance, we conducted experiments for functions with n = 7, 8.
The resulting total circuit costs were then compared against those
produced by the XAG. A detailed summary of the comparative results
is presented in Tab. V, where a dash (‘-’) indicates that ESOP is
unable to generate circuits for n > 6.

These results demonstrate that our algorithm maintains competitive
performance as the function complexity increases, particularly in
terms of reducing the number of CNOT gates and T gates while
preserving resource efficiency.

C. Results of SSHR-I

1) Results of CNOTs: We first set the objective function to primar-
ily optimize the number of CNOT gates and tested the performance
on Boolean functions with varying numbers of variables. Tab. VI
shows the number of T-counts, CNOT gates, and auxiliary qubits
for different algorithms across variable counts ranging from 3 to 6,
along with the percentage of CNOT reductions achieved by SSHR-
I compared to other algorithms. As shown in the table, SSHR-I
outperforms both the ESOP and XAG methods in terms of T-counts,
CNOT gates, and auxiliary qubits in all test cases. Specifically, for
3, 4, 5, and 6 qubits, the average CNOT reductions are 21%, 48%,
56%, and 54%, respectively, compared to ESOP, and 59%, 76%,
81%, and 81%, respectively, compared to XAG for the same number
of qubits. Additionally, it is evident that the reduction in the number
of CNOT gates corresponds with a reduction in other gate types,
demonstrating that our algorithm does not sacrifice the performance
of other gates to achieve better circuit efficiency. As the number of
variables n increases, the gains become more significant; however,
these improvements come at the cost of longer runtime for the ILP
solver.

2) Results of T gates: As mentioned in section Section IV-B,
we can flexibly set different optimization objectives. Since the other
algorithms do not offer this capability, their experimental results are
identical to those presented in Tab. VI, and therefore, we will not
repeat them. We optimized the T-count and tested the effect of varying
numbers of variables. Tab. VII presents the number of T gates, CNOT
gates, and auxiliary qubits for each method across the 3- to 6-variable
test cases. As shown in the table, SSHR-I outperforms both the ESOP
and XAG methods in terms of T-gates, CNOT gates, and ancillary
qubits in all test cases. Specifically, the average T-gate reduction
rates for the ESOP method are 37%, 51%, 61%, and 59% for 3,
4, 5, and 6 qubits, respectively, while the corresponding optimization
rates for the XAG method are 41%, 51%, 57%, and 49% for the
same qubit counts. Moreover, both CNOT and ancillary qubits also
show significant reductions.

When comparing these results to those from experiments where
the primary objective was CNOT minimization, we observe that
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TABLE V: Comparison of the number of gates used by SSHR-H and other algorithms.

SSHR-H ESOP XAG
num vars T-count CNOT Ancillary T-count CNOT Ancillary CNOT gain T-count CNOT Ancillary CNOT gain

3 3588 3672 128 4507 4074 136 9.86% 4760 7914 579 53.60%
4 7391 6540 308 11828 9047 516 27.71% 11692 19148 1459 65.85%
5 159920 123573 7818 280906 176731 13790 30.08% 258420 415966 32285 70.29%
6 354525 233816 18107 717499 376925 37126 37.97% 576420 923824 72039 74.69%
7 541216 317756 29883 - - - - 752032 1198414 94004 73.49%
8 1081934 632184 59053 - - - - 1518272 2419518 189784 73.87%

TABLE VI: The number of gates used by each algorithm when the objective of SSHR-I is set to minimize the number of CNOT gates.

SSHR-I ESOP XAG
num vars T-count CNOT Ancillary T-count CNOT Ancillary CNOT gain T-count CNOT Ancillary CNOT gain

3 3280 3232 128 4507 4074 136 20.67% 4760 7914 579 59.16%
4 6028 4696 212 11828 9047 516 48.09% 11692 19148 1459 75.48%
5 134656 78562 5493 280906 176731 13790 55.55% 258420 415966 32285 81.11%
6 298267 171964 13191 717499 376925 37126 54.38% 576420 923824 72039 81.39%

TABLE VII: Number of gates used when SSHR-I’s target is T-count.

SSHR-I
num vars T-count CNOT Ancillary

3 2832 3579 128
4 5742 5838 208
5 110183 114320 5405
6 293765 262673 14179

the choice of objective function in SSHR influences the selection
of the parallelotopes. In the T-count minimization case, there is
a noticeable redundancy in CNOT gates compared to the CNOT-
aim case, while the number of auxiliary qubits remains relatively
stable. These results suggest that a flexible objective function can
lead to targeted improvements across different metrics. Notably, it
can be seen that the number of CNOT gates increases compared
to the results when our objective function is set to T-counts. This
establishes a foundation for balancing the costs of different gates in
circuit synthesis.

D. Discussions

In this section, we analyze the fundamental advantages of the
SSHR strategy in terms of representation capability and circuit
synthesis efficiency. Compared to the ESOP approach, SSHR demon-
strates a significantly broader representation capacity. Specifically, the
representation space of ESOP is a strict subset of that of SSHR, which
allows SSHR to outperform ESOP in a variety of cases. While ESOP
is limited to representing functions through disjoint product terms,
SSHR leverages spatial structures as parallelotopes in the Boolean
hypercube, enabling a more expressive and compact representation.
A key strength of SSHR lies in its ability to utilize and reuse inter-
mediate results during the synthesis process. This capability not only
reduces redundant computations but also substantially enlarges the
overall expressiveness of the circuit design space. Quantitatively, the
representation capacity of ESOP for an n-variable Boolean function
can be estimated by the expression:

∑n
k=1

(
n
k

)
2k, which reflects the

total number of distinct product terms. In contrast, the representation
capacity of SSHR is determined by the number and dimensionality of
extractable parallelotopes, the results are summarized and compared
in Tab. VIII. As the number of variables increases, the gap between
the two methods widens significantly.

We now analyze the underlying factors contributing to the advan-
tages of SSHR over XAG. XAG, which employs heuristic strategies
for logic synthesis, is particularly well-suited for large-scale circuits
due to its focus on local optimizations and structural rewrites. How-
ever, this local perspective inherently limits its ability to exploit global
patterns and structural structure embedded in the Boolean function.

In contrast, SSHR is designed with an emphasis on optimizing small-
scale circuits, enabling it to leverage the global spatial structure of the
Boolean function, specifically the parallelotope structures described
in Section III. By analyzing the function’s on-set as a whole and
extracting higher-dimensional spatial regularities, SSHR achieves a
deeper level of insight into the Boolean logic. This global awareness
allows SSHR to make more informed decisions during synthesis,
often resulting in more efficient quantum circuits in terms of gate
count and overall cost.
TABLE VIII: Comparison of optimization space between SSHR and
ESOP.

n ESOP SSHR Expansion factor
3 27 49 1.8
4 81 257 3.2
5 243 1539 6.3
6 729 10299 14.1
7 2187 75905 32.7
8 6561 609441 92.9

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed the Spatial Structure-based Hypercube
Reduction (SSHR), an effective approach for quantum Boolean
function synthesis. We introduce two variants of SSHR: a heuristic
algorithm, SSHR-H, and an ILP solver-based method, SSHR-I,
to leverage this structure. SSHR enables the extraction of global
information embeded in the parallelotopes of the Boolean function
and allows the storage of intermediate results without the need for
auxiliary qubits. Experimental results demonstrate that our method
significantly outperforms existing techniques such as ESOP and XAG
in key circuit metrics across all tested small-scale Boolean functions.
Looking forward, we aim to extend SSHR to support larger-scale
quantum circuit synthesis, enhancing its scalability and generalizabil-
ity. Additionally, we plan to explore its application to multi-output
Boolean function synthesis, further enriching its potential use cases
in practical quantum computing systems.
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