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Figure 1: Overview of our multi-agent simulation framework. LLM agents iteratively exchange
outputs via a shared conversational memory, progressing from Round 1 to Round N. Over rounds,
codes move from dispersed to clustered in semantic space, while ROUGE increases and intrinsic
dimensionality (TwoNN-Id) decreases, indicating lexical convergence and semantic compression.

Abstract

Large language models (LLMs) are increasingly deployed in collaborative settings,
yet little is known about how they coordinate when treated as black-box agents.
We simulate 7,500 multi-agent, multi-round discussions in an inductive coding
task, generating over 125,000 utterances that capture both final annotations and
their interactional histories. We introduce process-level metrics—code stability,
semantic self-consistency, and lexical confidence—alongside sentiment and con-
vergence measures, to track coordination dynamics. To probe deeper alignment
signals, we analyze the evolving geometry of output embeddings, showing that
intrinsic dimensionality declines over rounds, suggesting semantic compression.
The results reveal that LLM groups converge lexically and semantically, develop
asymmetric influence patterns, and exhibit negotiation-like behaviors despite the
absence of explicit role prompting. This work demonstrates how black-box inter-
action analysis can surface emergent coordination strategies, offering a scalable
complement to internal probe-based interpretability methods.

1 Introduction

Inductive coding is a core method in qualitative research, used to identify patterns and themes
by assigning semantic labels, or codes, to unstructured text segments (Saldana) [2016]], Braun and
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Figure 2: Density plots of normalized opinion vs. confidence across discussion rounds. Each subplot
represents a 2D histogram of model utterances in a given round, showing how expressed opinions (x-
axis) relate to confidence scores (y-axis). Darker regions indicate higher concentration of utterances.

Clarke [2021]]). This process is typically carried out by human coders who iteratively interpret,
categorize, and refine codes. Collaborative coding can enhance interpretive depth through discussion
and consensus, but it is also time-consuming and subject to inconsistencies caused by individual bias
and group effects (MacQueen and Guest| [2008]], Bernard| [2016], Bumbuc|[2016]).

Recent advances in large language models (LLMs) have created opportunities to automate parts of the
qualitative analysis pipeline. While prior work has examined LLMs for individual coding (Chen et al.
[2024], Parfenova et al.|[2025]), little is known about how they behave in multi-agent settings that
mirror human annotation teams. In particular, it remains unclear how coordination arises between
models, and whether convergence in their outputs reflects shared semantic understanding, lexical
mimicry, or other surface-level alignment processes.

This paper introduces a large-scale simulation framework for multi-agent, multi-round LLM discus-
sions in an inductive coding task. Each model acts as a black-box agent that proposes and revises
codes over several rounds, without finetuning or access to internal states. By analyzing only the
outputs, we track how codes evolve and align over time, providing an interpretable view of coordina-
tion. We combine process-level metrics with geometric analysis of output embeddings to capture
both lexical and structural aspects of coordination. Our metrics include code stability, semantic self-
consistency, and opinion—confidence dynamics, alongside measures of embedding-space geometry
such as intrinsic dimensionality, which we interpret as a proxy for semantic compression during
convergence.

Our contributions are: (1) We present a simulation framework for large-scale, black-box multi-agent
LLM discussions applied to collaborative annotation. (2) We propose coordination metrics that
capture surface-level stability, semantic consistency, and opinion—confidence alignment, as well as
geometric shifts in embedding space. (3) We empirically demonstrate that multiround interactions
enhance lexical convergence, reduce embedding space dimensionality, and yield asymmetric influence
patterns between models.

2 Background

Qualitative data analysis (QDA) is a central method in the social sciences, used to identify and
interpret patterns in unstructured text (Miller et al.| [[1990], (Creswell [2016]). A core step in QDA
is coding, where analysts assign short labels to data segments to capture their essential meaning
(Saldana|[2016])). These codes form the building blocks for higher-level categories and themes (Braun
and Clarke|[2021]]). Coding is often conducted by teams of human analysts who iteratively refine
code definitions and resolve disagreements through discussion.

Recent work has explored the use of large language models (LLMs) to assist or automate parts of the
coding process (Bommasani et al.|[2021]],/Laban et al|[2022], Parfenova et al.|[2024]). While LLMs
can offer gains in speed and consistency, concerns remain about the reliability and interpretability
of their outputs, particularly for tasks requiring subjective judgment (Morse|[[1997]], MacQueen and;
Guestl [2008]], Bumbuc| [2016], Bernard| [2016]]).

Human coding is not only a technical activity but also a social one, shaped by negotiation, influence,
and consensus-building. Research in social psychology shows that group decisions are affected by
factors such as confidence, majority opinion, and perceived commitment (Moussaid et al.| [2013]],



Suzuki et al.|[2015]]). These findings suggest that group coding dynamics extend beyond individual
annotation to include broader mechanisms of coordination and persuasion.

In parallel, studies have modeled LLM agents in multi-party negotiation and collaboration settings,
showing that they can replicate aspects of human interaction, including persuasion strategies and
iterative reasoning (Fu et al.| [2023]], [Deng et al.|[2024]], |Abdelnabi et al.| [2024]]). For example,
Vaccaro et al.|[2025]] show that negotiation outcomes among LLM agents are influenced by social
dimensions such as warmth and dominance, and that LLMs exhibit reasoning strategies not fully
predicted by existing human negotiation theories.

However, these interactional capabilities have not been systematically examined in applied annotation
settings such as qualitative coding, where sustained collaborative interpretation is central. Existing
research has largely focused on single-turn or task-specific interactions, leaving open questions
about how LLMs behave in multi-turn, group-based annotation and how such interactions shape
the semantic and structural properties of their outputs. This work addresses this gap by simulating
multi-agent, multi-round discussions among diverse LLMs performing inductive coding. Drawing
on insights from qualitative research, social psychology, and agent-based modeling, we analyze
how LLMs negotiate semantic content, influence each other’s decisions, and converge—or fail to
converge—on shared annotations.

3 Dataset and Experimental Setup

We construct a dataset for collaborative qualitative coding by sampling 500 English-language com-
ments from the Jigsaw Unintended Bias in Toxicity Classification datasetE] Comments are selected
based on two criteria: (1) high annotator disagreement scores to capture subjectivity, and (2) a
minimum length of 100 words to ensure interpretive richness.

® Maverick

We simulate structured group discussions among o Usmaas
large language models (LLMs), varying both ‘ T < cemma
group size (2, 3, or 5 agents) and discussion depth 53 ' i ==
(1-5 rounds). For each configuration, we gen-
erate 500 discussions, yielding a total of 7,500
multi-agent simulations. Each discussion proceeds
through three phases: (1) initial code generation
from each agent, (2) one to five rounds of turn-
based refinement, and (3) final synthesis.

Figure 3: UMAP projection of LLM-generated
codes before and after four rounds of multi-agent
discussion (5 models). Each point represents a
single code, colored by model type.

Agents take turns in a fixed sequence. After each
turn, the agent is prompted to summarize its mes-
sage in a single sentence. These summaries are
accumulated as conversational memory and pro-
vided as context for subsequent responses, approximating memory through accumulated turn sum-
maries. This setup avoids external memory modules and finetuning, instead relying on prompt-based
inference alone. It also enables scalable context management while preserving discourse coherence.
The full algorithm is outlined in Algorithm [T (Appendix A).

Each discussion is initialized with one of five prompt templates (see Table [d Appendix A), ranging
from formal coding instructions to informal summary requests. The prompts are iterated sequentially
to ensure balanced coverage. Across all settings, the simulation produces 7,500 discussions. With
each agent generating an initial code, multiple turn-level refinements, and a final synthesis, the corpus
contains approximately 125,000 discrete agent utterances. We store all transcripts, turn summaries,
and final codes in structured JSON and CSV formats for reproducible analysis.

4 Metrics

We compute ROUGE-1, ROUGE-2, and ROUGE-L scores (Lin! [2004]) to quantify lexical similarity
and convergence between generated codes over discussion rounds. To inspect structural patterns in
embedding space, we project sentence embeddings with UMAP (Mclnnes et al.|[2018]]), visualizing
both 2D and 3D clustering to assess inter-model separability and convergence. We also evaluate

lhttps ://www.kaggle.com/c/jigsaw—unintended-bias-in-toxicity-classification
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toxicity using the Unitary Toxicity classiﬁerﬂ treating full agent turns as the unit of analysis. To
capture richer stylistic and psycholinguistic patterns, we apply the ELFEN toolkiﬂ extracting features
such as lexical diversity, syntactic complexity, and emotional intensity.

We also introduce three process-level metrics: Code Stability — proportion of string-identical outputs
between consecutive rounds, reflecting how much each model revises its own prior outputs. Self-
consistency Score — average cosine similarity between TF-IDF representations of a model’s outputs
at round ¢ and ¢+1, measuring semantic drift. Confidence Score — measures how strongly a model
appears to “stand by” its statements. We calculate it by counting words and phrases that signal
certainty (e.g., clearly, definitely) versus hedging (e.g., might, possibly), adjusting for response
length.

5 Code Convergence

We organize our analysis around two dimensions: the codes produced by LLMs at each round, and
the discussion dynamics that shape those codes.

Convergence Analysis. In all configurations, the ROUGE-1, ROUGE-2, and ROUGE-L scores
between LLM steadily increase over successive rounds, indicating progressive lexical convergence
during the discussion (Figure ). The largest gains occur between the penultimate and final rounds,
suggesting that multi-turn interaction yields cumulative benefits that are most visible late in the
process. Table[I|reports final round ROUGE-L scores across prompts. Peak performance is observed
in the 3-model, 4-round setting for Prompt I (Max: 0.8070), with similarly strong outcomes for
Prompt 2 and Prompt 4. While additional rounds generally enhance convergence, improvements
plateau after the fourth round.

Opinion and Confidence. Figure[7a|(see Appendix ~ °°

B) tracks the average confidence of each model over /
rounds, estimated from lexical certainty and hedging g, /
cues. Mistral produces the most assertive outputs,
while Deepseek is the most hedging-prone. All mod-
els increase in confidence over time, consistent with
growing certainty as the discussion unfolds.

Llama3.3 vs Deepseek - ROUGE-1
Deepseek - ROUGE-1
Llama3.3 - ROUGE-1
Liama3.3 vs Deepseek - ROUGE-2
Maverick vs Deepseek - ROUGE-2
Maverick vs Llama3.3 - ROUGE-2
Llama3.3 vs Deepseek - ROUGE-L
Maverick vs Deepseek - ROUGE-L
> Maverick vs Liama3.3 - ROUGE-L

initial  RL R2 R3 R4 R5  final
Round

In Deepseek’s case, the lower confidence scores may

be partly attributable to the presence of its reasoning
part after <think> token in outputs, which was
deliberately not removed during preprocessing and
may be interpreted as a hedging or reflective cue by

Figure 4: ROUGE Score Convergence Across
Rounds for Three LLMs. This plot shows sim-
ilarity scores between pairs of models across
successive discussion rounds.

our metric.

We further project utterance embeddings into a 2D opinion—confidence space. Opinion is derived by
reducing 384-dimensional MiniLM sentence embeddings to a single principal component, capturing
the primary axis of semantic variance across all responses. Confidence is computed as the normalized
frequency difference between certainty and hedging expressions. Heatmaps in Figure 2] show that
early rounds produce multiple dense clusters (divergent stances, moderate confidence), whereas later
rounds reveal consolidation into more concentrated regions, reflecting both semantic and epistemic
alignment. This visualization is inspired by prior social science work on human group decision-
making, notably Moussaid et al.| [2013]], which mapped individuals into an opinion—confidence
space to study convergence under social influence. Our results mirror their findings: multi-round
interactions drive both opinion convergence and an overall upward shift in expressed confidence.

Toxicity. Average toxicity scores, measured via a zero-shot social bias detector, generally decrease
over time (see Figure[7b] Appendix B). Mistral and Gemma converge to near-zero toxicity by Round 4,
while Deepseek maintains relatively higher levels.

Stability and Consistency. Figure[5|summarizes two intra-model metrics: stability (percentage of
unchanged tokens between rounds) and self-consistency (semantic similarity of consecutive outputs).

Zhttps://huggingface.co/unitary/unbiased-toxic—-roberta
*https://github.com/mmmaurer/elfen
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Table 1: Average and Maximum ROUGE-L scores at final round across prompts, number of models,
and number of rounds.

Prompt # Models / Rounds 1 2 3 4 5
2 models Avg: 0.7658 / Max: 0.7658 0.5124/0.5124 0.6327/0.6327 0.7754 1 0.7754 0.6851/0.6851
Prompt 1 3 models 0.6881/0.7089 0.7274 1 0.7410 0.7409 / 0.8055 0.7729/0.8070 0.7634 /0.7897
5 models 0.6175/0.6827 0.6450/0.7220 0.6861/0.7410 0.7237/0.7857 0.7062 /0.7824
2 models 0.4703 /0.4703 0.4755 1 0.4755 0.5450/0.5450 0.6274 /0.6274 0.5342/0.5342
Prompt 2 3 models 0.5971/0.6260 0.7043 /0.7584 0.6728 /0.7341 0.6827 /0.7463 0.6871/0.7489
5 models 0.5225/0.6253 0.5379/0.6370 0.5343/0.6284 0.5677/0.6928 0.5986 / 0.6961
2 models 0.3609 / 0.3609 0.3407 / 0.3407 0.4056 / 0.4056 0.4193/0.4193 0.4081/0.4081
Prompt 3 3 models 0.2836/0.3200 0.3417 / 0.4070 0.3812/0.4941 0.3643 /0.4521 0.3950/0.4767
5 models 0.2819/0.3866 0.3055/0.4287 0.3306/ 0.4764 0.3194/0.4467 0.3332/0.4658
2 models 0.4811/0.4811 0.4680 / 0.4680 0.5185/0.5185 0.5688 / 0.5688 0.4836/0.4836
Prompt 4 3 models 0.6880 /0.7304 0.6534 /0.6768 0.7068 /0.7518 0.7152/0.7575 0.6363 /0.6682
5 models 0.5207 / 0.6544 0.5822/0.6850 0.5932/0.6894 0.6171/0.6688 0.5966/0.7061
2 models 0.547710.5477 0.4712/0.4712 0.5979/0.5979 0.6586 /0.6586 0.5908 / 0.5908
Prompt 5 3 models 0.4417/0.4983 0.4665/0.5789 0.4809 /0.5910 0.5102/0.5872 0.5350/0.6474
5 models 0.3457/0.5164 0.3602 / 0.5305 0.3508 7 0.4881 0.3758 /0.5280 0.397570.5857

Four models maintain high stability throughout, while Deepseek shows greater variability. Deepseek
and Mistral achieve the highest self-consistency, whereas Maverick exhibits more exploratory behavior
before converging in later rounds.

Semantic Influence Between Models. We compute round-wise pairwise cosine similarities be-
tween each model’s output and every other model’s prior-round output, producing a 5x5 influence
matrix per round (Figure [8] see Appendix C). Diagonal entries capture self-consistency and off-
diagonals capture cross-model semantic alignment. Early rounds show diffuse influence, with Gemma
and Deepseek serving as semantic anchors. By mid-discussion, Llama3.3 emerges as a stronger
source of influence, particularly for Gemma and Mistral. Deepseek increasingly absorbs content from
peers, acting as a semantic integrator.

6 Geometric Interpretability of Code Evolution

Recent work by |[Lee et al.|[2025]] has shown that intrinsic dimensionality (Id) of neural activations
can reveal how language models compress or preserve information during reasoning and instruction
following. While their approach uses hidden states, our focus is strictly output-level geometry: we
track how the intrinsic dimension of LLM-generated codes changes over multi-round discussions,
using external sentence embeddings from sentence-transformers. This makes our analysis a
proxy for semantic complexity in outputs rather than a direct probe of internal representations.

Code Stability (Change Ratio) per Round Transition

Intrinsic Dimensionality Shrinkage Across Rounds
We estimate Id using the Two-Nearest Neighbor method
(TwoNN-Id; [Facco et al.[2017)) for codes at each round in
2-, 3-, and 5-model setups (not diving by prompts used).
As shown in Figure [6] and Table [2] the 3- and 5-model
groups display a steady decline in Id over rounds, consis-
tent with semantic compression through discussion. The .~
sharpest drop occurs between the initial round (R0O) and
the first exchange (R1), with smaller reductions thereafter.
In contrast, the 2-model setup remains relatively stable,
suggesting limited restructuring of the representational )
space. LA

<

Self-consistency

Round Transition

Per-Model Semantic Complexity Figure shows  Figure 5: Model Stability and Self-
per-model Id trajectories. In the 2-model setup, both consistency Across Rounds.

LLaMA3.3 and Maverick maintain high, stable Id val-

ues. In the 3-model setup, Maverick spikes around R3 before returning to baseline, while the others
remain flatter. The 5-model setup exhibits the greatest divergence: Gemma rises sharply before drop-
ping, Deepseek fluctuates moderately, and Mistral shows two steep drops at R2 and RS, indicating
that larger groups may induce greater instability and diversity in semantic complexity.



Table 2: Intrinsic dimension (TwoNN) metrics across different model group sizes. All setups start at
round RO and proceed through multi-round discussions. Semantic compression is most pronounced
in the 3- and 5-model configurations.

Setup Initial Id Final Id AId (Final - R0) Steepest Drop Drop Round
2-Model 13.55 13.11 -0.44 -1.72 Final
3-Model 7.94 0.64 -7.30 -4.63 R1
5-Model 7.66 0.42 -7.24 -3.75 R1

Pooled vs. per-model Id.  The pooled 1d curves in Figure[6|are computed by concatenating all codes
from all models at a given round into a single set before estimating intrinsic dimensionality. This
treats the group as a unified annotator and reflects the overall diversity of the shared representational
space. In contrast, the per-model curves in Figure[I5] (see Appendix D) estimate Id separately for
each model’s codes across comments, capturing how much semantic variability each agent maintains
over time. Averaging per-model Id values would not be equivalent to the pooled estimate: pooled Id
incorporates cross-model differences within a round, while per-model Id measures only within-model
variation. Thus, pooled Id can be lower than individual Ids when models converge on similar codes,
even if each model’s own space remains internally diverse.

Cosine Similarity vs. Intrinsic Dimension To compare semantic compression with surface-level
convergence, we also track average pairwise cosine similarity. While cosine similarity rises steadily in
all setups and then again decreases at the final round, giving a marginally small increase in similarity
overall, Id decreases much sharply (Figure[6). This divergence suggests that models become lexically
closer while reducing the complexity of their outputs, supporting the idea that cosine similarity
captures alignment in wording, whereas 1d reflects deeper compression of semantic space.

7 Structural and Affective Linguistic Features

To capture how LLM interaction dynamics shape the linguistic, stylistic, and emotional properties
of generated codes, we computed 190 discussion-level features using the ELFEN toolkit. These
features span multiple linguistic dimensions including syntactic complexity, lexical diversity, read-
ability, part-of-speech distributions, emotional valence and arousal, sensorimotor concreteness, and
psycholinguistic norms.

Affective Divergence and Emotional Break-
down Prompt 3, an academic-style instruction
asking models to adopt a social scientist perspec-
tive, produces the lowest ROUGE convergence
of all prompt types (Table[I). This suggests that
interpretive ambiguity and abstraction hinder lexi-
cal alignment. The affective trajectories (Figure 9]
Appendix C) mirror this pattern: trust, joy, and
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valence drop sharply mid-discussion, while fear,
sadness, and arousal rise, particularly for Maver-
ick, which undergoes an affective collapse. In con-
trast, the highest-performing prompt (Figure [12]
Appendix C) shows steady affective features: trust,
dominance, and positive sentiment gradually in-
crease, and negative sentiment remains low and
stable. These findings suggest that maintaining
a consistent emotional tone, rather than fluctuat-
ing between affective extremes, supports shared
understanding and iterative refinement.

Discussion Round
5-Model - Id
2-Model - CosSim

2-Model - Id
3-Model - Id

3-Model - CosSim
5-Model - CosSim
Figure 6: Comparison of intrinsic dimension
(solid) and average cosine similarity (dashed)
across rounds for 2-, 3-, and 5-model setups.
While cosine similarity shows slight increases
(surface-level alignment), intrinsic dimension re-
veals strong semantic compression, especially in
the 5-model group. This suggests deeper conver-
gence beyond lexical overlap

Structural and Lexical Differences Lexical and structural analyses (Figures[I0] [13] Appendix C)
highlight substantial differences in discourse coherence between low- and high-performing prompts.
Under low-performing conditions, LLMs display volatile behavior: Yule’s K, hapax legomena rates,
and HDD fluctuate unpredictably, while readability scores (e.g., Flesch) reach implausible extremes



Table 3: Excerpted transcripts showing negative (left) and positive (right) influence patterns. Each
turn shows the speaking model and its proposed code, with adopted lexical items in blue.

Row 0: Semantic Flattening Row 30: Positive Alignment

Maverick (R0): Criticizing Enabling Culture Maverick (R0): Challenging Sexist Stereotypes

LLaMA3.3 (R0): Compassionate Condemnation LLaMA3.3 (R0): Challenging Stereotypical Portray-
als

Deepseek (R0): Critique of Ineffective Urban Com- Deepseek (R0): Challenging Sexist Stereotypes

passion

Gemma (R0): Compassion Fatigue & Blaming Pol- Gemma (R0): Gendered Representation in Mining

icy Media

Mistral (R0): Misguided Compassion Mistral (R0): Challenging Media Stereotypes: Inde-
pendent Women vs. Sexualized Roles

All models (Final): Exasperated Urban Compassion  All models (Final): Challenging Sexist Stereotypes

Fatigue & Policy Critique in Media

for some models. Deepseek and Maverick show high lexical volatility, while Gemma spikes in
Yule’s K—suggesting degeneracy or repetitive overfitting. Conversely, high-performing prompts
yield flatter or gradually improving trends in lexical diversity and sentence complexity. Maverick and
LLaMA 3.3 demonstrate increasing syntactic tree depth, lexical density, and stable POS chunking.

Sensorimotor Grounding Psycholinguistic features from the Lancaster Norms (Lynott et al.
[2020]) reveal nuanced differences in perceptual grounding across prompt conditions (see Figures |11}
[14] Appendix C). Surprisingly, the worst-performing prompt shows stable or even increasing visual
sensorimotor activation in several models (e.g., Mistral, Maverick), despite concurrent declines
in socialness, concreteness, and emotional coherence. This may indicate that, when alignment
fails, models compensate by anchoring discourse in concrete or perceptually vivid language—a
possible fallback strategy when abstract coordination breaks down. In contrast, the best-performing
prompt exhibits flatter or slightly declining visual grounding over rounds, accompanied by stronger
emotional calibration and lexical stability. This suggests that high-quality convergence does not
require perceptual vividness; rather, it benefits from emotional and structural consistency. Overall,
sensorimotor features provide useful but non-linear signals.

8 Qualitative and Error Analysis

While overall trends point to increasing convergence across rounds, individual discussion threads
reveal that this process is not uniformly successful. In some cases, interaction leads to clearer, more
aligned codes; in others, it produces drift, vagueness, or unnecessary complexity. To illustrate, we
present two examples from the 5-model, 5-round setting: one where peer interaction improves quality,
and one where it undermines it.

Semantic drift and oversimplification. In some discussions, models converge confidently on
codes that are less nuanced than their starting points. For example, in one case, the initial codes were
thematically diverse - “Criticizing Enabling Culture”, “Compassionate Condemnation”, “Misguided
Compassion”, and a detailed multi-component code from Gemma explicitly identifying both compas-
sion fatigue and blaming policy. Over the discussion, these variants collapsed into a highly uniform
label, “Exasperated Urban Compassion Fatigue & Policy Critique”, adopted by all models. While
lexical similarity and ROUGE-L scores increased sharply (4-0.61), intrinsic dimensionality dropped
from 6.10 to 1.07, signalling reduced representational diversity. This semantic flattening risks erasing
meaningful sub-themes in pursuit of consensus.

Positive lexical alignment. Other interactions show peer influence improving conceptual clarity. In
another case, the group began with semantically related but lexically varied codes such as “Chal-
lenging sexist stereotypes”, “Gendered Representation in Mining Media”, and “Challenging Media
Stereotypes: Independent Women vs. Sexualized Roles”. Through successive rounds, the phrase
“Challenging Sexist Stereotypes in Media” emerged and was adopted by all agents by the final round.
Here, convergence aligned both lexical form and semantic content, increasing ROUGE-L by +0.45
and cosine similarity by +0.24, while preserving the central meaning of the original codes.



Illustrative excerpts. Table[3|presents condensed transcripts from these two cases. Highlighted
terms (blue) indicate lexical items or phrasings introduced by one model and later adopted by others.
Overall, these cases illustrate that convergence can either reinforce accurate, semantically coherent
codes or collapse diversity into overgeneralised formulations. Monitoring for semantic drift and
incorporating occasional human oversight could help maintain thematic richness while benefiting
from the efficiency of multi-agent LLM discussions.

9 Discussion

Our findings demonstrate that large language models can engage in structured, multi-turn coordination
without explicit role conditioning or constraints. Across various types of prompts and group sizes,
interaction yields measurable gains in lexical and semantic convergence, greater epistemic confidence,
and reduced toxicity. These patterns are supported by complementary metrics, including ROUGE,
self-consistency, and cross-model influence scores.

The coordination dynamics is not uniform. Influence matrices reveal stable anchor models (e.g.,
Gemma, LLaMA3.3) that consistently shape peer outputs, alongside models (e.g., Deepseek) that
absorb external framing. This asymmetry parallels established findings in human negotiation and
persuasion, where clarity and perceived confidence can drive consensus formation (Moussaid et al.
[2013]).

Convergence is not solely lexical. High-performing groups maintain stable sentiment trajectories
and controlled syntactic complexity, suggesting that emotional coherence and discourse stability lead
to alignment. In contrast, breakdowns are marked by volatility in sentiment, lexical degeneration,
and increased perceptual concreteness, which may reflect compensatory grounding strategies when
alignment fails.

Geometric analysis adds a complementary perspective: intrinsic dimensionality consistently shrinks
over discussion rounds, indicating semantic compression beyond surface overlap. This suggests that
iterative interaction narrows the representational space toward shared conceptual frames, an effect
not captured by cosine similarity or ROUGE alone. Together, these results position multi-agent LLM
interaction as a process of both surface alignment and deeper conceptual convergence.

10 Limitations

Our analysis treats models strictly as black boxes, drawing inferences from their textual outputs rather
than internal activations or intermediate representations. This output-only view enables large-scale,
model-agnostic comparison, but limits claims about the mechanisms driving convergence, influence,
or negotiation. Signals such as ROUGE, embedding similarity, and sentiment shifts capture surface
behavior, not the latent dynamics that produce it.

The study is also fully automated: no human coders participate in the discussions, and we do not
evaluate the correctness of the final codes relative to a gold standard. Convergence here reflects
agreement, not ground-truth accuracy. As such, our results speak to coordination patterns, not to
annotation validity.

All agents receive identical prompts, lack explicit roles or persistent memory beyond turn summaries,
and have no access to external tools or context. This design isolates coordination dynamics but may
understate the capacity of LLM groups in richer, role-differentiated, or tool-augmented settings.

Finally, our synthetic setup abstracts away from the messiness of the real-world qualitative coding
process. While controlled conditions are valuable for isolating effects, they may reduce validity for
applied annotation workflows.

11 Conclusion

We presented a simulation framework for multi-agent LLM discussions in inductive qualitative
coding, showing that iterative interaction leads to lexical and semantic convergence, stabilizes affect,
and compresses the concept space of model outputs. These dynamics: anchoring, asymmetric
influence, and progressive semantic narrowing, suggest that LLM groups can exhibit forms of
collective reasoning that go beyond simple lexical alignment.



Our findings highlight the potential of structured multi-turn interaction for tasks requiring consensus
and interpretability, from collaborative annotation to decision-making. Future work should extend this
approach to mixed human-LLM settings, probe the stability of consensus under noisy or adversarial
conditions, and analyze the effects of turn-taking, memory, and agent identity on group outcomes.
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Algorithm 1 Multi-agent Iterative Coding Simulation

Require: Models M = {m1,...,ms}, number of rounds R, prompt p, dataset D of n items
1: for each item x € D do
2 Phase 1: Initial code generation
3 for each agent m; € M do
4: Generate initial code c§°> — mi(p,x)
5 Summarize to one-sentence s,(-o) — summarize(cgo))
6 end for
7 Initialize conversational memory C(® « [ .. sﬁf)}
8: Phase 2: Iterative refinement
9: for round r = 1 to R do
10: for each agent m; in fixed turn order do
11: Context < C'" V) plus current item z
12: Generate refinement c§T> <+ m;(p, x, context)
13: Summarize s\ «— summarize(c!")
14: Append sﬁ.” to conversational memory C'(™
15: end for
16: end for

17: Phase 3: Final synthesis
18: for each agent m; € M do

19: Given C¥, produce final synthesis code ™
20: end for
21: end for

A Simulation Procedure and Prompts

For transparency and reproducibility, we provide in Algorithm|I]a detailed outline of the simulation
pipeline described in Section ’Experimental Setup’. The algorithm formalizes our three-phase
procedure: (1) Initial code generation, where each agent independently produces an initial qualitative
code for a given input; (2) Iterative refinement, where agents take turns updating their code in response
to accumulated conversational memory built from one-sentence summaries of all prior turns; and (3)
Final synthesis, where each agent generates a concluding code based on the full shared history. This
design ensures controlled turn-taking, scalable context management, and the absence of any external
memory modules or finetuning, relying solely on prompt-based inference.

Table []lists the five prompt templates used to produce discussions, rotated one after another. The
prompts range from formal thematic analysis instructions to more concise, informal formulations,
enabling us to test the effect of input framing on the group coding dynamics.

B Confidence Score Computation

To quantify expressions of certainty and hedging in model utterances, we define two lexicons: one for
certainty cues and one for hedging cues. These lexicons are manually curated and include common
adverbs, modal verbs, and multi-word phrases associated with either assertive or uncertain language.

Certainty Lexicon
The certainty lexicon C includes terms such as:
definitely, must, undoubtedly, always, clearly, certainly, absolutely, without a
doubt, unquestionably, conclusively, positively, with certainty, no doubt, undeniably,
strongly, etc.
A full list contains 65 expressions indicative of strong epistemic commitment or assertive framing.
Hedging Lexicon

The hedging lexicon H includes terms such as:
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Prompt ID Prompt Text

1 A code is often a word or short phrase that symbolically assigns a
salient, essence-capturing and/or evocative attribute to a portion
of language-based or visual data. Perform thematic analysis on the
following comment and generate a concise qualitative code.

2 Summarize the main idea of this sentence in a short, thematic code.

3 From the perspective of a social scientist, summarize the following
sentence as you would in thematic coding.

4 Can you tell me what the main idea of this sentence is in just a few words?

5 If you were a social scientist doing thematic analysis, what code

would you give to this citation?
Table 4: Prompt formulations used across the simulation setup to elicit qualitative codes from models
Parfenova et al.|[[2025]]. Each discussion is seeded with one of these prompts.
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Figure 7: (a) Confidence and (b) Toxicity trends across multi-round LLM discussions.

might, possibly, could, likely, seems, apparently, perhaps, maybe, presumably,
arguably, supposedly, relatively, somewhat, in theory, reportedly, one might argue,
from what I gather, I guess, etc.

This list includes 70 phrases commonly associated with epistemic uncertainty, mitigation, or specula-
tive reasoning.

Confidence Score Formula

Given a tokenized utterance, we compute the confidence score as:

C terms — H terms
N tokens in ¢

Confidence(t) = (D

This produces a normalized score capturing the relative assertiveness of an utterance, where higher
values indicate stronger epistemic commitment and lower (or negative) values indicate hedging or
uncertainty.

C Semantic Influence

D Intrinsic Dimension Metrics
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Figure 8: Semantic Influence Matrices Across Discussion Rounds. Each heatmap represents the
average pairwise cosine similarity between a target model’s code at round t and all source models’
codes from round t—1, computed using MiniLM embeddings. Diagonal values capture self-influence
(semantic consistency over time), while off-diagonal values indicate cross-model influence (semantic
alignment to peers). Over time, influence intensifies, especially for Mistral, Gemma, and Deepseek,
reflecting increasing inter-model convergence and shared framing. Notably, Llama3.3 and Deepseek
emerge as consistent semantic sources, while Maverick gradually stabilizes after early-round volatility.
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Figure 9: Affective feature trajectories for the lowest-performing prompt. Sentiment, trust, and
valence drop sharply mid-discussion, while fear, sadness, and arousal increase—indicating emotional
instability and breakdown in cooperative framing.
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Figure 12: Affective feature trajectories for the highest-performing prompt. Trust, dominance, and
positive sentiment steadily rise, while negative affect remains low—indicating stable emotional
regulation and cooperative tone.
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Figure 13: Lexical and structural metrics for the highest-performing prompt. Trends in lexical
diversity, syntactic depth, and token economy are stable or gradually improving, reflecting sustained
discourse coherence and minimal drift.
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Figure 14: Psycholinguistic features for the highest-performing prompt. Visual grounding remains flat
or slightly declines, while emotional and structural stability persist—suggesting effective alignment
without reliance on increased concreteness.
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Per-Model Semantic Complexity Over Rounds (2-Model Setup)

22.5
Model

—e— Llama3.3
—e— Maverick

N
o
=)

,_.
™
wn

,_.
wm
o

,_.
N
w0

Intrinsic Dimension (TWoNN)
s
o

~
n

RO R1 R2 R3 R4 R5 Final
Discussion Round

22Pgr-ModeI Semantic Complexity Over Rounds (3-Model Setup)

= Model

= 20.0 = —s— Deepseek
§ —e— Lama3.3
=175 —e— Maverick
5

w 15.0

c

[}

E 125

[a}

)

2100

£

=

E 7.5

RO R1 R2 R3 R4 R5 Final
Discussion Round

Per-Model Semantic Complexity Over Rounds (5-Model Setup)

z 225 T—— Model

2 —e— Deepseek
E 20.0 —e— Gemma
‘*c’ 175 o i —e— Llama3.3
'3 ° —e— Maverick
$ 15.0 —e— Mistral
£

Q125

&

£ 100

c

€

= 75 .

RO R1 R2 R3 R4 RS Final
Discussion Round

Figure 15: Per-model semantic complexity across rounds, measured via intrinsic dimension (TwoNN)
of each model’s generated codes.
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