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ABSTRACT

Optimal transport (OT) offers a versatile framework to compare complex data
distributions in a geometrically meaningful way. Traditional methods for comput-
ing the Wasserstein distance and geodesic between probability measures require
mesh-specific domain discretization and suffer from the curse-of-dimensionality.
We present GeONet, a mesh-invariant deep neural operator network that learns
the non-linear mapping from the input pair of initial and terminal distributions
to the Wasserstein geodesic connecting the two endpoint distributions. In the
offline training stage, GeONet learns the saddle point optimality conditions for
the dynamic formulation of the OT problem in the primal and dual spaces that
are characterized by a coupled PDE system. The subsequent inference stage is
instantaneous and can be deployed for real-time predictions in the online learning
setting. We demonstrate that GeONet achieves comparable testing accuracy to
the standard OT solvers on simulation examples and the MNIST dataset with
considerably reduced inference-stage computational cost by orders of magnitude.

1 INTRODUCTION

Recent years have seen tremendous progress in statistical and computational optimal transport (OT)
as a lens to explore machine learning problems. One prominent example is to use the Wasserstein
distance to compare data distributions in a geometrically meaningful way, which has found various
applications, such as in generative models (Arjovsky et al.,|2017)), domain adaptation (Courty et al.,
2017) and computational geometry (Solomon et al.,|2015). Computing the optimal coupling and
the optimal transport map (if it exists) can be expressed in a fluid dynamics formulation with
the minimum kinetic energy (Benamou and Brenier, 2000). Such dynamical formulation defines
geodesics in the Wasserstein space of probability measures, thus providing richer information for
interpolating between data distributions that can be used to design efficient sampling methods from
high-dimensional distributions (Finlay et al.} 2020). Moreover, the Wasserstein geodesic is also
closely related to the optimal control theory (Chen et al.,|2021)), which has applications in robotics
and control systems (Krishnan and Martinez, |2018; Inoue et al., 2021J).

Traditional methods for numerically computing the Wasserstein distance and geodesic require domain
discretization that is often mesh-dependent (i.e., on regular grids or triangulated domains). Classical
solvers such as Hungarian method (Kuhnl, [1955)), the auction algorithm (Bertsekas and Castanon,
1989), and transportation simplex (Luenberger and Ye} 2015)), suffer from the curse-of-dimensionality
and scale poorly for even moderately mesh-sized problems (Klatt et al., 2020; |Genevay et al.,
20165 Benamou and Brenier, |2000). Entropic regularized OT (Cuturi, [2013) and the Sinkhorn
algorithm (Sinkhorn, [1964) have been shown to efficiently approximate the OT solutions at low
computational cost, handling high-dimensional distributions (Benamou et al.,|2015)); however, high
accuracy is computationally obstructed with a small regularization parameter (Altschuler et al.
2017; |[Dvurechensky et al.,|2018)). Recently, machine learning methods to compute the Wasserstein
geodesic for a given input pair of probability measures have been considered in (Liu et al., 2021}
2023} |Pooladian et al.|[2023}; |Tong et al.}[2023), as well as amortized methods|Lacombe et al.|(2023);
Amos et al.| (2023) for generating static OT maps.

A major challenge of using the OT-based techniques is that one needs to recompute the Wasserstein
distance and geodesic for new input pair of probability measures. Thus, issues of scalability on
large-scale datasets and suitability in the online learning setting are serious concerns for modern
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Figure 1: A geodesic at different spatial resolutions. Low-resolution inputs can be adapted into
high-resolution geodesics (i.e., super-resolution) with our output mesh-invariant GeONet method.
machine learning, computer graphics, and natural language processing tasks (Genevay et al., 2016}
Solomon et al., [2015} Kusner et al.,[2015)). This motivates us to tackle the problem of learning the
Wasserstein geodesic from an operator learning perspective.

There is a recent line of work on learning neural operators for solving general differential equations
or discovering equations from data, including DeepONet (Lu et al., 2021), Fourier Neural Opera-
tors (Li et al.,|2020b), and physics-informed neural networks/operators (PINNs) (Raissi et al., 2019)
and PINOs (Li et al., 2021). Those methods are mesh-independent, data-driven, and designed to
accommodate specific physical laws governed by certain partial differential equations (PDEs).

Our contributions. In this paper, we propose a deep neural operator learning framework GeONet
for the Wasserstein geodesic. Our method is based on learning the optimality conditions in the
dynamic formulation of the OT problem, which is characterized by a coupled PDE system in the
primal and dual spaces. Our main idea is to recast the learning problem of the Wasserstein geodesic
from training data into an operator learning problem for the solution of the PDEs corresponding to
the primal and dual OT dynamics. Our method can learn the highly non-linear Wasserstein geodesic
operator from a wide collection of training distributions. GeONet is also suitable for zero-shot
super-resolution applications on images, i.e., it is trained on lower resolution and predicts at higher
resolution without seeing any higher resolution data (Shocher et al., [2018). See Figure [I] for an
example of the predicted higher-resolution Wasserstein geodesic connecting two lower-resolution
Gaussian mixture distributions by GeONet.

Surprisingly, the training of our GeONet does not require the true geodesic data for connecting the
two endpoint distributions. Instead, it only requires the training data as boundary pairs of initial and
terminal distributions. The reason that GeONet needs much less input data is because its training
process is implicitly informed by the OT dynamics such that the continuity equation in the primal
space and Hamilton-Jacobi equation in the dual space must be simultaneously satisfied to ensure
zero duality gap. Since the geodesic data are typically difficult to obtain without resorting to some
traditional numerical solvers, the amortized inference nature of GeONet, where inference on related
training pairs can be reused (Gershman and Goodmanl |2014)), has substantial computational advantage
over standard computational OT methods and machine learning methods for computing the geodesic
designed for single input pair of distributions (Peyré and Cuturi, [2019; [Liu et al., 2021)).

Table 1: We compare our method GeONet with other methodology, including traditional neural
operators, physics-based neural networks for learning dynamics, and traditional optimal transport
solvers.

Method characteristic Neural operator w/o ~ PINNs  Traditional =~ GeONet
physics-informed OT solvers (Ours)
learning
operator learning v’ v’
satisfies the associated PDEs v’ v’ v’
does not require known geodesic data v’ v’ v’
output mesh independence v’ v’ v’

Once GeONet training is complete, the inference stage for predicting the geodesic connecting new
initial and terminal data distributions requires only a forward pass of the network, and thus it can be
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performed in real time. In contrast, standard OT methods re-compute the Wasserstein distance and
geodesic for each new input distribution pair. This is an appealing feature of amortized inference to
use a pre-trained GeONet for fast geodesic computation or fine-tuning on a large number of future
data distributions. Detailed comparison between our proposed method GeONet with other existing
neural operators and networks for learning dynamics from data can be found in Table[T}

2 BACKGROUND

2.1 OPTIMAL TRANSPORT PROBLEM: STATIC AND DYNAMIC FORMULATIONS

The optimal mass transportation problem, first considered by the French engineer Gaspard Monge, is
to find an optimal map 7™ for transporting a source distribution p to a target distribution p; that
minimizes some cost function ¢ : RY x R — R:

i T(x)) d Typo = i1 b 1
i { e T@) dualo) Ty = a | 1)
where T} denotes the pushforward measure defined by (Typ)(B) = u(T~'(B)) for measurable
subset B C R?. In this paper, we focus on the quadratic cost c(z,y) = |z — y||3. The Monge

problem (T) induces a metric, known as the Wasserstein distance, on the space P2(R%) of probability
measures on R¢ with finite second moments. In particular, the 2-Wasserstein distance can be
expressed in the relaxed Kantorovich form:

W2 (o 1) = min / e — yl2 dy(z,y) b @
YET (po,p1) Rd xRd

where minimization over + runs over all possible couplings I'(pq, 1) with marginal distributions 1
and p1. Problem has the dual form (cf.|Villani| (2003))

1 _ 2
W o) = sup {/ odua+ [ wdu1:w(w)+1/}(y)<”$y”2}-(3)
2 )y LJ/Re Rd 2

w€L(po), YEL (p1

Problems (T)) and () are both referred as the static OT problem, which has close connection to fluid
dynamics. Specifically, the Benamou-Brenier dynamic formulation (Benamou and Brenier, 2000)
expresses the Wasserstein distance as a minimal kinetic energy flow problem:

S W3 (o, 1) —mm/ / SV, I i 1) e d

subject to O+ div(uv) =0, u(:,0) = po, (1) = pa,

@

where pi; := p(-,t) is the probability density flow at time ¢ satisfying the continuity equation (CE)
constraint dy ¢t + div(pv) = 0 that ensures the conservation of unit mass along the flow (1t)eefo,1)-
To solve (@), we apply the Lagrange multiplier method to find the saddle point in the primal and dual
variables. In particular, for any flow p, initializing from py and terminating at ;, the Lagrangian
function for @) can be written as

1
1
cuve = [ [ [5Iv1Bu+ @+ aiviuv)ya] as )

where u := u(x, t) is the dual variable for the continuity equation. Using integration-by-parts under
suitable decay condition for ||z|l2 — oo, we find that the optimal dual variable u* satisfies the
Hamilton-Jacobi (HJ) equation for the dynamic OT problem

1
Ou+ 5| Vull3 =0, (6)

and the optimal velocity vector field is given by v*(z,t) = Vu*(x, t). Hence, we obtained that the
Karush—Kuhn-Tucker (KKT) optimality conditions for (@) are solution (u*, u*) to the following
system of PDEs:
1
Oppr 4 div(pVu) = 0, dwu + §||Vu||§ =0, o
p(,0) = po, p(1) = p1.
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In addition, solution to the Hamilton-Jacobi equation (6 can be viewed as an interpolation u(z, t) of
the Kantorovich potential between the initial and terminal distributions in the sense that u*(x,1) =
P*(z) and u*(z,0) = —¢*(z) (both up to some additive constants), where ¢* and ¢* are the
optimal Kantorovich potentials for solving the static dual OT problem (3). A detailed derivation of
the primal-dual optimality conditions for the dynamical OT formulation is provided in Appendix [B}

2.2 LEARNING NEURAL OPERATORS

A neural operator generalizes a neural network that learns a mapping I't : .4 — I/ between infinite-
dimensional function spaces A and U (Kovachki et al., 2021} |Li et al.| 2020a). Typically, .A and U
contain functions defined over a space-time domain 2 x [0, T'], where {2 is taken as a subset of RY,
and the mapping of interest I'f is implicitly defined through certain differential operator. For example,
the physics informed neural network (PINN) (Raissi et al.,2019) aims to use a neural network to find
a solution to the PDE

Oyu + Dlu] = 0, 8)
given the boundary data u(-,0) = ug and u(-,T) = ug, where D := D(a) denotes a non-linear
differential operator in space that may depend on the input function ¢ € A. Different from the
classical neural network learning paradigm that is purely data-driven, a PINN has less input data (i.e.,
some randomly sampled data points from the solution u = I'T(a) and the boundary conditions) since
the solution operator I'T has to obeys the induced physical laws governed by (§). Even though the
PINN is mesh-independent, it only learns the solution for a single instance of the input function a
in the PDE (8). In order to learn the dynamical behavior of the inverse problem I' : A — I/ for an
entire family of .4, we consider the operator learning perspective.

The idea of using neural networks to approximate any non-linear continuous operator stems from
the universal approximation theorem for operators (Chen and Chen, [1995; |Lu et al.| 2021). In
particular, we construct a parametric map by a neural network I' : A x © — U for a finite-
dimensional parameter space © to approximate the true solution operator I'T. In this paper, we adopt
the DeepONet architecture (Lu et al.l 2021), suitable for their ability to learn mappings from pairings
of initial input data (Tan and Chenl 2022)), to model I". We refer the readers to Appendix [E for some
basics of DeepONet and its enhanced versions. Then, the neural operator learning problem for finding
the optimal 8* € © can be done in the classical risk minimization framework via

0% = argmingee  E(a,ug,ur)~p [H(at +D)(a, Q)HiQ(Qx(O,T))
+>\OHF(a7 9)(7 0) - UOHiQ(Q) + )‘THF(G‘7 0)(7 T) - uT”iz(Q)] )

where the input data (a, ug, ur) are sampled from some joint distribution u. In (9), we minimize the
PDE residual corresponding to d;u + D[u] = 0 while constraining the network by imposing boundary

conditions. The loss function has weights Ao, A7 > 0. Given a finite sample {(a(*", ug) , ug)) n

©))

i=1
and data points randomly sampled in the space-time domain 2 x (0,7"), we may minimize the
empirical loss analog of (9) by replacing || - ||z2(ax (0,)) With the discrete L? norm over domain

Q x (0,7"). Computation of the exact differential operators d; and D can be conveniently exploited
via automatic differentiation in standard deep learning packages.

3 OUR METHOD

We present GeONet, a geodesic operator network for learning the Wasserstein geodesic {4t }1e[0,1]
connecting o to p1 from the distance Wa (g, p11). Let  C RY be the spatial domain where the
probability measures are supported. For probability measures pig, 1 € Po2(£2), it is well-known
that the constant-speed geodesic {1t }+c[o,1] between i and p; is an absolutely continuous curve
in the metric space (P2(2), Ws), which we denote as AC(P2(€2)). . solves the kinetic energy
minimization problem in (@) (Santambrogio, 2015). Some basic facts on the metric geometry
structure of the Wasserstein geodesic and its relation to the fluid dynamic formulation are reviewed
and discussed in Appendix [C] In this work, our goal is to learn a non-linear operator

T2 Py() x Pa(Q) — AC(Pa(R)), (10)
(1o, 1) = {pe }eejoa)s (11)
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Figure 2: Architecture of GeONet, containing six neural networks to solve the continuity and
Hamilton-Jacobi (HJ) equations, three for each. We minimize the total loss, and the continuity
solution yields the geodesic. GeONet branches and trunks output vectors of dimension p, in which we
perform multiplication among neural network elements to produce the continuity and HJ solutions.

based on a training dataset {(uél), u(ll)), ey (uén) , u(ln) )}. The core idea of GeONet is to learn the
KKT optimality condition (7) for the Benamou-Brenier problem. Since (7)) is derived to ensure the
zero duality gap between the primal and dual dynamic OT problems, solving the Wasserstein geodesic
requires us to introduce two sets of neural networks that train the coupled PDEs simultaneously.
Specifically, we model the operator learning problem as an enhanced version of the unstacked

DeepONet architecture 2021} [Tan and Chen| 2022) by jointly training three primal

networks in (T12) and three dual networks in (13) as follows:

p
C(MOv Ml)(mv ta ¢) = Z B](C))Cty(uo, 007Cty) : Bl?my(:uh al,cly) : 7":1}’(1,’ ta €Cty), (12)
k=1
p
H(MO? ,Lbl)(l’, t) Tz[}) = Z BI(:’HJ(/LOa GO’HJ) ' B]?Hj(lu’lv 01’HJ) ! EHJ(xv ta gHJ), (13)
k=1

where B»Y (11 (1), .., (@), 07) : R™ x © — RP and B3 (p; (1), ..., pj(zm), 09H)
R™ x © — RP are branch neural networks taking m-discretized input of initial and terminal
density values at j = 0 and j = 1 respectively, and TV (z,t,&V) : R? x [0,1] x = — R? and
TH (2, t,6W) : RY x [0,1] x = — RP are trunk neural networks taking spatial and temporal inputs
(cf. Appendix [F] for more details on DeepONet models). Here © and = are finite-dimensional
parameter spaces, and p is the output dimension of the branch and truck networks. Denote parameter
concatenations ¢ := (60 9LV W) and o) = (HOH GLH ¢H)) © Then the primal operator
network Cy (2, t, f1o, p1) := C(x, t, po, i1, @) for ¢ € © x © x = acts as an approximate solution to
the continuity equation, hence the true geodesic I'f (z, , juo(2), 1 (2)) := pe(x) = p(zx,t), while
the dual operator network H. (, ¢, 1o, 1) for ¢ € © x © x E corresponds to that of the associated
Hamilton-Jacobi equation. The architecture of GeONet is shown in Figure 2]

To train the GeONet defined in (T2)) and (T3), we minimize the empirical loss function corresponding
to the system of primal-dual PDEs and boundary residuals in (7)) over the parameter space © x © x =:

", " = argming yeovoxz Ly + Lur + Lac, (14)
where Loy = 377 Lay,is Ly = 2521 Luvis Loc = 25—, Lac,i, and
Lay,i = %H %%,i(mvt) +div(Co,i(2, 1) VHyi(2,1) |[2(0x(0,1)): (15)
Lvi = 201 DAy t) L IVHai 0 onony (16)
Lo = 21 Coulr,0) — 1) oy + 2211 Cosle ) = i ey A7)
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Figure 3: Four geodesics predicted by GeONet with reference geodesics computed by POT on test
univariate Gaussian mixture distribution pairs with kg = k; = 6. The reference serves as a close
approximation to the true geodesic. The vertical axis is space and the horizontal axis is time.

Here, Cy (2, 1) = Cy(a, t, p\ (), 1\” (2)) and Cp 1 5(x) 1= Co(x, t, u (2), u{” (z)) denote the
evaluation of neural network C, over the i-th distribution of the n training data at space location x
and time point ¢. The same notation applies for the Hamilton-Jacobi neural networks. Ly is the loss
component in which the continuity equation is satisfied, and Lyj is the Hamilton-Jacobi equation
loss component. The boundary conditions are incorporated in the Lgc term, and oy, as, B, 51
are weights for the strength to impose the physics-informed loss. Automatic differentiation of our
GeONet involves differentiating the coupled DeepONet architecture (cf. Figure[2) in order to compute
the physics-informed loss terms.

One iterate of our training procedure is as follows. We first select a collection of N indices Z from 1
to n for which of the n distributions are to be evaluated, with possible repeats. For the physics terms,
following 2019), we utilize a collocation procedure as follows. We sample N pairs (z,t)
randomly and uniformly within the bounded domain € x [0, 1]. These pairs are resampled during
each training iteration in our method. Then, we evaluate the continuity and Hamilton-Jacobi residuals
displayed in (T3) and (T6)) at such sampled values, in which the loss is subsequently minimized with
the corresponding indices in Z, making the norms approximated as discrete. For branch input, we
take equispaced locations 1, .. ., x,, within 2, a bounded domain in R<, typically a hypercube .

Then the IV branch locations are evaluated among Q) as well for the BC loss.

Modified multi-layer perceptron (MLP). A modified MLP architecture as described in (Wang|
20214) has been shown to have great ability in improving performance for PINNs and physics-
informed DeepONets. We elaborate on this architecture in Appendix [G.1]and describe our empirical
findings with this modified MLP for GeONet in Appendix [I}

Entropic regularization. Our GeONet is compatible with entropic regularization, which is related to
the Schrodinger bridge problem and stochastic control 2016). In Appendix[D] we propose
the entropic-regularized GeONet (ER-GeONet), which learns a similar system of KKT conditions
for the optimization as in (7). In the zero-noise limit as the entropic regularization parameter € |, 0,
the solution of the optimal entropic interpolating flow converges to solution of the Benamou-Brenier
problem (@) in the sense of the method of vanishing viscosity (Mikami, 2004} [Evans] 2010).

4 NUMERIC EXPERIMENTS

In this section, we perform simulation studies and a real-data example to demonstrate that GeONet
can handle inputs as both continuous densities and discrete point clouds (normalized as empirical
probability distributions).

4.1 INPUT AS CONTINUOUS DENSITY: GAUSSIAN MIXTURE DISTRIBUTIONS

Since finite mixture distributions are powerful universal approximators for continuous probability
density functions (Nguyen et al,[2020), we first deploy GeONet on Gaussian mixture distributions
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Table 2: L' error of GeONet on 50 test data of univariate and bivariate Gaussian mixtures. We
compute errors on cases of the identity geodesic, a random pairing in which pg # pq1, high-resolution
random pairings refined to 200 and 75 X 75 resolutions in the 1D and 2D cases respectively, and
out-of-distribution examples. We report the means and standard deviations as a percentage, making
all values multiplied by 10~2 by those of the table.

GeONet L! error for Gaussian mixtures

Experiment t=0 t =0.25 t=0.5 t=0.75 t=1

1D identity 2.67+0.750 2.85£0912 3.04+1.02 2.86+0.898 2.63=£0.696
1D random 4924+£200 543+£3.02 576+356 526+£3.25 4.65£1.50
1D high-res. 4.76£1.53 5494+3.00 6.01£3.53 559+299 4.77+1.49
1D OOD 129+4.13 143+535 16.4+6.01 14.9+548 12.3+3.94
2D identity 6.50+1.15 7.68+0915 7.69+0.924 7.70£0.889 6.42+1.11
2D random 6.59+1.01 7.10+£0.869 7.13£0.892 7.04+£0.780 6.33+0.835
2D high-res. 6.66 £0.766 7.71£1.26 7.88+1.21 7.59+£0.979 6.29+0.723
2D OOD 7.154+098 7.82+1.04 8144+133 T796£1.30 7.14£0.882

over domains of varying dimensions. We learn the Wasserstein geodesic mapping between two
distributions of the form y;(z) = Zf;l N (z|u;, X;) subject to Zfi1 m; = 1, where j € {0,1}
corresponds to initial and terminal distributions /19, f41, and k; denotes the number of components in
the mixture. Here u; and Y; are the mean vectors and covariance matrices of individual Gaussian
components respectively. Due to the space limit, we defer simulation setups, model training details
and error metrics to Appendices [H] [ and [J} respectively.

We examine errors in regard to an identity geodesic (i.e., ;9 = 1), a random test pairing, and
an out-of-distribution (OOD) pairing. The mesh-invariant nature of the output of GeONet allows
zero-shot super-resolution for adapting low-resolution data into high-resolution geodesics, which
includes initial data at £ = 0, 1, while traditional OT solvers and non-operator learning based methods
have no ability to do this, as they are confined to the original mesh. Thus, we also include a random
test pairing on higher resolution than training data. The result is reported in Table 2}

4.2 INPUT AS POINT CLOUDS: GAUSSIAN MIXTURE DISTRIBUTIONS

point cloud
POT

empirical density
GeONet (ours)

GeONet (ours)

Flow Matching  Rectified Flow  high resolution

Figure 4: We compare to GeONet to the alternative methodology in a discrete setting, using POT as
ground truth. GeONet is the only method among the comparison which encapsulates the geodesic
behaviour among the translocation of points.
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GeONet is also suited for continuous densities made discrete. In scenarios with access to point clouds
of data, we may use GeONet with discrete data made into empirical distributions. We test GeONet an
an example Gaussian discrete data. Discrete particles in  C R? are sampled from Gaussian data, as
encompassed in (Liu et al.| 2022)). The sampled particles are represented by empirical densities, in
which we compare upon the transition of densities in the non-particle setting using POT as a baseline.
The process of turning sampled particles into an empirical density can be reversed by sampling
particles according to the densities, which in its most simplified form is placing the particles exactly
along the mesh, with the number corresponding to rounded density value. The result is reported in
Table 3 and an estimated geodesic example is shown in Figure d] We observe that RF and CFM have
3-4 times comparably larger estimation errors than GeONet, except for the initial time ¢ = 0, because
this initial data is given and learned directly for RF and CFM. GeONet is the only framework among
the comparison which encapsulates the geodesic behavior to a considerable degree. Second, RF and
CFM have the same fixed resolution as the input probability distribution pairing, while GeONet can
be smoothed out for estimating the density flows on higher resolution than the input pairing (cf. the
third row in Figure [).

Table 3: L' error between GeONet, the conditional flow matching (CFM) library’s optimal transport
solver Tong et al.|(2023)), and rectified flow (RF)|Liu et al.|(2022), using POT again as a baseline for
comparison. All values are multiplied by 102 to those of the table.

L' comparison error on 2D Gaussian mixture point clouds

Experiment t=0 t =0.25 t=0.5 t=0.75 t=1

GeONet 229+1.08 28.8+1.01 30.0+1.10 29.6+0.877 22.6+1.02
CFM 0.0+£0.0 9414368 989+241 91.8+£4.15 759+£3.77
RF 0.0+ 0.0 103 +2.48 1124+ 3.61 112+5.03 91.3+3.79

4.3 A REAL DATA APPLICATION

reference predicted
ref. t=0 t=025 t=0.5 t=0.75 t=1

Figure 5: Beginning from top left and going clockwise, we display the initial conditions in the
encoded space, the geodesics in the encoded space, and the decoded geodesics as 28 x 28 images. (a)
and (b) correspond to two unique pairings.

Our next experiment was upon the MNIST dataset of 28 x 28 images of single-digit numbers. It is
difficult for GeONet to capture the geodesics between digits: MNIST resembles jump-discontinuous
data, and relatively piecewise constant otherwise, which is troublesome for the physics-informed term.
To remedy our problems with MNIST, we use a pretrained autoencoder to encode the MNIST digits
into a low-dimensional representation v € R®? with an encoder ® and a decoder @1 : v — R28xR2®
mapping the encoded representation into newly-formed digits resembling that which was fed into
the encoder. We institute GeONet upon the encoded representations, learning the geodesic between
highly irregular encoded data. Table |4 I reports the L' errors for geodesic estimated in the encoded
space and recovered images in the ambient space. As expected, the ambient-space error is much
larger than the encoded-space error, meaning that the geodesics in the encoded space and ambient
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Table 4: L' error of GeONet on 50 test pairings of encoded MNIST. All values are multiplied by
10~2. Error was calculated upon the geodesic in both the shifted and ambient/original space.

GeONet L! error on encoded MNIST data

Test setting t=0 t =0.25 t=0.5 t=0.75 t=1

Encoded, identity  0.923 £0.213 0.830 £0.166 0.825+0.165 0.834+0.173 0.931 £0.215
Encoded, random  1.62 + 0.333 2.14£1.22 2.78 £ 1.62 211 +£1.17 1.54 +£0.282

Ambient, identity ~ 26.7 £ 11.2 34.0 £6.88 35.3 £8.32 36.4 £9.77 34.0£13.2
Ambient, random  32.1 £ 16.6 58.2£15.0 68.1 £18.8 56.4 £ 14.3 24.7£10.7

image space do not coincide. Figure[5|shows the learnt geodesics in the encoded space and decoded
images on the geodesics.

4.4 RUNTIME COMPARISON

~4— GeONet 1D 1201 —&- GeONet 20 - GeONet 10 —#— GeONet 20
4~ POT 1D, accurate POT 20, accurate - POT 1D, accurate POT 20, accurate
4~ POT 1D, reduced accuracy y ~— POT 20, reduced accurac y 4~ POT 10, reduced accuracy ~ —4= POT 20, reduced accuracy
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Figure 6: We compare to GeONet to the classical POT library on 1D and 2D Gaussians in terms of
mean and standard deviations of runtime on both an unmodified scale as well as one that is log-log
using discretization length in one dimension as the x-axis, taken over 30 pairs. We use 20 time steps
for 1D and 5 for 2D. Finer meshes are omitted for 2D for computational reasonableness.

Our method is highlighted by the fact that it is near instantaneous: it is highly suitable when many
geodesics are needed quickly, or over fine meshes. Traditional optimal transport solvers are greatly
encumbered when evaluated over a fine grid, but the output mesh-invariant nature of GeONet
bypasses this. In Figure[6] we illustrate GeONet versus POT, a traditional OT library. GeONet greatly
outperforms POT for fine grids, especially if POT is used to compute an accurate solution. Even when
POT is used to equivalent accuracy, GeONet still outperforms, most illustrated in the log-log plot.
The log-log plot also demonstrates that our method speeds computation up to orders of magnitude.
We restrict the accuracy of POT by employing a stopping threshold of 0.5 for 1D and 10.0 for 2D.
We found these choices were comparable to GeONet, remarking a threshold of 10.0 in the 2D case is
sufficiently large so that even larger thresholds have limited effect on error.

4.5 LIMITATIONS

There are several limitations we would like to point out. First, GeONet’s branch network input
exponentially increases in spatial dimension, necessitating extensive input data even in moderately
high-dimensional scenarios. One strategy to mitigate this is through leveraging low-dimensional data
representations as in the MNIST experiment. While traditional geodesic solvers primarily handle one
or two dimensions, GeONet offers a versatile alternative, accommodating any dimension at the cost
of potential computational precision. Second, GeONet mandates predetermined evaluation points
for branch input, a requisite grounded in the pairing of initial conditions. It is of interest to extend
GeONet to include training input data pair on different resolutions. Third, given the regularity of the
OT problem (Hiitter and Rigollet, 2021} (Catfarelli, [1996), developing a generalization error bound
for assessing the predictive risk of GeONet is an important future work. Finally, the dynamical OT
problem is closely connected to the mean-field planning with an extra interaction term (Fu et al.,
2023)). It would be interesting to extend the current operator learning perspective to such problems.
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