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ABSTRACT

Effectively utilizing extensive unlabeled high-density EEG data to improve per-
formance in scenarios with limited labeled low-density EEG data presents a sig-
nificant challenge. In this paper, we address this by framing it as a graph transfer
learning and knowledge distillation problem. We propose a Unified Pre-trained
Graph Contrastive Masked Autoencoder Distiller, named EEG-DisGCMAE, to
bridge the gap between unlabeled/labeled and high/low-density EEG data. To
fully leverage the abundant unlabeled EEG data, we introduce a novel unified
graph self-supervised pre-training paradigm, which seamlessly integrates Graph
Contrastive Pre-training and Graph Masked Autoencoder Pre-training. This
approach synergistically combines contrastive and generative pre-training tech-
niques by reconstructing contrastive samples and contrasting the reconstructions.
For knowledge distillation from high-density to low-density EEG data, we propose
a Graph Topology Distillation loss function, allowing a lightweight student model
trained on low-density data to learn from a teacher model trained on high-density
data, effectively handling missing electrodes through contrastive distillation. To
integrate transfer learning and distillation, we jointly pre-train the teacher and stu-
dent models by contrasting their queries and keys during pre-training, enabling
robust distillers for downstream tasks. We demonstrate the effectiveness of our
method on four classification tasks across two clinical EEG datasets with abun-
dant unlabeled data and limited labeled data. The experimental results show that
our approach significantly outperforms contemporary methods in both efficiency
and accuracy.

1 INTRODUCTION

Electroencephalography (EEG) is a pivotal tool for elucidating neural dysfunctions, making it indis-
pensable for the clinical diagnosis of brain disorders (Sanei & Chambers, 2013). Manual analysis of
resting-state EEG (rs-EEG) signals often suffers from low accuracy due to their inherent complex-
ity. In contrast, computer-aided diagnostic methods offer substantial improvements in diagnostic
performance. Traditional methods typically involve extracting temporal and spatial features from
EEG signals and applying machine learning techniques to develop effective classifiers (Trivedi et al.,
2016). Recent advances have seen deep graph learning revolutionize EEG signal analysis. Instead of
treating EEG data as conventional numerical inputs, researchers now represent it as non-Euclidean
graph data. Graph Neural Networks (GNNs) (Kipf & Welling, 2016) are employed to capture the
intricate features and topological structures inherent in these graphs. This innovative approach has
markedly enhanced the accuracy and reliability of EEG-based diagnostics, showcasing the potential
of GNNs in advancing applications (Song et al., 2018).

Despite these advancements, several critical issues remain unresolved. Firstly, acquiring a substan-
tial amount of accurately labeled clinical rs-EEG data for supervised training on a specific task is
challenging due to the complexities involved in data collection (Siuly et al., 2016). Models trained
on these limited labeled datasets often exhibit poor accuracy and generalization (Lashgari et al.,
2020). Thus, a significant but underexplored research problem is how to effectively utilize this vast
amount of unlabeled data to enhance model performance and robustness (Tang et al., 2021). Sec-
ondly, the performance of EEG devices varies markedly with the precision of the data they capture.
High-density (HD) EEG devices, with their extensive array of electrodes, record high-resolution
brain signals, greatly improving the accuracy of diagnostic tasks (Stoyell et al., 2021). However,
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these devices are often prohibitively expensive and cumbersome, limiting their practical deploy-
ment. Conversely, low-density (LD) EEG devices, which are more affordable and easier to deploy
(Justesen et al., 2019), capture lower-resolution signals, thus reducing diagnostic accuracy (Cataldo
et al., 2022). Addressing how to leverage rich information from HD EEG to enhance diagnostic per-
formance with LD EEG, which is more portable, is crucial for making LD EEG-based diagnostics
more accessible and practical (Kuang et al., 2021).

In this paper, we address these challenges through a series of innovative methods. We construct
graphs from EEG data and apply GNNs to extract topological features and train the model effec-
tively. To leverage unlabeled EEG data to enhance performance on limited labeled data, we frame
this as a Graph Transfer Learning (GTL) problem. We propose a graph self-supervised pre-training
(PT) approach (Xie et al., 2022) on a large volume of heterogeneous unlabeled EEG graphs. This
pre-trained model is subsequently fine-tuned (FT) on the scarce labeled data, allowing knowledge
acquired from the extensive unlabeled dataset to improve performance on the labeled data. We in-
troduce a novel unified graph self-supervised pre-training paradigm, GCMAE-PT, which combines
Graph Contrastive Pre-training (GCL-PT) (Qiu et al., 2020) with Graph Masked Autoencoder Pre-
training (GMAE-PT) (Hou et al., 2022). This approach integrates contrastive and generative pre-
training by reconstructing contrastive samples and contrasting the reconstructed samples, enabling
them to jointly supervise and optimize each other, thereby enhancing overall model performance.
To improve model performance with HD EEG data when training on LD EEG data, we address this
as a Graph Knowledge Distillation (GKD) problem (Yang et al., 2020) and design a Graph Topology
Distillation (GTD) loss function. This allows a student model trained on LD EEG to learn from a
teacher model with HD EEG by accounting for missing electrodes through contrastive distillation,
while simultaneously compressing model parameters. Moreover, to ensure that models pre-trained
with GTL excel as distillers in downstream GKD tasks, we integrate GTL and GKD by contrasting
the queries and keys of the teacher and student models during the GTL pre-training process. This
integration demonstrates that our unified pre-trained graph contrastive masked autoencoders serve
as effective distillers, providing a robust solution for EEG analysis.

2 RELATED WORKS

2.1 GRAPH NEURAL NETWORKS FOR EEG MODELING

Recent advancements in Graph Neural Networks (GNNs) have demonstrated their potential in en-
hancing the modeling and interpretation of EEG data. Notably, the Dynamical Graph Convolutional
Neural Network (DGCNN) (Song et al., 2018) was introduced to improve emotion recognition by
dynamically learning the interrelationships among EEG channels. Similarly, the Regularized Graph
Neural Network (RGNN) (Zhong et al., 2020) applied a regularization strategy to advance emotion
recognition from EEG data. Liu et al. (Liu et al., 2023) tackled a similar problem by developing
a novel method for emotion recognition from few-channel EEG signals, integrating deep feature
aggregation with transfer learning. For medical EEG field, Tang et al. (Tang et al., 2021) em-
ployed self-supervised GNNs to advance seizure detection and classification, achieving significant
improvements in identifying rare seizure types.

2.2 SELF-SUPERVISED GRAPH PRE-TRAINING

Self-supervised learning (SSL) pre-training (Zhang et al., 2022a) has proven effective in harness-
ing extensive unlabeled datasets. Two predominant SSL methods are contrastive learning-based
(CL-PT) pre-training, originating from computer vision, and generative-based masked autoencoders
(MAE-PT) pre-training, adapted from natural language processing (NLP). These pre-training tech-
niques have been extended to graph models. For instance, GCC (Qiu et al., 2020) and GraphCL
(You et al., 2020) were among the pioneers in applying contrastive learning to graphs by leveraging
graph augmentation to generate sample pairs and construct contrastive losses. Concurrently, GMAE
(Hou et al., 2022) and GPT-GNN (Hu et al., 2020) adapted the generative masked pre-training ap-
proach from NLP (Devlin et al., 2018) to graphs. These methods involve masking nodes and edges,
followed by reconstruction, enabling graphs to capture and refine local topological features.
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2.3 GRAPH KNOWLEDGE DISTILLATION

Graph Knowledge Distillation focuses on transferring knowledge from a complex, large-scale model
(teacher) to a more streamlined and efficient model (student), thus preserving performance while
reducing computational demands. G-CRD (Joshi et al., 2022) introduced a distillation loss function
for GNN-to-GNN transfer, employing a contrastive learning strategy to enhance similarity among
nodes of the same class and increase separation between different classes. MSKD (Zhang et al.,
2022b) proposed a multi-teacher distillation approach, integrating various teacher GNN models of
different scales into a single student GNN model. Approaches such as Graph-MLP (Hu et al., 2021),
and VQGraph (Yang et al., 2024) focused on transferring knowledge from structure-aware teacher
GNNs to structure-agnostic student MLPs.
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Figure 1: The proposed EEG-DisGCMAE framework consists of two main stages: a pretext pre-
training (PT) stage and a downstream fine-tuning (FT) stage. Note that we can perform two types
of fine-tuning: ’Tuned’ refers to fine-tuning all the parameters of the model, while ’Frozen’ means
freezing most layers of the model and only fine-tuning the parameters of the top-level layers. Note
that the encoders of our model can be adopted Graph Transformer or vanilla GCNs.

3 METHODOLOGY

3.1 EEG GRAPH CONSTRUCTION

An EEG graph can be formally represented as G = (V,A), where V = {v1, . . . , vn} denotes the set
of nodes in the graph G. The matrix X ∈ Rn×d represents the node features, with n indicating the
number of nodes (or electrodes) and d specifying the dimensionality of the feature vector associated
with each node. The adjacency matrix of the EEG graph G is denoted by A ∈ Rn×n. The EEG
graph G is derived from the original EEG time series signals S = {s1, . . . , sn} ∈ Rn×t recorded by
EEG caps, where n represents the number of channels or electrodes, and t denotes the length of the
time series for each channel.

X = PSD(Filter(S)) A = Corr(X ) (1)
To convert resting-state EEG (rs-EEG) time series into graph representations, we first apply band-
pass filtering Filter(·) to extract EEG signals within the following frequency bands: θ (4-8 Hz), α
(8-14 Hz), β (14-30 Hz), and γ (30-50 Hz). Subsequently, we compute the power spectral density
(PSD) features PSD(·) for each band, selecting the α band for this study. These PSD features are
utilized as node features for the EEG graph. The Pearson correlation Corr(·) is then computed
between nodes to construct the adjacency matrix A, which represents the edge connectivity.

3.2 UNIFIED GRAPH PRE-TRAINING FOR DISTILLATION

To fully leverage the extensive amount of unlabeled EEG data, we propose a graph self-supervised
pre-training approach to pre-train EEG models from a graph-based perspective. Our motivation

3
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stems from the observation that prior research has predominantly focused on either contrastive-
based or generative-based pre-training methods for EEG time series, with limited studies addressing
these techniques within the context of EEG graph models. To address this gap, we introduce a
unified graph self-supervised pre-training paradigm, termed GCMAE-PT, based on the following
assumptions:

Assumption 1: (Combining GCL and GMAE for Enhanced Distillation) Hybridizing contrastive-
based and generative-based pre-training by simultaneously reconstructing contrastive pairs and
contrasting the reconstructed samples provides a more robust distiller, rather than applying these
methods separately or in sequence.

Assumption 2: (Joint Pre-Training of Teacher and Student Models) Both the teacher and student
models benefit from joint pre-training through the contrasting of each other’s positive and negative
pairs, leading to improved distillation performance.

Consider two types of EEG graph inputs: the high-density EEG graph Gh = (Vh,Ah) ∈ Rm×d

with nodes Vh = {vh1 , . . . , vhm} and the low-density EEG graph Gl = (V l,Al) ∈ Rn×d with nodes
V l = {vl1, . . . , vln}, where m and n represent the number of nodes (or electrodes) in Gh and Gl,
respectively, and m ≥ n. Note that Gl can be regarded as a subgraph of Gh. Additionally, two graph
encoders are employed: a teacher graph encoder MT

Q (where Q denotes queries) with extensive
parameters and robust feature extraction capabilities, and a lightweight student graph encoderMS

Q

with fewer parameters and comparatively lower learning capacity. It is noteworthy that Ah and Al

can be dynamically learned and adjusted throughout the training process. The teacher and student
models are adaptable to different types of GNNs, such as transductive spectral-based traditional
GCNs (like DGCNN(Song et al., 2018)) or spatial-based graph transformers (Yun et al., 2019).

Since V l is derived from Vh, that is V l ⊆ Vh, we partition the complete node set Vh (the Com-
plete/HD Set) in Gh into the Deleted Set Vd = vd1 , . . . , v

d
m−n and the Remaining/LD Set V l. The

set Vd comprises (m − n) nodes present in Gh but absent from Gl, representing the removed elec-
trodes/nodes. Conversely, V l includes the n nodes retained in Gl. The relationships among these
sets can be expressed as V l = Vh−Vd, where V l ⊆ Vh, Vd ⊆ Vh, Vd∩V l = ∅, and Vd∪V l = Vh.
Thus, the complete set Vh is composed of the deleted set Vd and the remaining LD set V l.

As illustrated in Fig. 1, to construct the contrastive-based pre-training paradigm, graph augmentation
techniques Aug(.) (You et al., 2020) are initially applied to Gh and Gl by randomly dropping nodes
(i.e., count = c) and removing edges. This process yields Query graphs (Qh = qh1 , . . . , q

h
m−c ∈

R(m−c)×d, Ql = ql1, . . . , q
l
n−c ∈ R(n−c)×d) and Key graphs (Kh = kh1 , . . . , k

h
m−c ∈ R(m−c)×d,

Kl = kl1, . . . , k
l
n−c ∈ R(n−c)×d) for both Gh and Gl. This can be formulated as (Qh,Kh) =

Aug(Gh) and (Ql,Kl) = Aug(Gl). Consequently, the total augmented graphs for Gh and Gl are
denoted as Ĝh and Ĝl. Note that Ĝh = Mix(Qh,Kh) = Qh,Kh and Ĝl = Mix(Ql,Kl) = Ql,Kl,
where the function Mix(.) represents the integration of two graph sets.

To achieve the goal of reconstructing the contrastive pairs as outlined in Assumption 1, the Masked
Graphs Ghm and Glm for GMAE-PT are constructed from the mixed contrastive augmented samples
Ĝh and Ĝl by substituting the dropped nodes vdi from Vd with learnable embeddings ei ∈ R1×d.
Subsequently, both the teacher and student encoders are employed to encode the masked graphs Ghm
and Glm into the graph embeddings. To accomplish GMAE-PT, graph decoders DT

Q and DS
Q for

both teacher and student encoders are utilized to reconstruct the masked graph embeddings into the
original inputs Gh and Gl by applying the MSE Loss as the reconstruction loss LRec on both the
reconstructed node features X̃ and graph structures Ã = X̃ · X̃ tr (Yang et al., 2024).

LRec =
∥∥∥X − X̃∥∥∥2

2
+
∥∥∥A− X̃ · X̃ tr

∥∥∥2
2

(2)

where X̃ tr means the transpose of X̃ . Then the reconstructed HD and LD query (Q̃h, Q̃l) and key
(K̃h, K̃l) graphs are split out from the reconstructed G̃h and G̃l.
To achieving the goal of contrasting the reconstructed samples in Assumption 1, the reconstructed
HD and LD query (Q̃h = {q̃h1 , . . . , q̃hm}, Q̃l = {q̃l1, . . . , q̃ln}) and key (K̃h = {k̃h1 , . . . , k̃hm}, K̃l =

{k̃l1, . . . , k̃ln}) graphs are mixed with the original contrastive samples generated by augmentation as
additional contrastive HD and LD query and key samples to form the extended contrastive HD and
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LD query (Qh
ex, Ql

ex) and key (Kh
ex, Kl

ex) samples.

Qh
ex = {Qh, Q̃h} Ql

ex = {Ql, Q̃l} Kh
ex = {Kh, K̃h} Kl

ex = {Kl, K̃l} (3)

To achieve the goal of joint the teacher and student pre-training via contrasting the reconstructed
samples in Assumption 2, the extended key samples of both HD and LD graphs Kh

ex and Kl
ex are

mixed to form a larger Key Samples Pool Khl
ex.

Khl
ex = {Kh, K̃h,Kl, K̃l} = KQ({Khl+

ex ,Khl−
ex }) (4)

Following (He et al., 2020; Qiu et al., 2020), we adopt a Key Queue, denoted as KQ(.), to store a
large number of mixed extended key samples poolKhl

ex and key encoders for both teacher and student
to convert Khl

ex to be key embeddings for jointly pre-training the teacher and student encoders via a
joint contrastive loss function (Qiu et al., 2020) as follows:

LT
cl = − log

(
exp(Qh

ex · Khl+
ex /τ)∑K

i=0 exp(Qh
ex · Khl−

ex /τ)

)
LS
cl = − log

(
exp(Ql

ex · Khl+
ex /τ)∑K

i=0 exp(Ql
ex · Khl−

ex /τ)

)
(5)

where τ represents the temperature coefficient.

Then, we simultaneously contrast the extended HD queries Qh
ex and LD queries Ql

ex with all the
mixed extended keys Khl

ex in the queue, which consists of both HD and LD keys with the corre-
sponding HD and LD reconstructed keys, to construct the positive and negative pairs with their
corresponding positive and negative keys {Khl+

ex ,Khl−
ex } in the queue, computing contrastive loss to

jointly optimize the query and key encoders of both teacher and student models. Therefore, the joint
contrastive loss function for GCL-PT LJoint

cl is composed of the teacher contrastive loss LT
cl and

the student contrastive loss LS
cl. And the joint reconstruction loss function LJoint

Rec for GMAE-PT
consists of the teacher reconstruction loss LT

Rec and the student reconstruction loss LS
Rec as follows:

LJoint
cl = LT

cl + LS
cl LJoint

Rec = LT
Rec + LS

Rec (6)

The overall loss LPretrain for both the teahcer and student encoders pre-training is composed of the
contrastive-based loss LJoint

cl and the generative-based loss LJoint
Rec .

LPretrain = LJoint
cl + LJoint

Rec + LGTD
Dis (7)

Note that the LGTD
Dis is proposed to distill the structure information, which will be demonstrated in

details in the next section.

3.3 GRAPH TOPOLOGY DISTILLATION FOR HD-LD EEG

In the downstream stage, the pre-trained models M̄T
Q and M̄S

Q are fine-tuned for specific classifi-
cation tasks using limited labeled EEG data from Gh and Gl. We employ the Cross-Entropy loss
LCE for classification. To transfer logit-based knowledge, we adopt the classic logit distillation loss
Llogits
Dis (Hinton et al., 2015), using KL divergence KL(.) to align the predicted logit distributions,

allowing M̄S
Q to mimic the logits of M̄T

Q. Moreover, since Gh contains more nodes than Gl, the
topological information Ah learned by M̄T

Q from the high-density graph Gh is more precise and
discriminative than Al, learned by M̄S

Q from the low-density graph Gl. These topological features
capture the spatial connectivity of EEG electrodes, which is crucial for task performance. Thus,
distilling the topological knowledge from M̄T

Q into M̄S
Q is essential to boost the performance of

M̄S
Q. To address this, we propose the Graph Topology Distillation loss LGTD

Dis .

To quantify the similarity between node features Xi of node vi and Xj of node vj in the graph, we
employ a similarity kernel function (Joshi et al., 2022). This function computes the similarity Zij

for both Gh and Gl. Specifically, we adopt the Linear Kernel as the node similarity function F(.),
defined as follows:

Zh
ij = F(X h

i ,X h
j ) = X h

i · X h
j Z l

ij = F(X l
i ,X l

j ) = X l
i · X l

j (8)

Note that {vi, vj} ∈ (Vh ∩ V l) and {vi, vj} /∈ Vd.

5
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Guided by positive and negative pairs in Ah and the influence of the LGTD
Dis loss, we aim to pull

similar positive node pairs P+
ij closer and push dissimilar negative node pairs P−

ij farther apart in
Al. This process first requires defining and selecting P+

ij and P−
ij for both Gh and Gl. As described

earlier, three node sets are involved: the complete/HD set, the deleted/removed set, and the remain-
ing/LD set. Since Gl is formed by removing certain electrodes/channels/nodes Vd from Vh, the
removed electrodes Vd significantly influence the topological structure of Gl. We define the positive
and negative contrastive pairs as follows:

P+
ij = I

(
Ah

ij > 0 or ∃k ∈ Vd s.t. Ah
ik > 0 and Ah

kj > 0
)

(9)

P−
ij = I

(
Al

ij > 0 and
(
Ah

ij = 0 and ∀k ∈ Vd,Ah
ik = 0 or Ah

kj = 0
))

(10)

where I represents the Indicator function.

Positive and Negative Nodes Selection: As described in the equations above, in Gl, if two nodes vi
and vj are either directly connected (1-hop) or indirectly connected (2-hop) through a removed node
vk in Vd, acting as a mediator in the graph embedding of Gh learned by M̄T

Q, these node pairs vij
are treated as positive contrastive pairs. Conversely, if node pairs vij are connected in the embedding
learned by M̄S

Q but are neither directly nor indirectly connected in the embedding learned by M̄T
Q,

they are treated as negative contrastive pairs. Once the positive and negative pairs P+
ij and P−

ij are
identified, we apply KL divergence KL(.) as the distillation function. In the numerator, it is used
to align the kernel feature distributions learned by M̄T

Q and M̄S
Q for positive pairs, encouraging

M̄S
Q to replicate the topological distribution of M̄T

Q and increase the similarity of positive pairs in
the embeddings learned by M̄S

Q. In the denominator, KL divergence is also employed to adjust the
erroneous topological distribution learned from negative pairs by M̄S

Q.

LPos =
∑

(i,j)∈P+

KL
(
softmax(Z l

ij) ∥ softmax(Zh
ij)
)

LNeg =
∑

(i,j)∈P−

KL
(
softmax(Z l

ij) ∥ softmax(Zh
ij)
) (11)

The final GTD loss function LGTD
Dis in the contrastive format is as follows:

LGTD
Dis =

LPos/CPos

LNeg/CNeg + ϵ
(12)

where CPos and CNeg are the counts of P+
ij and P−

ij . ϵ is a constant to avoid division by zero errors.

Finally, we integrate our LGTD
Dis with Llogits

Dis and LCE to form the total Fine-tune loss LFinetune:

LFinetune = LCE + LLogits
Dis + LGTD

Dis (13)

Note that LGTD
Dis is also be adopted in the pre-training stage.

3.4 SPECIAL CASE FOR THE PROPOSED GTD LOSS

The GTD loss is primarily designed to distill topological knowledge from Gh to Gl. However, there
is a special case known as H2H distillation, where Gl and Gh have the same number of nodes,
meaning V l = Vh and Vd = ∅. In this scenario, no nodes are removed, and only the connections
in Al and Ah may differ. With slight modifications, our loss function can also be applied to this
special case. The modified GTD loss for the H2H distillation scenario is given as follows:

P+
ij = I

(
Ah

ij > 0
)

P−
ij = I

(
Al

ij > 0 and Ah
ij = 0

)
(14)

In this special case, GTD loss does not consider Vd. The learning objective becomes utilizing the
learnedAh learned from M̄T

Q to correct incorrectly edges inAh learned from M̄S
Q, thereby making

Al as close to Ah as possible.

6
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4 EXPERIMENTS

4.1 EEG DATASETS AND DOWNSTREAM TASKS

We evaluated our EEG-DisGCMAE framework on two clinical datasets with rs-EEG time series:
the Establishing Moderators and Biosignatures of Antidepressant Response in Clinical Care (EM-
BARC) (Trivedi et al., 2016) and the Healthy Brain Network (HBN) (Alexander et al., 2017). The
EMBARC dataset comprises EEG data from 308 eye-open and 308 eye-closed samples, while the
HBN dataset includes 1,594 eye-open and 1,745 eye-closed samples. Detailed dataset preprocessing
information is provided in the appendices. For EMBARC, we performed binary classification tasks:
sex classification in Major Depressive Disorder (MDD) patients (Male vs Female) and depression
severity classification based on the Hamilton Depression Rating Scale (HAMD17) (Williams, 1988)
(Mild vs Severe Depression) (Boessen et al., 2013). For HBN, we conducted binary classifications
for MDD (Healthy vs MDD) and Autism Spectrum Disorder (ASD) (Healthy vs ASD). Additional
details can be found in the appendices. We tested three EEG electrode density levels: high-density
(HD), medium-density (MD), and low-density (LD). In EMBARC, these densities correspond to the
10-20 EEG system electrode distributions of 64 (HD), 32 (MD), and 16 (LD) electrodes, respec-
tively. For HBN, the densities correspond to 128 (HD), 64 (MD), and 32 (LD) electrodes.

4.2 COMPARATIVE EXPERIMENT ANALYSIS

We compared the proposed EEG-DisGCMAE against five categories of methods: Traditional
Machine Learning Methods (SVM, MLP, LSTM), GNN-based Models (GCN, GFormer, Hyper-
GCN (Feng et al., 2019)), EEG-specific Models (EEGNet (Lawhern et al., 2018), DGCNN, EEG-
Conformer (Song et al., 2022), RGNN), Graph Contrastive Pre-training Models (GCC, GraphCL,
GRACE, AutoGCL (Yin et al., 2022)), and Graph Generative Pre-training Models (GraphMAE,
GPT-GNN, GraphMAE2, S2GAE (Tan et al., 2023)). As demonstrated in Table 1, our model outper-
forms all other state-of-the-art methods. Notably, pre-training-based models, including those based
on GCL-PT (GCC, GraphCL, GRACE, AutoGCL (Yin et al., 2022)) and GMAE-PT (GraphMAE,
GPT-GNN, GraphMAE2, S2GAE (Tan et al., 2023)), utilize large Graph Transformers as their back-
bone in this study. In contrast, our method can be suitable to both spatial-based Graph Transofrmer
and spectral-based vanilla GCNs (DGCNN) as the backbone. We evaluated both tiny and large
model sizes. As illustrated in Fig. 2 (a), our tiny model, with only 1.3M parameters, performs
comparably to pre-training-based methods with larger models (5.7M parameters). Moreover, our
large-tiny model, despite having a similar parameter size to others, significantly outperforms them
by about 5% in both AUROC and accuracy. This demonstrates that our approach achieves a superior
balance between performance and efficiency, delivering high performance with a more compact pa-
rameter set. As illustrated in Fig. 2 (b), we investigated the relationship between model parameters
and performance across three factors: model size, model type, and varying input EEG densities. It
is evident that when the model type and input EEG density are fixed, the large-size model outper-
forms the tiny-size model. For a given model, reducing the input density (i.e., using LD data) leads
to a decline in performance compared to using HD data. However, after pre-training and distilla-
tion, the performance of the initially less effective tiny-size model improves significantly, reaching
a level comparable to that of the large-size teacher model using HD data without pre-training. This
demonstrates that our proposed GCMAE-PT and GTD loss can enhance model performance while
maintaining a lightweight parameter set without compromising efficiency.

4.3 ABLATION STUDY ANALYSIS

4.3.1 ELECTRODE DENSITY AND MODEL SIZE

Table 2 presents ablation experiments examining EEG graphs with varying densities (HD/MD/LD)
and model types (teacher/student) with different sizes (tiny/large). The results reveal that as elec-
trode density decreases, performance on EEG recognition tasks deteriorates. The decline is more
pronounced when reducing density from MD to LD than from HD to MD. This is because, while
the reduction from HD to MD removes redundant electrodes, MD still retains essential information,
preserving performance. However, reducing from MD to LD results in the loss of critical electrodes,
leading to a significant performance drop. Additionally, ablation experiments comparing different
model sizes, including tiny and large versions of the spatial-based graph transformer and spectral-
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Table 1: Performance comparison of different methods on two clinical EEG datasets for different
classification tasks. Our teacher and student model can adopt both spectral-based GCNs (DGCNN)
or spatial-based Graph Transformer as the backbone, whereas other graph pre-training models utilize
large Graph Transformers. The experiments encompass both high-density and low-density EEG
scenarios. Metrics are reported as AUROC(%)/ACC(%).

Method HBN MDD HBN ASD EMBARC Sex EMBARC Severity
HD LD HD LD HD LD HD LD

SVM 72.5/75.6 68.1/70.8 56.3/59.6 54.8/59.3 65.2/68.8 68.5/68.2 59.4/62.8 60.1/60.4
MLP 73.2/75.7 71.6/72.5 58.3/61.1 56.3/59.4 68.0/71.3 65.7/67.4 61.5/63.7 59.4/62.6

LSTM 76.7/79.2 73.7/76.8 60.3/64.6 58.4/61.8 69.0/71.8 67.3/69.3 62.8/66.0 61.2/63.8
GCN 75.8/77.6 72.3/76.4 60.5/63.7 59.2/61.8 69.1/72.8 66.7/69.6 63.5/66.2 60.7/63.3

GFormer 80.4/83.6 76.3/80.4 62.7/64.2 61.5/62.8 71.8/74.4 68.1/71.6 66.2/69.8 64.7/66.8
Hyper-GCN 77.6/80.8 75.4/77.7 60.1/64.5 59.7/63.1 70.5/73.8 67.6/72.3 64.7/68.3 63.0/66.2

EEGNet 80.6/82.9 76.3/80.1 62.0/64.6 59.3/62.8 71.1/74.0 66.6/70.3 65.4/70.1 62.4/65.2
EEG Conformer 79.3/83.1 77.5/79.8 61.6/64.3 60.3/62.4 72.2/74.8 67.9/70.7 64.7/66.3 64.2/64.8

RGNN 79.4/82.5 76.8/79.2 60.3/62.6 58.4/63.2 71.8/73.5 68.7/71.5 64.7/66.2 62.5/65.1
DGCNN 77.1/81.7 74.2/78.7 61.3/63.8 59.3/62.7 70.6/73.2 66.6/72.3 65.4/67.8 62.7/64.2

GCC 82.2/85.1 80.4/82.8 64.3/66.1 63.2/62.1 72.9/75.7 69.5/73.7 68.5/71.1 66.1/68.7
GRACE 83.7/84.6 79.9/81.8 63.7/66.8 61.6/63.9 73.2/74.9 70.7/72.8 67.3/71.8 66.7/67.6
GraphCL 81.7/83.9 78.6/80.6 64.6/65.4 63.4/64.1 72.8/75.4 68.5/73.5 69.4/72.6 67.3/69.2
AutoGCL 82.5/83.5 79.3/80.1 63.2/65.7 61.3/62.2 73.1/75.2 70.5/73.3 69.2/71.4 66.3/68.2

GraphMAE 82.8/85.3 79.5/83.3 65.1/64.7 62.5/62.9 72.6/76.3 70.2/73.8 69.4/69.8 65.8/68.5
GPT-GNN 83.3/85.2 80.7/82.2 65.6/66.9 64.3/65.0 71.2/74.7 68.5/72.9 68.3/70.4 65.4/67.1

GraphMAE2 83.5/85.7 81.3/83.0 65.3/65.9 62.5/65.9 72.2/75.6 69.5/73.2 70.5/70.0 66.2/68.3
S2GAE 83.0/82.2 81.4/79.8 66.7/65.3 65.7/63.1 71.8/73.6 68.6/70.4 68.3/71.2 64.6/69.2

Ours-Tiny (DGCNN) 84.8/85.4 81.6/82.4 66.1/66.4 63.4/64.1 73.4/76.7 71.8/75.6 68.6/71.9 66.8/69.3
Ours-Large (DGCNN) 86.6/87.4 84.4/85.3 67.3/68.8 66.7/65.9 75.4/77.8 74.5/76.3 71.5/74.6 69.2/72.8
Ours-Tiny (Gformer) 85.3/86.8 82.6/84.3 66.6/67.8 64.7/65.7 75.2/77.1 73.3/75.3 68.7/73.5 67.3/72.1
Ours-Large (Gformer) 87.4/87.8 84.8/86.9 68.6/69.4 66.8/67.4 76.6/77.9 75.7/76.8 72.3/77.2 70.6/74.0

(a) (b)

Figure 2: Figure (a) compares model sizes and performance and figure (b) compares model sizes and
performance among different types of models. Both (a) and (b) were conducted on HBN for MDD
classification task. ’L’ denotes large-size models. Models with the same color represent the same
type of model, and the size of the circle indicates the number of parameters in the model, with larger
circles indicating more parameters. In Fig. (b), the model backbone is vanilla GCNs (DGCNN).

based DGCNN, indicate that the teacher model consistently outperforms the student model of the
same size. The tiny teacher model performs similarly to the large student model, and within the
same model type, the large model substantially exceeds the tiny model in performance.

4.3.2 ANALYSIS OF DIFFERENT PRE-TRAINING METHODS

As detailed in Table 3, we compared our GCMAE-PT with three other pre-training approaches:
graph contrastive pre-training (GCL-PT) (You et al., 2020), graph masked autoencoder pre-training
(GMAE-PT) (Hou et al., 2022), and a sequential combination of GCL-PT and GMAE-PT (Seq.
Comb.). Following pre-training, we evaluated the models on downstream classification tasks. The
results indicate that our framework surpasses GCL-PT, GMAE-PT, and their sequential combination.
This underscores that sequentially combining contrastive and generative pre-training methods does
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Table 2: The ablation explores the impact of varying EEG densities (HD/MD/LD), model types
(teacher/student), and sizes (tiny/large) on performance. ’T’ denotes teacher models and ’S’ denotes
student models. The experiments were conducted on the HBN dataset for the MDD classification
task, with all models evaluated without pre-training. Metrics are reported as AUROC(%)/ACC(%).

Density GFormer-Large (T) Gformer-Tiny (S)
Tiny Large Tiny Large

LD 72.6/76.4 76.3/80.4 72.7/75.4 74.2/78.7
MD 75.6/78.1 78.7/82.5 74.3/77.2 76.0/80.5
HD 77.7/80.4 80.4/83.6 75.6/78.4 77.1/81.7

Table 3: Ablation studies were conducted on our GCMAE-PT, comparing it with GCL-PT, GMAE-
PT, and their sequential combination (Seq. Comb.). ’T’ and ’S’ represent the teacher and student
models, respectively. The experiments were performed on the HBN and EMBARC datasets. Base-
line results can be found in Table 2. The teacher model uses HD inputs with a large-size configura-
tion, while the student model uses LD inputs with a tiny-size configuration.

GPT Methods HBN MDD EMBARC Sex
HD-T-Large LD-S-Tiny HD-T-Large LD-S-Tiny

Baseline 80.4/83.6 72.7/75.4 71.8/74.4 64.2/69.3
GCL-PT 82.2/85.1 74.3/75.9 72.9/75.7 66.4/71.5

GMAE-PT 82.8/85.3 75.1/76.6 72.6/76.3 67.1/71.7
Seq. Comb. 83.3/85.9 75.6/78.1 73.3/77.1 67.6/72.5
GCMAE-PT 85.2/86.5 77.6/79.4 74.7/78.4 68.8/73.3

not achieve optimal performance. Our approach, which seamlessly integrates these techniques into
a cohesive framework with explicit and implicit mutual supervision, delivers superior results.

4.3.3 ANALYSIS OF EEG PATTERNS FOR DIFFERENT MASKING AND RECONSTRUCTION

To illustrate the effectiveness of our proposed pre-training method, we visualized EEG data patterns
across various densities, masking ratios, and reconstruction methods, as depicted in Fig. 3. Figure
3(a) shows clear and well-connected activated regions with no masking. As we increased the mask-
ing ratio in Figures 3(b), 3(c), and 3(d), the activated regions diminish and connectivity deteriorates,
reflecting increased information loss. Figure 3(e) demonstrates the effectiveness of our reconstruc-
tion method with 50% masking, revealing a pattern that closely resembles the unmasked data in Fig.
3(a), with improved activation and high reconstruction accuracy.

(a) (b) (c) (d) (e) (f)

Figure 3: Ablation studies of EEG patterns on the EMBARC datasets for MDD severity classifica-
tion task. (a) is the pattern of original HD EEG w/o masking. (b), (c) and (d) are patterns of HD
EEG w/ 25%, 50% and 75% masking ratios and reconstructed by vanilla GMAE-PT, respectively.
(e) is the pattern of HD EEG w/ 50% masking ratio and reconstrcted by our proposed GCMAE-PT.
(f) is the pattern of original MD EEG w/o masking.

5 ANALYSIS OF (PRE-)TRAINING AND DISTILLATION

As shown in Figure 4, we visualized the optimization process of the loss curves, including con-
trastive loss, reconstruction loss, and GTD loss, during both the pre-training and fine-tuning stages.
Figure 4(a) shows that during pre-training, we jointly optimized the contrastive loss and recon-
struction loss for both the teacher and student models. All four losses converge effectively during
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Table 4: Ablation studies on logits distill loss and our GTD loss. T and S denote teacher and student.
The experiments are conducted on the HBN dataset for MDD classification.

GKD Methods
w/o Pre-training w/ Pre-training

HD-T-Large LD-S-Tiny HD-T-Large LD-S-Tiny
Baseline 80.4/83.6 72.7/75.4 85.2/86.5 77.6/79.4

+ Logits (Hinton et al., 2015) - 73.6/77.3 - 79.6/80.7
+ Proposed - 73.8/78.5 - 80.2/81.5

+ Union - 75.0/79.2 - 81.6/82.4
+ LSP (Yang et al., 2020) - 73.1/76.7 - 78.8/80.7

+ G-CRD (Joshi et al., 2022) - 73.4/77.8 - 79.3/80.3

optimization. Notably, the contrastive loss for both the teacher and student models exhibit similar
optimization trends, as do the reconstruction losses. Figure 4(b) illustrates the impact of the pro-
posed GCMAE-PT and GTD loss on downstream classification tasks. We present the optimization
curves for the general Cross-Entropy (CE) loss, as well as the optimization curves after applying
GCMAE-PT, GTD loss, and both combined. It is clear that the CE loss is better optimized with the
application of GCMAE-PT and GTD loss. This confirms that both pre-training with GCMAE-PT
and the use of GTD loss enhance the performance of downstream classification tasks.

(a) (b)

Figure 4: Illustrations of loss curves in both the pre-training stage (a) and fine-tuning stage (b).
We applied early stopping to prevent overfitting. This also indicates that our GTD loss effectively
accelerates convergence and helps avoid overfitting.

6 CONCLUSION

In this paper, we present an innovative framework for EEG pre-training and distillation, which effec-
tively integrates contrastive-based and generative-based graph pre-training paradigms. Furthermore,
our framework incorporates a specifically designed EEG graph topology distillation loss function,
tailored for the distillation process from high-density to low-density EEG data. Our method demon-
strates substantial and efficient improvements over contemporary approaches, significantly enhanc-
ing the accuracy of EEG-based disease diagnosis while facilitating seamless deployment across
diverse medical devices. Moreover, our method is readily extendable to a range of EEG application
scenarios, including emotion recognition, brain-computer interfacing, and epilepsy detection.
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APPENDIX

A IMPLEMENTATION DETAILS

All our training was conducted on an NVIDIA GeForce RTX 4090 GPU. During pre-training, we
used a batch size of 128, trained for 200 epochs. For downstream fine-tuning, we used a batch size
of 32, trained for 400 epochs. Both pre-training and fine-tuning were optimized using the Adam
optimizer.

B PRELIMINARIES OF DYNAMIC GNNS

In traditional GNNs, the adjacency matrix A is static. However, in this paper, we adopt dynamic
GNNs, where the adjacency matrix can be dynamically adjusted during training to suit the specific
task better. This approach allows the model to adapt the graph structure based on the input data and
learning objectives. In such models, the edge weights αij between nodes (i, j) are learned during
training. The edge weights can be computed as:

αij = σ (f (Xi,Xj)) (15)
where f(·) is a function for calculating edge weights, and σ is an activation function (e.g., Sig-
moid). The dynamic adjacency matrix A is then updated based on these weights, typically using a
thresholding mechanism:

Aij =

{
1, if αij > θ

0, otherwise
(16)

where θ is a threshold. During message passing, the dynamic adjacency matrix influences how
messages are aggregated from neighboring nodes:

mi =
∑

j∈N (i)

αijWxj (17)

Here, αij represents the dynamically computed edge weight used to weight the messages from
neighbors. Node features are updated as follows:

X (l+1)
i = σ

(
W(l)X (l)

i + b(l) +mi

)
(18)

By dynamically adjusting the adjacency matrix, dynamic GNNs can capture more complex and
evolving relationships within the graph, thereby enhancing flexibility and overall performance.

C DETAILS OF MOTIVATION AND PROBLEM

C.1 GTL FOR UNLABELED/LABELED EEG

Many existing methods primarily focus on training models with limited labeled EEG data, overlook-
ing the potential of abundant unlabeled data. These methods emphasize novel GNN architectures
but fail to fully leverage the available data. Additionally, they do not exploit high-density (HD) EEG
data to improve models for low-density (LD) scenarios. This underscores the need for strategies that
integrate both labeled and unlabeled data, and use HD data to enhance performance in LD contexts.

Moreover, most pre-training methods are directly applied to EEG time series, with very few ad-
dressing the issue from the perspective of large-scale graph pre-training. In contrast, our approach
proposes pre-training EEG graph models using a graph-based pre-training perspective. This not only
aims to transfer knowledge from unlabeled EEG data to tasks on labeled EEG data but also benefits
HD-to-LD distillation. This is based on the following observation:

Observation: An LD EEG graph can be viewed as an HD EEG graph with specific nodes removed.
In graph contrastive self-supervised pre-training, contrastive views are obtained by graph augmen-
tation, such as removing nodes and edges. Another graph pre-training method, graph masked au-
toencoders pre-training, operates by masking node features and then reconstructing them. The rela-
tionships between these methods are formulated as follows:

Density Decrease︸ ︷︷ ︸
Electrodes Loss

⇐⇒ Node Dropping︸ ︷︷ ︸
GCL Augmentation

⇐⇒ Node Masking︸ ︷︷ ︸
GMAE Masking

(19)
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Based on this observation, we propose a novel unified graph self-supervised pre-training paradigm
called GCMAE-PT. This approach intricately combines Graph Contrastive Pre-training (Qiu et al.,
2020; You et al., 2020) with Graph Masked Autoencoders Pre-training (Hou et al., 2022), allowing
us to model and capture the relationships among the three entities described in Eq. 20.

C.2 GKD FOR HIGH/LOW-DENSITY EEG

As previously mentioned, an LD EEG graph can be viewed as an HD EEG graph with specific
nodes removed. Consequently, HD EEG contains many features that LD EEG lacks. We naturally
formulate this as a graph knowledge distillation (GKD) task, focusing on how to transfer information
from HD EEG data to LD EEG applications, which is a data-level distillation process. Additionally,
if a more complex teacher model with a larger number of parameters is used to extract features from
HD EEG data, and a simpler student model with fewer parameters is used for LD EEG data, this
involves model-level distillation. The aim is to deploy the lightweight student model while ensuring
that its performance approaches, or even surpasses, that of the more cumbersome teacher model.

Therefore, the GKD process can be represented by the following formula:

Teacher Model︸ ︷︷ ︸
HD EEG Data

Compress (Model-level)−−−−−−−−−−−−→
Distill (Data-level)

Student Model︸ ︷︷ ︸
LD EEG Data

(20)

D DATA COLLECTION AND PRE-PROCCESSING

D.1 EEG DATA QUANTITY STATISTICS

EMBARC HBN
0

250
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750

1000

1250

1500

1750

2000

308

1594

308

1745

Dataset Distribution
Eye-open
Eye-closed

Figure 5: Illustration of statistical data distribu-
tion in the EMBARC and HBN datasets.

As illustrated in Fig. 5, the EMBARC dataset
consists of EEG signals collected from 308 sub-
jects in both eye-open and eye-closed states.
The EEG time series were sampled at 250Hz,
with each trial lasting approximately 200 sec-
onds. Similarly, in the HBN dataset, EEG sig-
nals were collected in both eye-open and eye-
closed states, with 1,594 subjects for the eye-
open condition and 1,764 subjects for the eye-
closed condition. The duration of the record-
ings is also around 200 seconds, with the same
sampling frequency of 250Hz. Both EMBARC
and HBN datasets use the 10-20 EEG stan-
dard system, with EMBARC employing a 64-
electrode cap and HBN using a 128-electrode
cap.

D.2 EXPLANATION OF UNLABELED DATA

Collecting EEG recordings, each patient diagnosed with a particular mental disorder can be classi-
fied as a labeled subject. Patients with EEG diagnosed as other disorders or healthy controls, are
categorized as unlabeled data. In clinical, the amount of labeled data diagnosed as certain disorders
was limited. Therefore, models trained exclusively on such sparse labeled data are prone to un-
derfitting, undermining their predictive performance. However, by broadening the scope to include
aggregated data from a range of disorders to form a comprehensive unlabeled or mixed-labeled
dataset, pre-training models on this enriched dataset can mitigate the constraints imposed by data
scarcity. This approach enhances the model’s generalizability and improves performance, even in
the face of limited labeled examples.

D.3 CONSTRUCTION AND AUGMENTATION OF PRE-TRAINING GRAPH DATASETS

To construct the pre-training dataset, we combined the data from both the eye-open and eye-closed
states from these two datasets. For EEG data augmentation, we applied a sliding window sampling

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

method for each subject in the EMBARC and HBN datasets. EEG time series segments were ex-
tracted every 50 seconds, with a 20-second overlap between consecutive segments. The formula for
calculating the number of segments for each subject is as follows:

Segments per Subject =
⌊

Total length−Window length
Window length− Overlap length

⌋
+ 1 (21)

Additionally, we combined the entire time series for each subject with the extracted segments. For
each time series segment, we computed the Power Spectral Density features and then constructed
the EEG graph samples. The formula for calculating the total number of samples used in the con-
struction of the pre-training datasets is as follows:

Total Samples = (Segments per Subject + 1)× Subjects (22)

Note that the term Subjects here refers to the combination of EEG segments from both EMBARC
and HBN datasets, including both eye-open and eye-closed EEG samples. Ultimately, we obtain
approximately 4,000 samples (308 + 308 + 1,594 + 1,764 ≈ 4,000), resulting in about 24,000 EEG
graph samples for the graph self-supervised pre-training corpus.

D.4 (PRE-)TRAINING AND EVALUATION SETTINGS

For pre-training on the EMBARC dataset, we addressed the issue of dataset size disparity between
EMBARC and the HBN dataset, which both originate from the same EEG system. Specifically, we
downsampled the 128 channels of the HBN data to 64, 32, and 16 channels, maintaining the same
arrangement. These downsampled data were then combined with the corresponding density datasets
from EMBARC to create a unified pre-training dataset. Note that, as the EMBARC dataset does
not include 128 channels, the 128-channel HD pre-training dataset does not incorporate data from
EMBARC (HBN only).

For downstream task fine-tuning, due to the limited amount of labeled data, we employed 10-fold
cross-validation with 10 runs for all model training. The Adam optimizer (Kingma, 2014) was used
to optimize the training process. Pre-training was performed over 200 epochs, while downstream
fine-tuning was carried out for 400 epochs.

D.5 CONSTRUCTION OF DOWNSTREAM DATASETS

Table 5 provides the quantity of labeled data for four downstream classification tasks across the
EMBARC and HBN datasets.

In the EMBARC dataset, the number of subjects is consistent across eye-open and eye-closed condi-
tions. For the MDD sex classification task, there are 296 subjects with varying levels of depression
(all diagnosed with depression) and 12 normal subjects. Among the depressed individuals, there
are 194 males and 102 females. For the depression severity classification task, 166 subjects are di-
agnosed with severe depression (HAMD17 score > 17) Boessen et al. (2013), and 130 subjects are
diagnosed with mild depression (HAMD17 score ≤ 17).

The HBN dataset, which includes a range of diseases, has significantly fewer labeled samples com-
pared to the total data volume due to the high number of samples without explicit MDD and ASD
diagnostic labels. Additionally, the number of labeled subjects differs between eye-open and eye-
closed conditions. In the eye-open data, there are 178 healthy controls, 109 MDD patients, and 234
ASD patients. In the eye-closed data, there are 187 healthy controls, 120 MDD patients, and 245
ASD patients.

To ensure a large-scale pre-training dataset, we utilized slicing operations to expand the dataset size.
However, for constructing labeled datasets for downstream tasks, slicing was not employed. Instead,
we calculated the PSD features for the entire 200-second EEG time series.

D.6 COMPARISON BETWEEN THE PRE-TRAINING DATASET AND DOWNSTREAM DATASETS

For the pre-training dataset, which includes both labeled and unlabeled data, we applied slicing
operations to significantly increase the dataset size. In contrast, for the downstream dataset, particu-
larly for the HBN data, the labeled data constitutes only a small fraction of the total dataset, and no
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slicing operations were performed. In this context, it is crucial to leverage the pre-training dataset
effectively to enhance model performance on the limited labeled data available.

Table 5: Labeled data distribution of the EMBARC and HBN datasets. ’HC’ means healthy control.

Datasets EMBARC HBN
Sex Severity MDD ASD

Eye-open Female: 194 Severe: 166 Patient: 109 Patient: 234
Male: 102 Mild: 130 HC: 178 HC: 178

Eye-closed Female: 194 Severe: 166 Patient: 120 Patient: 245
Male: 102 Mild: 130 HC: 187 HC: 187

Figure 6: Ablation studies on different node and edge dropping (for GCL-PT) and masking (for
GMAE-PT) ratios. A 50% masking ratio for both nodes and edges achieves the best performance.

E DIFFERENT CONFIGURATIONS OF TEACHER AND STUDENT MODELS

Table 6: Comparison of Model Configurations. Note that DGCNN is a spectral-based vanilla
GCNs model (DGCNN), while GFormer means the spatial-based Graph Transformer model. We
considered both types of graph models to demonstrate the versatility of our pipeline.

Model Encoder Sizes Layers Dimensions Heads Position Embedding Params
(S) (L) (D) (H) (P) (PM)

Teacher DGCNN Large 8 128 - % 5.7M
GFormer Large 8 128 8 ! 6.9M

Student DGCNN Tiny 4 64 - % 1.3M
GFormer Tiny 4 64 4 ! 1.4M

F ABLATION STUDY ON DIFFERENT EEG BANDS

As shown in Table 7, we performed ablation studies on various EEG frequency bands across four
tasks on two datasets and observed that the alpha band consistently yielded the best performance
across all tasks. Consequently, we selected the alpha band as our primary configuration.

G ALGORITHM PIPELINE OF GTD LOSS

To clarify the GTD loss calculation, we present the pipeline as shown in Algorithm 1.
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Table 7: Ablation experiments on performance of different EEG bands. The model employed is a
tiny-sized student model obtained through pre-training and distillation with LD EEG input.

Datasets Downstream Tasks Alpha Beta Gamma Theta

HBN MDD Diagnosis 84.8/85.4 82.6/84.1 81.3/82.5 79.6/80.6
ASD Diagnosis 66.1/66.4 61.4/64.1 63.3/63.5 60.7/62.6

EMBARC MDD Sex 73.4/76.7 71.6/72.4 70.3/70.9 68.5/72.9
MDD Severity 68.6/71.9 66.3/67.2 64.5/66.8 63.7/66.2

Algorithm 1: GTD Loss Calculation
Input: X l, V l, Al, X h, Vh, Ah, Vd

Parameter: F(.), θ, ϵ
Output: LGTD

Dis

1: Normalize Al, Ah

2: Apply threshold: Al ← (Al > θ), Ah ← (Ah > θ)
3: Compute kernel matrices: Z l = F(X l), Zh = F(X h)
4: Assert: |V l| ≤ |Vh|
5: if |V l| ≠ |Vh| then
6: Extract sub-matrices Ah

sub = Ah[V l,V l]
7: Direct connections: Ah

1−hop = (Ah
sub > 0)

8: Indirect connections: Ah
2−hop = Ah[Vd, : V l]

9: LPos = KL(Z l||Zh) | (Ah
1−hop ∨ Ah

2−hop)

10: LNeg = KL(Z l||Zh) | (Al ∧ ¬(Ah
1−hop ∨ Ah

2−hop))
11: else
12: LPos = KL(Z l||Zh) | (Ah > 0)
13: LNeg = KL(Z l||Zh) | (Al > 0 ∧ Ah = 0)
14: end if
15: LPosAvg = LPos

Cpos

16: LNegAvg =
LNeg

Cneg

17: return LGTD
Dis =

LPosAvg

LNegAvg+ϵ

H SIMILARITY KERNEL SELECTION FOR GTD LOSS

We follow (Joshi et al., 2022) and try different similarity kernels to measure the distance between
nodes. All four kernels are shown in the following formula:

Linear Kernel: Zij = F(Xi,Xj) = Xi · Xj

Euclidean Kernel: Zij = F(Xi,Xj) = ∥Xi −Xj∥2
Polynomial Kernel: Zij = F(Xi,Xj) = (Xi · Xj + c)d

RBF Kernel: Zij = F(Xi,Xj) = exp(−γ∥Xi −Xj∥22)

(23)

As shown in Fig. 7, we conducted ablation experiments on the GTD loss. Figure 7(a) illustrates
the results of distillation in three scenarios: high-to-low (H2L), high-to-medium (H2M), and high-
to-high (H2H). Note that H2H is a special case. Although the GTD loss is designed primarily
for high-to-low density distillation, it can also be applied to high-to-high density distillation as an
exception.

The optimization curves for H2L and H2M show good convergence. However, in the special case
of H2H, while the optimization curve also converges, the gradient descent is less pronounced. This
suggests that although GTD loss can still be applied in the H2H scenario, it is less effective. This
is because GTD loss mainly focuses on nodes that are removed, and since no nodes are removed in
H2H, the distillation’s primary goal is to correct the student model’s misinterpretation of connectiv-
ity. Consequently, there is less knowledge to distill compared to H2L and H2M scenarios, resulting
in a less noticeable decrease in the optimization curve. In contrast, the optimization curve for H2L
shows the most significant decrease, followed by H2M.
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(a) (b)

Figure 7: The ablation studies of distillation across different density settings (a) and kernels (b).

Figure 7(b) presents the results of ablation experiments with different similarity kernels. The ex-
perimental results indicate that only the GTD loss using polynomial and linear kernels achieved
good convergence during optimization. Among these, the linear kernel provided the best distillation
effect, which is why we selected it as the primary kernel for our GTD loss.

I CLINICAL INTERPRETATION OF EEG PATTERNS

By grounding our visual findings in these established studies, we provide a clearer link between the
reconstructed EEG patterns and their clinical implications, emphasizing the robustness and diagnos-
tic utility of our approach.

To address the clinical relevance of our EEG pattern reconstructions, we link the visual patterns
presented in Figure 3 to established clinical findings in MDD research. The unmasked EEG pattern
in Figure 3(a) reveals clear activations in the frontal and central regions, which are crucial areas
involved in cognitive processing and emotional regulation. These regions are frequently highlighted
in MDD studies due to their role in mood and executive function. Specifically, the prefrontal cortex,
anterior cingulate cortex, and related regions are implicated in emotional processing and regulation,
with MDD patients often showing disrupted activity in these areas (Davidson et al., 2002; Price &
Drevets, 2012). Reduced activation in these areas can reflect difficulties in cognitive control and
emotional regulation, key features of depressive symptoms.

As the masking ratio increases (Figures 3b-d), the patterns show a noticeable decline in activation
and connectivity, particularly in the frontal and central regions. This aligns with findings in MDD
literature, where disrupted functional connectivity, especially in the frontocingulate networks, is
a well-documented feature of the disorder. For example, alterations in prefrontal connectivity are
often associated with the severity of depressive symptoms and the inability to regulate negative emo-
tions (Pizzagalli, 2011). The degradation observed in Figures 3b-d is consistent with the hypothesis
that higher masking ratios simulate information loss, highlighting the importance of intact frontal
connectivity for accurate MDD classification.

Critically, Figure 3(e), which displays the reconstructed pattern using our proposed GCMAE-PT
with 50% masking, closely resembles the unmasked pattern seen in Figure 3(a). The reconstructed
data retain key activations in the frontal and parietal regions, indicating that our method effectively
preserves clinically relevant EEG features even under challenging conditions. This preservation is
crucial because altered activity in these regions, particularly in the alpha and theta bands, is often
linked to cognitive and emotional dysregulation in MDD patients (Thibodeau et al., 2006; Knyazev,
2007). For instance, lower alpha activity in the frontal regions has been associated with greater
emotional dysregulation, while changes in theta activity are linked to altered cognitive processes,
both of which are core characteristics of MDD.

The preserved patterns in Figure 3(e) suggest that GCMAE-PT can maintain these clinically signifi-
cant EEG characteristics, which are essential for accurate classification of MDD severity. This find-
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ing not only demonstrates the robustness of our reconstruction method but also aligns with known
clinical markers of MDD, supporting the practical relevance of our approach. Furthermore, the
ability to accurately reconstruct these key patterns contributes directly to classification tasks, as re-
gions showing consistent and clinically significant alterations are critical for distinguishing between
different severity levels of MDD. By maintaining the integrity of essential EEG features under mask-
ing, our method ensures that the reconstructed data remain informative and diagnostically valuable,
potentially leading to better predictive performance in clinical settings.

J EXPERIMENTS ON VERY-LOW DENSITY

To further test the generalization ability of our model in extreme scenarios, we evaluated it under
a very low-density (VLD) condition. Specifically, we tested the extreme case with EEG data using
only 8 electrodes. As shown in Table 8, our proposed pre-training framework and the corresponding
GTD loss are able to tackle the extreme case with very few electrodes.

Table 8: Experiments on the very low-density (VLD) situation. HD -> LD/VLD means high-density
to (very)low-density distillation.

PT Methods PT Loss FT Loss HD -> LD HD -> VLD
Sex Severity Sex Severity

GCL-PT w/o GTD w/o GTD 1.8%↑ 1.7%↑ 1.5%↑ 2.0%↑
GMAE-PT w/o GTD w/o GTD 1.6%↑ 1.5%↑ 2.1%↑ 2.4%↑

GCMAE-PT (Ours) w/o GTD w/o GTD 2.9%↑ 3.8%↑ 3.5%↑ 4.4%↑

GMAE-PT w/ GTD w/ GTD 2.2%↑ 3.0%↑ 1.9%↑ 2.2%↑
GCL-PT w/ GTD w/ GTD 2.1%↑ 3.2%↑ 1.5%↑ 2.0%↑

GCMAE-PT (Ours) w/ GTD w/ GTD 4.8%↑ 6.4%↑ 4.3%↑ 5.2%↑

K EXPERIMENTS OF DIFFERENT FINE-TUNING PARADIGMS

Table 9: Experiments on the effectiveness and efficiency of different fine-tuning (FT) methods. The
experiments are conducted on HBN dataset for MDD classification. The unit of fine-tuning speed
is seconds (s), and the unit of memory cost is gigabytes (G). The input data consists of 128-channel
HD EEG graphs, and the model uses a large-size graph transformer.

Fine-tuning Methods Effectiveness Efficiency
AUROC ACC FT Speed Memory Cost

Vanilla FT 80.4% 83.6% 183s 1.0G
Parameter-Efficient FT 78.7% 83.4% 86s 0.3G

As shown in Table 9, we evaluated two distinct fine-tuning paradigms. The first, termed Vanilla FT,
involves fine-tuning all parameters of the pre-trained encoder. The second, referred to as parameter-
efficient FT, entails freezing the lower layers of the pre-trained encoder and fine-tuning only the
parameters of the upper layers, such as the fully connected layers. It is evident that parameter-
efficient FT, which requires fewer parameters to be optimized, results in a fine-tuning speed three
times faster and memory usage one-third that of Vanilla FT. However, this approach incurs a slight
performance trade-off compared to Vanilla FT.

L EXPERIMENTS ON HELD-OUT VALIDATION

In the pretraining dataset of the previous experiment, we integrated heterogeneous EEG data from
different diseases to pretrain our model. To further validate the reliability of our model, we con-
ducted a held-out validation experiment.
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Table 10: Ablation studies on the proposed pre-training framework and the GTD loss. The held-out
validation means we pre-train the model only on the HBN dataset and fine-tune the model to the
EMBARC dataset. HD -> LD means high-density to low-density distillation. ’All’ means HBN
+ EMBARC. ↑ means performance improvement in terms of accuracy. Note that the GTD loss is
applied in both the pre-training and fine-tuning stages. The downstream task is conducted on the
EMBARC dataset for MDD severity classification task. The backbone model is the spatial-based
Graph Transformer.

PT Methods PT Loss FT Loss Datasets Distill Performance
Pre-Train Fine-Tune HD -> MD HD -> LD

GCL-PT w/o GTD w/o GTD HBN EMBARC 1.5%↑ 1.7%↑
GMAE-PT w/o GTD w/o GTD HBN EMBARC 1.7%↑ 1.5%↑
Seq. Comb. w/o GTD w/o GTD HBN EMBARC 2.0%↑ 2.1%↑

GCMAE-PT (Held-Out) w/o GTD w/o GTD HBN EMBARC 3.1%↑ 3.0%↑
GCMAE-PT (Ours) w/o GTD w/o GTD All EMBARC 3.7%↑ 3.8%↑

GCL-PT w/ GTD w/o GTD HBN EMBARC 1.9%↑ 2.0%↑
GMAE-PT w/ GTD w/o GTD HBN EMBARC 1.7%↑ 1.8%↑
Seq. Comb. w/ GTD w/o GTD HBN EMBARC 2.3%↑ 2.6%↑

GCMAE-PT (Held-Out) w/ GTD w/o GTD HBN EMBARC 3.7%↑ 4.1%↑
GCMAE-PT (Ours) w/ GTD w/o GTD All EMBARC 3.9%↑ 4.3%↑

GCL-PT w/o GTD w/ GTD HBN EMBARC 2.3%↑ 2.2%↑
GMAE-PT w/o GTD w/ GTD HBN EMBARC 2.2%↑ 2.5%↑
Seq. Comb. w/o GTD w/ GTD HBN EMBARC 2.7%↑ 3.1%↑

GCMAE-PT (Held-Out) w/o GTD w/ GTD HBN EMBARC 4.4%↑ 5.0%↑
GCMAE-PT (Ours) w/o GTD w/ GTD All EMBARC 4.7%↑ 5.6%↑

GCL-PT w/ GTD w/ GTD HBN EMBARC 3.3%↑ 3.0%↑
GMAE-PT w/ GTD w/ GTD HBN EMBARC 3.1%↑ 3.2%↑
Seq. Comb. w/ GTD w/ GTD HBN EMBARC 3.2%↑ 3.9%↑

GCMAE-PT (Held-Out) w/ GTD w/ GTD HBN EMBARC 5.0%↑ 5.7%↑
GCMAE-PT (Ours) w/ GTD w/ GTD All EMBARC 5.6%↑ 6.4%↑

M ANALYSIS OF SHARED KEY POOL QUEUE

The reason for implementing the proposed teacher-student shared key pool queue is that we have
two types of original input data: HD and LD EEG graphs. Through the key pool queue, we allow
high-density and low-density EEG key samples to share the same gradient update process within a
batch. This approach also enables both the teacher and student models to simultaneously capture
shared patterns between these two types of data.

N CHALLENGES, LIMITATIONS, AND FUTURE WORKS

EEG graph self-supervised pre-training offers a promising avenue for leveraging extensive EEG
data, paving the way for large-scale graph-based EEG models. Our proposed GCMAE-PT method
is well-suited as a pre-training approach for large-scale EEG foundation model. However, a key
challenge is unifying data with varying electrode configurations across different EEG systems to
address data heterogeneity.

In our study, while constructing a unified EEG pre-training dataset from multiple sources, we faced
the constraint of all datasets being from the same EEG system (10-20 system). To standardize the
data, we reduced the number of electrodes in datasets with more electrodes to match those with
fewer electrodes, creating a unified pre-training dataset. This approach, however, leads to a loss
of information from removed electrodes and restricts the use of datasets with fewer electrodes for
pre-training on datasets with more electrodes.

Addressing the challenge of integrating EEG data with differing electrode counts from various sys-
tems, while preserving electrode precision, is crucial for developing a comprehensive pre-training
dataset. Successfully overcoming this issue could enable large-scale graph pre-training and establish
a robust EEG graph foundation model, representing a significant advancement in the field.
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O PSEUDO-CODE OF GCMAE-PT

To facilitate understanding of our GCMAE-PT, we present PyTorch-style pseudo-code, modeled
after (He et al., 2020), as illustrated in Listing 1.

Listing 1: PyTorch-like pseudo-code of our GCMAE-PT.
# f_q_t, f_q_s: teacher/student q encoders
# f_k: encoders for keys
# d_q_t, d_q_s: teacher/student q decoders
# KQ: dictionary as a queue of keys
# m: momentum, tmp: temperature

f_k_t.params = f_q_t.params # Initialize the encoder for keys
for g_h, A_h, g_l, A_l in loader:

q_h, k_h = GraphAug(x_h)
q_l, k_l = GraphAug(x_l)
aug_h = Mix(q_h, k_h) #Num of samples is 2N
aug_l = Mix(q_l, k_l)
mask_h = EmbeddingInsert(aug_h) # Generate masked samples
mask_l = EmbeddingInsert(aug_l)

m_e_h = f_q_t.forward(mask_h)
m_e_l = f_q_s.forward(mask_l)
m_rec_h, A_rec_h = d_q_t.forward(ReMask(m_e_h)) # Remask the embedding
m_rec_l, A_rec_l = d_q_s.forward(ReMask(m_e_l))

loss_rec_t = Reconstruct_Loss(m_rec_h, g_h, A_rec_h, A_h)
loss_rec_s = Reconstruct_Loss(m_rec_l, g_l, A_rec_l, A_l)
loss_rec = loss_rec_t + loss_rec_s

q_m_rec_h, k_m_rec_h = Split(m_rec_h) # Split out q and k
q_m_rec_l, k_m_rec_l = Split(m_rec_l)

q_h_ex = f_q_t.proj(Mix(q_h, q_m_rec_h)) # Construct contrastive views
q_l_ex = f_q_s.proj(Mix(q_l, q_m_rec_l))
k_hl_ex = KQ(f_k.proj(Mix(k_h, k_m_rec_h)) + f_k.proj(Mix(k_l,

k_m_rec_l))
k_hl_ex = k_hl_ex.detach()

pos_t = bmm(q_h_ex.view(N,1,C), k_hl_ex.view(N,C,4))
neg_t = mm(q_h_ex.view(N,C),KQ.view(C,K))
pos_s = bmm(q_l_ex.view(N,1,C), k_hl_ex.view(N,C,4))
neg_s = mm(q_l_ex.view(N,C),KQ.view(C,K))

logits_t = cat([pos_t, neg_t], dim=1)
logits_s = cat([pos_s, neg_s], dim=1)

labels = zeros(N) # positives are 0-th
loss_cl_t = CE_Loss(logits_t/tmp, labels)
loss_cl_s = CE_Loss(logits_s/tmp, labels)
loss_cl = loss_cl_t + loss_cl_s

loss = loss_rec + loss_cl
loss.backward()
update(f_q_t.params, f_q_s.params)

f_k.params = m*f_k_t.params+(1-m)*f_q_t.params+(1-m)*f_q_s.params

enqueue(KQ, k_hl_ex)
dequeue(KQ)
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The Collection of Notations

Gh A set of high-density EEG graphs

Vh A set of high-density EEG nodes (The Complete/HD set)

Ah A set of high-density EEG adjacency matrices

vhi The i-th node in the high-density EEG graph

Gl A set of low-density EEG graphs

V l A set of low-density EEG nodes (The Remaining/LD set)

Al A set of low-density EEG adjacency matrices

vli The i-th node in the low-density EEG graph

Vd The Deleted/Dropped/Removed set

vd The Deleted/Dropped/Removed node

MT
Q The teacher encoder for query graphs

MS
Q The student encoder for query graphs

DT
Q The teacher decoder for query graphs

DS
Q The student decoder for query graphs

M̄T
Q The pre-trained teacher encoder for query graphs

M̄S
Q The pre-trained student encoder for query graphs

MT
K The encoder for teacher key graphs

MS
K The encoder for student key graphs

Qh A set of high-density EEG query graphs

qh A high-density EEG query sample

Kh A set of high-density EEG key graphs

kh A high-density EEG key sample

Ql A set of low-density EEG query graphs

ql A low-density EEG query sample

Kl A set of low-density EEG key graphs

kl A low-density EEG key sample

Ĝh A set of augmented high-density EEG graphs

Ĝl A set of augmented low-density EEG graphs

Ghm A set of high-density masking graphs

Glm A set of low-density masking graphs

ei A inserted learnable node embedding

X̃ The reconstructed node feature

X̃ tr The transpose of reconstructed node feature

Ã The reconstructed adjacency matrix

G̃h The reconstructed high-density EEG graph

G̃l The reconstructed low-density EEG graph

Q̃h The reconstructed high-density query graph

Q̃l The reconstructed low-density query graph
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K̃h The reconstructed high-density key graph

K̃l The reconstructed low-density key graph

Qh
ex The extended high-density EEG query graphs

Ql
ex The extended low-density EEG query graphs

Kh
ex The extended high-density EEG key graphs

Kl
ex The extended low-density EEG key graphs

Khl
ex A key samples pool

Khl+
ex The positive key samples in the queue

Khl−
ex The negative key samples in the queue

LT
Rec The reconstruction loss for teacher encoder pre-training

LS
Rec The reconstruction loss for student encoder pre-training

LJoint
Rec The reconstructed loss for joint teacher and student en-

coders pre-training

LT
cl The contrastive loss for teacher encoder pre-training

LS
cl The contrastive loss for student encoder pre-training

LJoint
cl The contrastive loss for joint teacher and student encoders

pre-training

Zij The similarity between node i and node j

P+
ij The total positive node pairs

P−
ij The total negative node pairs
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