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ABSTRACT

Multi-task reinforcement learning (MTRL) has shown great promise in many real-
world applications. Existing MTRL algorithms often aim to learn a policy that
optimizes individual objective functions simultaneously with a given prior prefer-
ence (or weights) on different tasks. However, these methods often suffer from the
issue of gradient conflict such that the tasks with larger gradients dominate the up-
date direction, resulting in a performance degeneration on other tasks. In this paper,
we develop a novel dynamic weighting multi-task actor-critic algorithm (MTAC)
under two options of sub-procedures named as CA and FC in task weight updates.
MTAC-CA aims to find a conflict-avoidant (CA) update direction that maximizes
the minimum value improvement among tasks, and MTAC-FC targets at a much
faster convergence rate. We provide a comprehensive finite-time convergence
analysis for both algorithms. We show that MTAC-CA can find a € + €,pp-accurate
Pareto stationary policy using O(e~5) samples, while ensuring a small € + /€app-
level CA distance (defined as the distance to the CA direction), where € 1s the
function approximation error. The analysis also shows that MTAC-FC improves
the sample complexity to O(e~3), but with a constant-level CA distance. Our
experiments on MT10 demonstrate the improved performance of our algorithms
over existing MTRL methods with fixed preference.

1 INTRODUCTION

Reinforcement learning (RL) has made much progress in a variety of applications, such as autonomous
driving, robotics manipulation, and financial trades |Deng et al.|(2016)); |Sallab et al.|(2017);|Gu et al.
(2017). Though the progress is significant, much of the current work is restricted to learning the
policy for one task Miilling et al.| (2013)); /Andrychowicz et al.| (2020). However, in practice, the
vanilla RL polices often suffers from performance degradation when learning multiple tasks in a
multi-task setting. To deal with these challenges, various multi-task reinforcement learning (MTRL)
approaches have been proposed to learn a single policy or multiple policies that maximize various
objective functions simultaneously. In this paper, we focus on single-policy MTRL approaches
because of their better efficiency. On the other side, the multi-policy method allows each task to have
its own policy, which requires high memory and computational cost. The objective is to solve the
following MTRL problem:

max J(7) := (J*(x), J2(7), ..., JK (7)), (1)
where K is the total number of tasks and J*(r) is the objective function of task k € [K] given the
policy 7. Typically, existing single-policy MTRL methods aim to find the optimal policy with the
given preference (i.e., the weights over tasks) ). For example, Mannor & Shimkin|(2001)) developed
a MTRL algorithm considering the average prior preference. The MTRL method in |Yang et al.
(2019) trained and saved models with different fixed prior preferences, and then chooses the best
model according to the testing requirement. However, the performance of these approaches highly
depends on the selection of the fixed preference, and can also suffer from the conflict among the
gradient of different objective functions such that some tasks with larger gradients dominates the
update direction at the sacrifice of significant performance degeneration on the less-fortune tasks
with smaller gradients. Therefore, it is highly important to find an update direction that aims to find a
more balanced solution for all tasks.
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There have been a large body of studies on finding a conflict-avoidant (CA) direction to mitigate the
gradient conflict among tasks in the context of supervised multi-task learning (MTL). For example,
multiple-gradient descent algorithm (MGDA) based methods |Chen et al.| (2023); |Cheng et al.| (2023)
dynamically updated the weights of tasks such that the deriving direction optimizes all objective
functions jointly instead of focusing only on tasks with dominant gradients. The similar idea was then
incorporated into various follow-up methods such as CAGrad, PCGrad, Nash-MTL and SDMGrad | Yu
et al.| (2020a); [Liu et al.| (2021)); Navon et al.| (2022); Xiao et al.| (2023)). Although these methods
have been also implemented in the MTRL setting, none of them provide a finite-time performance
guarantee. Then, an open question arises as:

Can we develop a dynamic weighting MTRL algorithm, which not only mitigates the gradient conflict
among tasks, but also achieves a solid finite-time convergence guarantee?

However, addressing this question is not easy, primarily due to the difficulty in conducting sample
complexity analysis for dynamic weighting MTRL algorithms. This challenge arises from the
presence of non-vanishing errors, including optimization errors (e.g., induced by actor-critic) and
function approximation error, in gradient estimation within MTRL. However, existing theoretical
analysis in the supervised MTL requires the gradient to be either unbiased Xiao et al.| (2023)); |[Chen
et al.| (2023) or diminishing with iteration number Fernando et al.| (2022). As a result, the analyses
applicable to the supervised setting cannot be directly employed in the MTRL setting, emphasizing
the necessity for novel developments in this context. Our specific contributions are summarized as
follows.

1.1 CONTRIBUTIONS

In this paper, we provide an affirmative answer to the aforementioned question by proposing a
novel Multi-Task Actor-Critic (MTAC) algorithm, and further developing the first-known sample
complexity analysis for dynamic weighting MTRL.

Conflict-avoidant Multi-task actor-critic algorithm. Our proposed MTAC contains three major
components: the critic update, the task weight update, and the actor update. First, the critic update
is to evaluate policies and then compute the policy gradients for all tasks. Second, we provide two
options for updating the task weights. The first option aims to update the task weights such that the
weighted direction is close to the CA direction (which is defined as the direction that maximizes
the minimum value improvement among tasks). This option enhances the capability of our MTAC
to mitigate the gradient conflict among tasks, but at the cost of a slower convergence rate. As a
complement, we further provide the second option, which cannot ensure a small CA distance (i.e., the
distance to the CA direction as elaborated in Definition @, but allows for a much faster convergence
rate. Third, by combining the policy gradients and task weights in the first and second steps, the actor
then performs an update on the policy parameter.

Sample complexity analysis and CA distance guarantee. We provide a comprehensive sample
complexity analysis for the proposed MTAC algorithm under two options for updating task weights,
which we refer to as MTAC-CA and MTAC-FC (i.e., MTAC with fast convergence). For MTAC-CA,
our analysis shows that it requires O(e ) samples per task to attain an € + €app-accurate Pareto
stationary point (see definition in Definition , while guaranteeing a small € + | /Gpp-level CA
distance, where €, corresponds to the inherent function approximation error and can be arbitrary
small when using a suitable feature function. The analysis for MTAC-FC shows that it can improve
the sample complexity of MTAC-FC from O(e=5) to O(e~3), but with a constant O(1)-level CA
distance. Note that this trade-off between the sampling complexity and CA distance is consistent
with the observation in the supervised setting |Chen et al.|(2023).

Our primary technical contribution lies in the approximation of the CA direction. Instead of directly

bounding the gap between the weighted policy gradient d and the CA direction d* as in the supervised
setting, which is challenging due to the gradient estimation bias, we construct a surrogate direction d
that equals to the expectation of d to decompose this gap into two distances as ||ds — d|| and ||d, — d*||,
where the former one can be bounded similarly to the supervised case due to the unbiased estimation,
and the latter can be bounded using the critic optimization error and function approximation error
together (see Appendix [C.T|for more details). This type of analysis may be of independent interest to
the theoretical studies for both MTL and MTRL.
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Supportive experiments. We conduct experiments on the MTRL benchmark MT10|Yu et al.{(2020b)
and demonstrate that the proposed MTAC-CA algorithm can achieve better performance than existing
MTRL algorithms with fixed preference.

2 RELATED WORKS

MTRL. Existing MTRL algorithms can be mainly categorized into two groups: single-policy MTRL
and multi-policy MTRL [Vamplew et al.[(2011); Liu et al.[(2014). Single-policy methods generally
aim to find the optimal policy with given preference among tasks, and are often sample efficient and
easy to implement Yang et al.|(2019). However, they may suffer from the issue of gradient conflict
among tasks. Multi-policy methods tend to learn a set of policies to approximate the Pareto front.
One commonly-used approach is to run a single-policy method for multiple times, each time with a
different preference. For example,|Zhou et al.|(2020) proposed a model-based envelop value iteration
(EVI) to explore the Pareto front with a given set of preferences. However, most MTRL works focus
on the empirical performance of their methods Igbal & Sha|(2019);|Zhang et al.| (2021b); Christianos
et al.| (2022). In this paper, we propose a novel dynamic weighting MTRL method and further provide
a sample complexity analysis for it.

Actor-critic sample complexity analysis. The sample complexity analysis of the vanilla actor-critic
algorithm with linear function approximation have been widely studied Qiu et al.|(2021); Kumar et al.
(2023); Xu et al.| (2020); Barakat et al.| (2022); |[Olshevsky & Gharesifard|(2022). These works focus
on the single-task RL problem. Some recent works Nian et al.| (2020); Reymond et al.|(2023); [Zhang
et al.| (2021a) studied multi-task actor-critic algorithms but mainly on their empirical performance.
The theoretical analysis of multi-task actor-critic algorithms still remains open.

Gradient manipulation based MTL and theory. A variety of MGDA-based methods have been
proposed to solve MTL problems because of their simplicity and effectiveness. One of their primal
goals is to mitigate the gradient conflict among tasks. For example, PCGrad |Yu et al.|(2020a)) avoided
this conflict by projecting the gradient of each task on the norm plane of other tasks. GradDrop |Chen
et al.|(2020) randomly dropped out conflicted gradients. CAGrad Liu et al.[(2021)) added a constraint
on the update direction to be close to the average gradient. Nash-MTL Navon et al.|(2022) modeled
the MTL problem as a bargain game.

Theoretically, |Liu et al.|(2014)) analyzed the convergence of MGDA for convex objective functions.
Fernando et al.|(2022) proposed MoCo by estimating the true gradient with a tracking variable, and
analyzed its convergence in both the convex and nonconvex settings. |Chen et al.| (2023) provided a
theoretical characterization on the trade-off among optimization, generalization and conflict-avoidance
in MTL. [Xiao et al.|(2023) developed a provable MTL method named SDMGrad based on a double
sampling strategy, as well as a preference-oriented regularization. This paper provides the first-known
finite-time analysis for such type of methods in the MTRL setting.

3  PROBLEM FORMULATION

We first introduce the standard Markov decision processes (MDPs), represented by M =
(S, A,~,P,r), where S and A are state and action spaces. < is discount factor, P denotes the
probability transition kernel, and r : S x A — [0, 1] is the reward function. In this paper, we
study multi-task reinforcement learning (MTRL) in multi-task MDPs. Each task is associated
with a distinct MDP defined as My, = (S, A,v, Py,7rx), k = 0,1,..., K — 1. The tasks have
the same state and action spaces but different probability transition kernels and reward functions.
The distribution &} is the initial state distribution of task k¥ € [K], where [K] := {1,...,K}
and so ~ &&. Denote by P := (S x A)X — A(SXK) the joint transition kernel, where
P(st, .., s (st al), ..., (s%,a%)) = Ty Pr(s* [s*, a¥) and the transition kernels of tasks
are independent. A policy 7 : § — A(.A) is a mapping from a state to a distribution over the action
space, where A(.A) is the probability simplex over .A. Given a policy =, the value function of task
k € [K] is defined as:

VE(s) = E{Z’ytm(sf,af)s(]ﬁ = S,W,Pk].
t=0

The action-value function can be defined as:

o0
Q4 (sse) = B[ S ru(sh ab o = .0 = . |
t=0
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Moreover, the visitation distribution induced by the policy 7 of task k € [K] is defined as d% (s, a) =
(1 =)o V'P(sF = s,af = a|sk ~ &, 7, P¥). Denote by d. € A((S)X) the joint visitation
distribution that d. (s', a’, ..., s%,a®) = (1 — v) Y72 Y'P(s; = s',a} =a', ..., sf =5, aff =
a®|sk ~ ¢k (-), m,P). Then, it can be shown that d¥ (s, a) is the stationary distribution induced by
the Markov chain with the transition kernel [Konda & Tsitsiklis| (2003) P(-|s,a) = yP(:|s,a) + (1 —
7)€L (+). For a given policy 7, the objective function of task k € [K] is the expected total discounted
reward function: J* () = E [3°7° v'ri(sF, af)|sg ~ &, m, P¥] .

In this paper, we parameterize the policy by § € © and get the parameterized policy class {7 :
6 € ©}. Denote by y(s,a) = Vlogmy(als). For convenience, we rewrite J*(0) = J*(my) and
dg = d% . The policy gradient V.J*(6) for task k € [K] is Sutton et al.| (1999):

VI (6) = By [QF, (5, @)t (s, )] @

In this paper, to address the challenge of large-scale problems, we use linear function approximation
to approximate the @) function. Given a policy 7wy parameterized by § € R" and feature map
F + S x A — R™ for k € [K], we parameterize the () function of task k € [K] by w* € R™,

QF,(s,a) == (¢*(s,a)) Twk.
Notations: The vector Q(s,a) = [Qk(s’a);]ke[x]
(K] (resp. V(s) = [Vk(s)ﬂke[;q J(m) = [‘]k(ﬁ);]ke[m)’ and the matrix w = [wk;]ke[K]

R™*K constitutes the vector w* € R™ for parameters in each task k € [K]. For a vector x € R¥,
the notation « > 0 means x;, > 0 for any k € [K].

€ R constitutes the Q¥ (s, a) for each task k €

S

One big issue in MTRL problem is gradient conflict, where gradients for different tasks may vary
heavily such that some tasks with larger gradients dominate the update direction at the sacrifice of
significant performance degeneration on the less fortune tasks with smaller gradients|Yu et al.|(2020a).
To address this problem, we tend to update the policy in a direction that finds a more balanced solution
for all tasks. Specifically, consider a direction g, along which we update our policy. We would like to
choose p to optimize the value function for every individual task. Toward this goal, we consider the
following minimum value improvement among all tasks:

. 1 k k : k
min < — (J*(0 + ao) — J*(0 ~ min (VJ*(0),0), 3
it {940+ 00) = 70) | = i (970).) ®
where the “~" holds assuming « is small by applying the first-order Taylor approximation. We would
like to find a direction that maximizes the minimum value improvement in [3]among all tasks [Désidéri
(2012):

max min {l (J*(0 + ap) — J*(0)) } — =/ & max min<§:/\kVJk(9),g> -

eeR™ ke[K] Loy

lell®
2

;4

where A is the probability simplex over [K]. The regularization term — ||| is introduced here to
control the magnitude of the update direction . The solution of the min-max problem in equation ]
can be obtained by solving the following problem Xiao et al.| (2023):

* *\ 1 . * . 1 T 2
of = (\") VJ(0);st. A Garg1§1€1}\12”)\ vJO)| . ®)

Once we obtain o* from equation[5] which is referred to as conflict-avoidant direction, we then update
our policy along this direction.

In our MTRL problem, there exist stochastic noise and function approximation error (due to the use
of function approximation @fr ,(s,a) = (¢¥(s,a)) Tw"). Therefore, obtaining the exact solution to
equation [5] may not be possible. Denote by ¢ the stochastic estimate of o*. We define the following
CA distance to measure the divergence between ¢ and o*.

Definition 3.1. || — o*|| denotes the CA distance at between g and o*.
Since conflict-avoidant direction mitigates gradient conflict, the CA distance measures the gap

between our stochastic estimate g to the exact solution ¢*. The larger CA distance is, the further o
will be away from p* and more conflict there will be. Thus, it reflects the extent of gradient conflict
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of 9. Our experiments in Table [2] also show that a smaller CA distance yields a more balanced
performance among tasks.

Unlike single-task learning RL problems, where any two policies can be easily ordered based on their
value functions, in MTRL, one policy could perform better on task ¢, and the other performs better on
task j. To this end, we need the notion of Pareto stationary point defined as follows.

Definition 3.2. If E[minycn [|[ATVJ(7)||?] < ¢, policy 7 is an e-accurate Pareto stationary policy.

In this paper, we will investigate the convergence to a Pareto stationary point and the trade-off
between the CA distance and the convergence rate.

4 MAIN RESULTS
In this section, we first provide the design of our Multi-Task Actor-Critic (MTAC) algorithm to find a
Pareto stationary policy and further present a comprehensive finite sample analysis.

4.1 ALGORITHM DESIGN

Our algorithm consists of three major components: (1) critic: policy evaluation via TD(0) to evaluate
the current policy (Line 3 to Line 12); (2) stochastic gradient descent (SGD) to update A (Line 13 to
Line 14); and (3) actor: policy update along the conflict-avoidant direction (Line 15 to Line 19).

Algorithm 1 Multi-Task Actor-Critic (MTAC)
1: Imitialize: 0y, wo, Ao, T', Nactor, Neritic; Nca, Nrc
2: fort =0to T — 1do
3:  Critic Update:

4: fork =1to K do

5: Sample (s, ak) ~ df

6: for j = 0 to N.iic — 1 do

7: Observe sk, | ~ P*(:|s, a¥), r¥; take action a¥ | ~ mp, (-]s¥, )
8: Compute the TD error § ;‘ according to equation |§I

9: Update wf ;| = Tp(wf ; + oy 68 ¢F (s%, ak))
10: end for
11:  end for

12: Set wi41 = Wi, Ny

13:  Option I: Multi-step update for small CA distance : ;1 = CA(\;, mg,, Wet1, Nea)
14:  Option II: Single-step update for fast convergence: ;1 = FC(\, mg,, Wiy1, Nec)
15:  Actor Update:

16: fork=1to K do

17: Independently draw (s¥, af) ~ df . i € [Nactor]

18:  end for

19:  Update policy parameter ;1 according to equation 9]
20: end for

Critic update: In the critic part, we use TD(0) to evaluate the current policy for all the tasks. Recall
that there are K feature functions ¢*(-,-), k € [K] for the K tasks. In Line 8 of Algorithm the

temporal difference (TD) error of task & at step 7, 5{ , can be calculated based on the critic’s estimated
Q-function of task k, qkawt’ j and the reward ¥ as follows:

5;-“ :7“;-C + ’y(qﬁk(8§+1,a§+1)7w§j> — <¢k(s§7a§),wﬁj>. 6)

Then, in Line 9, a TD(0) update is performed, where T (v) = arg min |, <B |lv — w||,, B is some
positive constant and o ; is the step size. Such a projection is commoniy used in TD algorithms
to simplify the analysis, e.g., |Q1iu et al.| (2021); [Kumar et al.| (2023)); |Xu et al.| (2020)); Barakat;
et al.[(2022)); Olshevsky & Gharesifard| (2022)); Zou et al.|(2019). After N iterations, we can obtain
estimates of Q-functions for all tasks.

Weight )\ update: To get the accurate direction of policy gradient in MTRL problems, we solve the
problem in equation [5] Recall that there are two targets: small gradient conflict and fast convergence
rate. We then provide two different weight update options: multi-step update for small CA distance
in Algorithm [2)and single-step update for fast convergence in Algorithm 3]
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Algorithm 2 Multi-step update for small CA distance (CA)
1: Initialize: \¢, mg,, wiy1, Nca; Set Apg = Ay

for k = 1to K do

Independently draw (s¥,aF) ~ d’gt, i € [Neal; (s5,ak) ~ d’gt, i’ € [Ncal
end for
fori =0to Nca — 1do

Update M¢ ;11 according to equation
end for
Output )\t—i-l = At7NCA

Firstly, the CA subprocedure independently draws 2N, state-action pairs following the visitation

distribution. The estimated policy gradient of task k by state-action pair (s%, a¥)

VI 0) = 6" (sf,af) Twyye, (sF af).
Then it uses a projected SGD with a warm start initialization and double-sampling strategy to update

the weight \;: ~ ~
Mt = T (M = cd VA0V 0)) )

where ¢, ; is the stepsize, §Ji(9t) = {6JZ’€ (t‘)t);} - Weight \; update Nca steps in order to
ke[K

obtain a premise estimate of \} € argminyea |[ATVJ(0;)]%.

Based on Algorithm[2] we can find a Pareto stationary policy with a small CA distance, but it requires

a large sample complexity of Nca = O(e™*) as will be shown in Corollary However, we

sometimes may sacrifice in terms of the CA distance in order for an improved sample complexity. To

this end, we also provide an FC subprocedure in Algorithm

Algorithm 3 Single-step update for fast convergence (FC)

1: Initialize: \;, my,, Wit1, Nrc

2: for k =1to K do

3:  Independently draw (s¥,af) ~ df . i € [Nec]; independently draw (s, ak) ~ df . i € [Nec]
4: end for

5: Update ;11 according to equation [8|and output A;

In this algorithm, we generate 2 Nrc samples from the visitation distribution. Alternatively, we only
update A once using all the samples in an averaged way:

)\t+1 = 7;\ <>\t — ct)\;er(ﬁt)vJ(ﬁt)T) s (8)
where VJ(6;) = [VJ*(6,);] | and VJ*(6,) = NLFCZfV:FS_l PF (sF,al) Twr 1 1pg, (s¥, al)
(resp. V.J'(6;)).

As will be shown in Corollary to guarantee convergence of the algorithm to a Pareto stationary
point, only Ngc = O(e~?) samples are needed, which is much less than the CA subprocedure. But
this is at the price of an increased CA distance.

ke[K

Actor update: For the actor, the policy 7y, is updated along the conflict-avoidant direction. Given
the current estimate of \;, 6; and w;, the conflict-avoidant direction is a linear combination of policy
gradients of all tasks.
In Line 17 of Algorithm N state-action pair (sf, af),l = 0, ..., Nactor — 1, are drawn from the
visitation distribution d. Then the policy gradient for task  is estimated as follows:
NﬂCIOl’ - 1
k(k k\T, k E _k
(b (sl » 4y ) wt-i—lw@t(s , @ )
1=0

1

vJ*(6,) = ¥
actor

Next, combined with the weight A¢; from Algorithm 2]or Algorithm 3] the policy update direction
can be obtained and the policy can be updated by the following rule:

Ori1 = 0, + BN VI (0y). ©)
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For technical convenience, we assume samples from the visitation distribution induced by the
transition kernel and the current policy can be obtained. In practice, the visitation distribution can
be simulated by resetting the MDP to the initial state distribution at each time step with probability
1 — v|Konda & Tsitsiklis| (2003), however, this only incur an additional logarithmic factor in the
sample complexity.

4.2 THEORETICAL ANALYSIS

We first introduce some standard assumptions and then present the finite-sample analysis of our
proposed algorithms.

4.2.1 ASSUMPTIONS AND DEFINITIONS

Assumption 4.1 (Smoothness). let my(a|s) be a policy parameterized by 6. There exist constants
Cyp =max{Cy1,Cp 2} and Cy 1,Cp2,Cr, Ly > 0 and such that

D) [[Viogmg(als)|l2 < Cp1 < Co; 2) [|9"(s",a")ll2 < Cp2 < Cy forany k € [K];
3) [Imo(als) — mor(als)ll2 < Cx 10— Olly; 4) [[logme(als) —log e (als)ll2 < Le [|6 — 6|, -

These assumptions impose the smoothness and boundedness conditions on the policy and feature
function, respectively. These assumptions have been widely adopted in the analysis of RL|Q1u et al.
(2021)); [Kumar et al.| (2023); |Xu et al.| (2020); Barakat et al.| (2022); Olshevsky & Gharesifard| (2022)),
and can be satisfied for many policy classes such as softmax policy class and neural network policy
class.

Assumption 4.2 (Uniform Ergodicity). Consider the MDP with policy 7 and transition kernel P*,
there exist constants m > 0, and p € (0, 1) such that

sup [|P(s¢, as|so = s, 79, P*) — d¥, (- <mp',

s€S,acA 7.)HTV

where |[|-||, denotes the total variation distance between two distributions. This ergodicity assump-
tion has been widely used in theoretical RL to prove the convergence of TD algorithms Q1u et al.
(2021)); Kumar et al.| (2023)); | Xu et al.| (2020); Barakat et al.|(2022); |Olshevsky & Gharesifard| (2022).

Furthermore, we assume that the m feature functions of task k, ¢¥,i € [m],k € [K] are linearly
independent. To introduce the function approximation error, we define the matrix A , and vector bk )
as follows:

’ ’ T
Aﬁ'e = Ed’g |:¢(Sk7a'k) (’W(Sk aak ) - ¢(Sk7a‘k)) :| ; bﬁ'e = Ed’g [qb(skaak)R(Skvak)} . (10)
Denote by wgk’ the TD limiting point satisfies:
Af wiF + bk =o0. (11)

Assumption 4.3 (Problem Solvability). For any 6 € © and task k € [K], the matrix A% is negative
definite and has the maximum eigenvalue of —\ 4.

Assumption[4.3]is to guarantee solvability of Equation (TT) and is widely applied in the literature[Wu
et al. (2020); |Zou et al.[(2019); | Xu et al.| (2020). Then, we define the function approximation error
due to the use of linear function approximation in policy evaluation.

Definition 4.4 (Function Approximation Error). The approximation error of linear function approxi-
mation is defined as

. . 2
€app = MAX MAX \/Ed’g {(gbk(s,a)—rwek —QF, (s,a)) }

We note that the error €,y is zero if the tabular setting with finite state and action spaces is considered,
and can be arbitrarily small with designed feature functions for large/continuous state spaces.
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4.2.2 THEORETICAL ANALYSIS FOR MTAC-CA

We first provide an upper-bound on the CA distance for our proposed method.

Proposition 4.5. Suppose Assumptionsand are satisfied. We choose c;; = %, where ¢ > 0
is a constant and i is the number of iterations for updating X, ;. Then, the CA distance is bounded as:

1 1
*\ T
IN s ¥ 60) = O TV T < O g7 + e + Vo),

where .75, (00) = By 164 (5,0) Ty o, (5,00} Vi, 00 = [V 0]

Proposition@]shows that the CA distance decreases with the numbers Nca and N of iterations on
A’s update. Based on this important characterization, we obtain the convergence result for MTAC-CA.

Theorem 4.6. Suppose Assumptionsand are satisfied. We choose 8 = 3 < L%, as a constant

and oy ; = Cti= ﬁ where ¢ > 0 is a constant. Then, we have

AT
T—
1 B 1 1
ATV T Capp T :
; i€ (6)1°] = (BT " Newwr  Norie \/N7A>

Here L is the Lipschitz constant of V.J*(#), which can be found in Appendix|Al We then characterize
the sample complexity and CA distance for the proposed MTAC-CA method in the following corollary.

Corollary 4.7. Under the same setting as in Theorem choosing B = O(1), T = O(e™ 1),
Nucior = O(671), Neviie = O(e72) and Ney = O(e=*), MTAC-CA finds an € + Eapp-accurate Pareto
stationary policy while ensuring an O(e + | /€gyp) CA distance. Each task uses O(e°) samples.

The above corollary shows that our MTAC-CA algorithm achieves a sample complexity of O(e~?) to
find an (€ + €,pp)-accurate Pareto stationary policy. Note that this result improves the complexity of
O(e ) of SDMGrad in the supervised setting. This is because our algorithm draw O(Neyitic + Nactor +
Ngc) samples to estimate the conflict-avoidant direction, which reduces the variance compared with
the approach that only uses one sample.

4.2.3 CONVERGENCE ANALYSIS FOR MTAC-FC

If we could sacrifice a bit on the CA distance, we could further improve the sample complexity to
O(e3) with the choice of the FC subprocedure.

Theorem 4.8. Suppose Assumptionand Assumptionare satisfied. We choose 8, = 8 < %J’

o 1 L 1
g =c < 5C7B as constants, and o ; = AGTD)" Then we have

_ 1 1 1 ﬁ C/
T —_—
J(6 a "IN . '
- }ZO: VJI(0)]%] = <5T TOT Tt N T Nowr | NFc)

Though we still need O(Neitic + Nactor + Nrc) samples in Algonthm! we do not require an as small
CA distance, which helps to improve the sample complexity to O(e~°) as shown in below.

Corollary 4.9. Under the same setting as in Theorem[4d.8) choosing 8 = O(1), ¢ = O(1), T =
O(e™1), Neitie = O(672), Nactor = O(e71), and Npc = O(e™ 1), we can achieve an (e + Eapp)-
accurate Pareto stationary policy and each task uses O(e~3) samples.

The above corollary shows that our MTAC-FC algorithm achieve a sample complexity of O(e~3) to
find an (€ + €4pp)-accurate Pareto stationary point. In supervised learning, the fast convergence reach
O(e~?2) Xiao et al|(2023) sample size to find e-accurate Pareto stationary policy. This is because the
estimation of value function needs more samples.
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5 PROOF SKETCH (MTAC-CA)

Here, we provide a proof sketch for the convergence and CA distance analysis to highlight major

~ 2
challenges and our technical novelties. We first define A} = arg minyea H)\TVJU,, +1(0)]| - Recall
2

that

k _ k T,k R _ o7k .
Vb (00 = B [0, )l (5,00} Vi, (00 = [V5 0],

The first step is to analyze the convergence for the critic updates and shows that E[||w}, ; —w;*||?] =

O ( Nw”) The next step is to bound the square of the CA distance, which is defined as

N Ve Vo (0) = (A7) TV T (00|

Differently from the supervised setting, the estimator @Jwt 1 (0¢) here is biased due to the presence
of the function approximation error. Thus, we need to provide new techniques to control this CA
distance, as shown in the following 5 steps.

Step 1 (Error decomposition): First, by introducing a surrogate direction (X;)Tﬁfwt +1(0¢) and
using the optimality condition that

AN, VI (0), () TV (0:)) > [|(N) TV (0],

the CA distance can be decomposed into three error terms as follows:

N Ve Vs (0) = ) TV IO <IN ney Vo 01 = [N TV T, (62)1°

+ 1D TV T BN = 1) VTG = 200 ey (Vw2 (02) = VI (0)), (A7) TV I (6r).
(12)

Step 2 (Gap between \; y., and Xg): ‘We bound the error between the direction applied in Algo-

r1thm AL NCAVJwt +, (6¢)]|* and the surrogate direction || ATV o, .1 (62)]|? (the first line second
and third terms in equatlon [12). Apply the convergence results of SGD, and we can show that this
error is of the order O( m)

Step 3 (Gap between X, and \}): In this step, we bound the surrogate direction ||(X,) TV ]y, 0]l

and CA-direction ||(A\}) TV.J(6;)|| (the second line first and second terms in equation , which
are solutions to minimization problems. The term can be decomposed into the critic error and the
function approximation error, and its order is (9( -+ €app)- This is the technique we use to deal
with the gradient bias in MTRL problem.

Step 4 (Bound on the rest terms): The rest terms in equation [12| can be easily bounded by the
function approximation error and the critic error.

Step 5: Combining steps 1-4, we conclude the proof for the CA distance.

Then to show the convergence, we characterize the upper bound of H (A TVJI(6,) HQ, which is
decomposed into bounds for the CA distance

[N ¥ 8 — 1) w60

)

and the surrogate direction ||\, AVJwt ., (6)]*. Those bounds can be derived using the Lipschitz
property of the objective function. This completes the proof.

6 EXPERIMENTS

We conduct experiments on the MT10 benchmark which includes 10 robotic manipulation tasks from
the MetaWorld environment | Yu et al.| (2020b). The benchmark enables simulated robots to learn a
policy that generalizes to a wide range of daily tasks and environments. We adopt soft Actor-Critic
(SAC) Haarnoja et al.[(2018) as the underlying training algorithm. We compare our algorithms with
the single-task learning (STL) with one SAC for each task, Multi-task learning SAC (MTL SAC)
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Table 1: Results on MT10 benchmark. Average over 10 random seeds. The success rate and training
time per episode are reported.

METHOD SUCCESS RATE TIME
(MEAN + STDERR)  (SEC.)

STL 0.90 +0.03

MTL SAC 0.49 +0.07 3.5
MTL SAC + TE 0.54 +0.05 4.1
MH SAC 0.61 +0.04 4.6
SOFT MODULARIZATION  0.73 + 0.04 7.1
PCGRAD 0.72 £ 0.02

MoCo 0.75 +£0.05

MTAC-CA 0.81 +0.09 8.3
MTAC-FC 0.76 £ 0.11 6.7

with a shared model Yu et al.| (2020b)), Multi-headed SAC (MH SAC) with a shared backbone and
task-specific heads|Yu et al.| (2020b)), Multi-task learning SAC with a shared model and task encoder
(MTL SAC + TE) |Yu et al.| (2020b), Soft Modularization |Yang et al.| (2020) employing a routing
network to form task-specific policies. Following the experiment setup in|Yu et al.|(2020b), we train
2 million steps with a batch size of 1280 and repeat each experiment 10 times over different random
seeds. The performance is evaluated once every 10,000 steps and the best average test success rate
over the entire training course and average training time (in seconds) per episode is reported. All our
experiments are conducted on RTX A6000.

The results are presented in Table[I] Evidently, our proposed MTAC-CA which enjoys the benefit
of dynamic weighting outperforms the existing MTRL algorithms with fixed preferences by a large
margin. Our algorithm also achieves a better performance than Soft Modularization, which utilizes
different policies across tasks. It is demonstrated that the algorithms with fixed preferences are less
time-consuming but exhibit poorer performance than Soft Modularization and our algorithms. The
results validate that the MTAC-FC is time-efficient with a similar success rate to Soft Modularization.

Table 2: Results of each task on MT10 benchmark. Rate denotes the average success rate over 10
random seeds, and Rz (z = 0, - - - ,9) denotes the success rate on each task 7.

STEPS RATE RO R1 R2 R3 R4 R5 R6 R7 R8 R9 Am%|
0 075 10 1.0 03 1.0 05 1.0 10 05 06 0.6

5 077 10 09 06 1.0 08 1.0 1.0 03 05 0.6 -9.33
10 08 10 08 05 1.0 08 1.0 10 05 08 0.7 -15.67

As mentioned in Section [4] the CA distance decreases as the number of updates of weight A
increases. We adopt O steps of update as the baseline and compare it to updating 5 steps and
10 steps. To represent the overall performance of a particular method m, we consider using the
metric Am%, which is defined as the average per-task performance drop against baseline b: Am% =
% Zszl (—1)% (M 1 — My 1) / My, ; x 100, where M, refers to the k-th performance measurement,
My, 1, represents the result of metric M}, of baseline b, M,, ;. represents the result of metric M}, of
method m, and §; = 1 if a larger value is desired by metric My,. Therefore, a lower value of Am%
indicates that the overall performance is better. Table 2| demonstrates that a smaller CA distance
yields more balanced performance.

7 CONCLUSION

In this paper, we propose two novel conflict-avoidant multi-task actor-critic algorithms named
MTAC-CA and MTAC-FC. We provide a comprehensive convergence rate and sample complexity
analysis for both algorithms, and demonstrate the tradeoff between a small CA distance and improved
sample complexity. Experiments validate our theoretical results. It is anticipated that our theoretical
contribution and the proposed algorithms can be applied to broader MTRL setups.

10
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A NOTATIONS AND LEMMAS

In this section, we first introduce notations and necessary lemmas in order to help readers understand.
Firstly, we define and recall the notations mas are frequently applied throughout the proof.

We recall that s* € R™ (resp. a”) is the state(action) of task k. The bold symbol s := [s*;];c(x]
(resp. a := [a";]ke (k). We recall that ¢¥ (s*, a*) is the feature vector of task k given the state s*
and action a®. The ¢(s,a) = [¢*(s*, a*)]re(x) (resp. ¥(s,a) = [¢¥(s*, a*)]e(x)) is the feature
vector compose the feature vector of all tasks.

For convenience, denote by ¢(s,a)’w = [¢k(sk, a®) Twk; ] ke[K] and ((s,a,0,w) =
(o(s,a)Tw, vg(s,a)) = [(F(s*,ak) Twk) iy, (s*, a"); ] re[x] © help understand.

Next, we introduce necessary lemmas which are widely applied throughout the proof.

Proposition A.1 (Lipschitz property Xu et al.|(2020)). Under AssumptionH.2land given 0.0 € B,
Sor any task k € [K], the objective function satisfies that:

[V I5(0) = VIE(0")]|, < L 10 =0l
where Ly = ﬁ (4L:Cy+ Lg), Ly = S (1 + [log, m] + (1 —p)™1).

Next, we introduce a lemma which is widely used throughout the proof.

Lemma A.2. Suppose there are two functions f(-), g(-) and 7 = argmin f(x), x5 = argmin g(z),
we have the following inequalities,

|f(21) — g(x3)| < max(|f(x]) — g(1)], |f (23) — g(23)])-
Lemma A.3. For any weight vector A € A
\/]Eds {(AT (p(s,a), wy) — ATQM(S,a)ﬂ < €qpp-

Lemma A.4 (MDPs Variance Bound). Suppose Assumption[d.2]are satisfied, given the policy mg,
and parameter wyy1, sampling (s;,a;) ~ dy, i.id., i =0,1,.... N — 1, we can get that
2

LN~ T 2 204 B?
E N ; A €(8i5 @i, w1, 0r) i - HEgl,,t (A C(s,a,wt+1,9t)]||2 < —

Due to the linear function approximation error, the estimation of policy gradients is biased. Based on
the biased gradient, the direction of MTRL is biased as well. To bound the bias gap, we define three
functions and optimal direction as follows:

Hy(A) = [|ATEq, [(Qx, (s, @), Viog mo (s, a))]|l2
Ap = :aurgmgn(Hg()\))2
Hy(\) = [\ "Eq, [(6(s, @) "w}, Viog mo(s, )]z
X; = argmgn P/EQ(A)
Hy (V) = |ATEq, [(¢(s, @) Two,x, Vlog me(s, a))] |2
N = argm}%n([f[\g/()\))z. (13)

Here, the first function Hy(A) is the unbiased direction loss function and the direction A} is the
unbiased direction deduced by the unbiased policy gradients. The second function is from the biased

estimated direction loss function, where wj; = [wj*; ] (k). The direction X; is the biased direction
due to approximation error of linear function class. The third function is the direction loss function
according to the update rule in Algorithm [T} where wy, x is the output after N-step Critic update

iterations. The direction A} is the limiting point of equation

For convenience, we rewrite Hy,(A) = H:(\) (resp. ﬁgt(k) = H,(\), ﬁét \) = I;Tt’()\)) and
Ay, = Af (tesp. X;t = :\\;k and th = X;) throughout the following proof.

14
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B CRITIC PART: APPROXIMATING THE TD FIXED POINT

In this section, we first provide the convergence analysis of the critic part.

Lemma B.1 (Approximating TD fixed point). Suppose Assumption 1| and Assumption [d.2] are
satisfied, for any task k € [K], we have

2 202 .
E[Hwk _ ’w*kHQ] < 4B n U50¢ log Neriric
bl ¢ = Ncritic + 1 4)\2A(Ncritic + 1)’
where wf, = wy  and Us = 14 (1+7)Cy B.

Proof. The analysis of this term follows from Bhandari et al.|(2018)). Firstly, we do decomposition
of the error term Hwﬁjﬂ — w*kHQ:

lwp 0 = wi* 15 =175 (wi; + e85 6" (55, a5)) — wi*[13

(@)
<|lw ; + ;050" (s J?af) wil3

:Hwt] - wtk”Q + at ] H(Skd)k( ]7 j)||2 + 2at]<wf] :kﬂ 5§C¢k(5§a CL?»,
(14)

where (i) follows from the fact that || Tz (z) — y||§ < |lz— y||§ when B is a convex set.

We define 6% (s*, a®, w, 0) = RE(s*, a®) + v (¢* (s, a*)) Tw — (¢*(s*, a*)) Tw. According to the
definition of w;* in Equation (10) and Equation (11), w;* satisfies the following equation:

By [6°(s",a%) (RE(s*,a*) +2(0 (%)) T = (o4(s", a") Twi) = 0. (15)
We can further get that
Ed;gt (0% (s, a®)ok (5%, a*, w}, 6,)] = 0.
Then for the last term of Equation (T4)), we take the expectation of it
E[(wr; — w;*, 676" (s}, a}))]

Wy, 95 J
B[l — w05 (5. o) — By [0% (5, a2)0 (5" b, i )
=E[<w§j—w:k,6f¢ (5%, %) — By [6(5",0)5%(5", 0%, wr, 0,))
FEl(uf i By (0%, aF)0 (5, 0% 0 00)] — By [0%(,aP)6 (0¥ w5 0,)
B{(wk, — i, By [0%(, ") (5, o wn,00)] — By [65(s",a¥)5" (", 0" 0, 01)])

(i7)
< = ME[Jwr; — w3,
where (4) follows from
E[<wf,j :k’éf(bk( 845 g) ]Edk [¢ (skvak)ék(skaakthvet)]” =0,
and (i7) follows from that
<wfj wt 7Edk [(b (5k7ak)6k(5ka akth70t)] - Ed’; [¢k(5ka ak)dk(5k7ak7w:7 01‘)]>
= (wF; — wi* By [6°(5", %) (Bgg, [70" (", a") = 65", )] ) (wh; —wi*)])

.
= (wiy —wi®) AV (wi; —wi®)

(%)
< -Aa Hwt] _wtkHQ’

where we rewrite AF = Afr for convenience and (¢) follows from Assurnptlon Then combining
Equation (T6) into Equation (T4), we can get that

E [[lwf; 0 — wi[3] < (0= 200 0B [Juf, - will;] + o2, U2C2.

15
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By setting the learning rate o ; = m, we can obtain
k «k J k « 1
E [Hwt,jﬂ || ] i i 7E {Hwt,j —wi } + U60¢4/\2 Gr1z
Then by rearranging the above inequality, we have
9 1 U5 02 Neritie+1
B [~ o 12] < g (ko — i ] + g
|| t k H2 o Ncritic +1 || b0 K H2 4)\2 crlth +1 j=1
4B2 U52 02 IOg Ncritic
critic + 1 4)‘A( critic + 1)
The proof is complete. O

C CONVERGENCE ANALYSIS FOR MTAC-CA AND CA DISTANCE ANALYSIS

In this section, we take both CA distance and convergence into consideration with the choice of
MTAC-CA.
Lemma C.1. Suppose Assumption[d.1|and Assumptiond.2]are satisfied, we have

4B2 U202 lo Ncri ic
| =c + o & o (16)
Ncritic + 1 4)\ ( critic + )

— o~ ! ~
E (|70 - B (V)

Proof. According to Lemma[A2] we can get that

— o~ 1/ ~ — o~ ! ~
|G - H () | H(N) - Hy (V)

—_ o~ ! ~
< max {|[H,(3) - H/ (%)

} . (17)
According to the notations in Equation (T3)), the first term in Equation (I7) can be bounded as:
[H () - H ()]
= (|G Ew, e(s,a, 7,001, — | (3 TEas, [, @ wi, 0] |
< || ) By, ¢ s a0} — w80

< max ||Eq,, [6%(s",a") T (0™ — w1 )i, (57, a")] |

< e {6°(s*. ) i = i el (5%, a") )

o —wf+1\|2

= Ci Hela;({ ||wtk wt+1||27

where (i) follows from Cauchy-Schwartz inequality and (i) follows from Assumption .1} Thus,
taking expectation on both sides, we can obtain,

B [|HG) - 7 (3)

| < €3 o B [[lw* ki) < O3 max /Bl — wly, 13)

Similarly, we can get that

o~ /\/ — /\/
E HHt()‘t) — Hy (\)

| < €3 o Bl —wki ]3]

Then, combined with Lemma|[B.1] we can derive

:| < 02 4B2 i U(?CZ IOg Ncritic
= Ncritic + 1 4)\2 ( critic + 1).

The proof is complete. ]

— o~ —/ ~
E[|@G0) - H (%)
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Lemma C.2. Suppose Assumption[d.1|and Assumption[d.2)are satisfied, we have
E[|H(\) — Hi3)|| < 2Coeam:
where €, is defined in Deﬁnition

Proof. First we apply Lemmal[A.2]

’Ht()\’{) — H,(\) ) = Hi(A))

< max { | H.() = (V)|

Then for the first term in the above equation,

|H() = ()

[ a0, - 00T 0], |
<||(A) "Edy, [(Qny, (8.@) — ¢ (s, @)w}, g, (s,a))],

SmaX{HEdet {(Qﬁe (s*,a") — ¢¥ (s, a") w:k)iﬂmt(skaak)wz}

<C¢maX{HEd9t (Skaak) - <¢k(sk’ak)’w:k>}H2}

<Cump [, [IQ8,, (5,5) — (9¥(s%, ), wi) ]

(i)
< C¢€app7

where (i) follows from Assumption 4.1| and (i7) follows from Definition Then for the term
H, (Xf ) — iI\t(/):z‘ ) ’, we can follow similar steps and the following inequality can be derived
|H(0) = ()| < Cocap.
Therefore, we can obtain
E[|#00) - B()|] < 2Coem.

The proof is complete. O

C.1 PROOF OF PROPOSITION [£.3]

CA distance. Now we show the upper bound for the distance to CA direction. Recall that we define
2
the CA distance as H/\t NCAVJerrl (6;) — (AI)TVJ(Gt)’

) = (A)TVI(0)]
=|Eap, [\, 2 (0" (s, @)wes1, o, (s5,@))] = Eq,, [(\) " Q™ (5, @)y, (5, @)]13
=[|Ea,, [N, s (07 (s, @)wes1, ¥o, (5,0))]II3 + [Ea,, [(A)) T Q™ (s, @)e, (5, )] I3
(
(

s

||>‘t N(A wt+1 (Gt

= 2(Ea,, N ne, (07 (5, @)wii1, %0, (5, )] Eay, [(\) Q™ (5, a0, (s, a)])
=|Eao, N ney (07 (5, @)wegr, v, (5, @) 13 + [Eay, [(\) T Q™ (5. a)s, (5, @)]13
= 2(Eay, [\ N, Q7 (5, @)v0, (5, )], Eq,, [(A]) T Q™ (5, @) 0, (s, a)])
= 2(Eay, [\ ne, (85, @), wes1) — Q7 (s, @))v0, (5, @), Ea,, [(A)) T Q™ (s, @) g, (s, a)))

< IIEdef Nney (07 (s, @)wirr, v, (5, a))]13 — | Ea,, [(\)) T Q™ (5, @) 0, (s, a)]13
~2(Eay, [N ne, (85, @), wi1) — Q™ (s, @), (5, @) Ea,, [(A]) T Q™ (5, @) 0, (5, a)])

< [[Ear, v, (87 (s, @)wir, o, (s,0)] | - |

term [

‘ 2

Bay, [T (67 (5. @)wen, v (5,0))] |

17



Under review as a conference paper at ICLR 2025

+ [Eap, ()T (87 (5, @)wis1, 00, (5,@))]15 — IEay, [(A]) T Q" (5, @)ibo, (5, @)][13
= 2(Ea,, M ne, ({65, @), wi1) = Q™ (5, )0, (5, @), Ea,, [(\) T QT (s, @)y, (5, @),
where (4) follows from the optimality condition that
(Aews (QT (s, @)1, (5,0) T Q™ (s, @) g, (s, a) A7)
>\, (Q™ (s, @)y, (s,a) T Q™ (s, @)y, (s, a) ;) = [|(\)) " Q™ (s, @)v, (s, a)l[3. (18)

Next, we bound the term I as follows:

term I
~ 2
- ||]Ed9t [)\t Nca <¢T(87 a)wt+17w9t (S, a)>} Hz - H]Edet |:(>\2)T <¢T(s> a’)wt+1>w91 (8? a)>:| H2
( ) 2 4+ log Nca
92cC, | 208 A 19
( + 1) VNea (19)

where (4) follows from Theorem 2 [Shamir & Zhang|(2013) since the gradient estimator is unbiased,
supy v [|A=X|| < LE[|(6(s,a) "ws1v,(s,a) T (8(s,a) Twe1tbo, (s,a)N||] < C4B2 = O,
and ¢;; = % Then, the last term can be bounded as follows:

[Eay, (X)) (67 (5, @)wir1,70, (s, a))][I3 = [|Eay, [(\)) T Q™ (s, @)y, (5. a)]|13

- 2<]Ed9t [)‘t NCA(<¢(37 a)? wt+1> - Qﬂt (Sv a’))wet (s, a’)]v]Edst [()‘:)TQM (S? a)wet (8, a)]>

<|H]Ed9t [N T (6" (s, @)wis1, 0, (s,a))]ll2 — [Ea,, [(N) T Q”(S a)ve, (s, a)]l2|
% ([ Ed,, (X)) (6" (5, @)wii1, ¥s, (5, @))]ll2 + [[Ea,, [(A]) T Q™ (5, )5, (5, a)]2)

+ 2”Edet [)‘t NCA(<¢(37 a), wt+1> - Qm(sv a))l/wt (87 a)]H?HEdet [( ) Qm(s a)d}@t (57 a)]”Q

) 4 121 17! (N * 20;
< COyB7|Hy(N) — Hi(M)| + T o

4B? U62 C; log Nesitic 20;
+ 4 Canns
Neritie +1 4)\?4 (Ncrilic + 1) 1—7 app
where (i) follows from the inequality that |A[|3 — || BJI3 < [[|All2 — | B|2|([|A]]2 + [|B]|2) and

Cauchy-Schwartz inequality. (i¢) follows from the definition in Equation (13). (i) follows from
Lemma|[C.I} Then we apply Lemma|[C.2} we can derive

[Eao, NNy (67 (5, @) w1, %0, (5, )= Ea,, [(\)) Q™ (s, @0, (s, a)]|
1

1
@ + + /€ ) .
( \/4 NCA V Ncritic o

The proof is complete.

Theorem C.3 (Restatement of Theorem [4.6). Suppose Assumptwn and Assumption [#.2] are
satisfied. We choose By = f < 1 as a constant and ¢, ; = W where i is the iteration number for

updating X ;, and we have

1 1 8 1 1
— IE VJ (%) + e, + .
E Z IO TV 613 = 0 TR R Ay cpw m)

Proof. We first define a fixed simplex A\ = [A1, Xo, ..., A]. According to the Proposition [A.1] for
each task k € [K], we have

L
TH0) < THOr) = (VIO O = 00) + 710041 = 0,3,
where k € [K]. Then by multiplying \;, on both sides and summing over k, we can obtain,

_ _ L
TJ(0) < XTJ(Org1) — (NTVI(62), 0041 — 61) + 7J||9t+1 — 0,13, (20)

18
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then recalling from Algorithm[T] we have the update rule

Nactor—1

Z At_|_1 Sl7a'l)th+17¢9t(Slaa’l)>

1 Nacmr 1
.
=0y + By Z Ap16(s1,ar, 00, wie ).
Nact()r 1=0

Or 41 =0, + 5t

dCtOI’

Thus for the third term, we have

El|0c+1 — 0:113] =E[|0c+1 — 04115 — BEIIN A E[C(s, @, 0y, wi1)] |13]
+ Bt ||/\t+1 [C(S a etawt-l-l)] ||§

Nyctor—1 2
2
Sﬁf]E ‘N Z C(s1,a,0p, wip)|| — ||)\2—+1E[C(Saa79t,wt+1)]HQ
actor
2
+ 87 IE[S(s, a, 00, wi )]l
(1) C’;B2 5 9
<Bt N +ﬂt ||E[C(3,a,9t,wt+1)]”2> (21)

actor

where (i) follows from Lemma Then for the second term in Equation (20), we take the
expectation of it,

—E[ATVI(0:), 0141 — 01)]
[O\TEth [Qnry, (8,a)p,(8,a)],0r41 — 0)]
E[(Eay, A (Qry, (5,@) — (¢(s, @), w]))g, (s, a)], 0111 — 0,)]
E[(Eq,, [\ ($(s,a), w} — wii1)vo,(s,a)], 041 — Or)]
E[(Edy, AT (¢(s, @) "wii1, 90, (5,a))], 001 — 0;)]

(%)
<BC3B|Eq,, [Qr,, (5,a) — (¢(s,a), w))]| + B, C4B max E[lwi® — wyyy 2]

— BE K Ede [<¢(8’ a)th+1a wet (37 a)>] Edet [)‘t+1 <¢(37 a)thJrh 1/}91 (8’ a)>]>}
Sﬂtch\/HEdet [Qro, (5,0) — (8(s,a), w})][3 + B:Cy B s E[|Jw;* — wiil2]

~

— BE[(A"Eq,, [(6(s, @) "wit1, Y6, (5, a))], Ea,, [
+ /BtEK;\TEdet [<¢(Sa a)th-‘rla ¢9t (37 a)>] ) E’da, [
(17) 4B2 U202 lOg Ncritic N
< 6tC£B€aPP + ﬁthB\/NCmic +1 + 4;‘32A((§Vcritic + 1) - ﬁtE[H)‘t <¢($, a)wt+1>w9t (S, a)”%]
+ 5tE[Cq2>B||(X/ —Aeg1) " {(s,a) Twip1, v, (s,a)) ||2], (22)

where (i) follows from Assumption[d.1] (ii) follows from Lemma[A.3] Lemma|[B.1]and optimality
condition

B\ Eq, (65, @) "wii1, v, (5, @))], By, [(4) T (805, @) Twis1, Yo, (5, @))])]
>E[|X,(6(s,a) w1, s, (s, )3,

Again, according to the Theorem 2 inShamir & Zhang| (2013)) following the same choice of step size
ct,i in Equation (T9), we can obtain,

E[|(\=Ae+1) " (65, @) Twir1, v, (s, a)) 3]
<E[|IN 1 Eas, [(6(s, @) Twrs1, 06, (5, @)]15] = B[l (M) "Eay, [(3(s, @) Twis1, 0, (s,@))]]3]

2 2 + log N
< ( N 2001> 2+ log Nea
C VNCA

)" (é(s,a) Twisr, ¥o, (s, a))))]

()\
(3\\ t.|-1)T <¢(3,a)—rwt+17w9t(sva’)>]>}
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Thus, we can derive
~E[(ATVJ(8), 041 — 61)]

432 UZC?10g Nesitic 2 2 + log Nca
<B,C3B CciB i C;B (f 2¢C )7
_ﬁt ¢ e " ﬂt ¢ \/Ncrilic +1 + 4)‘31(Ncritic + 1) * IBt ¢ c et \/N7CA
(23)

— BE[IX (s @) Twsr, v, (5, ) 3]
Then combining Equation (23) and Equation (ZT) into Equation (20)), we can obtain that,
E[ATJ(6:)] < ENT T (6r11)] — BEINE(S" (5, @)wes1, o, (5, @) |13

L.B82 L;CyB?
+ LI 8,60, @) w1, i .0} 8]+ 2 2 4, CE By
actor

4B2 U3 C% 1og N 2 2 + log
+ﬁthB\/ + B | B.C2B (E+2001)M. (24)

Ncritic +1 4/\2 ( critic T 1) vV NCA
We set 3; = 8 < ;- as a constant. Then, we rearrange and telescope over t = 0,1,2,...,T — 1,
2L JC(%BQ

;;Emzwws, a)wria, o, (. a)IF] < BN I(0r) = XTI(600)] + 5

4B2 U52 02 10g Ncn'tic 2 2+ 10g NCA
203 B 2048 +202B, /(% + 2¢C )7
+ 203 Beapp + 20 \/Ncmic+1 +4)\2( me+1) @ (C+ cCt Nex
(25)

Then we consider our target E[||A\fV.J(6;)||3] , we can derive
E[|(AF) TV (8)]13]
=E[|(3) VI (03] - E[I(X) "By, [(6(5, @) "], vp, (s, a))] 3]
+E[[|(A]) "Eu,, [(¢(s, @) w], 0, (s, a))][3] = E[|(X) "Eay, [(6(s, @) "w], 1o, (s,@))] 3]
+ E[[|(X) "Eay, [(6(s, @) Twi 1100, (s, @))] 3]
<2CFB(H; (X)) = Hi ()| + [ Hi (X)) = (X))
+E[|(X )T]Edg,[<¢>(87a)TwHu%t(S,a))HI%}-

Then summing over ¢t = 0, 1,2, ..., T — 1 of the above inequality, we can get

(26)

1Tl
= E[IA) TVI6)]3]

t=0

~

~

Sl
gt

-1
(2C3B(1H; (\) = Hi(AD)| + [H (X)) — Hy (X))

~

-1

[H(X’)TE% [(6(s,) w], vo, (s, @))]I3]

%\H

+

4B2 U26’2 log Negiti
<2C¢ g {Veritic QCgBEapp
crmc +1 4)‘A< critic T 1)

+ 7 Z; 1) " Eay, [(0(s, @) T}, o, (s, @))] 3]

4B2 U§202 1Og Ncritic 2LJC;%B2

2 _ —
< —EN\TJ(6) — X J(67)] +2C*B + +
=BT [ ( 0) ( T)] ¢ Nesiic + 1 A)\2 ( critic + 1) Nactor
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AB2 UZC?1og Nesitic 2 2 +log Nca
AC3B 201 B ¢ 202B (7 2¢C: )7
G B 26y \/NcmiCJrl TN + D) P e ) TORG

where (i) follows from the Lemmas|C.1]and[C.2]and (ii) follows from the Equation (26). Lastly,
above all, we can derive

1 3 1 1
— Z ]E H TVJ 9t)|| } (/BT + €app + actor ﬁ m)

The proof is complete. O

C.2 PROOF OF COROLLARY [4.7]

Since we choose § = O(1), we have

8 1 1
= SENON VIO = O o + e + 57 — ).
Z B T v actor crltlc V v N CA
To achieve an e-accurate Pareto stationary policy, it requires Nca = O(e™%), Nuige = O(e72),
Nacor = O(e 1), and T = O(e~!) and each objective requires O(e~5) samples. Meanwhile,

according to the choice of Nycor, Neritics Nca, and T', CA distance takes the order of O(e + , /Eapp)
simultaneously.

D CONVERGENCE ANALYSIS FOR MTAC-FC

When we do not have requirements on CA distance, we can have a much lower sample complexity.
In Algorithm 1} CA subprocedure for A\; update is to reduce the CA distance, which increases the
sample complexity. Thus, we will choose Algorithm [3|to make Algorithm [T[jmore sample-efficient.

D.1 PROOF OF THEOREM [£4.§]

Theorem D.1 (Restatement of Theorem - Suppose Assumption {.1| and Assumption [.2] are

satisfied. We choose B; = 5 < L Lo =c < 5B and oy ; = m as constant, and we have
T-1
1 )T 1 Jé] d
V.J(0:) ( ot e+ =+ +—).
tz [H ( ( t H ] 6T 'pp / Ncritic Nact{)r NFC

Proof. According to the descent lemma, we have for any task k € [K],

L
JF(0:) > T*(0r41) + (VI (0), 0041 — 64) — J

||9t+1 0:l5- 27
Then we multiply fix weight A\¥ on both sides and sum all inequahtles, we can obtain

- - L
NTT(00) 2AT T Orer) + (NTVT(80), 01 — 62) = 7011 — 63

NIlCl\)l’71
ZS\TJ(GtH) + B <)\TVJ(916)7 ~N )\: <¢(Sl7 al>th+la Ve, (Sl, al)>>
actor l=0
L 1 Nac[or_l 2
- g2 A (s, ar) Twigr, v, (s1,a1))
2 Nactor 1=0 2

Then following the similar steps in Equation (21), we can get
AT (0r11)

> ATJ(0) + B (XTI 00, (Ba, [(6(5,@) i, 0, (s, 0))] = VI(6))) ) + Bt<5\TVJ(9t),
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)‘I]Edet [<¢(S, a)Tw;tka 1/19(37 a)>] - )‘;F]Edst [<¢(37 a)thJrlv 1#0(5, a)>]> + Bt

Nactor—1
_ 1 actor
<>‘TVJ(925)7 r Z )‘:<¢(Sl’ al)T'wt-‘rh Wt (Slv al)> - )‘;F]Edet [<¢)(37 a)Tw;tka 1/19(37 a)>]>
actor 70
I 1 Naw1 2
+6t<)‘ VJ(9t> )\ij(et)> 2J 61& N, Z )‘;r <¢(slual)—rwt+17w9t (Slaal)>
actor 3 )

> NI (O1) + B (ATVI 00,0 (Ea, [(6(5, @) Tw] v, (5, 0))] = V. (8,)) ) + Bt</_\TVJ(0t),

Nyctor—1
]\71 Z /\tT<¢(slv al)T'wt-‘rla 1/}9t (slv al)> - A;F]Edet [<¢(87 a’)Tw;ﬁka 1/10(87 a)>]>
actor 15

- C?
+ BT 0 VI 00) - Bt

g (ks — ]}

I | Mool 2

J

- 75752 N ) Z A;r <¢(Sl;al)T'wt+1’¢9t(3l7al)>
actor 3 =0 9

Then we take expectations on both sides

EXTJ(61)] (21) EN"J(01401)] + BEIATVI(6:), A B, [(6(5, @) "w], e, (s,a))] — A VJ(6,))]

- C?
4 BEINT VI3 + BEIG - A)TVI(0), N VI(68)] - 2 o (B ([l — w1}

1
7
E[;\TJ(GHI)] = BeE[(ATVI(0:), A VI (0:) = N Ea,, [(6(s, @) w}, v, (5, ))])]

term I

\ C2 U2 02 1 Ncritic
- B~ 2TV, X V)] (\/ 1 SiCe )

LJ/Bt ]E

A (b(s1, @) T wegr, o, (s1,a0))

| | Nactor—1

actor 1=0

1- v Ncritic + 1 4/\2 ( critic + )

term II
L 1C4B?
N, actor

2
+ BE[IA VI (6,)]3]) - B B, N (005 @) T (s a2 @8)

where (7) follows from that
1
Naclor

EKVW(@),
Nactor—1

Z A (@(st,ar) "wiir, v, (51, @) = N Ea,, [0, @) Twiin, v (s, )] )| = 0.

(i) follows from Lemma

Then, we bound the term I as follows:

e 1< e {8 [I[974 00, B, [[l08(s4,08) Ty - @8, 5.0 om0, ] }

© G k(sk gF)Twk N
< 177]?61%)((] E Edf’et H(b (¥ a¥)Twiyy — QF, (s ,a)H2

(”) C? edpp
ST

(29)
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where (i) follows from that ||V.J*(6;) ||2 = HEdke [Qf@e (sk,ak)w‘gt(sk,ak)] H < C¢ﬁ. (44)
follows from Definition 4.4 t

Then, consider the term II, we have

term I = E[(\; — X, (VJ(0,)) T (A VI (61)))]

1 Npc—1 T
_El@ X (V) - N 2::0 (@(s5, a;) T w}, o, (ays;)) ) (/\tTVJ(Gt))>]
_ 1 Npc—1 T
FE| (M=K (5 Z:: (@55, 05)" (w] —wii1). Yo (asls;))) (A w<ot>>>]
B 1 Nec—1 T
+E <>\t*)\7 (NT:C ]z:(:) <¢(3j7aj)th+1a¢9t(aj|3j)>)
1 Nec—1
: (AtTVJ(et) - AtTJ\T:C ; <¢(Sz,al)wa,¢9t(al|Sl)>)>]
_ 1 Npc—1 T
+E </\t_)‘v(NFC jz::() <¢(3J7aJ) wt+1,¢gt(a]|83)>)
1 Npc—1
(W 2 (@len,an) (i - wt+1>,w9t<az|sl>>)>]
B 1 Npc—1 T
+E </\t_)\7 (NFC JZ:(:) <¢(3j7aj)th+1aw0t(aj|5j)>)
1 Npc—1
(/\tTNFC ; (¢(31,01)th+171/)9t(alSl)>)>1
@ C 3 |
< T g mas Elllwit — wfia ] + O Bey + B (A=A, (NTC
Nrc—1 1 Nec—1
3 (lsy.a) Twn. v (agls)) (A o N 2 <¢<sz,al>th+1,wet(alsl>>)>1,
§j=0 1=0

(30)

where (i) follows from Assumption and Definition Then we consider the last term of the
above inequality. We first follow the non-expansive property of projection onto the convex set

3112
[Ae+1 — All5
2
Npc—1 Npc—1 T T
<|[Ae=X— c,AT(N;C PO (¢(Sj7aj)th+1,wet(%\Sj)}) <N%:C 25T (p(s1,an) wt+17¢6t(al‘sl)>)
2
Y12
=[lA = All2
2
.
+ 2 ||A] (NIFC Z_;V:FSA<¢>(Sj7aj)th+1,¢et (aj|sj)>) (%ﬂ e g (si,ar) T witr ) v, (m\m)))
2

term A

T
_ 20t</\f X, ,\'r (Nic Z;VFC 1<¢(3J,aj) wt+1,w9t(a3|s]))) (NI-C ZV:FS—1<¢(sl,al)th+1,1/)9t (az|81)>) > .

term B

€1y}
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For term A, we have

term A
1 Npc—1 Npc—1 2
2|[\T T T
<ci||Ae Nec jgo (o(s5,a;) wt+17¢0t(aj‘3j)>H2HTm ; (9(s1,a1) 'wt+17w0t(al|5l)H2
1 Npc—1 2
<C?C¢ /\T Z <¢(3j7aj)th+la¢9t(aj|3j)>H2
§=0
1 Npc—1 2
<2¢;C3 )‘T Z <¢(8j7aj)wavi/Jet(aﬂSj»HQ
§=0
Ngc—1 2
+ 20 Cd) Z <¢(Sjaa’j>—r(wt+l - w:)vat(aj|sj)>’ 5’ (32)
§=0
where (i) follows from Assumption Then we take expectations on both sides,
Npc—1
22 T 1 T * 2
Efterm A] <26 C3BE [\ = D= (0(s.0) T (weer — wi). Vo, (asls) ||
§=0
1 Npc—1 2
+4GOIBE [\ = D (0l 0)Twi) ~ Qo (s;.a))). v, (ag]s)) |
j=0
Npc—1

- ITvaeg]

1
+4ch§BIE{H)\IN— > Qo.(s5,a5)v0,(ajls))
FC g
+4¢/CZBE[||\, V. (0,)]3]

(@)
<2¢;C4B e Ellwgyy —wi*|3] + 4¢; CBE[[(0(s;, a;), i) — Qo, (s, a;) 3]

4ciCsB*
— o +AGCEBE[A Ea,, (€ (s, @ 61, wis)] I3
FC
(i) AB? U202 log N 4¢2C3 B
<2204 0 o 0BT ) | 4202Be2, 4 27
Ncrilic""l 4 (Ncritic+1) NFC

+4c2C2BE[|N Eq,, [(8(s,@) w1, 4, (s, a))] 13,

where (i) follows from Assumption[d.1]and Xu & Gu|(2020) and (ii) follows from Lemma[B.1]and
Definition[4.4} Then for term B, we have
E|[term B
1 Npc—1

B T
:20151@{()% = A (NTFC Z (d(sj,a;) "wii1, 1, (aj|3j)>)
=0

Npc—1

(W5 X @l Twr v (i) |

4B (/ ) C log l ¥critic 2
4Ct Cd) Be app
Ncrlth + 1 4A ( critic + 1)

<E[IAe — AlI3 = [[Aes1 — All3] + 2¢7C3 B <

4c? C’gB 4
+ - 7
Ngc
Then we substitute Equation (33) into Equation (30), we can derive:

Bterm II = BE[(\ — A, (VI (0:)) T (A VI (6:)))]

+4c;CIBE [\ Eq,, [(6(s,a) " wii1, v, (s,a))] [13] - (33)
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2

C * 5t \ N
<Biq :tryeapp + B S fnax Elllwi* —wii1l2] + *E[II& A3 = A1 = All3]
4B2 U(?CQ 1Og Neritic 26156,50834
+ B, CAB + +2B,c:C2BE2, + BC3 Beyp + ——— 20—
6t e (Ncrilic + 1 4)\2 ( critic + 1) ﬂt e ‘ PP Bt ¢ Capp NFC
+25tCtC¢2)B]EH|)\;rEd9t |:<¢ s,a wt+1a¢9t(sva)>] ||§] (34)

Plug Equation (29) and Equation (34) in Equation (28)), we can get that
E[IA VI (0:)]3]

L,C1B?
NdClOr

LB} 5B 4B2 U3 €3 1og Neri
+ B AT (165 @) T, o, (5. a2 + - s (\/ + o

<EN"J(0:41)] —E[NTJ(0,)] + Biterm I + Byterm 1T + 32

- Neritie + 1 4X2 (N, ( critic + 1)

3 Cy
+ 17 + C¢B + 2ctC¢Beapp Eapp

< EAJ(0:11)] — B[N (0:)] + Be (

+ ﬁE[H)\t A3 = A1 — 5\||%]+CtC;fBﬁt <

4B? U§ 02 log Neritic
Ncritic +1 4)\ ( critic 1 1)

Ciﬁt AB2 U(?Cq% log Nitic 202B4ﬁtct N C(‘;BQLJﬁt
1- Y Ncrilic + 1 4)\,24(Ncritic + 1) NFC Nactor

2
#(F5 + 280038 ) BINT B, [{o(o.0) e v 0)] ] 65)

Next, we consider the bound between ||>\T]Ed9 [<¢>(s a) T wii1,v,(s,a >} H — ||)\TVJ (0:) H2

A Ea,, [(6(s,0) T wirr, o, (5, @))] ||, = [|A] VI (61)]],

= [|A Eay, [(¢(s.0) Twir1, 90, (s, 0))] ||, = [[A Ea,, [(6(s.0)Tw] 90, (s, 0))],
+ ||\ Eay, [((s, @) "wi v, (s,a))] ||, — A VI @),

< [IA Eay, [{0(s,0) T (wi —wir1) v, (s,0))] |,
+ ||)\TEd9t [(Qo,(s,a) — ¢(s,a) " w;, 1, (s, a))ll],

< maX{H¢ "a)| Jwr® = wi |, (v, (8%, a®) |, }

+m]§X{\/Edet [HQ’ét(Sk,ak) O (s, ap)wik|| } l|0o, (s 7ak)H2}

)

< G Jwp® = wita |l + Cocapps (36)

where (i) follows from Cauchy-Schwarz inequaltiy and (i) follows from Definition[4.4} Then, we
can get that

E [[|\ Bas, [(6(s,@) Twiin, va, (s,)] [ = AT V7@

SE[(HAIE@,, [(9(s.@) Twirr. o, (s.0))] [, = A VT,

X (H/\tTEde,, [(#(s,a) "wii1, v, (s,a))] ||, + || VI(6)]| )}

=

i)
< (cam+ 1) (2]

wk — wfﬂ Hz} + C¢6app)
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(”) C3 432 U202 10g Ncritic 02
< |(ciB+ — oo 3B+ —¢ 37
- ( ¢ * 1- 7) \/Ncritic +1 * 4)\,24(Ncritic + ]-) * ¢ + 1-— Y Capp> ( )

where (i) follows from Definition[4.4] We substitute Equation (37) into Equation (33)),

(6= 225 290,028 ENN V001

<EAT J(etm] CERTI(6,)] + EE[IIM A2 = IAes — A3

L cz C3 C
4B, << 75t + 2ctC’§,B> (C’gB—F . _¢7> 4 1 ¢ 4 _437 —|—C’5§B —|—20,5C§Beapp Eapp

2 —~ 1
LJﬁt 2 > 4 Cg C; 4B2 U202 IOg Neritic
+ +2¢,C;B | | CyB + + +
Bt (( 2 e ¢ 1_'7 1_7 ]\fcritic‘i‘1 4)\ ( cr1uc+1)
L eBOtB 4B? U(SZC2 log Neritic ZCgB4ﬁtct N C§B2L1Bt '
¢ N, critic + 1 4/\2 ( critic + ) NFC N, actor

2
Since we choose 3; = 8 < L%, c=c < we can guarantee that % — %‘ — 4ctﬁtC§)B > %

1
8C2B°
Then, by rearranging the above inequality, we can have

TN VIO < BRI Orn)) ~ ERTIO)] + L E{IA A3~ [des ~ A3

C? C? C
+8 ((5 +2 ’C;B> (C;”;B +1 _¢7> + 1 _¢7 + 2 +C3B+ 2c’c;Beapp> €app

L=y
L]ﬁ ’ ~2 > 4 Cg 0(125 4B2 U202 10g Neritic
+ — +2JC%B CyB+ + +
ﬂ (( ¢ ¢ 1—x 1—7 Neritie + 1 402 ( critic + 1)
4B2 U202 log Nt 208B*3c  C4B%L;B?
" ﬂC/C¢B 5 & Neritic é B n & 7B '
Ncritic + 1 4)‘A< critic + 1) NFC Nactor
Then, telescoping over t = 0,1,2,...,T — 1 yields,
— 4 < - 2 - -
Z AV IO)IE] < ZEERTTOr) = AT (60)] + Z7El1do = Alls = [Ar = Al

t=0

C? C
(g ) (e Z) e 5 i) o

02 4B2 U2C2 log Ncritic
(52 s avep) (g s o ¢ 8¢
" (( - ¢ ) < ¢ + > - 1- Y Ncritic +1 * 4>\124(Ncritic + ]-)

L 4dCAB 4B? U3C3 1og Nesitc 8CIB* N AC4B?L;p
¢ Ncritic + 1 4>\,24(Ncritic + 1) NFC Nactor .

Lastly, since \j = argminyen [|[ATVJ(6;)||3, we have

1 Tl 1 T2
7 2 BIODTVI@)IE) < 7 D B VI6)]13]
t:O t=0
1 1 8 c
O<67T + “epp N m Nactor * NFC)'

The proof is complete.
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D.2 PROOF OF COROLLARY [4.9]

Since we choose 8 = O(1) and ¢/ = O(1), we have

1 1 1 1
~STE[A) TV o7+ + + o )
Z (16 Dlsl =0(% Nome | Newor | Npc 0P

To achieve an e-accurate Pareto stationary policy, it requires 7 = O(e7!), Nuige = O(e72),
Nactor = O(e7 1), Ngc = O(e™1), and each objective requires O(e~3) samples.
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