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ABSTRACT

Multi-task reinforcement learning (MTRL) has shown great promise in many real-
world applications. Existing MTRL algorithms often aim to learn a policy that
optimizes individual objective functions simultaneously with a given prior prefer-
ence (or weights) on different tasks. However, these methods often suffer from the
issue of gradient conflict such that the tasks with larger gradients dominate the up-
date direction, resulting in a performance degeneration on other tasks. In this paper,
we develop a novel dynamic weighting multi-task actor-critic algorithm (MTAC)
under two options of sub-procedures named as CA and FC in task weight updates.
MTAC-CA aims to find a conflict-avoidant (CA) update direction that maximizes
the minimum value improvement among tasks, and MTAC-FC targets at a much
faster convergence rate. We provide a comprehensive finite-time convergence
analysis for both algorithms. We show that MTAC-CA can find a ϵ+ ϵapp-accurate
Pareto stationary policy using O(ϵ−5) samples, while ensuring a small ϵ+√

ϵapp-
level CA distance (defined as the distance to the CA direction), where ϵapp is the
function approximation error. The analysis also shows that MTAC-FC improves
the sample complexity to O(ϵ−3), but with a constant-level CA distance. Our
experiments on MT10 demonstrate the improved performance of our algorithms
over existing MTRL methods with fixed preference.

1 INTRODUCTION

Reinforcement learning (RL) has made much progress in a variety of applications, such as autonomous
driving, robotics manipulation, and financial trades Deng et al. (2016); Sallab et al. (2017); Gu et al.
(2017). Though the progress is significant, much of the current work is restricted to learning the
policy for one task Mülling et al. (2013); Andrychowicz et al. (2020). However, in practice, the
vanilla RL polices often suffers from performance degradation when learning multiple tasks in a
multi-task setting. To deal with these challenges, various multi-task reinforcement learning (MTRL)
approaches have been proposed to learn a single policy or multiple policies that maximize various
objective functions simultaneously. In this paper, we focus on single-policy MTRL approaches
because of their better efficiency. On the other side, the multi-policy method allows each task to have
its own policy, which requires high memory and computational cost. The objective is to solve the
following MTRL problem:

max
π

J(π) := (J1(π), J2(π), ..., JK(π)), (1)

where K is the total number of tasks and Jk(π) is the objective function of task k ∈ [K] given the
policy π. Typically, existing single-policy MTRL methods aim to find the optimal policy with the
given preference (i.e., the weights over tasks) ). For example, Mannor & Shimkin (2001) developed
a MTRL algorithm considering the average prior preference. The MTRL method in Yang et al.
(2019) trained and saved models with different fixed prior preferences, and then chooses the best
model according to the testing requirement. However, the performance of these approaches highly
depends on the selection of the fixed preference, and can also suffer from the conflict among the
gradient of different objective functions such that some tasks with larger gradients dominates the
update direction at the sacrifice of significant performance degeneration on the less-fortune tasks
with smaller gradients. Therefore, it is highly important to find an update direction that aims to find a
more balanced solution for all tasks.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

There have been a large body of studies on finding a conflict-avoidant (CA) direction to mitigate the
gradient conflict among tasks in the context of supervised multi-task learning (MTL). For example,
multiple-gradient descent algorithm (MGDA) based methods Chen et al. (2023); Cheng et al. (2023)
dynamically updated the weights of tasks such that the deriving direction optimizes all objective
functions jointly instead of focusing only on tasks with dominant gradients. The similar idea was then
incorporated into various follow-up methods such as CAGrad, PCGrad, Nash-MTL and SDMGrad Yu
et al. (2020a); Liu et al. (2021); Navon et al. (2022); Xiao et al. (2023). Although these methods
have been also implemented in the MTRL setting, none of them provide a finite-time performance
guarantee. Then, an open question arises as:

Can we develop a dynamic weighting MTRL algorithm, which not only mitigates the gradient conflict
among tasks, but also achieves a solid finite-time convergence guarantee?

However, addressing this question is not easy, primarily due to the difficulty in conducting sample
complexity analysis for dynamic weighting MTRL algorithms. This challenge arises from the
presence of non-vanishing errors, including optimization errors (e.g., induced by actor-critic) and
function approximation error, in gradient estimation within MTRL. However, existing theoretical
analysis in the supervised MTL requires the gradient to be either unbiased Xiao et al. (2023); Chen
et al. (2023) or diminishing with iteration number Fernando et al. (2022). As a result, the analyses
applicable to the supervised setting cannot be directly employed in the MTRL setting, emphasizing
the necessity for novel developments in this context. Our specific contributions are summarized as
follows.

1.1 CONTRIBUTIONS

In this paper, we provide an affirmative answer to the aforementioned question by proposing a
novel Multi-Task Actor-Critic (MTAC) algorithm, and further developing the first-known sample
complexity analysis for dynamic weighting MTRL.

Conflict-avoidant Multi-task actor-critic algorithm. Our proposed MTAC contains three major
components: the critic update, the task weight update, and the actor update. First, the critic update
is to evaluate policies and then compute the policy gradients for all tasks. Second, we provide two
options for updating the task weights. The first option aims to update the task weights such that the
weighted direction is close to the CA direction (which is defined as the direction that maximizes
the minimum value improvement among tasks). This option enhances the capability of our MTAC
to mitigate the gradient conflict among tasks, but at the cost of a slower convergence rate. As a
complement, we further provide the second option, which cannot ensure a small CA distance (i.e., the
distance to the CA direction as elaborated in Definition 3.1), but allows for a much faster convergence
rate. Third, by combining the policy gradients and task weights in the first and second steps, the actor
then performs an update on the policy parameter.

Sample complexity analysis and CA distance guarantee. We provide a comprehensive sample
complexity analysis for the proposed MTAC algorithm under two options for updating task weights,
which we refer to as MTAC-CA and MTAC-FC (i.e., MTAC with fast convergence). For MTAC-CA,
our analysis shows that it requires O(ϵ−5) samples per task to attain an ϵ + ϵapp-accurate Pareto
stationary point (see definition in Definition 3.2), while guaranteeing a small ϵ +√

ϵapp-level CA
distance, where ϵapp corresponds to the inherent function approximation error and can be arbitrary
small when using a suitable feature function. The analysis for MTAC-FC shows that it can improve
the sample complexity of MTAC-FC from O(ϵ−5) to O(ϵ−3), but with a constant O(1)-level CA
distance. Note that this trade-off between the sampling complexity and CA distance is consistent
with the observation in the supervised setting Chen et al. (2023).

Our primary technical contribution lies in the approximation of the CA direction. Instead of directly
bounding the gap between the weighted policy gradient d̂ and the CA direction d∗ as in the supervised
setting, which is challenging due to the gradient estimation bias, we construct a surrogate direction ds
that equals to the expectation of d̂ to decompose this gap into two distances as ∥ds− d̂∥ and ∥ds−d∗∥,
where the former one can be bounded similarly to the supervised case due to the unbiased estimation,
and the latter can be bounded using the critic optimization error and function approximation error
together (see Appendix C.1 for more details). This type of analysis may be of independent interest to
the theoretical studies for both MTL and MTRL.
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Supportive experiments. We conduct experiments on the MTRL benchmark MT10 Yu et al. (2020b)
and demonstrate that the proposed MTAC-CA algorithm can achieve better performance than existing
MTRL algorithms with fixed preference.

2 RELATED WORKS

MTRL. Existing MTRL algorithms can be mainly categorized into two groups: single-policy MTRL
and multi-policy MTRL Vamplew et al. (2011); Liu et al. (2014). Single-policy methods generally
aim to find the optimal policy with given preference among tasks, and are often sample efficient and
easy to implement Yang et al. (2019). However, they may suffer from the issue of gradient conflict
among tasks. Multi-policy methods tend to learn a set of policies to approximate the Pareto front.
One commonly-used approach is to run a single-policy method for multiple times, each time with a
different preference. For example, Zhou et al. (2020) proposed a model-based envelop value iteration
(EVI) to explore the Pareto front with a given set of preferences. However, most MTRL works focus
on the empirical performance of their methods Iqbal & Sha (2019); Zhang et al. (2021b); Christianos
et al. (2022). In this paper, we propose a novel dynamic weighting MTRL method and further provide
a sample complexity analysis for it.

Actor-critic sample complexity analysis. The sample complexity analysis of the vanilla actor-critic
algorithm with linear function approximation have been widely studied Qiu et al. (2021); Kumar et al.
(2023); Xu et al. (2020); Barakat et al. (2022); Olshevsky & Gharesifard (2022). These works focus
on the single-task RL problem. Some recent works Nian et al. (2020); Reymond et al. (2023); Zhang
et al. (2021a) studied multi-task actor-critic algorithms but mainly on their empirical performance.
The theoretical analysis of multi-task actor-critic algorithms still remains open.

Gradient manipulation based MTL and theory. A variety of MGDA-based methods have been
proposed to solve MTL problems because of their simplicity and effectiveness. One of their primal
goals is to mitigate the gradient conflict among tasks. For example, PCGrad Yu et al. (2020a) avoided
this conflict by projecting the gradient of each task on the norm plane of other tasks. GradDrop Chen
et al. (2020) randomly dropped out conflicted gradients. CAGrad Liu et al. (2021) added a constraint
on the update direction to be close to the average gradient. Nash-MTL Navon et al. (2022) modeled
the MTL problem as a bargain game.

Theoretically, Liu et al. (2014) analyzed the convergence of MGDA for convex objective functions.
Fernando et al. (2022) proposed MoCo by estimating the true gradient with a tracking variable, and
analyzed its convergence in both the convex and nonconvex settings. Chen et al. (2023) provided a
theoretical characterization on the trade-off among optimization, generalization and conflict-avoidance
in MTL. Xiao et al. (2023) developed a provable MTL method named SDMGrad based on a double
sampling strategy, as well as a preference-oriented regularization. This paper provides the first-known
finite-time analysis for such type of methods in the MTRL setting.

3 PROBLEM FORMULATION

We first introduce the standard Markov decision processes (MDPs), represented by M =
(S,A, γ, P, r), where S and A are state and action spaces. γ is discount factor, P denotes the
probability transition kernel, and r : S × A → [0, 1] is the reward function. In this paper, we
study multi-task reinforcement learning (MTRL) in multi-task MDPs. Each task is associated
with a distinct MDP defined as Mk = (S,A, γ, Pk, rk), k = 0, 1, ...,K − 1. The tasks have
the same state and action spaces but different probability transition kernels and reward functions.
The distribution ξk0 is the initial state distribution of task k ∈ [K], where [K] := {1, ...,K}
and s0 ∼ ξk0 . Denote by P := (S × A)K → ∆(SK) the joint transition kernel, where
P(s1

′
, ..., sK

′ |(s1, a1), ..., (sK , aK)) = Πk∈[K]Pk(s
k′ |sk, ak) and the transition kernels of tasks

are independent. A policy π : S → ∆(A) is a mapping from a state to a distribution over the action
space, where ∆(A) is the probability simplex over A. Given a policy π, the value function of task
k ∈ [K] is defined as:

V kπ (s) := E
[ ∞∑
t=0

γtrk(s
k
t , a

k
t )|sk0 = s, π, Pk

]
.

The action-value function can be defined as:

Qkπ(s, a) := E
[ ∞∑
t=0

γt(rk(s
k
t , a

k
t ))|sk0 = s, ak0 = a, π, Pk

]
.

3
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Moreover, the visitation distribution induced by the policy π of task k ∈ [K] is defined as dkπ(s, a) =
(1 − γ)

∑∞
t=0 γ

tP(skt = s, akt = a|sk0 ∼ ξk0 , π, P
k). Denote by dπ ∈ ∆((S)K) the joint visitation

distribution that dπ(s1, a1, ..., sK , aK) = (1− γ)
∑∞
t=0 γ

tP(s1t = s1, a1t = a1, ..., sKt = sK , aKt =
aK |sk0 ∼ ξk0 (·), π,P). Then, it can be shown that dkπ(s, a) is the stationary distribution induced by
the Markov chain with the transition kernel Konda & Tsitsiklis (2003) P̃ (·|s, a) = γP (·|s, a) + (1−
γ)ξk0 (·). For a given policy π, the objective function of task k ∈ [K] is the expected total discounted
reward function: Jk(π) = E

[∑∞
t=0 γ

trk(s
k
t , a

k
t )|sk0 ∼ ξk0 , π, P

k
]
.

In this paper, we parameterize the policy by θ ∈ Θ and get the parameterized policy class {πθ :
θ ∈ Θ}. Denote by ψθ(s, a) = ∇ log πθ(a|s). For convenience, we rewrite Jk(θ) = Jk(πθ) and
dkθ = dkπθ

. The policy gradient ∇Jk(θ) for task k ∈ [K] is Sutton et al. (1999):

∇Jk(θ) = Edkθ
[
Qkπθ

(s, a)ψθ(s, a)
]
. (2)

In this paper, to address the challenge of large-scale problems, we use linear function approximation
to approximate the Q function. Given a policy πθ parameterized by θ ∈ Rm and feature map
ϕk : S × A → Rm for k ∈ [K], we parameterize the Q function of task k ∈ [K] by wk ∈ Rm,
Q̂kπθ

(s, a) := (ϕk(s, a))⊤wk.

Notations: The vector Q(s, a) =
[
Qk(s, a);

]
k∈[K]

∈ RK constitutes the Qk(s, a) for each task k ∈

[K]
(

resp. V (s) =
[
V k(s);

]
k∈[K]

, J(π) =
[
Jk(π);

]
k∈[K]

)
, and the matrix w =

[
wk;

]
k∈[K]

∈
Rm×K constitutes the vector wk ∈ Rm for parameters in each task k ∈ [K]. For a vector x ∈ RK ,
the notation x ≥ 0 means xk ≥ 0 for any k ∈ [K].

One big issue in MTRL problem is gradient conflict, where gradients for different tasks may vary
heavily such that some tasks with larger gradients dominate the update direction at the sacrifice of
significant performance degeneration on the less fortune tasks with smaller gradients Yu et al. (2020a).
To address this problem, we tend to update the policy in a direction that finds a more balanced solution
for all tasks. Specifically, consider a direction ϱ, along which we update our policy. We would like to
choose ϱ to optimize the value function for every individual task. Toward this goal, we consider the
following minimum value improvement among all tasks:

min
k∈[K]

{
1

α

(
Jk(θ + αϱ)− Jk(θ)

)}
≈ min
k∈[K]

〈
∇Jk(θ), ϱ

〉
, (3)

where the “≈" holds assuming α is small by applying the first-order Taylor approximation. We would
like to find a direction that maximizes the minimum value improvement in 3 among all tasks Désidéri
(2012):

max
ϱ∈Rm

min
k∈[K]

{ 1

α

(
Jk(θ + αϱ)− Jk(θ)

)}
− ∥ϱ∥2

2
≈ max
ϱ∈Rm

min
λ∈Λ

〈 K∑
k=1

λk∇Jk(θ), ϱ
〉
− ∥ϱ∥2

2
, (4)

where Λ is the probability simplex over [K]. The regularization term − 1
2∥ϱ∥

2 is introduced here to
control the magnitude of the update direction ϱ. The solution of the min-max problem in equation 4
can be obtained by solving the following problem Xiao et al. (2023):

ϱ∗ = (λ∗)
⊤ ∇J(θ); s.t. λ∗ ∈ argmin

λ∈Λ

1

2

∥∥λ⊤∇J(θ)∥∥2 . (5)

Once we obtain ϱ∗ from equation 5, which is referred to as conflict-avoidant direction, we then update
our policy along this direction.

In our MTRL problem, there exist stochastic noise and function approximation error (due to the use
of function approximation Q̂kπθ

(s, a) := (ϕk(s, a))⊤wk). Therefore, obtaining the exact solution to
equation 5 may not be possible. Denote by ϱ̂ the stochastic estimate of ϱ∗. We define the following
CA distance to measure the divergence between ϱ̂ and ϱ∗.
Definition 3.1. ∥ϱ̂− ϱ∗∥ denotes the CA distance at between ϱ̂ and ϱ∗.

Since conflict-avoidant direction mitigates gradient conflict, the CA distance measures the gap
between our stochastic estimate ϱ̂ to the exact solution ϱ∗. The larger CA distance is, the further ϱ̂
will be away from ρ∗ and more conflict there will be. Thus, it reflects the extent of gradient conflict

4
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of ϱ̂. Our experiments in Table 2 also show that a smaller CA distance yields a more balanced
performance among tasks.

Unlike single-task learning RL problems, where any two policies can be easily ordered based on their
value functions, in MTRL, one policy could perform better on task i, and the other performs better on
task j. To this end, we need the notion of Pareto stationary point defined as follows.
Definition 3.2. If E[minλ∈Λ ∥λ⊤∇J(π)∥2] ≤ ϵ, policy π is an ϵ-accurate Pareto stationary policy.
In this paper, we will investigate the convergence to a Pareto stationary point and the trade-off
between the CA distance and the convergence rate.

4 MAIN RESULTS
In this section, we first provide the design of our Multi-Task Actor-Critic (MTAC) algorithm to find a
Pareto stationary policy and further present a comprehensive finite sample analysis.

4.1 ALGORITHM DESIGN

Our algorithm consists of three major components: (1) critic: policy evaluation via TD(0) to evaluate
the current policy (Line 3 to Line 12); (2) stochastic gradient descent (SGD) to update λ (Line 13 to
Line 14); and (3) actor: policy update along the conflict-avoidant direction (Line 15 to Line 19).

Algorithm 1 Multi-Task Actor-Critic (MTAC)
1: Initialize: θ0, w0, λ0, T,Nactor, Ncritic, NCA, NFC
2: for t = 0 to T − 1 do
3: Critic Update:
4: for k = 1 to K do
5: Sample (sk0 , a

k
0) ∼ dkt

6: for j = 0 to Ncritic − 1 do
7: Observe skj+1 ∼ Pk(·|skj , akj ), rkj ; take action akj+1 ∼ πθt(·|skj+1)

8: Compute the TD error δkj according to equation 6
9: Update wkt,j+1 = TB(wkt,j + αt,jδ

k
j ϕ

k(skj , a
k
j ))

10: end for
11: end for
12: Set wt+1 = wt,Ncritic

13: Option I: Multi-step update for small CA distance : λt+1 = CA(λt, πθt , wt+1, NCA)
14: Option II: Single-step update for fast convergence: λt+1 = FC(λt, πθt , wt+1, NFC)
15: Actor Update:
16: for k = 1 to K do
17: Independently draw (ski , a

k
i ) ∼ dkθt , i ∈ [Nactor]

18: end for
19: Update policy parameter θt+1 according to equation 9
20: end for

Critic update: In the critic part, we use TD(0) to evaluate the current policy for all the tasks. Recall
that there are K feature functions ϕk(·, ·), k ∈ [K] for the K tasks. In Line 8 of Algorithm 1, the
temporal difference (TD) error of task k at step j, δjt , can be calculated based on the critic’s estimated
Q-function of task k, ϕk⊤wt,j and the reward rkj as follows:

δkj =rkj + γ⟨ϕk(skj+1, a
k
j+1), w

k
t,j⟩ − ⟨ϕk(skj , akj ), wkt,j⟩. (6)

Then, in Line 9, a TD(0) update is performed, where TB(v) = argmin∥w∥2≤B ∥v − w∥2, B is some
positive constant and αt,j is the step size. Such a projection is commonly used in TD algorithms
to simplify the analysis, e.g., Qiu et al. (2021); Kumar et al. (2023); Xu et al. (2020); Barakat
et al. (2022); Olshevsky & Gharesifard (2022); Zou et al. (2019). After N iterations, we can obtain
estimates of Q-functions for all tasks.

Weight λ update: To get the accurate direction of policy gradient in MTRL problems, we solve the
problem in equation 5. Recall that there are two targets: small gradient conflict and fast convergence
rate. We then provide two different weight update options: multi-step update for small CA distance
in Algorithm 2 and single-step update for fast convergence in Algorithm 3.

5
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Algorithm 2 Multi-step update for small CA distance (CA)
1: Initialize: λt, πθt , wt+1, NCA; Set λt,0 = λt
2: for k = 1 to K do
3: Independently draw (ski , a

k
i ) ∼ dkθt , i ∈ [NCA]; (ski′ , a

k
i′) ∼ dkθt , i′ ∈ [NCA]

4: end for
5: for i = 0 to NCA − 1 do
6: Update λt,i+1 according to equation 7
7: end for
8: Output λt+1 = λt,NCA

Firstly, the CA subprocedure independently draws 2NCA state-action pairs following the visitation
distribution. The estimated policy gradient of task k by state-action pair (ski , a

k
i )

∇̃Jki (θt) = ϕk(ski , a
k
i )

⊤wkt+1ψθt(s
k
i , a

k
i ).

Then it uses a projected SGD with a warm start initialization and double-sampling strategy to update
the weight λt:

λt,i+1 = TΛ
(
λt,i − ct,iλ

⊤
t,i∇̃Ji(θt)∇̃Ji′(θt)⊤

)
, (7)

where ct,i is the stepsize, ∇̃Ji(θt) =
[
∇̃Jki (θt);

]
k∈[K]

. Weight λt update NCA steps in order to

obtain a premise estimate of λ∗t ∈ argminλ∈Λ ||λ⊤∇J(θt)||2.
Based on Algorithm 2, we can find a Pareto stationary policy with a small CA distance, but it requires
a large sample complexity of NCA = O(ϵ−4) as will be shown in Corollary 4.7. However, we
sometimes may sacrifice in terms of the CA distance in order for an improved sample complexity. To
this end, we also provide an FC subprocedure in Algorithm 3.

Algorithm 3 Single-step update for fast convergence (FC)
1: Initialize: λt, πθt , wt+1, NFC
2: for k = 1 to K do
3: Independently draw (ski , a

k
i ) ∼ dkθt , i ∈ [NFC]; independently draw (ski′ , a

k
i′) ∼ dkθt , i ∈ [NFC]

4: end for
5: Update λt+1 according to equation 8 and output λt+1

In this algorithm, we generate 2NFC samples from the visitation distribution. Alternatively, we only
update λ once using all the samples in an averaged way:

λt+1 = TΛ
(
λt − ctλ

⊤
t ∇̄J(θt)∇̄J(θt)⊤

)
, (8)

where ∇̄J(θt) =
[
∇̄Jk(θt);

]
k∈[K]

and ∇̄Jk(θt) = 1
NFC

∑NFC−1
i=0 ϕk(ski , a

k
i )

⊤wkt+1ψθt(s
k
i , a

k
i )

(resp. ∇̄J ′(θt)).

As will be shown in Corollary 4.9, to guarantee convergence of the algorithm to a Pareto stationary
point, only NFC = O(ϵ−2) samples are needed, which is much less than the CA subprocedure. But
this is at the price of an increased CA distance.

Actor update: For the actor, the policy πθt is updated along the conflict-avoidant direction. Given
the current estimate of λt, θt and ωt, the conflict-avoidant direction is a linear combination of policy
gradients of all tasks.

In Line 17 of Algorithm 1, N state-action pair (skl , a
k
l ), l = 0, ..., Nactor − 1, are drawn from the

visitation distribution dkt . Then the policy gradient for task k is estimated as follows:

∇̃Jk(θt) =
1

Nactor

Nactor−1∑
l=0

ϕk(skl , a
k
l )

⊤wkt+1ψθt(s
k, ak).

Next, combined with the weight λt+1 from Algorithm 2 or Algorithm 3, the policy update direction
can be obtained and the policy can be updated by the following rule:

θt+1 = θt + βtλ
⊤
t ∇̃J(θt). (9)

6
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For technical convenience, we assume samples from the visitation distribution induced by the
transition kernel and the current policy can be obtained. In practice, the visitation distribution can
be simulated by resetting the MDP to the initial state distribution at each time step with probability
1 − γ Konda & Tsitsiklis (2003), however, this only incur an additional logarithmic factor in the
sample complexity.

4.2 THEORETICAL ANALYSIS

We first introduce some standard assumptions and then present the finite-sample analysis of our
proposed algorithms.

4.2.1 ASSUMPTIONS AND DEFINITIONS

Assumption 4.1 (Smoothness). let πθ(a|s) be a policy parameterized by θ. There exist constants
Cϕ = max{Cϕ,1, Cϕ,2} and Cϕ,1, Cϕ,2, Cπ, Lϕ > 0 and such that

1) ||∇ log πθ(a|s)||2 ≤ Cϕ,1 ≤ Cϕ; 2) ||ϕk(sk, ak)||2 ≤ Cϕ,2 ≤ Cϕ for any k ∈ [K];

3) ||πθ(a|s)− πθ′(a|s)||2 ≤ Cπ ∥θ − θ′∥2 ; 4) || log πθ(a|s)− log πθ′(a|s)||2 ≤ Lϕ ∥θ − θ′∥2 .

These assumptions impose the smoothness and boundedness conditions on the policy and feature
function, respectively. These assumptions have been widely adopted in the analysis of RL Qiu et al.
(2021); Kumar et al. (2023); Xu et al. (2020); Barakat et al. (2022); Olshevsky & Gharesifard (2022),
and can be satisfied for many policy classes such as softmax policy class and neural network policy
class.

Assumption 4.2 (Uniform Ergodicity). Consider the MDP with policy πθ and transition kernel P k,
there exist constants m > 0, and ρ ∈ (0, 1) such that

sup
s∈S,a∈A

∥∥P(st, at|s0 = s, πθ, P
k)− dkπθ

(·, ·)
∥∥
T V ≤ mρt,

where ∥·∥T V denotes the total variation distance between two distributions. This ergodicity assump-
tion has been widely used in theoretical RL to prove the convergence of TD algorithms Qiu et al.
(2021); Kumar et al. (2023); Xu et al. (2020); Barakat et al. (2022); Olshevsky & Gharesifard (2022).

Furthermore, we assume that the m feature functions of task k, ϕki , i ∈ [m], k ∈ [K] are linearly
independent. To introduce the function approximation error, we define the matrix Akπθ

and vector bkπθ

as follows:

Akπθ
= Edkθ

[
ϕ(sk, ak)

(
γϕ(sk

′
, ak

′
)− ϕ(sk, ak)

)⊤]
; bkπθ

= Edkθ
[
ϕ(sk, ak)R(sk, ak)

]
. (10)

Denote by w∗k
θ the TD limiting point satisfies:

Akπθ
w∗k
θ + bkπθ

= 0. (11)

Assumption 4.3 (Problem Solvability). For any θ ∈ Θ and task k ∈ [K], the matrix Akπθ
is negative

definite and has the maximum eigenvalue of −λA.

Assumption 4.3 is to guarantee solvability of Equation (11) and is widely applied in the literature Wu
et al. (2020); Zou et al. (2019); Xu et al. (2020). Then, we define the function approximation error
due to the use of linear function approximation in policy evaluation.

Definition 4.4 (Function Approximation Error). The approximation error of linear function approxi-
mation is defined as

ϵapp = max
θ

max
k

√
Edkθ

[(
ϕk(s, a)⊤w∗k

θ −Qkπθ
(s, a)

)2]
.

We note that the error ϵapp is zero if the tabular setting with finite state and action spaces is considered,
and can be arbitrarily small with designed feature functions for large/continuous state spaces.
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4.2.2 THEORETICAL ANALYSIS FOR MTAC-CA

We first provide an upper-bound on the CA distance for our proposed method.

Proposition 4.5. Suppose Assumptions 4.1 and 4.2 are satisfied. We choose ct,i = c√
i
, where c > 0

is a constant and i is the number of iterations for updating λt,i. Then, the CA distance is bounded as:

∥λ⊤t,NCA
∇̂Jwt+1

(θt)− (λ∗t )
⊤∇J(θt)∥ ≤ O

( 1
4
√
NCA

+
1√
Ncritic

+
√
ϵapp

)
,

where ∇̂Jkwt+1
(θt) = Edkθt [ϕ

k(s, a)⊤wkt+1ψθt(s, a)], ∇̂Jwt+1
(θt) =

[
∇̂Jk

wk
t+1

(θt);
]
k∈[K]

.

Proposition 4.5 shows that the CA distance decreases with the numbersNCA andNcritic of iterations on
λ’s update. Based on this important characterization, we obtain the convergence result for MTAC-CA.

Theorem 4.6. Suppose Assumptions 4.1 and 4.2 are satisfied. We choose βt = β ≤ 1
LJ

as a constant
and αt,j = 1

2λA(j+1) , ct,i = c√
i
, where c > 0 is a constant. Then, we have

1

T

T−1∑
t=0

E[∥(λ∗t )⊤∇J(θt)∥2] = O
( 1

βT
+ ϵapp +

β

Nactor
+

1√
Ncritic

+
1

4
√
NCA

)
.

HereLJ is the Lipschitz constant of ∇Jk(θ), which can be found in Appendix A. We then characterize
the sample complexity and CA distance for the proposed MTAC-CA method in the following corollary.

Corollary 4.7. Under the same setting as in Theorem 4.6, choosing β = O(1), T = O(ϵ−1),
Nactor = O(ϵ−1), Ncritic = O(ϵ−2) and NCA = O(ϵ−4), MTAC-CA finds an ϵ+ ϵapp-accurate Pareto
stationary policy while ensuring an O(ϵ+

√
ϵapp) CA distance. Each task uses O(ϵ−5) samples.

The above corollary shows that our MTAC-CA algorithm achieves a sample complexity of O(ϵ−5) to
find an (ϵ+ ϵapp)-accurate Pareto stationary policy. Note that this result improves the complexity of
O(ϵ−6) of SDMGrad in the supervised setting. This is because our algorithm draw O(Ncritic+Nactor+
NFC) samples to estimate the conflict-avoidant direction, which reduces the variance compared with
the approach that only uses one sample.

4.2.3 CONVERGENCE ANALYSIS FOR MTAC-FC

If we could sacrifice a bit on the CA distance, we could further improve the sample complexity to
O(ϵ−3) with the choice of the FC subprocedure.

Theorem 4.8. Suppose Assumption 4.1 and Assumption 4.2 are satisfied. We choose βt = β ≤ 1
LJ

,
ct = c′ ≤ 1

8C2
ϕB

as constants, and αt,j = 1
2λA(j+1) . Then we have

1

T

T−1∑
t=0

E[∥(λ∗t )⊤∇J(θt)∥2] = O
( 1

βT
+

1

c′T
+ ϵapp +

1√
Ncritic

+
β

Nactor
+

c′

NFC

)
.

Though we still need O(Ncritic +Nactor +NFC) samples in Algorithm 3, we do not require an as small
CA distance, which helps to improve the sample complexity to O(ϵ−3) as shown in below.

Corollary 4.9. Under the same setting as in Theorem 4.8, choosing β = O(1), c′ = O(1), T =
O(ϵ−1), Ncritic = O(ϵ−2), Nactor = O(ϵ−1), and NFC = O(ϵ−1), we can achieve an (ϵ + ϵapp)-
accurate Pareto stationary policy and each task uses O(ϵ−3) samples.

The above corollary shows that our MTAC-FC algorithm achieve a sample complexity of O(ϵ−3) to
find an (ϵ+ ϵapp)-accurate Pareto stationary point. In supervised learning, the fast convergence reach
O(ϵ−2) Xiao et al. (2023) sample size to find ϵ-accurate Pareto stationary policy. This is because the
estimation of value function needs more samples.
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5 PROOF SKETCH (MTAC-CA)

Here, we provide a proof sketch for the convergence and CA distance analysis to highlight major

challenges and our technical novelties. We first define λ̂′t = argminλ∈Λ

∥∥∥λ⊤∇̂Jwt+1
(θt)

∥∥∥2
2
. Recall

that

∇̂Jkwt+1
(θt) = Edkθt [ϕ

k(s, a)⊤wkt+1ψθt(s, a)]; ∇̂Jwt+1
(θt) =

[
∇̂Jkwk

t+1
(θt);

]
k∈[K]

.

The first step is to analyze the convergence for the critic updates and shows that E[∥wkt+1−w∗k
t ∥2] =

O
(

1
Ncritic

)
. The next step is to bound the square of the CA distance, which is defined as

∥λ⊤t,NCA
∇̂Jwt+1(θt)− (λ∗t )

⊤∇J(θt)∥2.

Differently from the supervised setting, the estimator ∇̂Jwt+1(θt) here is biased due to the presence
of the function approximation error. Thus, we need to provide new techniques to control this CA
distance, as shown in the following 5 steps.

Step 1 (Error decomposition): First, by introducing a surrogate direction (λ̂′t)
⊤∇̂Jwt+1(θt) and

using the optimality condition that

⟨λ⊤t,NCA
∇J(θt), (λ∗t )⊤∇J(θt)⟩ ≥ ∥(λ∗t )⊤∇J(θt)∥2,

the CA distance can be decomposed into three error terms as follows:

∥λ⊤t,NCA
∇̂Jwt+1(θt)− (λ∗t )

⊤∇J(θt)∥2 ≤ ∥λ⊤t,NCA
∇̂Jwt+1(θt)∥2 − ∥(λ̂′t)⊤∇̂Jwt+1(θt)∥2

+ ∥(λ̂′t)⊤∇̂Jwt+1
(θt)∥2 − ∥(λ∗t )⊤∇J(θt)∥2 − 2⟨λ⊤t,NCA

(∇̂Jwt+1
(θt)−∇J(θt)), (λ∗t )⊤∇J(θt)⟩.

(12)

Step 2 (Gap between λt,NCA and λ̂′t): We bound the error between the direction applied in Algo-
rithm 1 ∥λ⊤t,NCA

∇̂Jwt+1
(θt)∥2 and the surrogate direction ∥(λ̂′t)⊤∇̂Jwt+1

(θt)∥2 (the first line second
and third terms in equation 12). Apply the convergence results of SGD, and we can show that this
error is of the order O( 1√

NCA
).

Step 3 (Gap between λ̂′t and λ∗t ): In this step, we bound the surrogate direction ∥(λ̂′t)⊤∇̂Jwt+1(θt)∥
and CA-direction ∥(λ∗t )⊤∇J(θt)∥ (the second line first and second terms in equation 12), which
are solutions to minimization problems. The term can be decomposed into the critic error and the
function approximation error, and its order is O( 1

Ncritic
+ ϵapp). This is the technique we use to deal

with the gradient bias in MTRL problem.

Step 4 (Bound on the rest terms): The rest terms in equation 12 can be easily bounded by the
function approximation error and the critic error.

Step 5: Combining steps 1-4, we conclude the proof for the CA distance.

Then to show the convergence, we characterize the upper bound of
∥∥(λ∗t )⊤∇J(θt)∥∥2, which is

decomposed into bounds for the CA distance∥∥∥λ⊤t,NCA
∇̂Jwt+1(θt)− (λ∗t )

⊤∇J(θt)
∥∥∥2 ,

and the surrogate direction ∥λ⊤t,NCA
∇̂Jwt+1

(θt)∥2. Those bounds can be derived using the Lipschitz
property of the objective function. This completes the proof.

6 EXPERIMENTS

We conduct experiments on the MT10 benchmark which includes 10 robotic manipulation tasks from
the MetaWorld environment Yu et al. (2020b). The benchmark enables simulated robots to learn a
policy that generalizes to a wide range of daily tasks and environments. We adopt soft Actor-Critic
(SAC) Haarnoja et al. (2018) as the underlying training algorithm. We compare our algorithms with
the single-task learning (STL) with one SAC for each task, Multi-task learning SAC (MTL SAC)

9
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Table 1: Results on MT10 benchmark. Average over 10 random seeds. The success rate and training
time per episode are reported.

METHOD
SUCCESS RATE TIME
(MEAN ± STDERR) (SEC.)

STL 0.90 ± 0.03

MTL SAC 0.49 ± 0.07 3.5
MTL SAC + TE 0.54 ± 0.05 4.1
MH SAC 0.61 ± 0.04 4.6
SOFT MODULARIZATION 0.73 ± 0.04 7.1
PCGRAD 0.72 ± 0.02 11.6
MOCO 0.75 ± 0.05 11.5

MTAC-CA 0.81 ± 0.09 8.3
MTAC-FC 0.76 ± 0.11 6.7

with a shared model Yu et al. (2020b), Multi-headed SAC (MH SAC) with a shared backbone and
task-specific heads Yu et al. (2020b), Multi-task learning SAC with a shared model and task encoder
(MTL SAC + TE) Yu et al. (2020b), Soft Modularization Yang et al. (2020) employing a routing
network to form task-specific policies. Following the experiment setup in Yu et al. (2020b), we train
2 million steps with a batch size of 1280 and repeat each experiment 10 times over different random
seeds. The performance is evaluated once every 10,000 steps and the best average test success rate
over the entire training course and average training time (in seconds) per episode is reported. All our
experiments are conducted on RTX A6000.

The results are presented in Table 1. Evidently, our proposed MTAC-CA which enjoys the benefit
of dynamic weighting outperforms the existing MTRL algorithms with fixed preferences by a large
margin. Our algorithm also achieves a better performance than Soft Modularization, which utilizes
different policies across tasks. It is demonstrated that the algorithms with fixed preferences are less
time-consuming but exhibit poorer performance than Soft Modularization and our algorithms. The
results validate that the MTAC-FC is time-efficient with a similar success rate to Soft Modularization.

Table 2: Results of each task on MT10 benchmark. Rate denotes the average success rate over 10
random seeds, and Ri (i = 0, · · · , 9) denotes the success rate on each task i.

STEPS RATE R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 ∆m% ↓
0 0.75 1.0 1.0 0.3 1.0 0.5 1.0 1.0 0.5 0.6 0.6

5 0.77 1.0 0.9 0.6 1.0 0.8 1.0 1.0 0.3 0.5 0.6 -9.33
10 0.81 1.0 0.8 0.5 1.0 0.8 1.0 1.0 0.5 0.8 0.7 -15.67

As mentioned in Section 4, the CA distance decreases as the number of updates of weight λ
increases. We adopt 0 steps of update as the baseline and compare it to updating 5 steps and
10 steps. To represent the overall performance of a particular method m, we consider using the
metric ∆m%, which is defined as the average per-task performance drop against baseline b: ∆m% =
1
K

∑K
k=1(−1)δk(Mm,k−Mb,k)/Mb,k×100, whereMk refers to the k-th performance measurement,

Mb,k represents the result of metric Mk of baseline b, Mm,k represents the result of metric Mk of
method m, and δk = 1 if a larger value is desired by metric Mk. Therefore, a lower value of ∆m%
indicates that the overall performance is better. Table 2 demonstrates that a smaller CA distance
yields more balanced performance.

7 CONCLUSION

In this paper, we propose two novel conflict-avoidant multi-task actor-critic algorithms named
MTAC-CA and MTAC-FC. We provide a comprehensive convergence rate and sample complexity
analysis for both algorithms, and demonstrate the tradeoff between a small CA distance and improved
sample complexity. Experiments validate our theoretical results. It is anticipated that our theoretical
contribution and the proposed algorithms can be applied to broader MTRL setups.
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A NOTATIONS AND LEMMAS

In this section, we first introduce notations and necessary lemmas in order to help readers understand.

Firstly, we define and recall the notations mas are frequently applied throughout the proof.

We recall that sk ∈ Rm (resp. ak) is the state(action) of task k. The bold symbol s := [sk; ]k∈[K]

(resp. a := [ak; ]k∈[K]). We recall that ϕk(sk, ak) is the feature vector of task k given the state sk

and action ak. The ϕ(s,a) = [ϕk(sk, ak)]k∈[K] (resp. ψ(s,a) = [ψ(sk, ak)]k∈[K]) is the feature
vector compose the feature vector of all tasks.

For convenience, denote by ϕ(s,a)⊤w =
[
ϕk(sk, ak)⊤wk;

]
k∈[K]

and ζ(s,a, θ, w) =〈
ϕ(s,a)⊤w, ψθ(s,a)

〉
=
[(
ϕk(sk, ak)⊤wk

)
ψθt(s

k, ak);
]
k∈[K]

to help understand.

Next, we introduce necessary lemmas which are widely applied throughout the proof.
Proposition A.1 (Lipschitz property Xu et al. (2020)). Under Assumption 4.2 and 4.1, given θ, θ′ ∈ B,
for any task k ∈ [K], the objective function satisfies that:∥∥∇Jk(θ)−∇Jk(θ′)

∥∥
2
≤ LJ ∥θ − θ′∥2 ,

where LJ = 1
(1−γ)2 (4LπCϕ + Lϕ), Lπ = Cπ

2

(
1 + ⌈logρm⌉+ (1− ρ)−1

)
.

Next, we introduce a lemma which is widely used throughout the proof.
Lemma A.2. Suppose there are two functions f(·), g(·) and x∗1 = argmin f(x), x∗2 = argmin g(x),
we have the following inequalities,

|f(x∗1)− g(x∗2)| ≤ max(|f(x∗1)− g(x∗1)|, |f(x∗2)− g(x∗2)|).
Lemma A.3. For any weight vector λ ∈ Λ√

Edθ
[
(λ⊤ ⟨ϕ(s,a),w∗

θ⟩ − λ⊤Qπθ
(s,a))

2
]
≤ ϵapp.

Lemma A.4 (MDPs Variance Bound). Suppose Assumption 4.2 are satisfied, given the policy πθt
and parameter wt+1, sampling (si,ai) ∼ dθt i.i.d., i = 0, 1, ..., N − 1, we can get that∣∣∣∣∣∣E

∥∥∥∥∥ 1

N

N−1∑
i=0

λ⊤t ζ(si,ai,wt+1, θt)

∥∥∥∥∥
2

2

−
∥∥Edθt [λ⊤t ζ(s,a,wt+1, θt)

]∥∥2
2

∣∣∣∣∣∣ ≤ 2C4
ϕB

2

N
.

Due to the linear function approximation error, the estimation of policy gradients is biased. Based on
the biased gradient, the direction of MTRL is biased as well. To bound the bias gap, we define three
functions and optimal direction as follows:

Hθ(λ) = ∥λ⊤Edθ [⟨Qπθ
(s,a),∇ log πθ(s,a)⟩]∥2

λ∗θ = argmin
λ

(Hθ(λ))
2

Ĥθ(λ) = ∥λ⊤Edθ [⟨ϕ(s,a)⊤w∗
θ ,∇ log πθ(s,a)⟩]∥2

λ̂∗θ = argmin
λ
Ĥθ

2
(λ)

Ĥθ

′
(λ) = ∥λ⊤Edθ [⟨ϕ(s,a)⊤wθ,N ,∇ log πθ(s,a)⟩]∥2

λ̂′θ = argmin
λ

(Ĥθ

′
(λ))2. (13)

Here, the first function Hθ(λ) is the unbiased direction loss function and the direction λ∗θ is the
unbiased direction deduced by the unbiased policy gradients. The second function is from the biased
estimated direction loss function, where w∗

θ = [w∗k
θ ; ]k∈[K]. The direction λ̂∗θ is the biased direction

due to approximation error of linear function class. The third function is the direction loss function
according to the update rule in Algorithm 1, where wθ,N is the output after N -step Critic update
iterations. The direction λ̂′θ is the limiting point of equation 7.

For convenience, we rewrite Hθt(λ) = Ht(λ) (resp. Ĥθt(λ) = Ĥt(λ), Ĥ ′
θt
(λ) = Ĥ ′

t(λ)) and
λ∗θt = λ∗t (resp. λ̂∗θt = λ̂∗t and λ̂′θt = λ̂′t) throughout the following proof.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B CRITIC PART: APPROXIMATING THE TD FIXED POINT

In this section, we first provide the convergence analysis of the critic part.
Lemma B.1 (Approximating TD fixed point). Suppose Assumption 4.1 and Assumption 4.2 are
satisfied, for any task k ∈ [K], we have

E[∥wkt+1 − w∗k
t ∥22] ≤

4B2

Ncritic + 1
+
U2
δC

2
ϕ logNcritic

4λ2A(Ncritic + 1)
,

where wkt+1 = wkt,N and Uδ = 1 + (1 + γ)CϕB.

Proof. The analysis of this term follows from Bhandari et al. (2018). Firstly, we do decomposition
of the error term

∥∥wkt,j+1 − w∗k
t

∥∥2
2
:

∥wkt,j+1 − w∗k
t ∥22 =∥TB(wkt,j + αt,jδ

k
j ϕ

k(skj , a
k
j ))− w∗k

t ∥22
(i)

≤∥wkt,j + αt,jδ
k
j ϕ

k(skj , a
k
j )− w∗k

t ∥22
=∥wkt,j − w∗k

t ∥22 + α2
t,j∥δkj ϕk(skj , akj )∥22 + 2αt,j⟨wkt,j − w∗k

t , δ
k
j ϕ

k(skj , a
k
j )⟩,

(14)

where (i) follows from the fact that ∥TB(x)− y∥22 ≤ ∥x− y∥22 when B is a convex set.

We define δk(sk, ak, w, θ) = Rk(sk, ak) + γ(ϕk(sk′, ak′))⊤w− (ϕk(sk, ak))⊤w. According to the
definition of w∗k

t in Equation (10) and Equation (11), w∗k
t satisfies the following equation:

Edkθt [ϕ
k(sk, ak)(Rk(sk, ak) + γ(ϕk(sk

′
, ak

′
))⊤w∗k

t − (ϕk(sk, ak))⊤w∗k
t )] = 0. (15)

We can further get that

Edkθt [ϕ
k(sk, ak)δk(sk, ak, w∗

t , θt)] = 0.

Then for the last term of Equation (14), we take the expectation of it

E[⟨wkt,j − w∗k
t , δ

k
j ϕ

k(skj , a
k
j )⟩]

=E[⟨wkt,j − w∗k
t , δ

k
j ϕ

k(skj , a
k
j )− Edkθt [ϕ

k(sk, ak)δk(sk, ak, w∗
t , θt)]⟩]

=E[⟨wkt,j − w∗k
t , δ

k
j ϕ

k(skj , a
k
j )− Edkθt [ϕ

k(sk, ak)δk(sk, ak, wt, θt)]⟩]

+ E[⟨wkt,j − w∗k
t ,Edkθt [ϕ

k(sk, ak)δk(sk, ak, wt, θt)]− Edkθt [ϕ
k(sk, ak)δk(sk, ak, w∗

t , θt)]⟩]
(i)

≤E[⟨wkt,j − w∗k
t ,Edkθt [ϕ

k(sk, ak)δk(sk, ak, wt, θt)]− Edkθt [ϕ
k(sk, ak)δk(sk, ak, w∗

t , θt)]⟩]
(ii)

≤ − λAE[∥wkt,j − w∗k
t ∥22],

where (i) follows from

E[⟨wkt,j − w∗k
t , δ

k
j ϕ

k(skj , a
k
j )− Edkθt [ϕ

k(sk, ak)δk(sk, ak, wt, θt)]⟩] = 0,

and (ii) follows from that

⟨wkt,j − w∗k
t ,Edkθt [ϕ

k(sk, ak)δk(sk, ak, wt, θt)]− Edkθt [ϕ
k(sk, ak)δk(sk, ak, w∗

t , θt)]⟩

= ⟨wkt,j − w∗k
t ,Edkθt [ϕ

k(sk, ak)
(
Edkθt

[
γϕk(sk

′
, ak

′
)− ϕk(sk, ak)

]) (
wkt,j − w∗k

t

)
]⟩

=
(
wkt,j − w∗k

t

)⊤
Akt
(
wkt,j − w∗k

t

)
(i)

≤ −λA
∥∥wkt,j − w∗k

t

∥∥2
2
,

where we rewrite Akt = Akπθt
for convenience and (i) follows from Assumption 4.3. Then combining

Equation (16) into Equation (14), we can get that

E
[∥∥wkt,j+1 − w∗k

t

∥∥2
2

]
≤ (1− 2αt,jλA)E

[∥∥wkt,j − w∗
t

∥∥2
2

]
+ α2

t,jU
2
δC

2
ϕ.
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By setting the learning rate αt,j = 1
2λA(j+1) , we can obtain

E
[∥∥wkt,j+1 − w∗k

t

∥∥2
2

]
≤ j

j + 1
E
[∥∥wkt,j − w∗

t

∥∥2
2

]
+ U2

δC
2
ϕ

1

4λ2A

1

(j + 1)2
.

Then by rearranging the above inequality, we have

E
[∥∥wkt+1 − w∗k

t

∥∥2
2

]
≤ 1

Ncritic + 1
E
[∥∥wkt,0 − w∗k

t

∥∥2
2

]
+

U2
δC

2
ϕ

4λ2A(Ncritic + 1)

Ncritic+1∑
j=1

1

j + 1

≤ 4B2

Ncritic + 1
+
U2
δC

2
ϕ logNcritic

4λ2A(Ncritic + 1)
.

The proof is complete.

C CONVERGENCE ANALYSIS FOR MTAC-CA AND CA DISTANCE ANALYSIS

In this section, we take both CA distance and convergence into consideration with the choice of
MTAC-CA.
Lemma C.1. Suppose Assumption 4.1 and Assumption 4.2 are satisfied, we have

E
[∣∣∣Ĥt(λ̂

∗
t )− Ĥt

′
(λ̂′t)

∣∣∣] = C2
ϕ

√
4B2

Ncritic + 1
+
U2
δC

2
ϕ logNcritic

4λ2A(Ncritic + 1)
. (16)

Proof. According to Lemma A.2, we can get that∣∣∣Ĥt(λ̂
∗
t )− Ĥt

′
(λ̂′t)

∣∣∣ ≤ max
{∣∣∣Ĥt(λ̂

∗
t )− Ĥt

′
(λ̂∗t )

∣∣∣ , ∣∣∣Ĥt(λ̂
′
t)− Ĥt

′
(λ̂′t)

∣∣∣} . (17)

According to the notations in Equation (13), the first term in Equation (17) can be bounded as:∣∣Ĥt(λ̂
∗
t )− Ĥt

′
(λ̂∗t )|

=
∣∣∣∥∥∥(λ̂∗t )⊤Edθt [ζ(s,a,w∗

t , θt)]
∥∥∥
2
−
∥∥∥(λ̂∗t )⊤Edθt [ζ(s,a,wt+1, θt)]

∥∥∥
2

∣∣∣
≤
∥∥∥(λ̂∗t )⊤Edθt [ζ(s,a,w∗

t −wt+1, θt)]
∥∥∥
2

≤ max
k∈[K]

∥∥Edθt [ϕk(sk, ak)⊤(w∗k − wkt+1)ψθt(s
k, ak)

]∥∥
2

(i)

≤ max
k∈[K]

{
∥ϕk(sk, ak)∥2∥w∗k

t − wkt+1∥2∥ψθt(sk, ak)∥2
}

(ii)

≤ max
k∈[K]

C2
ϕ∥w∗k

t − wkt+1∥2

= C2
ϕ max
k∈[K]

∥w∗k
t − wkt+1∥2,

where (i) follows from Cauchy-Schwartz inequality and (ii) follows from Assumption 4.1.Thus,
taking expectation on both sides, we can obtain,

E
[∣∣∣Ĥt(λ̂

∗
t )− Ĥt

′
(λ̂∗t )

∣∣∣] ≤ C2
ϕ max
k∈[K]

E
[∥∥w∗k

t − wkt+1

∥∥
2

]
≤ C2

ϕ max
k∈[K]

√
E[∥w∗k

t − wkt+1∥22].

Similarly, we can get that

E
[∣∣∣Ĥt(λ̂

′
t)− Ĥt

′
(λ̂′t)

∣∣∣] ≤ C2
ϕ max
k∈[K]

√
E[∥w∗k

t − wkt+1∥22].

Then, combined with Lemma B.1, we can derive

E
[∣∣∣Ĥt(λ̂

∗
t )− Ĥt

′
(λ̂′t)

∣∣∣] ≤ C2
ϕ

√
4B2

Ncritic + 1
+
U2
δC

2
ϕ logNcritic

4λ2A(Ncritic + 1)
.

The proof is complete.
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Lemma C.2. Suppose Assumption 4.1 and Assumption 4.2 are satisfied, we have

E
[∣∣∣Ht(λ

∗
t )− Ĥt(λ̂

∗
t )
∣∣∣] ≤ 2Cϕϵapp,

where ϵapp is defined in Definition 4.4.

Proof. First we apply Lemma A.2,∣∣∣Ht(λ
∗
t )− Ĥt(λ̂

∗
t )
∣∣∣ ≤ max

{∣∣∣Ht(λ
∗
t )− Ĥt(λ

∗
t )
∣∣∣ , ∣∣∣Ht(λ̂

∗
t )− Ĥt(λ̂

∗
t )
∣∣∣} .

Then for the first term in the above equation,∣∣∣Ht(λ
∗
t )− Ĥt(λ

∗
t )
∣∣∣

=
∣∣∣ ∥∥(λ∗t )⊤∇J(θt)∥∥2 − ∥∥∥(λ∗t )⊤∇̂Jw∗

t
(θt)

∥∥∥
2

∣∣∣
≤
∥∥(λ∗t )⊤Edθt [⟨Qπθt

(s,a)− ϕ⊤(s,a)w∗
t , ψθt(s,a)⟩]

∥∥
2

≤max
k

{∥∥∥Edθt [(Qkπθt
(sk, ak)− ϕk(sk, ak)⊤w∗k

t )ψπθt
(sk, ak)

]∥∥∥
2

}
(i)

≤Cϕmax
k

{∥∥∥Edθt [Qkπθt
(sk, ak)− ⟨ϕk(sk, ak), w∗k

t ⟩]
∥∥∥
2

}
≤Cϕmax

k

√
Edθt

[
∥Qkπθt

(sk, ak)− ⟨ϕk(sk, ak), w∗k
t ⟩∥22

]
(ii)

≤Cϕϵapp,

where (i) follows from Assumption 4.1 and (ii) follows from Definition 4.4. Then for the term∣∣∣Ht(λ̂
∗
t )− Ĥt(λ̂

∗
t )
∣∣∣, we can follow similar steps and the following inequality can be derived∣∣∣Ht(λ̂

∗
t )− Ĥt(λ̂

∗
t )
∣∣∣ ≤ Cϕϵapp.

Therefore, we can obtain

E
[∣∣∣Ht(λ

∗
t )− Ĥt(λ̂

∗
t )
∣∣∣] ≤ 2Cϕϵapp.

The proof is complete.

C.1 PROOF OF PROPOSITION 4.5

CA distance. Now we show the upper bound for the distance to CA direction. Recall that we define

the CA distance as
∥∥∥λ⊤t,NCA

∇̂Jwt+1(θt)− (λ∗t )
⊤∇J(θt)

∥∥∥2
2
,

∥λ⊤t,NCA
∇̂Jwt+1

(θt)− (λ∗t )
⊤∇J(θt)∥2

=∥Edθt [λ
⊤
t,NCA

〈
ϕ⊤(s,a)wt+1, ψθt(s,a)

〉
]− Edθt [(λ

∗
t )

⊤Qπt(s,a)ψθt(s,a)]∥22
=∥Edθt [λ

⊤
t,NCA

〈
ϕ⊤(s,a)wt+1, ψθt(s,a)

〉
]∥22 + ∥Edθt [(λ

∗
t )

⊤Qπt(s,a)ψθt(s,a)]∥22
− 2⟨Edθt [λ

⊤
t,NCA

〈
ϕ⊤(s,a)wt+1, ψθt(s,a)

〉
],Edθt [(λ

∗
t )

⊤Qπt(s,a)ψθt(s,a)]⟩
=∥Edθt [λ

⊤
t,NCA

〈
ϕ⊤(s,a)wt+1, ψθt(s,a)

〉
]∥22 + ∥Edθt [(λ

∗
t )

⊤Qπt(s,a)ψθt(s,a)]∥22
− 2⟨Edθt [λ

⊤
t,NCA

Qπt(s,a)ψθt(s,a)],Edθt [(λ
∗
t )

⊤Qπt(s,a)ψθt(s,a)]⟩
− 2⟨Edθt [λ

⊤
t,NCA

(⟨ϕ(s,a),wt+1⟩ −Qπt(s,a))ψθt(s,a)],Edθt [(λ
∗
t )

⊤Qπt(s,a)ψθt(s,a)]⟩
(i)

≤∥Edθt [λ
⊤
t,NCA

〈
ϕ⊤(s,a)wt+1, ψθt(s,a)

〉
]∥22 − ∥Edθt [(λ

∗
t )

⊤Qπt(s,a)ψθt(s,a)]∥22
−2⟨Edθt [λ

⊤
t,NCA

(⟨ϕ(s,a),wt+1⟩ −Qπt(s,a))ψθt(s,a)],Edθt [(λ
∗
t )

⊤Qπt(s,a)ψθt(s,a)]⟩

≤
∥∥Edθt [λ⊤t,NCA

〈
ϕ⊤(s,a)wt+1, ψθt(s,a)

〉]∥∥2
2
−
∥∥∥Edθt [(λ̂′t)⊤ 〈ϕ⊤(s,a)wt+1, ψθt(s,a)

〉]∥∥∥2
2︸ ︷︷ ︸

term I
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+ ∥Edθt [(λ̂
′
t)

⊤ 〈ϕ⊤(s,a)wt+1, ψθt(s,a)
〉
]∥22 − ∥Edθt [(λ

∗
t )

⊤Qπt(s,a)ψθt(s,a)]∥22
− 2⟨Edθt [λ

⊤
t,NCA

(⟨ϕ(s,a),wt+1⟩ −Qπt(s,a))ψθt(s,a)],Edθt [(λ
∗
t )

⊤Qπt(s,a)ψθt(s,a)]⟩,

where (i) follows from the optimality condition that

⟨λt,NCA , (Q
πt(s,a)ψθt(s,a)

⊤Qπt(s,a)ψθt(s,a)λ
∗
t ⟩

≥⟨λ∗t , (Qπt(s,a)ψθt(s,a)
⊤Qπt(s,a)ψθt(s,a)λ

∗
t ⟩ = ∥(λ∗t )⊤Qπt(s,a)ψθt(s,a)∥22. (18)

Next, we bound the term I as follows:

term I

=
∥∥Edθt [λ⊤t,NCA

〈
ϕ⊤(s,a)wt+1, ψθt(s,a)

〉]∥∥2
2
−
∥∥∥Edθt [(λ̂′t)⊤ 〈ϕ⊤(s,a)wt+1, ψθt(s,a)

〉]∥∥∥2
2

(i)

≤
(2
c
+ 2cC1

)2 + logNCA√
NCA

, (19)

where (i) follows from Theorem 2 Shamir & Zhang (2013) since the gradient estimator is unbiased,
supλ,λ′ ∥λ−λ′∥ ≤ 1, E[∥(ϕ(s,a)⊤wt+1ψθt(s,a))

⊤(ϕ(s,a)⊤wt+1ψθt(s,a)λ̂
′
t∥] ≤ C4

ϕB
2 = C1,

and ct,i = c√
i
. Then, the last term can be bounded as follows:

∥Edθt [(λ̂
′
t)

⊤ 〈ϕ⊤(s,a)wt+1, ψθt(s,a)
〉
]∥22 − ∥Edθt [(λ

∗
t )

⊤Qπt(s,a)ψθt(s,a)]∥22
− 2⟨Edθt [λ

⊤
t,NCA

(⟨ϕ(s,a),wt+1⟩ −Qπt(s,a))ψθt(s,a)],Edθt [(λ
∗
t )

⊤Qπt(s,a)ψθt(s,a)]⟩
(i)

≤
∣∣∥Edθt [(λ̂′t)⊤ 〈ϕ⊤(s,a)wt+1, ψθt(s,a)

〉
]∥2 − ∥Edθt [(λ

∗
t )

⊤Qπt(s,a)ψθt(s,a)]∥2
∣∣

× (∥Edθt [(λ̂
′
t)

⊤ 〈ϕ⊤(s,a)wt+1, ψθt(s,a)
〉
]∥2 + ∥Edθt [(λ

∗
t )

⊤Qπt(s,a)ψθt(s,a)]∥2)
+ 2∥Edθt [λ

⊤
t,NCA

(⟨ϕ(s,a),wt+1⟩ −Qπt(s,a))ψθt(s,a)]∥2∥Edθt [(λ
∗
t )

⊤Qπt(s,a)ψθt(s,a)]∥2
(ii)

≤C4
ϕB

2|Ĥ ′
t(λ̂

′
t)−Ht(λ

∗
t )|+

2C2
ϕ

1− γ
ϵapp

(iii)

≤ C6
ϕB

2

√
4B2

Ncritic + 1
+
U2
δC

2
ϕ logNcritic

4λ2A(Ncritic + 1)
+

2C2
ϕ

1− γ
ϵapp,

where (i) follows from the inequality that ∥A∥22 − ∥B∥22 ≤ |∥A∥2 − ∥B∥2|(∥A∥2 + ∥B∥2) and
Cauchy-Schwartz inequality. (ii) follows from the definition in Equation (13). (iii) follows from
Lemma C.1. Then we apply Lemma C.2, we can derive

∥Edθt [λ
⊤
t,NCA

〈
ϕ⊤(s,a)wt+1, ψθt(s,a)

〉
]−Edθt [(λ

∗
t )

⊤Qπt(s,a)ψθt(s,a)]∥

= O
(

1
4
√
NCA

+
1√
Ncritic

+
√
ϵapp

)
.

The proof is complete.
Theorem C.3 (Restatement of Theorem 4.6). Suppose Assumption 4.1 and Assumption 4.2 are
satisfied. We choose βt = β ≤ 1

LJ
as a constant and ct,i = c√

i
where i is the iteration number for

updating λt,i, and we have

1

T

T−1∑
t=0

E[∥(λ∗t )⊤∇J(θt)∥22] = O
( 1

βT
+ ϵapp +

β

Nactor
+

1√
Ncritic

+
1

4
√
NCA

)
.

Proof. We first define a fixed simplex λ̄ = [λ̄1, λ̄2, ..., λ̄K ]. According to the Proposition A.1, for
each task k ∈ [K], we have

Jk(θt) ≤ Jk(θt+1)− ⟨∇Jk(θt), θt+1 − θt⟩+
LJ
2
∥θt+1 − θt∥22,

where k ∈ [K]. Then by multiplying λ̄k on both sides and summing over k, we can obtain,

λ̄⊤J(θt) ≤ λ̄⊤J(θt+1)− ⟨λ̄⊤∇J(θt), θt+1 − θt⟩+
LJ
2
∥θt+1 − θt∥22, (20)
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then recalling from Algorithm 1, we have the update rule

θt+1 =θt + βt
1

Nactor

Nactor−1∑
l=0

λ⊤t+1⟨ϕ(sl,al)⊤wt+1, ψθt(sl,al)⟩

=θt + βt
1

Nactor

Nactor−1∑
l=0

λ⊤t+1ζ(sl,al, θt,wt+1).

Thus for the third term, we have

E[∥θt+1 − θt∥22] =E[∥θt+1 − θt∥22 − β2
t ∥λ⊤t+1E [ζ(s,a, θt,wt+1)] ∥22]

+ β2
t ∥λ⊤t+1E [ζ(s,a, θt,wt+1)] ∥22

≤β2
tE

∥∥∥∥∥ 1

Nactor

Nactor−1∑
l=0

ζ(sl,al, θt,wt+1)

∥∥∥∥∥
2

2

−
∥∥λ⊤t+1E [ζ(s,a, θt,wt+1)]

∥∥2
2


+ β2

t ∥E [ζ(s,a, θt,wt+1)]∥22
(i)

≤β2
t

2C4
ϕB

2

Nactor
+ β2

t ∥E [ζ(s,a, θt,wt+1)]∥22 , (21)

where (i) follows from Lemma A.4. Then for the second term in Equation (20), we take the
expectation of it,

−E[⟨λ̄⊤∇J(θt), θt+1 − θt⟩]
=− E[⟨λ̄⊤Edθt [Qπθt

(s,a)ψθt(s,a)], θt+1 − θt⟩]
=− E[⟨Edθt [λ̄

⊤(Qπθt
(s,a)− ⟨ϕ(s,a),w∗

t ⟩)ψθt(s,a)], θt+1 − θt⟩]
− E[⟨Edθt [λ̄

⊤⟨ϕ(s,a),w∗
t −wt+1⟩ψθt(s,a)], θt+1 − θt⟩]

− E[⟨Edθt [λ̄
⊤ 〈ϕ(s,a)⊤wt+1, ψθt(s,a)

〉
], θt+1 − θt⟩]

(i)

≤βtC3
ϕB
∣∣Edθt [Qπθt

(s,a)− ⟨ϕ(s,a),w∗
t ⟩]
∣∣+ βtC

4
ϕB max

k∈[K]
E[∥w∗k

t − wkt+1∥2]

− βtE[⟨λ̄⊤Edθt [
〈
ϕ(s,a)⊤wt+1, ψθt(s,a)

〉
],Edθt [λ

⊤
t+1

〈
ϕ(s,a)⊤wt+1, ψθt(s,a)

〉
]⟩]

≤βtC3
ϕB
√
∥Edθt [Qπθt

(s,a)− ⟨ϕ(s,a),w∗
t ⟩]∥22 + βtC

4
ϕB max

k∈[K]
E[∥w∗k

t − wkt+1∥2]

− βtE[⟨λ̄⊤Edθt [
〈
ϕ(s,a)⊤wt+1, ψθt(s,a)

〉
],Edθt [(̂λ

′
t)

⊤ 〈ϕ(s,a)⊤wt+1, ψθt(s,a)
〉
]⟩]

+ βtE[⟨λ̄⊤Edθt [
〈
ϕ(s,a)⊤wt+1, ψθt(s,a)

〉
],Edθt [(λ̂

′
t − λt+1)

⊤ 〈ϕ(s,a)⊤wt+1, ψθt(s,a)
〉
]⟩]

(ii)

≤ βtC
3
ϕBϵapp + βtC

4
ϕB

√
4B2

Ncritic + 1
+
U2
δC

2
ϕ logNcritic

4λ2A(Ncritic + 1)
− βtE[∥λ̂′t⟨ϕ(s,a)wt+1⟩ψθt(s,a)∥22]

+ βtE[C2
ϕB∥(λ̂′t − λt+1)

⊤ 〈ϕ(s,a)⊤wt+1, ψθt(s,a)
〉
∥2], (22)

where (i) follows from Assumption 4.1, (ii) follows from Lemma A.3, Lemma B.1 and optimality
condition

E[⟨λ̄⊤Edθt [
〈
ϕ(s,a)⊤wt+1, ψθt(s,a)

〉
],Edθt [(̂λ

′
t)

⊤ 〈ϕ(s,a)⊤wt+1, ψθt(s,a)
〉
]⟩]

≥E[∥λ̂′t⟨ϕ(s,a)⊤wt+1, ψθt(s,a)⟩∥22].
Again, according to the Theorem 2 in Shamir & Zhang (2013) following the same choice of step size
ct,i in Equation (19), we can obtain,

E[∥(λ̂′t−λt+1)
⊤ 〈ϕ(s,a)⊤wt+1, ψθt(s,a)

〉
∥22]

≤E[∥λ⊤t+1Edθt [
〈
ϕ(s,a)⊤wt+1, ψθt(s,a)

〉
]∥22]− E[∥(λ̂′t)⊤Edθt [⟨ϕ(s,a)

⊤wt+1, ψθt (s,a)⟩]∥22]

≤
(
2

c
+ 2cC1

)
2 + logNCA√

NCA
.
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Thus, we can derive

−E[⟨λ̄⊤∇J(θt), θt+1 − θt⟩]

≤βtC3
ϕBϵapp + βtC

4
ϕB

√
4B2

Ncritic + 1
+
U2
δC

2
ϕ logNcritic

4λ2A(Ncritic + 1)
+ βtC

2
ϕB

√(2
c
+ 2cC1

)2 + logNCA√
NCA

− βtE[∥λ̂′t⟨ϕ(s,a)⊤wt+1, ψθt(s,a)⟩∥22]. (23)

Then combining Equation (23) and Equation (21) into Equation (20), we can obtain that,

E[λ̄⊤J(θt)] ≤ E[λ̄⊤J(θt+1)]− βtE[∥λ̂′tE[
〈
ϕ⊤(s,a)wt+1, ψθt(s,a)

〉
]∥22]

+
LJβ

2
t

2
E[∥λ̂′t⟨ϕ(s,a)⊤wt+1, ψθt(s,a)⟩∥22] + β2

t

LJC
4
ϕB

2

Nactor
+ βtC

3
ϕBϵapp

+ βtC
4
ϕB

√
4B2

Ncritic + 1
+
U2
δC

2
ϕ logNcritic

4λ2A(Ncritic + 1)
+ βtC

2
ϕB

√(2
c
+ 2cC1

)2 + logNCA√
NCA

. (24)

We set βt = β ≤ 1
LJ

as a constant. Then, we rearrange and telescope over t = 0, 1, 2, ..., T − 1,

1

T

T∑
t=0

E[∥λ̂′tE[
〈
ϕ⊤(s,a)wt+1, ψθt(s,a)

〉
]∥22] ≤

2

βT
E[λ̄⊤J(θT )− λ̄⊤J(θ0)] + β

2LJC
4
ϕB

2

Nactor

+ 2C3
ϕBϵapp + 2C4

ϕB

√
4B2

Ncritic + 1
+
U2
δC

2
ϕ logNcritic

4λ2A(Ncritic + 1)
+ 2C2

ϕB

√(2
c
+ 2cC1

)2 + logNCA√
NCA

.

(25)

Then we consider our target E[∥λ∗t∇J(θt)∥22] , we can derive

E[∥(λ∗t )⊤∇J(θt)∥22]

=E[∥(λ∗t )⊤∇J(θt)∥22]− E[∥(λ̂∗t )⊤Edθt [⟨ϕ(s,a)
⊤w∗

t , ψθt(s,a)⟩]∥22]

+ E[∥(λ̂∗t )⊤Edθt [⟨ϕ(s,a)
⊤w∗

t , ψθt(s,a)⟩]∥22]− E[∥(λ̂′t)⊤Edθt [⟨ϕ(s,a)
⊤w∗

t , ψθt(s,a)⟩]∥22]

+ E[∥(λ̂′t)⊤Edθt [⟨ϕ(s,a)
⊤wt+1ψθt(s,a)⟩]∥22]

≤2C2
ϕB(|H∗

t (λ
∗
t )− Ĥt(λ̂

∗
t )|+ |Ĥt(λ̂

∗
t )− Ĥ ′

t(λ̂
′
t)|)

+ E[∥(λ̂′t)⊤Edθt [⟨ϕ(s,a)
⊤wt+1, ψθt(s,a)⟩]∥22]. (26)

Then summing over t = 0, 1, 2, ..., T − 1 of the above inequality, we can get

1

T

T−1∑
t=0

E[∥(λ∗t )⊤∇J(θt)∥22]

≤ 1

T

T−1∑
t=0

(
2C2

ϕB(|H∗
t (λ

∗
t )− Ĥt(λ̂

∗
t )|+ |Ĥt(λ̂

∗
t )− Ĥ ′

t(λ̂
′
t)|)
)

+
1

T

T−1∑
t=0

E
[
∥(λ̂′t)⊤Edθt [⟨ϕ(s,a)

⊤w∗
t , ψθt(s,a)⟩]∥22

]
(i)

≤2C4
ϕB

√
4B2

Ncritic + 1
+
U2
δC

2
ϕ logNcritic

4λ2A(Ncritic + 1)
+ 2C3

ϕBϵapp

+
1

T

T−1∑
t=0

E
[
∥(λ̂′t)⊤Edθt [⟨ϕ(s,a)

⊤w∗
t , ψθt(s,a)⟩]∥22

]
(ii)

≤ 2

βT
E[λ̄⊤J(θ0)− λ̄⊤J(θT )] + 2C4

ϕB

√
4B2

Ncritic + 1
+
U2
δC

2
ϕ logNcritic

4λ2A(Ncritic + 1)
+ β

2LJC
4
ϕB

2

Nactor
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+ 4C3
ϕBϵapp + 2C4

ϕB

√
4B2

Ncritic + 1
+
U2
δC

2
ϕ logNcritic

4λ2A(Ncritic + 1)
+ 2C2

ϕB

√(2
c
+ 2cC1

)2 + logNCA√
NCA

,

where (i) follows from the Lemmas C.1 and C.2 and (ii) follows from the Equation (26). Lastly,
above all, we can derive

1

T

T−1∑
t=0

E[∥(λ∗t )⊤∇J(θt)∥22] = O
( 1

βT
+ ϵapp +

β

Nactor
+

1√
Ncritic

+
1

4
√
NCA

)
.

The proof is complete.

C.2 PROOF OF COROLLARY 4.7

Since we choose β = O(1), we have

1

T

T−1∑
t=0

E[∥(λ∗t )⊤∇J(θt)∥2] = O
( 1

βT
+ ϵapp +

β

Nactor
+

1√
Ncritic

+
1

4
√
NCA

)
.

To achieve an ϵ-accurate Pareto stationary policy, it requires NCA = O(ϵ−4), Ncritic = O(ϵ−2),
Nactor = O(ϵ−1), and T = O(ϵ−1) and each objective requires O(ϵ−5) samples. Meanwhile,
according to the choice of Nactor, Ncritic, NCA, and T , CA distance takes the order of O(ϵ+

√
ϵapp)

simultaneously.

D CONVERGENCE ANALYSIS FOR MTAC-FC

When we do not have requirements on CA distance, we can have a much lower sample complexity.
In Algorithm 1, CA subprocedure for λt update is to reduce the CA distance, which increases the
sample complexity. Thus, we will choose Algorithm 3 to make Algorithm 1 more sample-efficient.

D.1 PROOF OF THEOREM 4.8

Theorem D.1 (Restatement of Theorem 4.8). Suppose Assumption 4.1 and Assumption 4.2 are
satisfied. We choose βt = β ≤ 1

LJ
, ct = c′ ≤ 1

8C2
ϕB

, and αt,j = 1
2λa(j+1) as constant, and we have

1

T

T−1∑
t=0

E[∥(λ∗t )⊤∇J(θt)∥22] = O
( 1

βT
+

1

c′T
+ ϵapp +

1√
Ncritic

+
β

Nactor
+

c′

NFC

)
.

Proof. According to the descent lemma, we have for any task k ∈ [K],

Jk(θt) ≥ Jk(θt+1) + ⟨∇Jk(θt), θt+1 − θt⟩ −
LJ
2
∥θt+1 − θt∥22. (27)

Then we multiply fix weight λ̄k on both sides and sum all inequalities, we can obtain

λ̄⊤J(θt) ≥λ̄⊤J(θt+1) + ⟨λ̄⊤∇J(θt), θt+1 − θt⟩ −
LJ
2
∥θt+1 − θt∥22

=λ̄⊤J(θt+1) + βt

〈
λ̄⊤∇J(θt),

1

Nactor

Nactor−1∑
l=0

λ⊤t
〈
ϕ(sl,al)

⊤wt+1, ψθt(sl,al)
〉〉

− LJ
2
β2
t

∥∥∥∥∥ 1

Nactor

Nactor−1∑
l=0

λ⊤t
〈
ϕ(sl,al)

⊤wt+1, ψθt(sl,al)
〉∥∥∥∥∥

2

2

.

Then following the similar steps in Equation (21), we can get

λ̄⊤J(θt+1)

≥ λ̄⊤J(θt) + βt

〈
λ̄⊤∇J(θt), λ⊤t

(
Edπθ

[⟨ϕ(s,a)⊤w∗
t , ψθt(s,a)⟩]−∇J(θt)

)〉
+ βt

〈
λ̄⊤∇J(θt),

21
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λ⊤t Edθt [⟨ϕ(s,a)
⊤w∗

t , ψθ(s,a)⟩]− λ⊤t Edθt [⟨ϕ(s,a)
⊤wt+1, ψθ(s,a)⟩]

〉
+ βt〈

λ̄⊤∇J(θt),
1

Nactor

Nactor−1∑
l=0

λ⊤t ⟨ϕ(sl,al)⊤wt+1, ψθt(sl,al)⟩ − λ⊤t Edθt [⟨ϕ(s,a)
⊤w∗

t , ψθ(s,a)⟩]

〉

+ βt⟨λ̄⊤∇J(θt), λ⊤t ∇J(θt)⟩ −
LJ
2
β2
t

∥∥∥∥∥ 1

Nactor

Nactor−1∑
l=0

λ⊤t
〈
ϕ(sl,al)

⊤wt+1, ψθt(sl,al)
〉∥∥∥∥∥

2

2

≥ λ̄⊤J(θt+1) + βt

〈
λ̄⊤∇J(θt), λ⊤t

(
Edπθ

[⟨ϕ(s,a)⊤w∗
t , ψθt(s,a)⟩]−∇J(θt)

)〉
+ βt

〈
λ̄⊤∇J(θt),

1

Nactor

Nactor−1∑
l=0

λ⊤t ⟨ϕ(sl,al)⊤wt+1, ψθt(sl,al)⟩ − λ⊤t Edθt [⟨ϕ(s,a)
⊤w∗

t , ψθ(s,a)⟩]

〉

+ βt⟨λ̄⊤∇J(θt), λ⊤t ∇J(θt)⟩ − βt
C2
ϕ

1− γ
max
k

{∥∥wkt+1 − w∗k∥∥
2

}
− LJ

2
β2
t

∥∥∥∥∥ 1

Nactor

Nactor−1∑
l=0

λ⊤t
〈
ϕ(sl,al)

⊤wt+1, ψθt(sl,al)
〉∥∥∥∥∥

2

2

.

Then we take expectations on both sides

E[λ̄⊤J(θt)]
(i)

≥ E[λ̄⊤J(θt+1)] + βtE[⟨λ̄⊤∇J(θt), λ⊤t Edθt [⟨ϕ(s,a)
⊤w∗

t , ψθt(s,a)⟩]− λ⊤t ∇J(θt)⟩]

+ βtE[∥λ⊤t ∇J(θt)∥22] + βtE[⟨(λ̄− λt)
⊤∇J(θt), λ⊤t ∇J(θt)]−

C2
ϕβt

1− γ
max
k

{
E
[∥∥wkt+1 − w∗k∥∥

2

]}
− LJβ

2
t

2
E

∥∥∥∥∥ 1

Nactor

Nactor−1∑
l=0

λt
〈
ϕ(sl,al)

⊤wt+1, ψθt(sl,al)
〉∥∥∥∥∥

2

2


(ii)

≥ E[λ̄⊤J(θt+1)]− βt E[⟨λ̄⊤∇J(θt), λ⊤t ∇J(θt)− λ⊤t Edθt [⟨ϕ(s,a)
⊤w∗

t , ψθt(s,a)⟩]⟩]︸ ︷︷ ︸
term I

− βt E[⟨(λt − λ̄)⊤∇J(θt), λ⊤t ∇J(θt)]︸ ︷︷ ︸
term II

−
C2
ϕβt

1− γ

√ 4B2

Ncritic + 1
+
U2
δC

2
ϕ logNcritic

4λ2A(Ncritic + 1)


+ βtE[∥λ⊤t ∇J(θt)∥22]− β2

t

LJC
4
ϕB

2

Nactor
− LJβ

2
t

2

∥∥Edθt [λ⊤t ⟨ϕ(s,a)⊤wt+1, ψθt(s,a)⟩]
∥∥2
2
, (28)

where (i) follows from that

E
[〈
λ̄⊤∇J(θt),

1

Nactor
Nactor−1∑
l=0

λ⊤t ⟨ϕ(sl,al)⊤wt+1, ψθt(sl,al)⟩ − λ⊤t Edπθ
[⟨ϕ(s,a)⊤wt+1, ψθ(s,a)⟩]

〉]
= 0.

(ii) follows from Lemma A.4.

Then, we bound the term I as follows:

term I ≤ max
k∈[K]

{
E
[∥∥∇Jk(θt)∥∥2 Edkπθt

[∥∥∥ϕk(sk, ak)⊤wkt+1 −Qkπθt
(sk, ak)

∥∥∥
2

∥∥ψθt(sk, ak)∥∥2]]}
(i)

≤
C2
ϕ

1− γ
max
k∈[K]

{√
E
[
Edkπθt

[∥∥∥ϕk(sk, ak)⊤wkt+1 −Qkπθt
(sk, ak)

∥∥∥2
2

]]}
(ii)

≤
C2
ϕϵapp

1− γ
, (29)
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where (i) follows from that
∥∥∇Jk(θt)∥∥2 =

∥∥∥Edkπθt

[
Qkπθt

(sk, ak)ψθt(s
k, ak)

]∥∥∥
2
≤ Cϕ

1
1−γ . (ii)

follows from Definition 4.4.

Then, consider the term II, we have

term II = E[⟨λt − λ̄, (∇J(θt))⊤(λ⊤t ∇J(θt))⟩]

= E

[〈
λt − λ̄,

(
∇J(θt)−

1

NFC

NFC−1∑
j=0

⟨ϕ(sj ,aj)⊤w∗
t , ψθt(aj |sj)⟩

)⊤
(λ⊤t ∇J(θt))

〉]

+ E

[〈
λt − λ̄,

( 1

NFC

NFC−1∑
j=0

⟨ϕ(sj ,aj)⊤(w∗
t −wt+1), ψθt(aj |sj)⟩

)⊤
(λ⊤t ∇J(θt))

〉]

+ E

[〈
λt − λ̄,

( 1

NFC

NFC−1∑
j=0

⟨ϕ(sj ,aj)⊤wt+1, ψθt(aj |sj)⟩
)⊤

·
(
λ⊤t ∇J(θt)− λ⊤t

1

NFC

NFC−1∑
l=0

⟨ϕ(sl,al)⊤w∗
t , ψθt(al|sl)⟩

)〉]

+ E

[〈
λt − λ̄,

( 1

NFC

NFC−1∑
j=0

⟨ϕ(sj ,aj)⊤wt+1, ψθt(aj |sj)⟩
)⊤

·
(
λ⊤t

1

NFC

NFC−1∑
l=0

⟨ϕ(sl,al)⊤(w∗
t −wt+1), ψθt(al|sl)⟩

)〉]

+ E

[〈
λt − λ̄,

( 1

NFC

NFC−1∑
j=0

⟨ϕ(sj ,aj)⊤wt+1, ψθt(aj |sj)⟩
)⊤

·
(
λ⊤t

1

NFC

NFC−1∑
l=0

⟨ϕ(sl,al)⊤wt+1, ψθt(al|sl)⟩
)〉]

(i)

≤ Cϕ
1− γ

ϵapp +
C2
ϕ

1− γ
max
k∈[K]

E[∥w∗k
t − wkt+1∥2] + C3

ϕBϵapp + E

[〈
λt − λ̄,

( 1

NFC

NFC−1∑
j=0

⟨ϕ(sj ,aj)⊤wt+1, ψθt(aj |sj)⟩
)⊤(

λ⊤t
1

NFC

NFC−1∑
l=0

⟨ϕ(sl,al)⊤wt+1, ψθt(al|sl)⟩
)〉]

,

(30)

where (i) follows from Assumption 4.1 and Definition 4.4. Then we consider the last term of the
above inequality. We first follow the non-expansive property of projection onto the convex set

∥λt+1 − λ̄∥22

≤

∥∥∥∥∥λt−λ̄−ctλ⊤
t

(
1

NFC

∑NFC−1

j=0 ⟨ϕ(sj ,aj)
⊤wt+1,ψθt (aj |sj)⟩

)(
1

NFC

∑NFC−1

l=0 ⟨ϕ(sl,al)
⊤wt+1,ψθt (al|sl)⟩

)⊤
∥∥∥∥∥

2

2

=∥λt − λ̄∥22

+ c2t

∥∥∥∥∥λ⊤
t

(
1

NFC

∑NFC−1

j=0 ⟨ϕ(sj ,aj)
⊤wt+1,ψθt (aj |sj)⟩

)(
1

NFC

∑NFC−1

l=0 ⟨ϕ(sl,al)
⊤wt+1⟩ψθt (al|sl)⟩

)⊤
∥∥∥∥∥

2

2︸ ︷︷ ︸
term A

− 2ct

〈
λt−λ̄,λ⊤

t

(
1

NFC

∑NFC−1

j=0 ⟨ϕ(sj ,aj)
⊤wt+1,ψθt (aj |sj)⟩

)(
1

NFC

∑NFC−1

l=0 ⟨ϕ(sl,al)
⊤wt+1,ψθt (al|sl)⟩

)⊤
〉

︸ ︷︷ ︸
term B

.

(31)
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For term A, we have

term A

≤c2t
∥∥∥λ⊤t 1

NFC

NFC−1∑
j=0

⟨ϕ(sj ,aj)⊤wt+1, ψθt(aj |sj)⟩
∥∥∥2
2

∥∥∥ 1

NFC

NFC−1∑
l=0

⟨ϕ(sl,al)⊤wt+1, ψθt(al|sl)
∥∥∥2
2

(i)

≤c2tC2
ϕB
∥∥∥λ⊤t 1

NFC

NFC−1∑
j=0

⟨ϕ(sj ,aj)⊤wt+1, ψθt(aj |sj)⟩
∥∥∥2
2

≤2c2tC
2
ϕB
∥∥∥λ⊤t 1

NFC

NFC−1∑
j=0

⟨ϕ(sj ,aj)⊤w∗
t , ψθt(aj |sj)⟩

∥∥∥2
2

+ 2c2tC
2
ϕB
∥∥∥λ⊤t 1

NFC

NFC−1∑
j=0

⟨ϕ(sj ,aj)⊤(wt+1 −w∗
t ), ψθt(aj |sj)⟩

∥∥∥2
2
, (32)

where (i) follows from Assumption 4.1. Then we take expectations on both sides,

E[term A] ≤2c2tC
2
ϕBE

[∥∥∥λ⊤t 1

NFC

NFC−1∑
j=0

⟨ϕ(sj ,aj)⊤(wt+1 −w∗
t ), ψθt(aj |sj)⟩

∥∥∥2
2

]

+ 4c2tC
2
ϕBE

[∥∥∥λ⊤t 1

NFC

NFC−1∑
j=0

⟨(ϕ(sj ,aj)⊤w∗
t ⟩ −Qθt(sj ,aj)), ψθt(aj |sj)⟩

∥∥∥2
2

]

+ 4c2tC
2
ϕBE

[∥∥∥λ⊤t 1

NFC

NFC−1∑
j=0

Qθt(sj ,aj)ψθt(aj |sj)
∥∥∥2
2
− ∥λ⊤t ∇J(θt)∥22

]
+ 4c2tC

2
ϕBE[∥λ⊤t ∇J(θt)∥22]

(i)

≤2c2tC
4
ϕB max

k∈[K]
E[∥wkt+1 − w∗k

t ∥22] + 4c2tC
4
ϕBE[∥⟨ϕ(sj ,aj),w∗

t ⟩ −Qθt(sj ,aj)∥22]

+
4c2tC

8
ϕB

4

NFC
+ 4c2tC

2
ϕBE[∥λ⊤t Edθt [ζ (s,a, θt,wt+1)] ∥22]

(ii)

≤ 2c2tC
4
ϕB

(
4B2

Ncritic + 1
+
U2
δC

2
ϕ logNcritic

4λ2A(Ncritic + 1)

)
+ 4c2tC

2
ϕBϵ

2
app +

4c2tC
8
ϕB

4

NFC

+ 4c2tC
2
ϕBE[∥λ⊤t Edθt

[〈
ϕ(s,a)⊤wt+1, ψθt(s,a)

〉]
∥22],

where (i) follows from Assumption 4.1 and Xu & Gu (2020) and (ii) follows from Lemma B.1 and
Definition 4.4. Then for term B, we have

E[term B]

=2ctE
[
⟨λt − λ̄,

( 1

NFC

NFC−1∑
j=0

⟨ϕ(sj ,aj)⊤wt+1, ψθt(aj |sj)⟩
)⊤

·
(
λ⊤t

1

NFC

NFC−1∑
l=0

⟨ϕ(sl,al)⊤wt+1, ψθt(al|sl)⟩
)]

≤E[∥λt − λ̄∥22 − ∥λt+1 − λ̄∥22] + 2c2tC
4
ϕB

(
4B2

Ncritic + 1
+
U2
δC

2
ϕ logNcritic

4λ2A(Ncritic + 1)

)
+ 4c2tC

2
ϕBϵ

2
app

+
4c2tC

8
ϕB

4

NFC
+ 4c2tC

2
ϕBE

[
∥λ⊤t Edθt

[〈
ϕ(s,a)⊤wt+1, ψθt(s,a)

〉]
∥22
]
. (33)

Then we substitute Equation (33) into Equation (30), we can derive:

βtterm II = βtE[⟨λt − λ̄, (∇J(θt))⊤(λ⊤t ∇J(θt))⟩]
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≤βt
Cϕ

1− γ
ϵapp + βt

C2
ϕ

1− γ
max
k∈[K]

E[∥w∗k
t − wkt+1∥2] +

βt
2ct

E[∥λt − λ̄∥22 − ∥λt+1 − λ̄∥22]

+ βtctC
4
ϕB

(
4B2

Ncritic + 1
+
U2
δC

2
ϕ logNcritic

4λ2A(Ncritic + 1)

)
+ 2βtctC

2
ϕBϵ

2
app + βtC

3
ϕBϵapp +

2βtctC
8
ϕB

4

NFC

+ 2βtctC
2
ϕBE[∥λ⊤t Edθt

[〈
ϕ(s,a)⊤wt+1, ψθt(s,a)

〉]
∥22]. (34)

Plug Equation (29) and Equation (34) in Equation (28), we can get that

βtE[∥λ⊤t ∇J(θt)∥22]

≤ E[λ̄⊤J(θt+1)]− E[λ̄⊤J(θt)] + βtterm I + βtterm II + β2
t

LJC
4
ϕB

2

Nactor

+
LJβ

2
t

2

∥∥λ⊤t Edθt [⟨ϕ(s,a)⊤wt+1, ψθt(s,a)⟩]
∥∥2
2
+
C2
ϕβt

1− γ

√ 4B2

Ncritic + 1
+
U2
δC

2
ϕ logNcritic

4λ2A(Ncritic + 1)


≤ E[λ̄J(θt+1)]− E[λ̄J(θt)] + βt

(
C2
ϕ

1− γ
+

Cϕ
1− γ

+ C3
ϕB + 2ctC

2
ϕBϵapp

)
ϵapp

+
βt
2ct

E[∥λt − λ̄∥22 − ∥λt+1 − λ̄∥22]+ctC4
ϕBβt

(
4B2

Ncritic + 1
+
U2
δC

2
ϕ logNcritic

4λ2A(Ncritic + 1)

)

+
C2
ϕβt

1− γ

√
4B2

Ncritic + 1
+
U2
δC

2
ϕ logNcritic

4λ2A(Ncritic + 1)
+

2C6
ϕB

4βtct

NFC
+
C4
ϕB

2LJβ
2
t

Nactor

+

(
LJβ

2
t

2
+ 2βtctC

2
ϕB

)
E[∥λ⊤t Edθt

[〈
ϕ(s,a)⊤wt+1, ψθt(s,a)

〉]
∥22]. (35)

Next, we consider the bound between
∥∥λ⊤t Edθt [〈ϕ(s,a)⊤wt+1, ψθt(s,a)

〉]∥∥2
2
−
∥∥λ⊤t ∇J(θt)∥∥22:∥∥λ⊤t Edθt [〈ϕ(s,a)⊤wt+1, ψθt(s,a)

〉]∥∥
2
−
∥∥λ⊤t ∇J(θt)∥∥2

=
∥∥λ⊤t Edθt [〈ϕ(s,a)⊤wt+1, ψθt(s,a)

〉]∥∥
2
−
∥∥λ⊤t Edθt [〈ϕ(s,a)⊤w∗

t , ψθt(s,a)
〉]∥∥

2

+
∥∥λ⊤t Edθt [〈ϕ(s,a)⊤w∗

t , ψθt(s,a)
〉]∥∥

2
−
∥∥λ⊤t ∇J(θt)∥∥2

≤
∥∥λ⊤t Edθt [〈ϕ(s,a)⊤(w∗

t −wt+1), ψθt(s,a)
〉]∥∥

2

+
∥∥λ⊤t Edθt [〈Qθt(s,a)− ϕ(s,a)⊤w∗

t , ψθt(s,a)
〉]∥∥

2

(i)

≤ max
k

{∥∥ϕk(sk, ak)∥∥
2

∥∥w∗k
t − wkt+1

∥∥
2

∥∥ψθt(sk, ak)∥∥2}
+max

k

{√
Edθt

[∥∥Qkθt(sk, ak)− ϕ⊤(sk, ak)w∗k
t

∥∥2
2

] ∥∥ψθt(sk, ak)∥∥2
}

(ii)

≤ C2
ϕ

∥∥w∗k
t − wkt+1

∥∥
2
+ Cϕϵapp, (36)

where (i) follows from Cauchy-Schwarz inequaltiy and (ii) follows from Definition 4.4. Then, we
can get that

E
[∥∥λ⊤t Edθt [〈ϕ(s,a)⊤wt+1, ψθt(s,a)

〉]∥∥2
2
−
∥∥λ⊤t ∇J(θt)∥∥22]

≤ E
[(∥∥λ⊤t Edθt [〈ϕ(s,a)⊤wt+1, ψθt(s,a)

〉]∥∥
2
−
∥∥λ⊤t ∇J(θt)∥∥2)

×
(∥∥λ⊤t Edθt [〈ϕ(s,a)⊤wt+1, ψθt(s,a)

〉]∥∥
2
+
∥∥λ⊤t ∇J(θt)∥∥2)]

(i)

≤
(
C2
ϕB +

Cϕ
1− γ

)(
C2
ϕE
[∥∥w∗k

t − wkt+1

∥∥
2

]
+ Cϕϵapp

)
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(ii)

≤

(
C4
ϕB +

C3
ϕ

1− γ

)√
4B2

Ncritic + 1
+
U2
δC

2
ϕ logNcritic

4λ2A(Ncritic + 1)
+

(
C3
ϕB +

C2
ϕ

1− γ

)
ϵapp, (37)

where (i) follows from Definition 4.4. We substitute Equation (37) into Equation (35),(
βt −

LJβ
2
t

2
− 2βtctC

2
ϕB
)
E[∥λ⊤t ∇J(θt)∥22]

≤ E[λ̄⊤J(θt+1)]− E[λ̄⊤J(θt)] +
βt
2ct

E[∥λt − λ̄∥22 − ∥λt+1 − λ̄∥22]

+ βt

((
LJβt
2

+ 2ctC
2
ϕB

)(
C3
ϕB +

C2
ϕ

1− γ

)
+

C2
ϕ

1− γ
+

Cϕ
1− γ

+ C3
ϕB + 2ctC

2
ϕBϵapp

)
ϵapp

+ βt

((
LJβt
2

+ 2ctC
2
ϕB

)(
C4
ϕB +

C3
ϕ

1− γ

)
+

C2
ϕ

1− γ

)√
4B2

Ncritic + 1
+
U2
δC

2
ϕ logNcritic

4λ2A(Ncritic + 1)

+ ctβtC
4
ϕB

(
4B2

Ncritic + 1
+
U2
δC

2
ϕ logNcritic

4λ2A(Ncritic + 1)

)
+

2C6
ϕB

4βtct

NFC
+
C4
ϕB

2LJβ
2
t

Nactor
.

Since we choose βt = β ≤ 1
LJ

, ct = c′ ≤ 1
8C2

ϕB
, we can guarantee that βt

2 − β2
t

2 − 4ctβtC
2
ϕB ≥ β

4 .
Then, by rearranging the above inequality, we can have

β

4
E[∥λ⊤t ∇J(θt)∥22] ≤ E[λ̄⊤J(θt+1)]− E[λ̄⊤J(θt)] +

β

2c′
E[∥λt − λ̄∥22 − ∥λt+1 − λ̄∥22]

+ β

((
LJβ

2
+ 2c′C2

ϕB

)(
C3
ϕB +

C2
ϕ

1− γ

)
+

C2
ϕ

1− γ
+

Cϕ
1− γ

+ C3
ϕB + 2c′C2

ϕBϵapp

)
ϵapp

+ β

((
LJβ

2
+ 2c′C2

ϕB

)(
C4
ϕB +

C3
ϕ

1− γ

)
+

C2
ϕ

1− γ

)√
4B2

Ncritic + 1
+
U2
δC

2
ϕ logNcritic

4λ2A(Ncritic + 1)

+ βc′C4
ϕB

(
4B2

Ncritic + 1
+
U2
δC

2
ϕ logNcritic

4λ2A(Ncritic + 1)

)
+

2C6
ϕB

4βc′

NFC
+
C4
ϕB

2LJβ
2

Nactor
.

Then, telescoping over t = 0, 1, 2, ..., T − 1 yields,

1

T

T−1∑
t=0

E[∥λ⊤t ∇J(θt)∥22] ≤
4

βT
E[λ̄⊤J(θT )− λ̄⊤J(θ0)] +

2

c′T
E[∥λ0 − λ̄∥22 − ∥λT − λ̄∥22]

+ 4

((
LJβ

2
+ 2c′C2

ϕB

)(
C3
ϕB +

C2
ϕ

1− γ

)
+

C2
ϕ

1− γ
+

Cϕ
1− γ

+ C3
ϕB + 2c′C2

ϕBϵapp

)
ϵapp

+ 4

((
LJβ

2
+ 2c′C2

ϕB

)(
C4
ϕB +

C3
ϕ

1− γ

)
+

C2
ϕ

1− γ

)√
4B2

Ncritic + 1
+
U2
δC

2
ϕ logNcritic

4λ2A(Ncritic + 1)

+ 4c′C4
ϕB

(
4B2

Ncritic + 1
+
U2
δC

2
ϕ logNcritic

4λ2A(Ncritic + 1)

)
+

8C6
ϕB

4c′

NFC
+

4C4
ϕB

2LJβ

Nactor
.

Lastly, since λ∗t = argminλ∈Λ ∥λ⊤∇J(θt)∥22, we have

1

T

T−1∑
t=0

E[∥(λ∗t )⊤∇J(θt)∥22] ≤
1

T

T−1∑
t=0

E[∥λ⊤t ∇J(θt)∥22]

= O
( 1

βT
+

1

c′T
+ ϵapp +

1√
Ncritic

+
β

Nactor
+

c′

NFC

)
.

The proof is complete.
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D.2 PROOF OF COROLLARY 4.9

Since we choose β = O(1) and c′ = O(1), we have

1

T

T−1∑
t=0

E[∥(λ∗t )⊤∇J(θt)∥22] = O
( 1

T
+

1√
Ncritic

+
1

Nactor
+

1

NFC
+ ϵapp

)
.

To achieve an ϵ-accurate Pareto stationary policy, it requires T = O(ϵ−1), Ncritic = O(ϵ−2),
Nactor = O(ϵ−1), NFC = O(ϵ−1), and each objective requires O(ϵ−3) samples.
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