
Under review as a conference paper at ICLR 2023

VQR: AUTOMATED SOFTWARE VULNERABILITY RE-
PAIR THROUGH VULNERABILITY QUERIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Recently, automated vulnerability repair (AVR) approaches have been widely
adopted to combat the increasing number of software security issues. In particular,
transformer-based models achieve competitive results. While existing models are
learned to generate vulnerability repairs, existing AVR models lack a mechanism
to provide their models with the precise location of vulnerable code (i.e., models
may generate repairs for the non-vulnerable areas). To address this problem, we
base our framework on the vision transformer(VIT)-based approaches for object
detection that learn to locate bounding boxes via the cross-matching between ob-
ject queries and image patches. We cross-match vulnerability queries and their
corresponding vulnerable code areas through the cross-attention mechanism to
generate more accurate repairs. To strengthen our cross-matching, we propose
to learn a novel vulnerability query mask that greatly focuses on vulnerable code
areas and integrate it into the cross-attention. Moreover, we also incorporate the
vulnerability query mask into the self-attention to learn embeddings that empha-
size the vulnerable areas of a program. Through an extensive evaluation using
the real-world 5,417 vulnerabilities, our approach outperforms all of the baseline
methods by 2.68%-32.33%. The training code and pre-trained models are avail-
able at https://github.com/AVR-VQR/VQR.

1 INTRODUCTION

Software vulnerabilities are security flaws, glitches, or weaknesses found in software code that could
lead to a severe system crash or be leveraged as a threat source by attackers (CSRC, 2020). Accord-
ing to National Vulnerability Database (NVD), the number of vulnerabilities discovered yearly has
increased from 6,447 in 2016 to 20,156 in 2021 and 18,017 vulnerabilities have been found in 2022.
This trend indicates more vulnerabilities are being discovered and released every year, meaning that
there will be more workloads for security analysts to track down and patch those vulnerabilities.
In particular, it may take 58 days on average to fix a vulnerability based on vulnerability statistics
reported in 2022 (Edgescan, 2022). Recently, Deep Learning (DL)-based approaches have been pro-
posed to automate the vulnerability repair process by learning the representation of vulnerable pro-
grams and generating repair patches accordingly, which may potentially accelerate manual security
analysis processes. Specifically, the transformer architecture has been widely adopted to generate
accurate vulnerability patches that repair the vulnerable code automatically (Chen et al., 2022; Chi
et al., 2022; Berabi et al., 2021; Fu et al., 2022). The attention-based transformer is shown to be
more effective than RNNs because its self-attention mechanism learns global dependencies when
scanning through each word embedding rather than processing input sequentially.

For the software vulnerability repair (SVR) problem, awareness and attention to the vulnerable
code areas including vulnerable statements are crucially important. This further helps to guide an
SVR model to emphasize and focus more on the vulnerable statements for producing better repairs.
However, it is challenging because the vulnerable areas locate spatially in a source code. Toward this
challenge, we observe that object detection in computer vision intuitively shares a similar concept to
vulnerability repair because both approaches need to localize specific items in the input. Particularly,
by linking the vulnerable code areas in a source code to the objects in an image, we hope to borrow
the principles from the VIT-based objection detection approaches (Carion et al., 2020; Zhu et al.,
2020; Wang et al., 2021a) to propose a novel solution for the SVR problem.

1

https://github.com/AVR-VQR/VQR

Under review as a conference paper at ICLR 2023

HN

⊕
̂An

Adec

WQ
i WK

i WV
i WO

n

CAT

CAT

Object Queries

No
Object

Vulnerability Queries

No
Object

No
Repair

No
Repair

Use object queries to locate bounding boxes Use vulnerability queries to locate vulnerable code

Object Detection Vulnerability Localization

Vulnerable
Code Block

Vulnerable
Code Block

Vulnerable Source Code

Figure 1: Intuitively, not all code tokens in a program need to be repaired and the repair can be
in multiple areas. Similarly, not all pixels in an image has objects and the objects can appear in
multiple locations in an image. Thus, in object detection, object queries are used in VIT-based
approaches (Carion et al., 2020; Zhu et al., 2020; Wang et al., 2021a) to predict bounding boxes
and locate objects. With a similar principle of object detection, we leverage vulnerability queries
to attend more to the vulnerable code tokens in the vulnerable code areas and generate repairs for
them.

Specifically, our approach is inspired by the VIT-based approaches for object detection (Carion
et al., 2020; Zhu et al., 2020; Wang et al., 2021a) where we connect detecting spatial objects in
an image for predicting bounding boxes to localizing vulnerable code tokens in a source code for
generating the repair tokens. Our model consists of a vulnerability repair encoder to produce code
token embeddings for code tokens and a vulnerability repair decoder to generate repair tokens.
Similar to the object queries in the VIT-based approaches for object detection aiming to attend
to objects in an image for predicting the corresponding bounding boxes, we devise vulnerability
queries (VQ) aiming to attend to the vulnerable areas in a source code for predicting repair tokens.
Additionally, the cross-attention mechanism employed in the vulnerability repair decoder assists the
VQs in cross-matching and paying more attention to the vulnerable code areas.

Furthermore, for real-world software vulnerabilities, not all code tokens in a source code are con-
sidered vulnerable, meaning that only some of the code tokens are likely to be more vulnerable
than the others (Nguyen et al., 2021; Fu & Tantithamthavorn, 2022). To strengthen the attention of
the VQs to the vulnerable code areas or code tokens, we train an additional model to learn a vul-
nerability mask. Specifically, given a source code, the vulnerability mask has significantly higher
vulnerability scores for the vulnerable code tokens. We then apply the vulnerability mask to both
the vulnerability repair encoder/decoder to enrich our approach, named Vulnerability Query based
Software Vulnerability Repair (VQR). Finally, Figure 1 presents a conceptual overview of our VQR.

In summary, our contributions are (i) a novel vulnerability repair framework based on object detec-
tion that uses vulnerability queries to generate repair patches; (ii) a novel vulnerability query mask
that facilitates the repair model to locate vulnerable code tokens more accurately during vulnera-
bility query; (iii) a comprehensive evaluation of our proposed approach against other automated
vulnerability repair approaches using a benchmark dataset including real-world vulnerabilities.

2 RELATED WORK

Automated Vulnerability Repair (AVR) is a task that uses machine learning models to gener-
ate repair patches for vulnerable programs. RNN-based models such as SequenceR (Chen et al.,
2019) have been proposed to encode the vulnerable programs and decode corresponding repairs se-
quentially. SequenceR used Bi-LSTMs as encoders with unidirectional LSTMs to generate repairs.
Recently, attention-based Transformer models have been leveraged in the AVR domain, which was
shown to be more accurate than RNNs. For instance, VRepair (Chen et al., 2022) relied on an
encoder-decoder Transformer with transfer learning using the bug-fix data to boost the performance
of the vulnerability repair on C/C++ programs. SeqTrans (Chi et al., 2022) constructed code se-
quences by considering data flow dependencies of programs and leveraged an identical architecture
as VRepair. On the other hand, Berabi et al. (2021) proposed to use a T5 model pre-trained on
natural language corpus (i.e., T5-large (Raffel et al., 2020)) to fix JavaScript programs and Fu et al.
(2022) utilized a T5 model pre-trained on source code (i.e., CodeT5 (Wang et al., 2021b)) to re-
pair C/C++ programs. Additionally, Mashhadi & Hemmati (2021) applied the CodeBERT (Feng
et al., 2020) model to repair Java bugs. Those large pre-trained language models have demonstrated

2

Under review as a conference paper at ICLR 2023

strong improvement over RNNs and non-pretrained transformers because the pre-training steps help
the models gain better initial weights for the vulnerability repair downstream task than training from
scratch. DLFix (Li et al., 2020) and CURE (Jiang et al., 2021) were proposed to generate vulner-
ability repairs that satisfy test cases. Thus, complete repaired functions are required to train and
evaluate models and the problem statement is different from ours described in Section 3.1. Differ-
ent from the sequence-based methods mentioned above, Dinella et al. (2020) proposed to learn the
graph transformation based on the Abstract Syntax Tree (AST) of source code, which used GNNs
to represent the program and LSTMs to generate repairs for JavaScript programs.

Vulnerable Function — CWE-787 (Out-of-bounds Write)
41 41 GPMF_ERR IsValidSize(GPMF_stream *ms, uint32_t size)

42 42 {

43 43 if (ms)

44 44 {

- 45 int32_t nestsize = (int32_t)ms->nest_size[ms->nest_level];

46 46 if (nestsize == 0 && ms->nest_level == 0)

47 47 nestsize = ms->buffer_size_longs;

50 50 }

51 51 return GPMF_ERROR_BAD_STRUCTURE;

52 52 }

Subword-tokens of the vulnerable function

['GP', 'MF', '_', 'ERR', 'IsValid', 'Size', '(', 'GP', 'MF', '_', 'stream', '*', 'ms', ',',
'uint', '32', '_', 't', 'size', ')', '{', 'if', '(', 'ms', ')', '{', 'int', '32', '_', 't', 'nest', 'size',
'=', '(', 'int', '32', '_', 't', ')', 'ms', '->', 'nest', '_', 'size', '[', 'ms', '->', 'nest', '_',
'level', '];', 'if', '(', 'nest', 'size', '==', '0', '&&', 'ms', '->', 'nest', '_', 'level', '==', '0',
')', 'nest', 'size', '=', 'ms', '->', 'buffer', '_', 'size', '_', 'l', 'ongs', ';', 'if', '(', 'size',
'+', '2', '<=', 'nest', 'size', ')', 'return', 'GP', 'MF', '_', 'OK', ';', '}', 'return', 'GP',
'MF', '_', 'ERROR', '_', 'BAD', '_', 'STRUCT', 'URE', ';', '}']

Subword-tokens of the vulnerability repair

['ms', ')', '{', 'uint', '32', '_', 't', 'nestsize', '=', '(', 'uint', '32', '_', 't', ')', 'ms', '->']

Repaired Function
41 41 GPMF_ERR IsValidSize(GPMF_stream *ms, uint32_t size)

42 42 {

43 43 if (ms)

44 44 {

+ 45 uint32_t nestsize = (uint32_t)ms->nest_size[ms->nest_level];

46 46 if (nestsize == 0 && ms->nest_level == 0)

47 47 nestsize = ms->buffer_size_longs;

50 50 }

51 51 return GPMF_ERROR_BAD_STRUCTURE;

52 52 }

Figure 2: (CWE-787 Out-of-bounds Write) A real-world example (GoPro, 2019) of vulnerability
in a C function is caused by an inappropriate variable type definition, which could lead to serious
security breaches or system crashes. The left column presents the vulnerable function where below
are sub-word tokens xi used as input for our repair model. It can be seen that only some of the
tokens highlighted in red (i.e., tokens corresponding to Line 45) are vulnerable. The right column
presents the corresponding repaired function where below are sub-word tokens yi as the repair patch
output by our repair model.

3 OUR PROPOSED APPROACH

3.1 PROBLEM STATEMENT

Assuming we have a source code data set consisting of vulnerable source code functions along
with corresponding repair patches that repair the vulnerable parts of those functions. We denote
the data set as D =

{
(x1, y1), ..., (xN , yN)

}
, where xi is a vulnerable function and yi is its repair

patch. Note that each yi is not a complete function but a patch used to repair the vulnerable part in
the corresponding xi as shown in Figure 2. The mapping between xi and yi has been completed
by Chen et al. (2022) through parsing the code difference between the vulnerable and the fixed
version of the source functions. In this paper, we leverage BPE algorithm (Sennrich et al., 2016) to
tokenize xi and consider xi as a sequence of code tokens denoted as xi = [t1, t2, ..., tn] where the
code token tj , j = 1, ..., n could be a clean token or vulnerable token (i.e., the tokens highlighted in
red in Figure 2). Similarly, a repair patch yi = [r1, ..., rk] where yi consists of k number of repair
tokens rj , j = 1, ..., k. Each code token tj and repair token rj will be embedded into a vector for the
model to learn its representation as detailed in Section 3.2. We define this problem as a sequence-to-
sequence code generation task with an objective to capture vulnerable code tokens in xi to generate
corresponding repair patch yi.

3.2 VULNERABILITY QUERY BASED SOFTWARE VULNERABILITY REPAIR

Our approach is inspired by the VIT-based approaches (Carion et al., 2020; Zhu et al., 2020; Wang
et al., 2021a) for object detection where we link detecting spatial objects in an image for predicting

3

Under review as a conference paper at ICLR 2023

Vulnerability
Repair

Encoders

Input

r0 = SR

VQ1

r1 r2 r3 rk rk+1 = ER

Linear Layer

r1 r2 rk−1

…

rk

…
HL

enc M(xi)

xi

Vulnerability Query Mask M(xi)

VQ2 VQ3 VQk VQk+1

…Cross-Attention
with Vulnerability Mask

Vulnerability Repair Decoders

Figure 3: An overview architecture of our VQR approach. Input tokens xi = [t1, ..., tn] and a
vulnerability query mask M(xi) are input to repair encoders that output the embeddings of input
tokens HL

enc, wherein M(xi) helps to emphasize the vulnerable embeddings. In repair decoders,
each vulnerability query V Qi is initialized from the previous repair token ri−1, which is forwarded
through multiple decoder layers followed by a linear layer to generate a repair token ri. In each
repair decoder, a cross-attention with M(xi) to emphasize vulnerable embeddings is leveraged to
cross-match V Qi and HL

enc and generate repairs corresponding to the vulnerable tokens.

bounding boxes to localizing vulnerable code tokens in a source code for generating the repair
tokens. Our model consists of an encoder to produce code token embeddings for code tokens and a
decoder to generate repair tokens.

Both encoder and decoder are developed based on the transformer architecture (Vaswani et al.,
2017). The main component of the encoder is multi-head self-attentions with the aim to learn code
token embeddings. Similar to DeTR (Carion et al., 2020), the decoder utilizes both multi-head self-
attentions and cross-attentions. The purpose of the cross-attentions is to cross-match vulnerability
queries and their corresponding vulnerable code tokens in a vulnerable area. Ideally, when vul-
nerability queries achieve good matches with their vulnerable code tokens, they possess sufficient
information to generate repair tokens.

Additionally, to orient the matching process for attending more to vulnerable code tokens inside
a source code, we propose to learn a vulnerability query mask and apply it to both the encoder
self-attention and decoder cross-attention mechanism. Particularly, we rely on the information of
vulnerable tokens to train an additional model that outputs the possibility of a code token being a
vulnerable token. We then base on these vulnerable scores to conduct a vulnerability query mask.

In what follows, we present the technicality of the vulnerability repair encoder, the vulnerability
repair decoder, and how to conduct and incorporate vulnerability query masks into our framework.

3.2.1 VULNERABILITY REPAIR ENCODER

The purpose of the encoder is to produce code token embeddings for a given source code. Each token
is embedded into a vector in Rd=768 by an embedding layer and input to the first encoder block. A
stack of encoder blocks is leveraged to encode the representation for an embedded sequence through
their self-attention layers followed by feed-forward neural networks, and each encoder block can be
described as follows:

At = LN(MultiAttn(Ht−1
enc)) +Ht−1

enc

Ht
enc = LN(FFN(At) +At)

where the hidden states from the previous encoder block Ht−1
enc forwards through a multi-head self-

attention MultiAttn followed by a 2-layer feed-forward neural network FFN , and a layer normal-

4

Under review as a conference paper at ICLR 2023

ization LN . The process will iterate until we obtain the last encoder hidden states HL
enc to represent

the vulnerable function. Here we note that L is the number of encoder blocks applied and HL
enc

contains the code token embeddings.

3.2.2 VULNERABILITY REPAIR DECODER

Input to the vulnerability repair decoder is the vulnerability queries (VQ), each of which aims to
match and capture information of vulnerable code tokens in a given source code.

The first VQ embeddings Q0 = [q01 , ..., q
0
k] are conducted and fed through several following decoder

blocks. In each block, we apply both multi-head self-attention and cross-attention as follows:

Q̂t = LN(MultiAttn(Qt−1)) +Qt−1

At
cross = LN(CrossAttn(Q̂t, HL

enc)) +Qt−1

Qt = LN(FFN(At
cross) +At

cross)

where HL
enc is the encoder output.

It is worth noting that the cross-attention CrossAttn assists us in cross-matching the vulnerability
query embeddings Qt = [qt0, ..., q

t
k] and the code token embeddings. If trained appropriately, the

vulnerability query embeddings qt0, ..., q
t
k attend and emphasize more the vulnerable code token

embeddings in the vulnerable function, which finally contain sufficient information to generate the
repair tokens.

Eventually, we obtain the output VQ embeddings QU = [qU0 , ..., q
U
k] where U is the number of the

decoder blocks applied. On top of these VQ embeddings, we predict the repair tokens r1, ..., rk.
Specifically, we dedicate a linear layer on each VQ embedding qU0 , ..., q

U
k and aim to predict

r1, ..., rk and rk+1 = ER (i.e., the end repair token) by maximizing the likelihood with respect
to a mini-batch of xi:

p(yi | xi) = p(r1, ..., rk | t1, ..., tn) =
k∏

j=0

p(rj+1 | qUj) (1)

where xi = [t1, ..., tn] is the source code and yi = [r1, ..., rk] is the corresponding repair patch.

The next arising question is how to initialize the first VQ embeddings Q0 = [q00 , ..., q
0
k]. Differ-

ent from VIT-based object detection approaches (Carion et al., 2020; Zhu et al., 2020; Wang et al.,
2021a), we do not initialize the first VQ embeddings Q0 = [q00 , ..., q

0
k] randomly. Indeed, we ini-

tialize Q0 = [q00 , ..., q
0
k] more informatively by setting q00 = SR (i.e., the specific embedding for

the start repairing token), q0j = rj , j = 1, ..., k. By this informative initialization, we cast the
vulnerability repair problem to the source code to repair-patch generation task.

The inference process is hence very natural. Given a source code xi = [t1, ..., tn], we pass it
through the vulnerability repair encoder to work out the encoder output HL

enc. We start with the first
VQ embedding q00 = SR and feed to the vulnerability repair decoder to generate the first repair
token r1. We then set VQ embedding q1 = r1 and feed it to the vulnerability repair decoder to
generate the second repair token r2. We repeat this process until reaching the ER token.

As mentioned before, the key factor to the success of our approach is how to accurately cross-
match between the vulnerability queries and the vulnerable code tokens of a given source code.
Currently, we expect that the cross-attention mechanism guided by maximizing the likelihood in Eq.
(1) supports us in realizing this. To further strengthen the cross-matching, we learn a vulnerability
query mask that highly focuses on the vulnerable code tokens and then apply it to the encoder self-
attention and the decoder cross-attention mechanism.

3.2.3 LEARNING AND INCORPORATING VULNERABILITY QUERY MASK

In what follows, we present how to learn a vulnerability query mask and then apply it to our model.

5

Under review as a conference paper at ICLR 2023

β = 1

α = 10

β = 1

α = 100

β = 1

α = 1000

β = 0.1
α = 1000

α = 1000

β = 0.5

Figure 4: The plots of the vulnerability mask transformation to see how α, β control the sharpness.
It can be seen that α controls the sharpness (i.e., how fast the curve gets saturated), while β controls
the gap between vulnerable and non-vulnerable scores.

Learning vulnerability query mask. We note that for our dataset D =
{
(x1, y1), ..., (xN , yN)

}
,

each vulnerable function xi = [t1, ..., tn] is a sequence of code token in which we know exactly
the vulnerable scope or information if a code token tj belongs to a vulnerable statement. In other
words, we also possess the token-level vulnerable label vi = [u1, ..., un] wherein uj = 1 means that
the code token tj belongs to a vulnerable statement and otherwise. For example, in the source code
presented in Figure 2, the code tokens highlighted in red are the vulnerable code tokens labelled 1.

We now take advantage of this crucial information to learn vulnerability query masks. Basically, we
train an additional model to predict the vulnerability query masks. Specifically, we leverage a pre-
trained CodeBERT (Feng et al., 2020) model in learning the vulnerability query masks. Each ti in xi

is embedded into a vector in Rd=768 and forwarded through 12 layers of the BERT architecture. We
then use a global max pooling layer and a sigmoid activation to obtain the probability mask m(xi)
and minimize the following cross-entropy loss with respect to a mini-batch of xi

H(xi, vi) = −
n∑

j=1

[
uj logmj(xi) + (1− uj) log (1−mj(xi))

]
(2)

Finally, to sharpen the vulnerability query mask, we apply the following transformation

M(xi) =
β

1 + exp{−α(m(xi)− 0.5)}

where α > 0 and β > 0 are two parameters to control the sharpness of the vulnerability query mask.

In Figure 4, we visualize how α and β affect the vulnerability query masks. It can be seen that α
controls the sharpness (i.e., how fast the curve gets saturated), while β controls the gap between
vulnerable and non-vulnerable scores.

Applying vulnerability query mask to our model. We incorporate our vulnerability query mask
(VQM) into both encoder output and the cross-attention. For the encoder, we apply as follows:

At = LN
(
MultiAttn(Ht−1

enc) +M(xi)⊗MultiAttn(Ht−1
enc)

)
+Ht−1

enc

Ht
enc = LN(FFN(At) +At)

where ⊗ is the element-wise product which returns [Mj(xi)B
t
j]
n
j=1 with Bt = MultiAttn(Ht−1

enc).

For the cross-attention in the decoder, we apply as follows:

Q̂t = LN(MultiAttn(Qt−1)) +Qt−1

At
cross = LN

(
CrossAttn(Q̂t, HL

enc +M(xi)⊗HL
enc)

)
+Qt−1

Qt = LN(FFN(At
cross) +At

cross)

Finally, the entire framework of our approach encapsulated the vulnerability repair encoder, vulner-
ability repair decoder, and how to incorporate vulnerability masks are summarized in Figure 3.

6

Under review as a conference paper at ICLR 2023

4 EXPERIMENTS

We compare our proposed method VQR with existing baseline approaches introduced in Ap-
pendix A.2.

4.1 EXPERIMENTAL DATASET

We use the same experimental dataset provided by Chen et al. (2022) to evaluate our approach. The
dataset consists of Big-Vul (Fan et al., 2020) and CVEfixes (Bhandari et al., 2021) vulnerability
fix corpus written in C/C++. The Big-Vul dataset was collected from 348 open-source GitHub
projects by crawling the Common Vulnerabilities and Exposures (CVE) database. In total, Big-Vul
contains 3,754 code vulnerabilities from 2002 to 2019. On the other hand, the CVEfixes dataset
was constructed similarly to the Big-Vul, which consists of 5,365 vulnerabilities collected from
1,754 projects from 1999 to 2021. Specifically, we leverage both datasets pre-processed by Chen
et al. (2022) and obtain 5,417 samples spanning 2,095 different vulnerabilities (i.e., CVE-ID) after
dropping null and duplicate samples.

4.2 PARAMETER SETTING

We split the data into 70% for training, 10% for validation, and 20% for testing. We use a pre-
trained T5 model provided by Wang et al. (2021b), which was pre-trained using multiple denoising
objectives related to programming languages. Details of the hyperparameter settings for our method
during both pre-training and fine-tuning are in Appendix A.1.

4.3 MODEL TRAINING

Given that the existing vulnerability repair dataset only contains limited samples, pre-training on
a larger bug fix dataset can further enhance the performance of a vulnerability repair model as
demonstrated by Chen et al. (2022). The intuition is that the software vulnerability is a sub-domain
of the software defect (i.e., bugs) domain which increases the transferability between the two tasks.
Thus, for each model including ours, we first pre-train on the bug fix dataset provided by Chen
et al. (2022), which consists of 23,607 samples to obtain more meaningful pre-trained weights for
the vulnerability repair downstream task. Note that the bug fix dataset is not overlapping with our
experimental dataset introduced in Section 4.1. We train our model through specific epochs as
reported in Appendix A.1 and select the best model based on the lowest CE loss on the validation
set. We run our experiments on a Linux machine with an AMD Ryzen 9 5950X, 64 GB of RAM,
and an NVIDIA RTX3090 GPU.

4.4 EXPERIMENTAL RESULTS

4.4.1 MAIN RESULTS

We conduct our experiment five times by setting different random seeds and using the dataset
described in Section 4.1 and compare our proposed method with the baselines introduced in Ap-
pendix A.2. We leverage the percentage of perfect prediction (%PP) evaluation measure as used
by Chen et al. (2022) and Fu et al. (2022). %PP is computed as the total correct predictions divided
by the total testing samples, specifically, a prediction is considered correct if any of the beam search
outputs is exactly the same as the ground-truth repair. During beam search, we use beam ∈ [1, 3, 5]
to evaluate all of the methods. Such beam settings lead to fewer repair candidates generated by
the models, which would be more practical in real-world scenarios so developers will not need to
inspect many repair candidates. Additionally, we compute BLEU (Papineni et al., 2002) and Me-
teor (Banerjee & Lavie, 2005) score to measure the similarity between predictions and true labels.
The experimental results are shown in Table 1. Our method outperforms all baselines regardless
of the number of beams. When comparing only the top-1 repair candidates (i.e., beam = 1), our
VQR is 2.68%-16.92% better than large pre-trained transformer approaches (i.e., VulRepair and
TFix) while our method is 23.18%-24.86% better when comparing with BERT-based approaches
(i.e., CodeBERT and GraphCodeBERT). These results confirm that our proposed method of cross-
matching vulnerability queries with vulnerable code tokens can help the model encode a more mean-

7

Under review as a conference paper at ICLR 2023

ingful representation for a vulnerable function and decode the corresponding repair more accurately.
In addition, we analyze the performance of the approach for each CWE-ID in Appendix A.3

Table 1: (Main results) The comparison between our VQR approach and other baselines. Accuracy
is presented in percentage. Beam=k shows the measure of %PP. The BLEU and Meteor are com-
puted based on Beam=5.

Methods Beam=1 Beam=3 Beam=5 BLEU Meteor
VQR(Ours) 32.33±1.12 42.72±0.86 45.14±0.86 59.11±1.28 68.45±1.2
VulRepair 29.65±1.27 39.85±1.31 42.79±1.15 58.7±1.26 68.1±1.4

TFix 15.41±1.96 26.7±1.69 30±1.77 50.71±2.07 60.04±2.14
GraphCodeBERT 9.15±0.43 16.83±0.85 21.38±0.54 49.38±0.45 64.4±0.36

CodeBERT 7.47±0.61 13.69±0.37 16.85±0.17 43.56±0.9 59.23±1.01
VRepair 5.36±0.55 10.31±0.29 13.12±0.53 40.06±0.62 55.31±0.63

SequenceR 0.0±0 0.44±0.13 0.53±0.27 7.39±0.63 27.74±1.6

4.4.2 ABLATION STUDY

(1) Study the effectiveness of our proposed vulnerability query and mask. To this end, we
compare our proposed method with other variants as follows:

• Perfect Vulnerability Masking in Encoders and Decoders: This method uses an identical
architecture as our VQR, however, the perfect vulnerability masks (i.e., the exact location
of each vulnerable token) are provided instead of predicted by a localization model.

• Vulnerability Query Masking in Encoders: This method only applies vulnerability query
masks on the self-attention output of each encoder to help the model focus more on vulner-
able tokens when encoding the representations for a vulnerable function.

• Vulnerability Query Masking in Decoders: This method only applies vulnerability query
masks on the decoder cross-attention when cross-matching vulnerability queries and vul-
nerable code tokens to support the model to focus more on vulnerable tokens when gener-
ating repair tokens.

• Without Vulnerability Query Masking: This method is a plain transformer encoder-
decoder architecture that applies no vulnerability query mask.

• With Vulnerability Query Randomly Initialized: This method applies vulnerability
query masks in both encoders and decoders while vulnerability queries are randomly ini-
tialized at the start of training.

The experimental results are shown in Table 2. It can be seen that our approach to initialize the vul-
nerability query (VQ) based on repair tokens during training consistently outperforms the randomly
initialized VQ. However, the random VQ method still outperforms baselines such as CodeBERT and
GraphCodeBERT, highlighting the effectiveness of using vulnerability queries with cross-attention
(as proposed in Section 3.2.2) for our vulnerability repair task. Moreover, applying the vulnerability
query mask is beneficial for both encoder self-attention and decoder cross-attention. It enhances the
%PP by 2.93% when applied to encoders while gaining a %PP of 3.02% when applied to decoders.
While the vulnerability query mask benefits both encoders and decoders, our proposed method to
leverage the mask on both sides achieves better results for beam ∈ [1, 3]. These results confirm
that using our mask on both encoders and decoders is more beneficial than using it on either side.
Last but not least, the perfect vulnerability query mask achieves the highest %PP, highlighting the
effectiveness of our vulnerability query mask.

To further demonstrate that similar to the capability of object queries in capturing information of
bounding objects in images, vulnerability queries (VQ) are capable of attending to and capturing
information of vulnerable scopes in source codes. We visualize the cross-attention map between
VQs (x-axis) and all token representations of source code (y-axis) in Figure 5. As we expect, the
VQs attend to vulnerable scopes, hence capturing sufficient information for predicting the repair
patches. More visualizations can be found in Appendix A.4

8

Under review as a conference paper at ICLR 2023

Table 2: (Ablation results) The comparison between our proposed method and four other variants.
Accuracy is presented in percentage.

Methods Beam=1 Beam=3 Beam=5
Perfect Mask Encoder + Perfect Mask Decoder 33.76 44.31 46.88
Vul Mask Encoder + Vul Mask Decoder (ours) 33.21 44.04 46.06
Vul Mask Encoder 32.75 43.49 46.15
Vul Mask Decoder 32.84 43.85 45.69
w/o Vul Mask 29.82 39.72 43.67
with Vul Query randomly initialized 12.57 24.95 28.81

Figure 5: The visualization of the cross-attention scores between vulnerability queries (axis X) and
vulnerable code representation (axis Y) in two vulnerable functions. The vulnerable scopes are
highlighted in red boxes. It can be seen that the attention scores are highly activated between the
interaction of vulnerable tokens representation and vulnerability queries.

Table 3: Compare our method with baselines,
where all the methods are not pre-trained on the
bug-fix data Chen et al. (2022). Accuracy is pre-
sented in percentage.

Methods Beam=1 Beam=3 Beam=5
VQR 5.32 8.81 9.72

VulRepair 4.13 6.06 7.43
TFix 2.75 4.4 4.68

GraphCodeBERT 2.57 4.13 5.23
CodeBERT 1.56 2.29 2.75

VRepair 0.09 0.55 0.92
SequenceR 0 0 0

(2) Study the effectiveness of pre-training on
bug fix corpus. We aim to study whether pre-
training on a larger bug fix corpus support AVR
models to perform better vulnerability repairs.
To this end, we directly train each baseline ap-
proach and our VQR on the vulnerability repair
data without pre-training on the bug fix data.
The results shown in Table 3 correspond to the
finding by Chen et al. (2022) that the knowl-
edge from the general bug fix corpus can be
transferred to benefit the performance of AVR
models. Our method still outperforms all base-
line approaches.

5 CONCLUSION

In this paper, we have introduced a new AVR method inspired by VIT-based approaches for object
detection to enhance awareness and attention to vulnerable code areas in a vulnerable function for
producing better repairs. In our repair model, we cross-match vulnerability queries and their corre-
sponding vulnerable code areas and their corresponding repairs via the cross-attention mechanism.
To strengthen such cross-matchings, we propose to learn a vulnerability query mask that highly
focuses on vulnerable code areas and incorporate it into the cross-attention. Additionally, we also
apply the vulnerability query mask in the self-attention of encoders to help our model focus more
on vulnerable code tokens when learning the embeddings of each token. Through an extensive eval-
uation of 5,417 real-world vulnerabilities, our approach outperforms all of the baseline approaches.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Satanjeev Banerjee and Alon Lavie. Meteor: An automatic metric for mt evaluation with improved
correlation with human judgments. In Proceedings of the ACL workshop on intrinsic and extrinsic
evaluation measures for machine translation and/or summarization, pp. 65–72, 2005.

Berkay Berabi, Jingxuan He, Veselin Raychev, and Martin Vechev. Tfix: Learning to fix coding
errors with a text-to-text transformer. In the Proceedings of the International Conference on
Machine Learning (ICML), pp. 780–791. PMLR, 2021.

Guru Bhandari, Amara Naseer, and Leon Moonen. Cvefixes: automated collection of vulnerabilities
and their fixes from open-source software. In the Proceedings of the 17th International Confer-
ence on Predictive Models and Data Analytics in Software Engineering, pp. 30–39, 2021.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In the Proceedings of the
European Conference on Computer Vision (ECCV), pp. 213–229. Springer, 2020.

Zimin Chen, Steve Kommrusch, Michele Tufano, Louis-Noël Pouchet, Denys Poshyvanyk, and
Martin Monperrus. Sequencer: Sequence-to-sequence learning for end-to-end program repair.
IEEE Transactions on Software Engineering (TSE), 47(9):1943–1959, 2019.

Zimin Chen, Steve Kommrusch, and Martin Monperrus. Neural transfer learning for repairing se-
curity vulnerabilities in c code. IEEE Transactions on Software Engineering (TSE), 2022. doi:
10.1109/TSE.2019.2940179. URL https://arxiv.org/pdf/2104.08308.

Jianlei Chi, Yu Qu, Ting Liu, Qinghua Zheng, and Heng Yin. Seqtrans: Automatic vulnerability fix
via sequence to sequence learning. IEEE Transactions on Software Engineering (TSE), 2022.

CSRC. Definition of software vulnerability. https://csrc.nist.gov/glossary/term/
software_vulnerability, 2020.

Elizabeth Dinella, Hanjun Dai, Ziyang Li, Mayur Naik, Le Song, and Ke Wang. Hoppity: Learning
graph transformations to detect and fix bugs in programs. In the Proceedings of the International
Conference on Learning Representations (ICLR), 2020.

Edgescan. 2022 vulnerability statistic report. https://www.edgescan.com/
2022-vulnerability-statistics-report-lp/, 2022.

Jiahao Fan, Yi Li, Shaohua Wang, and Tien N Nguyen. A c/c++ code vulnerability dataset with code
changes and cve summaries. In the Proceedings of the 17th International Conference on Mining
Software Repositories, pp. 508–512, 2020.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, et al. Codebert: A pre-trained model for programming and natural
languages. In the Proceedings of the Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 1536–1547, 2020.

Michael Fu and Chakkrit Tantithamthavorn. Linevul: A transformer-based line-level vulnerability
prediction. In the Proceedings of the 19th International Conference on Mining Software Reposi-
tories (MSR), 2022.

Michael Fu, Chakkrit Tantithamthavorn, Trung Le, Van Nguyen, and Dhung Dinh. Vulrepair: A
t5-based automated software vulnerability repair. In the Proceedings of the ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE), 2022.

GoPro. An example software vulnerability from gopro sys-
tems. https://github.com/gopro/gpmf-parser/commit/
341f12cd5b97ab419e53853ca00176457c9f1681, 2019.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou, Nan Duan,
Alexey Svyatkovskiy, Shengyu Fu, et al. Graphcodebert: Pre-training code representations with
data flow. In the Proceedings of the International Conference on Learning Representations
(ICLR), 2021.

10

https://arxiv.org/pdf/2104.08308
https://csrc.nist.gov/glossary/term/software_vulnerability
https://csrc.nist.gov/glossary/term/software_vulnerability
https://www.edgescan.com/2022-vulnerability-statistics-report-lp/
https://www.edgescan.com/2022-vulnerability-statistics-report-lp/
https://github.com/gopro/gpmf-parser/commit/341f12cd5b97ab419e53853ca00176457c9f1681
https://github.com/gopro/gpmf-parser/commit/341f12cd5b97ab419e53853ca00176457c9f1681

Under review as a conference paper at ICLR 2023

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt.
Codesearchnet challenge: Evaluating the state of semantic code search. arXiv preprint
arXiv:1909.09436, 2019.

Nan Jiang, Thibaud Lutellier, and Lin Tan. Cure: Code-aware neural machine translation for auto-
matic program repair. In 2021 IEEE/ACM 43rd International Conference on Software Engineer-
ing (ICSE), pp. 1161–1173. IEEE, 2021.

Yi Li, Shaohua Wang, and Tien N Nguyen. Dlfix: Context-based code transformation learning for
automated program repair. In Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering (ICSE), pp. 602–614, 2020.

Ehsan Mashhadi and Hadi Hemmati. Applying codebert for automated program repair of java simple
bugs. In the Proceedings of the International Conference on Mining Software Repositories (MSR),
pp. 505–509. IEEE, 2021.

Van Nguyen, Trung Le, Olivier de Vel, Paul Montague, John Grundy, and Dinh Phung. Information-
theoretic source code vulnerability highlighting. In the Proceedings of the International Joint
Conference on Neural Networks (IJCNN), 2021.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association
for Computational Linguistics (ACL), pp. 311–318, 2002.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, Peter J Liu, et al. Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21(140):1–67, 2020.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. In the Proceedings of the Association for Computational Linguistics (ACL), pp.
1715–1725, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In the Proceedings of the Ad-
vances in neural information processing systems (NIPS), volume 30, 2017.

Yingming Wang, Xiangyu Zhang, Tong Yang, and Jian Sun. Anchor detr: Query design for
transformer-based object detection. arXiv preprint arXiv:2109.07107, 2021a.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. Codet5: Identifier-aware unified pre-
trained encoder-decoder models for code understanding and generation. In the Proceedings of the
Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 8696–8708,
2021b.

Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr:
Deformable transformers for end-to-end object detection. In the Proceedings of the International
Conference on Learning Representations (ICLR), 2020.

11

Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 TRAINING SCHEME OF OUR VQR APPROACH

Table 4: Training scheme of our VQR approach. Note. #: Scheme for training the mask prediction
model; *: Scheme for training the repair model.

Training Data Seqenc Seqdec Optim Sch. LR Grad Clip Bhz Epo
#Pre-train Bug Fix 512 N/A AdamW Linear 1e-4 1.0 16 75
#Fine-tune Vul Fix 512 N/A AdamW Linear 1e-4 1.0 16 75
*Pre-train Bug Fix 512 256 AdamW Linear 1e-4 1.0 8 75
*Fine-tune Vul Fix 512 256 AdamW Linear 1e-4 1.0 8 75

A.2 BASELINE APPROACHES

We compare our proposed method VQR with the following baselines:

• VRepair: The vanilla transformer architecture is first pre-trained on a bug-fixing corpus in
a supervised manner, VRepair (Chen et al., 2022) is then fine-tuned to fulfil the vulnerabil-
ity repair task which shares a similar nature to the bug-fixing task. We reproduce VRepair
by following the instruction provided by Chen et al. to build and train the model.

• VulRepair: The transformer encoder-decoder approach learns the representation of vulner-
able functions and generates the corresponding repair patches. VulRepair (Fu et al., 2022)
relies on the CodeT5 (Wang et al., 2021b) model pre-trained through multi-task learning on
the Codesearchnet (Husain et al., 2019) dataset to learn the characteristics of programming
languages. We reproduce VulRepair using the repository provided by Fu et al..

• TFix: Similar to VulRepair (Fu et al., 2022), TFix (Berabi et al., 2021) relies on a trans-
former encoder-decoder model, however, pre-trained on natural language using denoising
objectives (Raffel et al., 2020) (i.e., T5-large). We reproduce TFix using the repository
provided by Berabi et al..

• SequenceR: An RNN-based approach that learns the representation of vulnerable functions
token by token, SequenceR (Chen et al., 2019) leverages bi-directional LSTM encoders
with unidirectional LSTM decoders. We reproduce SequenceR by following the instruction
provided by Chen et al. to build and train the model.

• CodeBERT: A bi-directional self-attention pre-trained on the Codesearchnet (Husain
et al., 2019) dataset using masked language modelling and replaced token detection ob-
jectives (Feng et al., 2020). Mashhadi & Hemmati (2021) leveraged CodeBERT (Feng
et al., 2020) for automated program repair of Java bugs and presented substantial improve-
ment over RNN-based models. We reproduce CodeBERT using the repository provided by
Feng et al..

• GraphCodeBERT: An extensive version of CodeBERT (Feng et al., 2020), GraphCode-
BERT (Guo et al., 2021) considers the Data Flow Graph (DFG) of code using the graph-
guided masked attention during both pre-training and fine-tuning stages. We reproduce
GraphCodeBERT using the repository provided by Guo et al..

Note we follow the best hyperparameter setting as reported by the original authors to obtain the best
results of each baseline method.

A.3 ANALYSIS OF OUR VQR’S PERFORMANCE

We visualize the %PP across all CWE-IDs in our testing data as a bar graph to explore our
VQR’s performance for different CWE-IDs. In addition, we show the frequency of each CWE-
ID for both training and testing data as two line graphs to explore the relationship between the
frequency of samples and the performance of our method. Note that the ticks of the Y axis on the
left are for the %PP metric while those on the right are for the data frequency of each CWE-ID.

12

Under review as a conference paper at ICLR 2023

Figure 6: The performance analysis of our VQR based on different vulnerability types (i.e., CWE-
IDs). The bar chart represents the %PP while the blue line is the training frequency and the red line
is the testing frequency across all vulnerability types. Note that the ticks of the Y axis on the left are
for the %PP metric while those on the right are for the data frequency of each CWE-ID.

As shown in Figure 6, the performance of our approach varies for each CWE-ID. Our approach per-
forms well on some of the CWE-IDs that all testing samples can be correctly repaired. Furthermore,
we find that the frequency of training and testing samples are not highly correlated with the per-
formance of our method. This indicates that automated vulnerability repair (AVR) is a challenging
problem in that high-frequency samples may not guarantee the repair model’s performance.

Table 5: The %PP of our VQR approach across the top 25 most dangerous CWE-IDs in 2022. The
%PP is shown based on the beam search results where Beam=5.

Rank ID %PP
1 CWE-787 50% (13/26)
3 CWE-89 100% (2/2)
4 CWE-20 33% (24/72)
5 CWE-125 42% (48/113)
6 CWE-78 33% (1/3)
7 CWE-416 31% (9/29)
8 CWE-22 50% (1/2)
11 CWE-476 31% (11/36)
13 CWE-190 54% (19/35)
16 CWE-862 100% (1/1)
17 CWE-77 67% (2/3)
19 CWE-119 75% (223/296)
22 CWE-362 9% (3/34)
23 CWE-400 55% (11/20)

Average 55% (368/672)

To investigate whether our VQR approach can repair dangerous real-world vulnerabilities, we evalu-
ate our approach based on the 2022 CWE Top-25 Most Dangerous Software Weaknesses released by
the CWE community at https://cwe.mitre.org/top25/archive/2022/2022_cwe_
top25.html. The results are presented in the above table. We find that our approach can correctly
repair 55% of the vulnerable functions affected by the Top-25 most dangerous CWE-IDs, which is
better than the average performance of our approach (i.e., 45.14%).

A.4 ANALYSIS OF OUR VQR’S VULNERABILITY QUERY AND MASK

To demonstrate that our vulnerability query (VQ) and vulnerability mask can learn better cross-
attention. We visualize the cross-attention scores between vulnerability queries and vulnerable
source code representation. We compare the visualization for three approaches as follows:

13

https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html

Under review as a conference paper at ICLR 2023

• Vul Query + Vul Mask (Our VQR method): Our proposed method that utilizes both
vulnerability query (initialized based on repair tokens) and vulnerability mask.

• Random Vul Query: The method that utilizes randomly initialized vulnerability query and
vulnerability mask.

• Without Vul Mask: The method that utilizes vulnerability query (initialized based on
repair tokens) without using vulnerability mask.

In the example with one vulnerable code area shown in Figure 7, the cross-attention score of our
method has warmer colour in the vulnerable area highlighted by the red box. Thus, our method ac-
tivates the cross-attention score between the vulnerable code representation and their corresponding
vulnerability queries more than the other two variant approaches in the vulnerable area.

In the example with seven vulnerable code areas shown in Figure 8, the cross-attention score of our
method has warmer colour in the vulnerable areas highlighted by the red box. Furthermore, our
method has better contrast than the other two methods, in that the cross-attention scores between
vulnerable code representation and their corresponding VQs are highly activated while the cross-
attention scores between vulnerable code representation and non-corresponding VQs are slightly
activated.

These results indicate that our proposed VQ with the vulnerability mask method can guide vulnera-
bility queries to attend to their corresponding vulnerable code areas.

Figure 7: The visualization of the cross-attention scores between vulnerability queries (axis X) and
vulnerable source code representation (axis Y). The vulnerable scopes are highlighted in red boxes.
Our method on the left is warmer than the other two, which activates the most cross-attention scores
between vulnerable code representation and vulnerability query in the vulnerable scopes.

Figure 8: The visualization of the cross-attention scores between vulnerability queries (axis X) and
vulnerable source code representation (axis Y). The vulnerable scopes are highlighted in red boxes.
Our method on the left has the best contrast between cross-attention scores in vulnerable code areas
and non-vulnerable code areas. In other words, the cross-attention activated by our method in the
vulnerable scopes is higher than the other two methods while the cross-attention scores are lower
than the other two methods when outside vulnerable scopes.

14

	Introduction
	Related work
	Our Proposed Approach
	Problem statement
	Vulnerability Query based Software Vulnerability Repair
	Vulnerability Repair Encoder
	Vulnerability Repair Decoder
	Learning and incorporating vulnerability query mask

	Experiments
	Experimental Dataset
	Parameter Setting
	Model Training
	Experimental results
	Main Results
	Ablation Study

	Conclusion
	Appendix
	Training Scheme of our VQR approach
	Baseline approaches
	Analysis of Our VQR's Performance
	Analysis of Our VQR's Vulnerability Query And Mask

