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Abstract

The hierarchical syntactic structure of natural
language is a key feature of human cognition
that enables us to recursively construct arbi-
trarily long sentences supporting communica-
tion of complex, relational information. In this
work, we describe a framework in which learn-
ing cognitively-realistic left-corner parsers can
be formalized as a Reinforcement Learning
problem, and introduce a family of cognitively
realistic chart-parsing environments to evalu-
ate potential psycholinguistic implications of
RL algorithms. We report how several base-
line Q-learning and Actor Critic algorithms,
both tabular and neural, perform on subsets
of the Penn Treebank corpus. We observe
a sharp increase in difficulty as parse trees
get slightly more complex, indicating that hi-
erarchical reinforcement learning might be re-
quired to solve this family of environments.

1 Introduction

We introduce a framework in which we can start
exploring how reinforcement learning (RL; Sutton
and Barto 2018) algorithms scale up against human
cognitive performance, as captured by the syntactic
parsing problem. Parsers grounded in contempo-
rary generative linguistic theory involve rich, hier-
archically structured representations and complex
rule systems that pose significant challenges for
RL algorithms. We begin with a simple example
to illustrate the type of psycholinguistic task we
modeled our environments on, namely self-paced
reading tasks (Just and Carpenter, 1980; Just et al.,
1982). In such tasks, the words are hidden and only
one word is uncovered at a time with a spacebar
press. The human reader decides when to press
the spacebar to uncover the next word (which auto-
matically hides the current word), hence the name
of self-paced reading. Self-paced reading tasks
mimic an essential aspect of naturally-occurring
language comprehension with auditory stimuli: the
signal is strictly linearly and strictly incrementally

presented one word at a time. Just as in naturally-
occurring verbal interactions, and unlike in normal
reading situations, the linguistic signal cannot be
‘rewound’ to previous words — we cannot just look
back and reread previous parts of the text — or ‘fast-
forwarded’ to subsequent words — we cannot jump
ahead to parts of the text that do not immediately
follow the word currently being read.

We use a chart parser (Earley 1970; Tomita 1986;
Scott 2008) with a cognitively-realistic eager left-
corner parsing strategy (Resnik 1992; Hale 2014
a.0.) to provide the reward structure, thereby guid-
ing the reinforcement learning process. Running
this eager left-corner parser on a simple input sen-
tence will shed light on its inner workings. Assume
we have a simple grammar with three phrase struc-
ture rules (PSRs) S — NP VP, NP — Det N, and
VP — V. Also, assume that we are reading the
sentence A boy sleeps in a self-paced reading task.
We start with a screen in which all words are cov-
ered with dashes: - - - - - ———-— - . After the
first space-bar press, the first word is revealed: A
————————— , and the parser recognizes its syn-
tactic category Det (determiner) and takes a series
of parsing steps that constructs the leftmost tree
in Figure 1. We see here the left-corner nature
of our parser: we trigger the PSR NP — Det N,
which has Det as its left branch/corner, as soon as
we recognize that the first word A is a determiner.
This partial tree is only implicitly constructed in
the chart parser: the chart does not store trees,
but instead contains edges, which are left-corner
based hypotheses about the possible syntactic struc-
tures we can associate with the linguistic input re-
ceived so far. After another space-bar press, the
noun is revealed (- boy - ----- ), its syntac-
tic category N is recognized and the richer par-
tial tree shown in the middle of Figure 1 is con-
structed after a series of parsing steps. Finally, the
verb is revealed after one more space-bar press: —
sleeps, its syntactic category V is recog-



nized, and the final tree structure in Figure 1 is
constructed.
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Figure 1: Partial trees built incrementally when reading
the sentence A boy sleeps word by word

This parsing example shows that proper action
ordering is crucial to successfully completing the
parsing process, which is like searching for a path
through a maze: (i) the position in the maze is
the current parse state (the chart), (ii) the possible
moves (up, left etc.) are the possible parsing steps,
i.e., edges, we can add to the chart, and (iii) a path
through the maze is given by the proper sequence
of parsing steps / edges needed to successfully com-
plete the parsing process.

Both humans and RL agents may get ‘lost’ in
these parsing mazes, for example, when encoun-
tering a so-called ‘garden path’ example like The
horse raced past the barn fell (Bever 1970 among
many others). This sentence might seem ungram-
matical, but it is in fact grammatical under the re-
duced relative clause interpretation that can be para-
phrased as ‘the horse that was raced past the barn
fell.” To access that interpretation, one can com-
pare the previous example with the sentence The
children taught by the Berlitz method passed the
test (Crain and Steedman 1985). This second ex-
ample does not garden-path the reader because the
most likely interpretation of taught in this sentence
is the non-finite past-participle interpretation. This
is in contrast to raced in the first example, which
garden-paths the reader because its most likely in-
terpretation is the incorrect, finite simple past one.
This interpretation leads the reader down an incor-
rect garden path during incremental parsing.

In brief, parsing tasks can be viewed as executing
a certain protocol, and RL is a family of methods
to learn protocols. The paper makes two contribu-
tions. First, we introduce a new family of cogni-
tively realistic parsing environments for RL that are
ordered by the complexity of the parsing problems
they pose. Second, we study the performance of
15 agents in the two easiest parsing environments

(height-4 and height-5 trees). The 15 agents fall
into 3 classes: tabular, Deep Q Network (DQN)
agents, and Actor-Critic (AC) agents; for the latter
two, we experiment with LSTM (Hochreiter and
Schmidhuber 1997), GRU (Cho et al. 2014), and
Self-Attention networks (Vaswani et al. 2017).

2 Family of Parsing Environments

2.1 Parsing Actions

It is perhaps easiest to introduce our formalization
of the parsing environment by examining an exam-
ple episode perfectly played by a trained parsing
agent, shown in Table 1. The sentence to be parsed
is He sighed. The agent can take one of three types
of actions. The first type of action is scan, which
‘reads’ the next word of the sentence. The words
are ‘read’ one at a time, and the agent is not able to
access the next word without a scan action. Further-
more, the final word at the end of the sentence is not
explicitly marked as such: the agent learns that the
end of the sentence has been reached only when it
takes a scan action that fails, which receives a steep
negative reward of —2. That is, the agent is actively
encouraged to predict the end of the sentence.

The first two actions in Table 1 are scan actions,
and we see that the agent correctly predicts the
end of the sentence after the second word has been
scanned and does not attempt to scan again. The
results of these actions are two leaf edges which
are added to the chart, and these edges are returned
to the agent by the environment as (part of) the
next state. Leaf edges consist of a span, which
indicates what positions/parts of the input sentence
are ‘covered’ by the leaf edge. The first scan adds
a leaf edge spanning positions 0 to 1, that is, the
first terminal, which is the word He. The second
scan adds a leaf edge spanning positions 1 to 2,
i.e., the second terminal, which is the word sighed.
Actions that contribute to the final parse receive a
small negative reward of —0.25, encouraging the
agent to finish parsing as soon as possible.

The next five actions in Table 1 are predict ac-
tions. These actions target a complete edge in the
chart (leaf edges are by definition complete; we
discuss completion for other edges below), and
identify a production in the grammar whose right-
hand side starts with the terminal or non-terminal
of that completed edge. That is, we identify pro-
ductions whose left-corner is the targeted edge. For
example, the first predict action (step 3 in Table 1),
targets the leaf edge storing the word He and identi-



Table 1: A parsing episode perfectly played by a trained agent

action state reward
1. scan [0:1] He -0.25
2. scan [1:2] sighed -0.25
3. predict: [0:1]He | PRP— He [0:1]PRP — He o -0.25
4. predict: [0:1] PRP— He e | NP-SBJ — PRP [0:1] NP-SBJ — PRP e -0.25
5. predict: [0:1] NP-SBJ — PRPe | S — NP-SBJVP [0:1] S — NP-SBJ ¢ VP -0.25
6. predict: [1:2]sighed | VBD — sighed [1:2] VBD — sighed o -0.25
7. predict: [1:2] VBD — sighede | VP — VBD [1:21 VP — VBD e -0.25
8. complete: [0:1]S —NP-SBJeVP | [1:2]VP— VBDe [0:2]S — NP-SBJ VP e 5.00

fies ‘PRP — He’ as a production whose left-corner
is that word (PRP stands for personal pronoun). As
a result of this action, we add a new edge to the
environment chart, the one listed in step 3 under
state. The span of this edge is 0:1, which is the
same as the span of the edge targeted by the predict
action (the edge covers only the first word of the
sentence). The edge added in step 3 is not a leaf
edge, as it builds syntactic structure on top of a
previous edge. That syntactic structure is the unary
branching node PRP, whose only daughter is the
word He. This edge is a complete edge, indicated
by the final dot e after He: ‘complete’ means that
the entire right-hand side of the production used to
build the edge has been recognized, i.e., has been
built out of complete edges.

The next predict action (in step 4) targets the
edge ‘[0:1] PRP — He o’, which has just been
added to the environment chart / state. This edge is
a complete edge, and is also the left-corner of the
production ‘NP-SBJ — PRP;’ NP-SBJ stands for
subject noun phrase (NP). At step 4, we build more
syntactic structure on top of the PRP non-terminal:
this syntactic structure is encoded by the new edge
‘[0:1] NP-SBJ — PRP o’, which is a complete edge
spanning position 0:1. That is, by end of the predict
actions in steps 3 and 4, we have implicitly built
the leftmost partial tree in Figure 2.

The predict action in step 5 targets the complete
NP-SBJ edge we just added, which is identified as
the left corner of the ‘S — NP-SBJ VP’ production.
The resulting edge ‘[0:1] S — NP-SBJ e VP °,
which is part of the resulting state in step 5, is
the first incomplete edge in this episode: the dot e
precedes the VP, indicating that only the NP-SBJ
has been recognized. Note also that the span of
this incomplete edge is still 0:1, as the span always
indicates the part of the input sentence that has
been completely recognized by the edge. At the
end of step 5, we have implicitly build the second
(partial) tree in Figure 2.

The predict actions in steps 6 and 7 build syntac-

0 steps 1,3,4 NP-SEJ & S steps 2,6,7
PRP NP-SBJ eVP
He PRP
He
VP step 8 S
VBD NP-SBJ VP
sighed PRP VBD
He sighed

Figure 2: Partial trees implicitly built by the agent
when playing the episode in Table 1

tic structure on top of the word sighed (VBD stands
for verb in past form, and VP for verb phrase). The
resulting tree is the third one in Figure 2.

The final action in the episode is a complete
action. This is the third and final type of action
that an agent can take. Complete actions target
two edges in the chart (in the current environment
state). The first edge is incomplete; specifically,
this is the edge ‘[0:1] S — NP-SBJ e VP’ we built
in step 5. The second edge has to be complete, and
its left-hand side non-terminal has to be the very
same as the leftmost incomplete non-terminal on
the right-hand side of the incomplete edge. This
final action completes the parse, building the com-
plete final tree in Figure 2. The reward in this step
is a substantial positive reward of 5.

In sum, agents can take one of three types of ac-
tions: scan, predict and complete. Predict actions
target an edge in the current chart that can be the
left corner of a grammar production. Complete
actions target two edges in the current chart, an in-
complete edge and a complete edge; the complete



edge can be used to bring the incomplete edge one
step closer to completion. States returned by the en-
vironment consist of the current chart/list of edges,
which encode the partially built syntactic structures
in a very compact manner. Charts efficiently en-
code multiple complete parses if the sentence to be
parsed is syntactically ambiguous, as in the typi-
cal prepositional phrase (PP) attachment example /
saw the astronomer with a telescope. The PP with
a telescope can be attached to the noun astronomer
(the astronomer has a telescope), or to the verb saw
(the seeing was done by means of a telescope).

2.2 Environment Setup

For every episode, the agent is tasked with pars-
ing a single sentence. In all our experiments, the
sentences come from the parsed Brown Corpus
part of the Penn Treebank-3 Corpus (Marcus et al.,
1999). The specific set of parse trees we load into
our parsing environment determine the difficulty
of the parsing tasks an RL agent will face. This
enables us to create a wide variety of parsing envi-
ronments that can be finely tuned in terms of diffi-
culty. The level of difficulty is determined by the
kind of tree structures we allow in the input set of
trees. One way to decrease the level of difficulty is
to restrict the kind of syntactic structures we allow;
for example, removing trees that contain adjuncts
decreases the level of difficulty. Another way is to
limit the height of the trees, where tree height is
defined as the length of the longest path in the tree
starting at the root. For example, our experiments
were run first with height-4 trees only, which is
the smallest height with a reasonable number of
trees (more than 150), after which we investigated
height-5 trees. We have created a variety of tree
sets along these lines. Height-6 trees, for example,
even without adjunct structures, already raised the
level of difficulty to a point that exceeded our com-
putational resources (3 separate GPUs, the best of
which was a Titan RTX, not always accessible).

Once a subset of trees is identified (by calibrating
it for tree height, types of syntactic structures, and
sometimes maximum sentence length) and loaded
into the parsing environment, it is split into train,
validation and test sets according to percentages
provided by the user. The train-validation-test split
is determined by a random seed that can be set by
the user for reproducibility. Given our limited com-
putational resources and the pilot benchmarking
nature of this work, we couldn’t do a systematic

hyperparameter search, so we report results based
only on train-test 90%-10% splits, without a sepa-
rate validation set for hyperparameter tuning. We
set the hyperparameters to values that seemed rea-
sonable (often defaults); see next section.

After the set of trees is loaded, and before the
train-test split is determined, the environment cre-
ates a context-free grammar (CFG) based on the
productions implicit in all the loaded trees. The
environment uses this CFG to generate the reward
structure for any given episode. Every training
episode consists of the agent learning to parse one
sentence from the train set. What we do is create a
‘maze’ based on each individual sentence, and train
agents on these ‘mazes.’

For every train sentence, the environment uses
the CFG to left-corner chart-parse the sentence
and identify all its possible parses, as well as all
the complete and incomplete parse edges that con-
tribute to these parses. These parse edges enable us
to generate the reward structure for every episode:
if the agent takes an action resulting in an edge that
contributes to one of the possible parses, the agent
receives a small negative penalty, which was —0.25
in our experiments, but this, and all other rewards,
can be set by the user. If the agent selects a parsing
action that is licensed by the current state (which
consists of the current chart and whether there are
still words that need to be scanned), but does not
contribute to one of the possible parses, the agent
receives a larger negative penalty of —0.75. Ac-
tions are licensed if they create a valid edge that
can be added to the current chart (‘valid’ based on
the current chart and the background CFG). If the
agent selects a parsing action that is not licensed
by the current state, for example, it tries to add an
edge that was already added to the chart, or tries to
scan a word when there are no more words to be
scanned, the agent receives a steep negative penalty
of —2. Finally, when the agent selects an action
that adds the final edge needed to complete a full
parse of the sentence, it receives a positive reward
of 5 and the episode terminates. An optimal policy
takes the minimum number of actions necessary to
construct a complete parse of the input sentence.

While agents attempt to build alternative parse
structures from those validated by the PTB-based
CFG, they are negatively penalized by the environ-
ment for all the edges that don’t contribute to any
valid parse. Due to charts being able to compactly
represent multiple parse trees, it’s always possible



for an agent to eventually arrive at the correct parse
by exhaustively executing all parse actions offered
by the environment. However, this would result
in a significantly lower total reward than taking
the shortest, most cognitively realistic path to the
correct parse (as seen in Sec. 4 Results).

Agents are trained to take the minimum steps
possible because this heuristic is part of what the
human parser does (Hale 2011 a.o. and references
therein). It is precisely this minimum-cost fea-
ture of the human parser that leads it down garden
paths. Hale (2011) provides suggestive evidence
that a distance metric (i.e. an estimate of steps
necessary to complete a parse) inferred based on
PTB counts can be used to guide parsing in a way
that captures a variety of garden-path phenomena.
The present work is a first step towards using RL
methods to learn this metric from experience (build-
ing on Hale 2014), and in the process, hopefully
provide evidence for the cognitive realism of this
minimal-effort / minimal-cost hypothesis.

As already indicated, the environment main-
tains a chart, which starts out empty for each sen-
tence/episode. This chart, together with a Boolean
indicating whether all words have been scanned or
not, forms the state that the environment returns to
the agent after every action. In our experiments, we
decreased the difficulty of learning and provided
the agent with the list of all possible predict and
complete actions licensed by the environment in
any given state. This simplifies the learning prob-
lem, as it effectively reduces action generation to
action selection from a provided set of choices. The
simplification can be easily removed, which would
force the agent to generate actions.

3 Experiments

3.1 Agent Architectures

We study the performance of 15 RL algorithms /
agents in the height-4 and height-5 parsing envi-
ronments: (i) a tabular () learning agent (Watkins
1989; Watkins and Dayan 1992), (ii) 7 DQN agents
(Mnih and al 2015, Sutton and Barto 2018, Ch. 11
and references therein), and (iii) 7 Actor-Critic
(AC) agents (Sutton and Barto 2018, Ch. 13 and
references therein). The 7 DQN agents differ with
respect to their architecture, and so do the AC
agents. Six of them are recurrent: Elman/standard
RNN (Elman 1990), GRU (Cho et al. 2014), LSTM
(Hochreiter and Schmidhuber 1997), and bidirec-
tional versions of these three (Schuster and Paliwal

1997; Graves and Schmidhuber 2005). We also
study a self-attention (Vaswani et al. 2017) agent.
The learning rate o was always set to 10~3 and the
discount factor  to 0.9.

The tabular () agent represents the () function as
a look-up table that stores the estimated values of
all possible state-action pairs. The state s; at time
step t consist of all the edges in the current chart,
plus a Boolean indicating whether all the words
have been scanned, i.e., whether we reached the
end of the sentence. The action a; selected by the
agent in state s; can be a scan, predict or complete
action, as discussed in the previous section. Before
learning begins, all the entries in the () table are
set to an arbitrary value (0), and they are updated
in an entry-wise fashion at each time step ¢: the
value of the pair (s, a;) is updated based on the
reward signal ;41 and the new state sy that the
agent receives from the environment after taking
action a;. The new state sy updates the chart
in the previous state s; with the new edge (if any)
added by action ay.

DQN agents approximate the () function with
an artificial neural network (ANN). Their basic ar-
chitecture is provided in Fig. 3. The edges in the
current chart are numericalized (we return to this
in a moment) and the resulting tensors are the input
to a recurrent or self-attention ANN, the output of
which is a chart tensor that ‘summarizes’ the cur-
rent chart. We have a variety of choices for how
to compute the chart tensor, but we only explore
the simplest choices here: for RNNs, we take the
chart tensor to be the final hidden state (or the two
final hidden states for bidirectional RNNs); for self-
attention, we mean-pool the attention outputs. This
chart tensor is then concatenated with the numeri-
calized action we’re evaluating, and the resulting
tensor is the input to a multilayer perceptron (MLP)
with a single hidden layer and a ReLU nonlinearity.
The output of the MLP is the predicted () value
for the current state (chart) and action. We use an
e-greedy policy, with € annealed from a starting
value of 1 to a minimum value of 0.01. All DQN
agents were trained using one-step semi-gradient
TD (a.k.a. semi-gradient TD(0); Sutton and Barto
2018, Chapters 9-11), with a squared TD-error loss
and the Adam optimizer (Kingma and Ba 2015).

The AC agents use the same architecture as the
DQN agents for their policy-approximation com-
ponent: the single-value output is now the esti-
mated logit for the action we’re evaluating. The
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Figure 3: The basic architecture of the DQN agents

logit is soft-maxed together with the logits for all
the other actions valid in the current state to yield
a probability distribution over these actions. To
this main policy-approximating branch, we add a
separate state-value estimation MLP head with a
single hidden layer that takes the chart tensor as in-
put and outputs the estimated value for the current
state (chart). The state-value head is trained using
a squared TD-error loss (we backpropagate these
gradients only through the state-value MLP head).
The main policy-network branch is updated using a
one-step version of REINFORCE (Williams 1992;
see also Sutton and Barto 2018, Ch. 13 and refer-
ences therein). All the recurrent and self-attention
networks had a state/query/key/value size of 256,
which was also the hidden-layer size of all MLPs.

There are many possible choices for edge-to-
tensor numericalization, including trainable em-
beddings. In our experiments, we used a simple,
deterministic algorithm. As discussed in the previ-
ous section, an edge is basically a CFG production
with three associated integers: two integers are
used to indicate the span of the edge (the part of
the sentential input that is ‘covered’ by the edge),
and the third one is used to indicate the dot posi-
tion, i.e., how much of the right-hand side of the
production has been completed. To numericalize
an edge, we need to decide how to numericalize the
non-terminals and terminals in the production part,
and these three integers. For the integers, we used
a one-hot encoding with a dimensionality equal
to the maximum length of the right-hand side of
a production in our CFG. For the non-terminals,
we also used a one-hot encoding with the dimen-
sionality provided by the number of non-terminals
in our CFG. For terminals, i.e. words, we used
GloVe embeddings (Pennington et al. 2014) and
reduced their dimensionality to the dimensional-
ity of the non-terminal one-hot encodings via a
principal component analysis (PCA) model. For
out-of-vocabulary (UNK) words without GloVe

embeddings, we used the mean GloVE embedding.
Actions were numericalized using the same algo-
rithm. For complete actions, we concatenated the
numericalizations of the two edges in the complete
pair. For predict actions, we numericalized the
edge and then numericalized the production as if it
was an edge, with null tensors for the three spurious
integers. For scan actions, we concatenated two
null edge tensors of the appropriate dimensionality.

3.2 Environment Specifics

We select the two simplest parsing environments
we can create based on the Brown part of the Penn
Treebank corpus: an environment based on a subset
of the trees of height 4, and an environment based
on a subset of the trees of height 5. To make the
difficulty as low as possible for the RL agents, the
trees are selected so that they always begin with
a subject NP. The height-4 environment had 178
trees, with a random 90% — 10% train-test split that
varied across 4 experimental runs; all the results
reported in this section average across these runs,
hence, across multiple random train-test splits. All
splits had 160 train sentences and 18 test sentences.
We did not have a separate validation set: given our
limited computational resources, we didn’t do any
hyperparameter tuning (except for a handful of very
limited comparisons). The height-5 environment
had a 776 trees, and the 90% — 10% split had 698
train sentences and 78 test sentences.

Although these two environments are the sim-
plest in terms of difficulty, the jump in difficulty
from height 4 to height 5 is significant (and it
only gets more substantial when moving to height-
6 trees etc.). The maximum sentence length for
height-4 trees was 7, while for height-5 trees, it
was 12. The CFG induced by the height-4 trees
had only 269 productions with a maximum right-
hand side length of 4, while the CFG induced by
the height-5 trees had 1761 productions with a max-
imum right-hand side length of 7. Because of this,
the average number of parses for a sentence from
the height-4 corpus (according to the induced CFG)
was 1.09, while the average number of parses for
a sentence from the height-5 corpus was 18.14.
The number of parses increases very quickly as
tree height goes up. For example, height-6 based
CFGs associate more than 35 million parses with
relatively short sentences like The pale blob of the
woman disappeared. Yet another way to see the
jump in difficulty from height 4 to height 5 is to



compare the average number of valid predict and
complete actions per step: for height 4, there are
on average 4.5 predict actions and 1.11 complete
actions per step, while for height 5, there are on
average 97.39 predict actions and 1.82 complete
actions per step.

The performance of the agents in the height-4
and height-5 parsing environments are provided
in Tables 2 and 3. On height-4, the agents were
trained for 15,000 episodes, while on height-5, they
were trained for 5,000 episodes. There are fewer
episodes for height-5 because the episodes are
much longer than the height-4 ones; 5,000 height-5
episodes are roughly equivalent to 15,000 height-
4 episodes in that the e-annealing schedule has a
similar profile relative to a full training run. The
results in these tables (both means and standard
errors) are averaged over 4 independent runs. The
height-5 results for some of the AC agents were
computed on less than 4 runs because of their sub-
stantially higher computational-resource demands.
The number of steps was also limited for some of
the AC agents on height 5. Based on a very small
set of comparisons, step-limiting did not hurt the
AC agents’ training.

3.3 Evaluation

To better evaluate the agents, we estimated a floor
and a ceiling for their performance in these environ-
ments. The floor is provided by agents randomly
choosing an action in any state from the set of
actions that are valid in that state. For height 4,
the random agent achieves an average total reward
per episode of —4.87, obtained in 18.14 steps per
episode (on average). For height 5, the random
agent achieves an average total reward of —96 in
156.21 steps per episode.

We estimate the performance ceiling for any
given sentence by looking at all the possible parses
of the sentence based on the environment CFG,
and all the complete and incomplete edges that
contribute to any of these parses. With the edges
and parses in hand, we can compute the average
reward per parse by multiplying the number of
edges by —0.25 (which is the cost of any pars-
ing action that contributes to a successful parse),
adding 5 for all final edges (this is the final reward
for completing the parse), and dividing by the total
number of possible parses. We can compute the
average minimum number of steps in the same way
(we divide the number of edges by the number of

parses). These estimates are fairly accurate for low-
ambiguity sentences like the ones in the height-4
environment, but they tend to be overly optimistic
for higher-ambiguity sentences like the ones in the
height-5 environment. To see this, take the typ-
ical PP-attachment ambiguity example I saw the
astronomer with a telescope. The average number
of minimum steps to a successful parse out of 2
possible parses is probably higher than the num-
ber of edges contributing to either of those parses
divided by 2: most of the edges have to be added
for either one of the parses, which only differ with
respect to a small number of edges. This being
said, the estimated average maximum reward for
the height-4 environment is 2.99, and the average
minimum number of steps is 10.05, which are very
likely close to the true values because of the low
ambiguity of height-4 sentences. For height 5, the
estimated average maximum reward is 4.13, and
the estimated minimum number of steps is 5.47.
These height-5 estimates are likely pretty far from
the true values, for which the average number of
minimum steps seems closer to 30, which puts the
average max reward for height 5 closer to —2.

4 Results

With these performance ranges in mind, we can
turn to a discussion of the results in Tables 2 and
3. We see that overall, DQN agents outperform
AC agents, with the performance of tabular agents
being the poorest. The tabular agent performs about
as well as the random baselines in both the height-4
and the height-5 environments. Since the tabular
agent effectively memorizes the training data, it
only very slightly generalizes from train to test in
height 4 (many of the trees have similar subparts,
so a small amount of generalization is possible), but
completely fails to generalize in the more difficult
height-5 environment.

On height 4, the DQN agent with an Elman (sim-
ple) RNN is the best on the test sentences; see the
two boldfaced numbers in the left half of Table 2.
This is likely because the other agents end up over-
fitting the training data. The performance of the
DQN RNN agent is very close to ceiling perfor-
mance, i.e., to the estimated max reward and min
steps per episode for height 4, indicating that, for
all intents and purposes, we have solved the height-
4 environment. The DQN GRU agent is also a solid
performer in height 4, trailing behind DQN RNN
only slightly.



Table 2: Q-learning agents: mean total rewards / steps (and standard errors) on train / test

Agent Height 4 Height 5
Reward Steps Reward Steps
Train Test Train Test Train Test Train Test
Tabular Q -4.73 (0.05)  -4.18 (1.06) 19.15 (0.08) 18.17 (1.69) | -124.57 (1.1)  -127.59 (8.98)  200.25 (1.62)  204.75 (13.27)
DQN RNN 0.13 (0.04) 2.56 (0.32) 13.51 (0.06) 10.26 (0.57) | -28.84(0.63) -22.71 (4.24) 63.48 (0.92) 55.08 (6.27)
DQN GRU 0.93 (0.03) 2.33(0.38) 12.59 (0.05) 10.86 (0.73) | -24.48 (0.56) -16.36 (2.87) 56.37 (0.83) 43.84 (4.44)
DQN LSTM 0.96 (0.03) 1.65 (0.78) 12.53 (0.05) 11.93 (1.3) -27.07 (0.6) -19.75 (3.62) 60.81 (0.88) 50.55 (5.48)
DQN Bi-RNN 0.11 (0.04) 1.87 (0.53) 13.55 (0.06) 11.46 (0.92) | -29.95 (0.64) -22.84 (4.83) 64.88 (0.94) 53.98 (6.97)
DQN Bi-GRU 0.96 (0.03) 1.84 (0.65) 12.52 (0.05) 11.67 (1.1) -20.48 (0.3) -15.09 (2.91) 48.62 (0.42) 41.86 (4.37)
DQN Bi-LSTM 0.91 (0.03) 2.17 (0.57) 12.62 (0.05) 11.08 (1.02) -22.78 (0.3) -21.52 (4.52) 52.8 (0.41) 53.02 (6.75)
DQN Self-Att 0.75 (0.03) 1.94 (0.45) 12.83 (0.05) 11.71 (0.87) | -25.44(0.58) -20.43 (3.98) 58.92 (0.86) 51.44 (5.92)
Table 3: Actor-Critic agents: mean total rewards / steps (and standard errors) on train / test
Agent Height 4 Height 5
Reward Steps Reward Steps
Train Test Train Test Train Test Train Test
AC RNN 0.61(0.04)  059(1.22)  1438(0.06) 1278 (1.81) | -44.1(0.26)  -60.64 (5.33)  79.24 (0.34) 109 (7.77)
AC GRU 1.81(0.03)  139(0.73)  11.63(0.04) 12.19(1.14) | -47.38(0.74)  -38.92(4.1)  90.39(1.07)  78.45(6.13)
AC LSTM 174 (0.03)  0.61(1.15)  11.67(0.04)  13.44(1.78) | -36.72(0.28)  -45.4(4.75)  71.12(0.38)  86.44 (7.01)
ACBi-RNN | -0.59(0.04)  03(0.86)  14.44(0.07) 13.46(1.32) | -70.29 (0.79)  -70.96 (6.51)  121.69 (1.16)  123.22 (9.68)
AC Bi-GRU 1.83(0.03)  137(0.89) 11.63(0.04)  11.9(1.4) | -31.19(0.28)  -34.66(5.02)  64.54 (0.39) 71.37 (7.3)
AC Bi-LSTM | 1.34(0.03) 13(0.73)  12.15(0.05) 1226 (1.17) | -3573(0.27) -47.69 (6.14)  70.59 (0.37)  91.44 (8.96)
AC Self-Att 2.08(0.04) -0.64(0.72) 1587 (0.07)  13.64 (1.2) N/A N/A N/A N/A

However, the extra capacity in the more com-
plex agents is helpful in the height-5 environment,
where the bi-directional GRU performs the best;
see the two boldfaced numbers in the right half
of Table 2. Once again, the DQN GRU is a solid
performer, trailing only slightly behind its bidi-
rectional cousin on height-5. However, even the
performance of the best agent (DQN Bi-GRU) is
not at ceiling on height 5. As mentioned before,
we have not done a hyperparameter search because
of our limited computational resources, but the
sub-ceiling performance of the best agent does not
seem to be due to model capacity (only): we com-
pared a DQN RNN agent with double the hidden
state in the recurrent component (512) and double
the hidden-layer size in the MLP component (512
again); its performance on height 5 was not distin-
guishable from the DQN RNN agent in Table 2.

We see that these cognitively realistic parsing
environments provide a substantial challenge for
current RL algorithms — recall that the height-4
and height-5 environments provide the simplest
levels of difficulty, which very abruptly escalates
for height 6 and above. A minimal increase in diffi-
culty would be to use all the height-4 and height-5
trees, not only the ones starting with an NP subject.
The AC agents performed more poorly than the
DQN agents, which might be due to the fact that
DQN is probably more sample efficient than AC.
This is particularly interesting given that AC archi-
tectures have been argued to be cognitively realistic

(Botvinick et al. 2009). The self-attention AC agent
in particular performed surprisingly poorly. Self-
attention DQN is a pretty solid, middle-of-the-pack
performer on both height 4 and height 5. The train-
ing of the self-attention AC agent, however, was
unstable, which resulted in poor performance on
height 4 and a complete lack of convergence in the
more difficult height-5 environment. We are still
diagnosing this issue.

Total steps (height 4) - Tabular and three recurrent DON a Total steps (height 5) - Tabular and three recurrent DQN agents
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Figure 4: Steps per episode for tabular and three DQN agents
training on height-4 (left) and height-5 (right)

The plots in Fig. 4 show the number of steps per
episode (lower is better) for four agents, the tabular
one and the three simplest recurrent DQNs. We
see in both of them that the tabular agents seems to
learn, but very slowly, while the DQN agents learn
much faster. However, the DQN agents top out
at a sub-ceiling level of performance on height 5,
indicating that this environment remains unsolved.
We leave an extensive hyperparameter search for a
future occasion.
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