
A Family of Cognitively Realistic Parsing Environments for Deep
Reinforcement Learning

Anonymous ACL submission

Abstract
The hierarchical syntactic structure of natural001
language is a key feature of human cognition002
that enables us to recursively construct arbi-003
trarily long sentences supporting communica-004
tion of complex, relational information. In this005
work, we describe a framework in which learn-006
ing cognitively-realistic left-corner parsers can007
be formalized as a Reinforcement Learning008
problem, and introduce a family of cognitively009
realistic chart-parsing environments to evalu-010
ate potential psycholinguistic implications of011
RL algorithms. We report how several base-012
line Q-learning and Actor Critic algorithms,013
both tabular and neural, perform on subsets014
of the Penn Treebank corpus. We observe015
a sharp increase in difficulty as parse trees016
get slightly more complex, indicating that hi-017
erarchical reinforcement learning might be re-018
quired to solve this family of environments.019

1 Introduction020

We introduce a framework in which we can start021

exploring how reinforcement learning (RL; Sutton022

and Barto 2018) algorithms scale up against human023

cognitive performance, as captured by the syntactic024

parsing problem. Parsers grounded in contempo-025

rary generative linguistic theory involve rich, hier-026

archically structured representations and complex027

rule systems that pose significant challenges for028

RL algorithms. We begin with a simple example029

to illustrate the type of psycholinguistic task we030

modeled our environments on, namely self-paced031

reading tasks (Just and Carpenter, 1980; Just et al.,032

1982). In such tasks, the words are hidden and only033

one word is uncovered at a time with a spacebar034

press. The human reader decides when to press035

the spacebar to uncover the next word (which auto-036

matically hides the current word), hence the name037

of self-paced reading. Self-paced reading tasks038

mimic an essential aspect of naturally-occurring039

language comprehension with auditory stimuli: the040

signal is strictly linearly and strictly incrementally041

presented one word at a time. Just as in naturally- 042

occurring verbal interactions, and unlike in normal 043

reading situations, the linguistic signal cannot be 044

‘rewound’ to previous words – we cannot just look 045

back and reread previous parts of the text – or ‘fast- 046

forwarded’ to subsequent words – we cannot jump 047

ahead to parts of the text that do not immediately 048

follow the word currently being read. 049

We use a chart parser (Earley 1970; Tomita 1986; 050

Scott 2008) with a cognitively-realistic eager left- 051

corner parsing strategy (Resnik 1992; Hale 2014 052

a.o.) to provide the reward structure, thereby guid- 053

ing the reinforcement learning process. Running 054

this eager left-corner parser on a simple input sen- 055

tence will shed light on its inner workings. Assume 056

we have a simple grammar with three phrase struc- 057

ture rules (PSRs) S→ NP VP, NP→ Det N, and 058

VP → V. Also, assume that we are reading the 059

sentence A boy sleeps in a self-paced reading task. 060

We start with a screen in which all words are cov- 061

ered with dashes: - --- ------. After the 062

first space-bar press, the first word is revealed: A 063

--- ------, and the parser recognizes its syn- 064

tactic category Det (determiner) and takes a series 065

of parsing steps that constructs the leftmost tree 066

in Figure 1. We see here the left-corner nature 067

of our parser: we trigger the PSR NP → Det N, 068

which has Det as its left branch/corner, as soon as 069

we recognize that the first word A is a determiner. 070

This partial tree is only implicitly constructed in 071

the chart parser: the chart does not store trees, 072

but instead contains edges, which are left-corner 073

based hypotheses about the possible syntactic struc- 074

tures we can associate with the linguistic input re- 075

ceived so far. After another space-bar press, the 076

noun is revealed (- boy ------ ), its syntac- 077

tic category N is recognized and the richer par- 078

tial tree shown in the middle of Figure 1 is con- 079

structed after a series of parsing steps. Finally, the 080

verb is revealed after one more space-bar press: - 081

--- sleeps, its syntactic category V is recog- 082

1



nized, and the final tree structure in Figure 1 is083

constructed.084

∅ A
=⇒ NP

NDet

A

boy
==⇒ S

VPNP

N

boy

Det

A

sleeps
====⇒ S

VP

V

sleeps

NP

N

boy

Det

A

Figure 1: Partial trees built incrementally when reading
the sentence A boy sleeps word by word

This parsing example shows that proper action085

ordering is crucial to successfully completing the086

parsing process, which is like searching for a path087

through a maze: (i) the position in the maze is088

the current parse state (the chart), (ii) the possible089

moves (up, left etc.) are the possible parsing steps,090

i.e., edges, we can add to the chart, and (iii) a path091

through the maze is given by the proper sequence092

of parsing steps / edges needed to successfully com-093

plete the parsing process.094

Both humans and RL agents may get ‘lost’ in095

these parsing mazes, for example, when encoun-096

tering a so-called ‘garden path’ example like The097

horse raced past the barn fell (Bever 1970 among098

many others). This sentence might seem ungram-099

matical, but it is in fact grammatical under the re-100

duced relative clause interpretation that can be para-101

phrased as ‘the horse that was raced past the barn102

fell.’ To access that interpretation, one can com-103

pare the previous example with the sentence The104

children taught by the Berlitz method passed the105

test (Crain and Steedman 1985). This second ex-106

ample does not garden-path the reader because the107

most likely interpretation of taught in this sentence108

is the non-finite past-participle interpretation. This109

is in contrast to raced in the first example, which110

garden-paths the reader because its most likely in-111

terpretation is the incorrect, finite simple past one.112

This interpretation leads the reader down an incor-113

rect garden path during incremental parsing.114

In brief, parsing tasks can be viewed as executing115

a certain protocol, and RL is a family of methods116

to learn protocols. The paper makes two contribu-117

tions. First, we introduce a new family of cogni-118

tively realistic parsing environments for RL that are119

ordered by the complexity of the parsing problems120

they pose. Second, we study the performance of121

15 agents in the two easiest parsing environments122

(height-4 and height-5 trees). The 15 agents fall 123

into 3 classes: tabular, Deep Q Network (DQN) 124

agents, and Actor-Critic (AC) agents; for the latter 125

two, we experiment with LSTM (Hochreiter and 126

Schmidhuber 1997), GRU (Cho et al. 2014), and 127

Self-Attention networks (Vaswani et al. 2017). 128

2 Family of Parsing Environments 129

2.1 Parsing Actions 130

It is perhaps easiest to introduce our formalization 131

of the parsing environment by examining an exam- 132

ple episode perfectly played by a trained parsing 133

agent, shown in Table 1. The sentence to be parsed 134

is He sighed. The agent can take one of three types 135

of actions. The first type of action is scan, which 136

‘reads’ the next word of the sentence. The words 137

are ‘read’ one at a time, and the agent is not able to 138

access the next word without a scan action. Further- 139

more, the final word at the end of the sentence is not 140

explicitly marked as such: the agent learns that the 141

end of the sentence has been reached only when it 142

takes a scan action that fails, which receives a steep 143

negative reward of−2. That is, the agent is actively 144

encouraged to predict the end of the sentence. 145

The first two actions in Table 1 are scan actions, 146

and we see that the agent correctly predicts the 147

end of the sentence after the second word has been 148

scanned and does not attempt to scan again. The 149

results of these actions are two leaf edges which 150

are added to the chart, and these edges are returned 151

to the agent by the environment as (part of) the 152

next state. Leaf edges consist of a span, which 153

indicates what positions/parts of the input sentence 154

are ‘covered’ by the leaf edge. The first scan adds 155

a leaf edge spanning positions 0 to 1, that is, the 156

first terminal, which is the word He. The second 157

scan adds a leaf edge spanning positions 1 to 2, 158

i.e., the second terminal, which is the word sighed. 159

Actions that contribute to the final parse receive a 160

small negative reward of −0.25, encouraging the 161

agent to finish parsing as soon as possible. 162

The next five actions in Table 1 are predict ac- 163

tions. These actions target a complete edge in the 164

chart (leaf edges are by definition complete; we 165

discuss completion for other edges below), and 166

identify a production in the grammar whose right- 167

hand side starts with the terminal or non-terminal 168

of that completed edge. That is, we identify pro- 169

ductions whose left-corner is the targeted edge. For 170

example, the first predict action (step 3 in Table 1), 171

targets the leaf edge storing the word He and identi- 172

2



Table 1: A parsing episode perfectly played by a trained agent

action state reward
1. scan [0:1] He -0.25
2. scan [1:2] sighed -0.25
3. predict: [0:1] He | PRP→ He [0:1] PRP→ He • -0.25
4. predict: [0:1] PRP→ He • | NP-SBJ→ PRP [0:1] NP-SBJ→ PRP • -0.25
5. predict: [0:1] NP-SBJ→ PRP • | S→ NP-SBJ VP [0:1] S→ NP-SBJ • VP -0.25
6. predict: [1:2] sighed | VBD→ sighed [1:2] VBD→ sighed • -0.25
7. predict: [1:2] VBD→ sighed • | VP→ VBD [1:2] VP→ VBD • -0.25
8. complete: [0:1] S→ NP-SBJ • VP | [1:2] VP→ VBD • [0:2] S→ NP-SBJ VP • 5.00

fies ‘PRP→ He’ as a production whose left-corner173

is that word (PRP stands for personal pronoun). As174

a result of this action, we add a new edge to the175

environment chart, the one listed in step 3 under176

state. The span of this edge is 0:1, which is the177

same as the span of the edge targeted by the predict178

action (the edge covers only the first word of the179

sentence). The edge added in step 3 is not a leaf180

edge, as it builds syntactic structure on top of a181

previous edge. That syntactic structure is the unary182

branching node PRP, whose only daughter is the183

word He. This edge is a complete edge, indicated184

by the final dot • after He: ‘complete’ means that185

the entire right-hand side of the production used to186

build the edge has been recognized, i.e., has been187

built out of complete edges.188

The next predict action (in step 4) targets the189

edge ‘[0:1] PRP → He •’, which has just been190

added to the environment chart / state. This edge is191

a complete edge, and is also the left-corner of the192

production ‘NP-SBJ→ PRP;’ NP-SBJ stands for193

subject noun phrase (NP). At step 4, we build more194

syntactic structure on top of the PRP non-terminal:195

this syntactic structure is encoded by the new edge196

‘[0:1] NP-SBJ→ PRP •’, which is a complete edge197

spanning position 0:1. That is, by end of the predict198

actions in steps 3 and 4, we have implicitly built199

the leftmost partial tree in Figure 2.200

The predict action in step 5 targets the complete201

NP-SBJ edge we just added, which is identified as202

the left corner of the ‘S→ NP-SBJ VP’ production.203

The resulting edge ‘[0:1] S → NP-SBJ • VP ’,204

which is part of the resulting state in step 5, is205

the first incomplete edge in this episode: the dot •206

precedes the VP, indicating that only the NP-SBJ207

has been recognized. Note also that the span of208

this incomplete edge is still 0:1, as the span always209

indicates the part of the input sentence that has210

been completely recognized by the edge. At the211

end of step 5, we have implicitly build the second212

(partial) tree in Figure 2.213

The predict actions in steps 6 and 7 build syntac-214

∅
steps 1,3,4
=======⇒ NP-SBJ

PRP

He

step 5
====⇒ S

•VPNP-SBJ

PRP

He

steps 2,6,7
=======⇒

VP

VBD

sighed

step 8
====⇒ S

VP

VBD

sighed

NP-SBJ

PRP

He

Figure 2: Partial trees implicitly built by the agent
when playing the episode in Table 1

tic structure on top of the word sighed (VBD stands 215

for verb in past form, and VP for verb phrase). The 216

resulting tree is the third one in Figure 2. 217

The final action in the episode is a complete 218

action. This is the third and final type of action 219

that an agent can take. Complete actions target 220

two edges in the chart (in the current environment 221

state). The first edge is incomplete; specifically, 222

this is the edge ‘[0:1] S→ NP-SBJ • VP’ we built 223

in step 5. The second edge has to be complete, and 224

its left-hand side non-terminal has to be the very 225

same as the leftmost incomplete non-terminal on 226

the right-hand side of the incomplete edge. This 227

final action completes the parse, building the com- 228

plete final tree in Figure 2. The reward in this step 229

is a substantial positive reward of 5. 230

In sum, agents can take one of three types of ac- 231

tions: scan, predict and complete. Predict actions 232

target an edge in the current chart that can be the 233

left corner of a grammar production. Complete 234

actions target two edges in the current chart, an in- 235

complete edge and a complete edge; the complete 236

3



edge can be used to bring the incomplete edge one237

step closer to completion. States returned by the en-238

vironment consist of the current chart/list of edges,239

which encode the partially built syntactic structures240

in a very compact manner. Charts efficiently en-241

code multiple complete parses if the sentence to be242

parsed is syntactically ambiguous, as in the typi-243

cal prepositional phrase (PP) attachment example I244

saw the astronomer with a telescope. The PP with245

a telescope can be attached to the noun astronomer246

(the astronomer has a telescope), or to the verb saw247

(the seeing was done by means of a telescope).248

2.2 Environment Setup249

For every episode, the agent is tasked with pars-250

ing a single sentence. In all our experiments, the251

sentences come from the parsed Brown Corpus252

part of the Penn Treebank-3 Corpus (Marcus et al.,253

1999). The specific set of parse trees we load into254

our parsing environment determine the difficulty255

of the parsing tasks an RL agent will face. This256

enables us to create a wide variety of parsing envi-257

ronments that can be finely tuned in terms of diffi-258

culty. The level of difficulty is determined by the259

kind of tree structures we allow in the input set of260

trees. One way to decrease the level of difficulty is261

to restrict the kind of syntactic structures we allow;262

for example, removing trees that contain adjuncts263

decreases the level of difficulty. Another way is to264

limit the height of the trees, where tree height is265

defined as the length of the longest path in the tree266

starting at the root. For example, our experiments267

were run first with height-4 trees only, which is268

the smallest height with a reasonable number of269

trees (more than 150), after which we investigated270

height-5 trees. We have created a variety of tree271

sets along these lines. Height-6 trees, for example,272

even without adjunct structures, already raised the273

level of difficulty to a point that exceeded our com-274

putational resources (3 separate GPUs, the best of275

which was a Titan RTX, not always accessible).276

Once a subset of trees is identified (by calibrating277

it for tree height, types of syntactic structures, and278

sometimes maximum sentence length) and loaded279

into the parsing environment, it is split into train,280

validation and test sets according to percentages281

provided by the user. The train-validation-test split282

is determined by a random seed that can be set by283

the user for reproducibility. Given our limited com-284

putational resources and the pilot benchmarking285

nature of this work, we couldn’t do a systematic286

hyperparameter search, so we report results based 287

only on train-test 90%-10% splits, without a sepa- 288

rate validation set for hyperparameter tuning. We 289

set the hyperparameters to values that seemed rea- 290

sonable (often defaults); see next section. 291

After the set of trees is loaded, and before the 292

train-test split is determined, the environment cre- 293

ates a context-free grammar (CFG) based on the 294

productions implicit in all the loaded trees. The 295

environment uses this CFG to generate the reward 296

structure for any given episode. Every training 297

episode consists of the agent learning to parse one 298

sentence from the train set. What we do is create a 299

‘maze’ based on each individual sentence, and train 300

agents on these ‘mazes.’ 301

For every train sentence, the environment uses 302

the CFG to left-corner chart-parse the sentence 303

and identify all its possible parses, as well as all 304

the complete and incomplete parse edges that con- 305

tribute to these parses. These parse edges enable us 306

to generate the reward structure for every episode: 307

if the agent takes an action resulting in an edge that 308

contributes to one of the possible parses, the agent 309

receives a small negative penalty, which was−0.25 310

in our experiments, but this, and all other rewards, 311

can be set by the user. If the agent selects a parsing 312

action that is licensed by the current state (which 313

consists of the current chart and whether there are 314

still words that need to be scanned), but does not 315

contribute to one of the possible parses, the agent 316

receives a larger negative penalty of −0.75. Ac- 317

tions are licensed if they create a valid edge that 318

can be added to the current chart (‘valid’ based on 319

the current chart and the background CFG). If the 320

agent selects a parsing action that is not licensed 321

by the current state, for example, it tries to add an 322

edge that was already added to the chart, or tries to 323

scan a word when there are no more words to be 324

scanned, the agent receives a steep negative penalty 325

of −2. Finally, when the agent selects an action 326

that adds the final edge needed to complete a full 327

parse of the sentence, it receives a positive reward 328

of 5 and the episode terminates. An optimal policy 329

takes the minimum number of actions necessary to 330

construct a complete parse of the input sentence. 331

While agents attempt to build alternative parse 332

structures from those validated by the PTB-based 333

CFG, they are negatively penalized by the environ- 334

ment for all the edges that don’t contribute to any 335

valid parse. Due to charts being able to compactly 336

represent multiple parse trees, it’s always possible 337

4



for an agent to eventually arrive at the correct parse338

by exhaustively executing all parse actions offered339

by the environment. However, this would result340

in a significantly lower total reward than taking341

the shortest, most cognitively realistic path to the342

correct parse (as seen in Sec. 4 Results).343

Agents are trained to take the minimum steps344

possible because this heuristic is part of what the345

human parser does (Hale 2011 a.o. and references346

therein). It is precisely this minimum-cost fea-347

ture of the human parser that leads it down garden348

paths. Hale (2011) provides suggestive evidence349

that a distance metric (i.e. an estimate of steps350

necessary to complete a parse) inferred based on351

PTB counts can be used to guide parsing in a way352

that captures a variety of garden-path phenomena.353

The present work is a first step towards using RL354

methods to learn this metric from experience (build-355

ing on Hale 2014), and in the process, hopefully356

provide evidence for the cognitive realism of this357

minimal-effort / minimal-cost hypothesis.358

As already indicated, the environment main-359

tains a chart, which starts out empty for each sen-360

tence/episode. This chart, together with a Boolean361

indicating whether all words have been scanned or362

not, forms the state that the environment returns to363

the agent after every action. In our experiments, we364

decreased the difficulty of learning and provided365

the agent with the list of all possible predict and366

complete actions licensed by the environment in367

any given state. This simplifies the learning prob-368

lem, as it effectively reduces action generation to369

action selection from a provided set of choices. The370

simplification can be easily removed, which would371

force the agent to generate actions.372

3 Experiments373

3.1 Agent Architectures374

We study the performance of 15 RL algorithms /375

agents in the height-4 and height-5 parsing envi-376

ronments: (i) a tabular Q learning agent (Watkins377

1989; Watkins and Dayan 1992), (ii) 7 DQN agents378

(Mnih and al 2015, Sutton and Barto 2018, Ch. 11379

and references therein), and (iii) 7 Actor-Critic380

(AC) agents (Sutton and Barto 2018, Ch. 13 and381

references therein). The 7 DQN agents differ with382

respect to their architecture, and so do the AC383

agents. Six of them are recurrent: Elman/standard384

RNN (Elman 1990), GRU (Cho et al. 2014), LSTM385

(Hochreiter and Schmidhuber 1997), and bidirec-386

tional versions of these three (Schuster and Paliwal387

1997; Graves and Schmidhuber 2005). We also 388

study a self-attention (Vaswani et al. 2017) agent. 389

The learning rate α was always set to 10−3 and the 390

discount factor γ to 0.9. 391

The tabular Q agent represents the Q function as 392

a look-up table that stores the estimated values of 393

all possible state-action pairs. The state st at time 394

step t consist of all the edges in the current chart, 395

plus a Boolean indicating whether all the words 396

have been scanned, i.e., whether we reached the 397

end of the sentence. The action at selected by the 398

agent in state st can be a scan, predict or complete 399

action, as discussed in the previous section. Before 400

learning begins, all the entries in the Q table are 401

set to an arbitrary value (0), and they are updated 402

in an entry-wise fashion at each time step t: the 403

value of the pair (st, at) is updated based on the 404

reward signal rt+1 and the new state st+1 that the 405

agent receives from the environment after taking 406

action at. The new state st+1 updates the chart 407

in the previous state st with the new edge (if any) 408

added by action at. 409

DQN agents approximate the Q function with 410

an artificial neural network (ANN). Their basic ar- 411

chitecture is provided in Fig. 3. The edges in the 412

current chart are numericalized (we return to this 413

in a moment) and the resulting tensors are the input 414

to a recurrent or self-attention ANN, the output of 415

which is a chart tensor that ‘summarizes’ the cur- 416

rent chart. We have a variety of choices for how 417

to compute the chart tensor, but we only explore 418

the simplest choices here: for RNNs, we take the 419

chart tensor to be the final hidden state (or the two 420

final hidden states for bidirectional RNNs); for self- 421

attention, we mean-pool the attention outputs. This 422

chart tensor is then concatenated with the numeri- 423

calized action we’re evaluating, and the resulting 424

tensor is the input to a multilayer perceptron (MLP) 425

with a single hidden layer and a ReLU nonlinearity. 426

The output of the MLP is the predicted Q value 427

for the current state (chart) and action. We use an 428

ε-greedy policy, with ε annealed from a starting 429

value of 1 to a minimum value of 0.01. All DQN 430

agents were trained using one-step semi-gradient 431

TD (a.k.a. semi-gradient TD(0); Sutton and Barto 432

2018, Chapters 9-11), with a squared TD-error loss 433

and the Adam optimizer (Kingma and Ba 2015). 434

The AC agents use the same architecture as the 435

DQN agents for their policy-approximation com- 436

ponent: the single-value output is now the esti- 437

mated logit for the action we’re evaluating. The 438

5



Edge Tensors

RNN/GRU/LSTM/Att

Chart Tensor Concat

Action Tensor

MLP

Q value

Figure 3: The basic architecture of the DQN agents

logit is soft-maxed together with the logits for all439

the other actions valid in the current state to yield440

a probability distribution over these actions. To441

this main policy-approximating branch, we add a442

separate state-value estimation MLP head with a443

single hidden layer that takes the chart tensor as in-444

put and outputs the estimated value for the current445

state (chart). The state-value head is trained using446

a squared TD-error loss (we backpropagate these447

gradients only through the state-value MLP head).448

The main policy-network branch is updated using a449

one-step version of REINFORCE (Williams 1992;450

see also Sutton and Barto 2018, Ch. 13 and refer-451

ences therein). All the recurrent and self-attention452

networks had a state/query/key/value size of 256,453

which was also the hidden-layer size of all MLPs.454

There are many possible choices for edge-to-455

tensor numericalization, including trainable em-456

beddings. In our experiments, we used a simple,457

deterministic algorithm. As discussed in the previ-458

ous section, an edge is basically a CFG production459

with three associated integers: two integers are460

used to indicate the span of the edge (the part of461

the sentential input that is ‘covered’ by the edge),462

and the third one is used to indicate the dot posi-463

tion, i.e., how much of the right-hand side of the464

production has been completed. To numericalize465

an edge, we need to decide how to numericalize the466

non-terminals and terminals in the production part,467

and these three integers. For the integers, we used468

a one-hot encoding with a dimensionality equal469

to the maximum length of the right-hand side of470

a production in our CFG. For the non-terminals,471

we also used a one-hot encoding with the dimen-472

sionality provided by the number of non-terminals473

in our CFG. For terminals, i.e. words, we used474

GloVe embeddings (Pennington et al. 2014) and475

reduced their dimensionality to the dimensional-476

ity of the non-terminal one-hot encodings via a477

principal component analysis (PCA) model. For478

out-of-vocabulary (UNK) words without GloVe479

embeddings, we used the mean GloVE embedding. 480

Actions were numericalized using the same algo- 481

rithm. For complete actions, we concatenated the 482

numericalizations of the two edges in the complete 483

pair. For predict actions, we numericalized the 484

edge and then numericalized the production as if it 485

was an edge, with null tensors for the three spurious 486

integers. For scan actions, we concatenated two 487

null edge tensors of the appropriate dimensionality. 488

3.2 Environment Specifics 489

We select the two simplest parsing environments 490

we can create based on the Brown part of the Penn 491

Treebank corpus: an environment based on a subset 492

of the trees of height 4, and an environment based 493

on a subset of the trees of height 5. To make the 494

difficulty as low as possible for the RL agents, the 495

trees are selected so that they always begin with 496

a subject NP. The height-4 environment had 178 497

trees, with a random 90%−10% train-test split that 498

varied across 4 experimental runs; all the results 499

reported in this section average across these runs, 500

hence, across multiple random train-test splits. All 501

splits had 160 train sentences and 18 test sentences. 502

We did not have a separate validation set: given our 503

limited computational resources, we didn’t do any 504

hyperparameter tuning (except for a handful of very 505

limited comparisons). The height-5 environment 506

had a 776 trees, and the 90%− 10% split had 698 507

train sentences and 78 test sentences. 508

Although these two environments are the sim- 509

plest in terms of difficulty, the jump in difficulty 510

from height 4 to height 5 is significant (and it 511

only gets more substantial when moving to height- 512

6 trees etc.). The maximum sentence length for 513

height-4 trees was 7, while for height-5 trees, it 514

was 12. The CFG induced by the height-4 trees 515

had only 269 productions with a maximum right- 516

hand side length of 4, while the CFG induced by 517

the height-5 trees had 1761 productions with a max- 518

imum right-hand side length of 7. Because of this, 519

the average number of parses for a sentence from 520

the height-4 corpus (according to the induced CFG) 521

was 1.09, while the average number of parses for 522

a sentence from the height-5 corpus was 18.14. 523

The number of parses increases very quickly as 524

tree height goes up. For example, height-6 based 525

CFGs associate more than 35 million parses with 526

relatively short sentences like The pale blob of the 527

woman disappeared. Yet another way to see the 528

jump in difficulty from height 4 to height 5 is to 529

6



compare the average number of valid predict and530

complete actions per step: for height 4, there are531

on average 4.5 predict actions and 1.11 complete532

actions per step, while for height 5, there are on533

average 97.39 predict actions and 1.82 complete534

actions per step.535

The performance of the agents in the height-4536

and height-5 parsing environments are provided537

in Tables 2 and 3. On height-4, the agents were538

trained for 15,000 episodes, while on height-5, they539

were trained for 5,000 episodes. There are fewer540

episodes for height-5 because the episodes are541

much longer than the height-4 ones; 5,000 height-5542

episodes are roughly equivalent to 15,000 height-543

4 episodes in that the ε-annealing schedule has a544

similar profile relative to a full training run. The545

results in these tables (both means and standard546

errors) are averaged over 4 independent runs. The547

height-5 results for some of the AC agents were548

computed on less than 4 runs because of their sub-549

stantially higher computational-resource demands.550

The number of steps was also limited for some of551

the AC agents on height 5. Based on a very small552

set of comparisons, step-limiting did not hurt the553

AC agents’ training.554

3.3 Evaluation555

To better evaluate the agents, we estimated a floor556

and a ceiling for their performance in these environ-557

ments. The floor is provided by agents randomly558

choosing an action in any state from the set of559

actions that are valid in that state. For height 4,560

the random agent achieves an average total reward561

per episode of −4.87, obtained in 18.14 steps per562

episode (on average). For height 5, the random563

agent achieves an average total reward of −96 in564

156.21 steps per episode.565

We estimate the performance ceiling for any566

given sentence by looking at all the possible parses567

of the sentence based on the environment CFG,568

and all the complete and incomplete edges that569

contribute to any of these parses. With the edges570

and parses in hand, we can compute the average571

reward per parse by multiplying the number of572

edges by −0.25 (which is the cost of any pars-573

ing action that contributes to a successful parse),574

adding 5 for all final edges (this is the final reward575

for completing the parse), and dividing by the total576

number of possible parses. We can compute the577

average minimum number of steps in the same way578

(we divide the number of edges by the number of579

parses). These estimates are fairly accurate for low- 580

ambiguity sentences like the ones in the height-4 581

environment, but they tend to be overly optimistic 582

for higher-ambiguity sentences like the ones in the 583

height-5 environment. To see this, take the typ- 584

ical PP-attachment ambiguity example I saw the 585

astronomer with a telescope. The average number 586

of minimum steps to a successful parse out of 2 587

possible parses is probably higher than the num- 588

ber of edges contributing to either of those parses 589

divided by 2: most of the edges have to be added 590

for either one of the parses, which only differ with 591

respect to a small number of edges. This being 592

said, the estimated average maximum reward for 593

the height-4 environment is 2.99, and the average 594

minimum number of steps is 10.05, which are very 595

likely close to the true values because of the low 596

ambiguity of height-4 sentences. For height 5, the 597

estimated average maximum reward is 4.13, and 598

the estimated minimum number of steps is 5.47. 599

These height-5 estimates are likely pretty far from 600

the true values, for which the average number of 601

minimum steps seems closer to 30, which puts the 602

average max reward for height 5 closer to −2. 603

4 Results 604

With these performance ranges in mind, we can 605

turn to a discussion of the results in Tables 2 and 606

3. We see that overall, DQN agents outperform 607

AC agents, with the performance of tabular agents 608

being the poorest. The tabular agent performs about 609

as well as the random baselines in both the height-4 610

and the height-5 environments. Since the tabular 611

agent effectively memorizes the training data, it 612

only very slightly generalizes from train to test in 613

height 4 (many of the trees have similar subparts, 614

so a small amount of generalization is possible), but 615

completely fails to generalize in the more difficult 616

height-5 environment. 617

On height 4, the DQN agent with an Elman (sim- 618

ple) RNN is the best on the test sentences; see the 619

two boldfaced numbers in the left half of Table 2. 620

This is likely because the other agents end up over- 621

fitting the training data. The performance of the 622

DQN RNN agent is very close to ceiling perfor- 623

mance, i.e., to the estimated max reward and min 624

steps per episode for height 4, indicating that, for 625

all intents and purposes, we have solved the height- 626

4 environment. The DQN GRU agent is also a solid 627

performer in height 4, trailing behind DQN RNN 628

only slightly. 629

7



Table 2: Q-learning agents: mean total rewards / steps (and standard errors) on train / test

Agent Height 4 Height 5
Reward Steps Reward Steps

Train Test Train Test Train Test Train Test

Tabular Q -4.73 (0.05) -4.18 (1.06) 19.15 (0.08) 18.17 (1.69) -124.57 (1.1) -127.59 (8.98) 200.25 (1.62) 204.75 (13.27)
DQN RNN 0.13 (0.04) 2.56 (0.32) 13.51 (0.06) 10.26 (0.57) -28.84 (0.63) -22.71 (4.24) 63.48 (0.92) 55.08 (6.27)
DQN GRU 0.93 (0.03) 2.33 (0.38) 12.59 (0.05) 10.86 (0.73) -24.48 (0.56) -16.36 (2.87) 56.37 (0.83) 43.84 (4.44)
DQN LSTM 0.96 (0.03) 1.65 (0.78) 12.53 (0.05) 11.93 (1.3) -27.07 (0.6) -19.75 (3.62) 60.81 (0.88) 50.55 (5.48)
DQN Bi-RNN 0.11 (0.04) 1.87 (0.53) 13.55 (0.06) 11.46 (0.92) -29.95 (0.64) -22.84 (4.83) 64.88 (0.94) 53.98 (6.97)
DQN Bi-GRU 0.96 (0.03) 1.84 (0.65) 12.52 (0.05) 11.67 (1.1) -20.48 (0.3) -15.09 (2.91) 48.62 (0.42) 41.86 (4.37)
DQN Bi-LSTM 0.91 (0.03) 2.17 (0.57) 12.62 (0.05) 11.08 (1.02) -22.78 (0.3) -21.52 (4.52) 52.8 (0.41) 53.02 (6.75)
DQN Self-Att 0.75 (0.03) 1.94 (0.45) 12.83 (0.05) 11.71 (0.87) -25.44 (0.58) -20.43 (3.98) 58.92 (0.86) 51.44 (5.92)

Table 3: Actor-Critic agents: mean total rewards / steps (and standard errors) on train / test

Agent Height 4 Height 5
Reward Steps Reward Steps

Train Test Train Test Train Test Train Test

AC RNN -0.61 (0.04) 0.59 (1.22) 14.38 (0.06) 12.78 (1.81) -44.1 (0.26) -60.64 (5.33) 79.24 (0.34) 109 (7.77)
AC GRU 1.81 (0.03) 1.39 (0.73) 11.63 (0.04) 12.19 (1.14) -47.38 (0.74) -38.92 (4.1) 90.39 (1.07) 78.45 (6.13)
AC LSTM 1.74 (0.03) 0.61 (1.15) 11.67 (0.04) 13.44 (1.78) -36.72 (0.28) -45.4 (4.75) 71.12 (0.38) 86.44 (7.01)
AC Bi-RNN -0.59 (0.04) 0.3 (0.86) 14.44 (0.07) 13.46 (1.32) -70.29 (0.79) -70.96 (6.51) 121.69 (1.16) 123.22 (9.68)
AC Bi-GRU 1.83 (0.03) 1.37 (0.89) 11.63 (0.04) 11.9 (1.4) -31.19 (0.28) -34.66 (5.02) 64.54 (0.39) 71.37 (7.3)
AC Bi-LSTM 1.34 (0.03) 1.3 (0.73) 12.15 (0.05) 12.26 (1.17) -35.73 (0.27) -47.69 (6.14) 70.59 (0.37) 91.44 (8.96)
AC Self-Att -2.08 (0.04) -0.64 (0.72) 15.87 (0.07) 13.64 (1.2) N/A N/A N/A N/A

However, the extra capacity in the more com-630

plex agents is helpful in the height-5 environment,631

where the bi-directional GRU performs the best;632

see the two boldfaced numbers in the right half633

of Table 2. Once again, the DQN GRU is a solid634

performer, trailing only slightly behind its bidi-635

rectional cousin on height-5. However, even the636

performance of the best agent (DQN Bi-GRU) is637

not at ceiling on height 5. As mentioned before,638

we have not done a hyperparameter search because639

of our limited computational resources, but the640

sub-ceiling performance of the best agent does not641

seem to be due to model capacity (only): we com-642

pared a DQN RNN agent with double the hidden643

state in the recurrent component (512) and double644

the hidden-layer size in the MLP component (512645

again); its performance on height 5 was not distin-646

guishable from the DQN RNN agent in Table 2.647

We see that these cognitively realistic parsing648

environments provide a substantial challenge for649

current RL algorithms – recall that the height-4650

and height-5 environments provide the simplest651

levels of difficulty, which very abruptly escalates652

for height 6 and above. A minimal increase in diffi-653

culty would be to use all the height-4 and height-5654

trees, not only the ones starting with an NP subject.655

The AC agents performed more poorly than the656

DQN agents, which might be due to the fact that657

DQN is probably more sample efficient than AC.658

This is particularly interesting given that AC archi-659

tectures have been argued to be cognitively realistic660

(Botvinick et al. 2009). The self-attention AC agent 661

in particular performed surprisingly poorly. Self- 662

attention DQN is a pretty solid, middle-of-the-pack 663

performer on both height 4 and height 5. The train- 664

ing of the self-attention AC agent, however, was 665

unstable, which resulted in poor performance on 666

height 4 and a complete lack of convergence in the 667

more difficult height-5 environment. We are still 668

diagnosing this issue. 669

Figure 4: Steps per episode for tabular and three DQN agents
training on height-4 (left) and height-5 (right)

The plots in Fig. 4 show the number of steps per 670

episode (lower is better) for four agents, the tabular 671

one and the three simplest recurrent DQNs. We 672

see in both of them that the tabular agents seems to 673

learn, but very slowly, while the DQN agents learn 674

much faster. However, the DQN agents top out 675

at a sub-ceiling level of performance on height 5, 676

indicating that this environment remains unsolved. 677

We leave an extensive hyperparameter search for a 678

future occasion. 679

8



References680

Thomas G. Bever. 1970. The cognitive basis for lin-681
guistic structures. In J.R. Hayes, editor, Cognition682
and the development of language, pages 279–362.683
Wiley.684

Matthew M. Botvinick, Yael Niv, and Andrew G. Barto.685
2009. Hierarchically organized behavior and its neu-686
ral foundations: a reinforcement learning perspec-687
tive. Cognition, 113(3):262–280.688

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-689
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger690
Schwenk, and Yoshua Bengio. 2014. Learning691
phrase representations using RNN encoder–decoder692
for statistical machine translation. In Proceedings of693
the 2014 Conference on Empirical Methods in Nat-694
ural Language Processing (EMNLP), pages 1724–695
1734. Association for Computational Linguistics.696

Stephen Crain and Mark Steedman. 1985. On not be-697
ing led up the garden path: The use of context by698
the psychological syntax processor. In David Dowty,699
Lauri Karttunen, and Arnold Zwicky, editors, Nat-700
ural Language Parsing: Psychological, Computa-701
tional and Theoretical Perspectives, pages 320–358.702
Cambridge University Press, Cambridge, UK.703

Jay Earley. 1970. An efficient context-free parsing al-704
gorithm. Communications of the ACM, 13(2):94–705
102.706

Jeffrey L. Elman. 1990. Finding structure in time. Cog-707
nitive Science, 14(2):179–211.708

A. Graves and J. Schmidhuber. 2005. Framewise709
phoneme classification with bidirectional lstm and710
other neural network architectures. Neural Net-711
works, 18(5-6):602–610.712

John Hale. 2011. What a rational parser would do.713
Cognitive Science, 35:399–443.714

John T. Hale. 2014. Automaton Theories of Human715
Sentence Comprehension. CSLI Publications, Stan-716
ford.717

Sepp Hochreiter and J urgen Schmidhuber. 1997.718
Long short-term memory. Neural Computation,719
9(8):1735–1780.720

Marcel A. Just and Patricia A. Carpenter. 1980. A the-721
ory of reading: From eye fixations to comprehension.722
Psychological Review, 87:329–354.723

Marcel A. Just, Patricia A. Carpenter, and Jacqueline D.724
Woolley. 1982. Paradigms and processes in reading725
comprehension. Journal of Experimental Psychol-726
ogy: General, 111(2):228–238.727

Diederik P. Kingma and Jimmy Lei Ba. 2015. Adam:728
A method for stochastic optimization. In 3rd Inter-729
national Conference on Learning Representations,730
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,731
Conference Track Proceedings.732

Mitchell P. Marcus, Beatrice Santorini, Mary Ann 733
Marcinkiewicz, and Ann Taylor. 1999. Treebank-3. 734

Volodymyr Mnih and al. 2015. Human-level con- 735
trol through deep reinforcement learning. Nature, 736
518(7540):529–533. 737

Jeffrey Pennington, Richard Socher, and Christopher D. 738
Manning. 2014. Glove: Global vectors for word rep- 739
resentation. In EMNLP, pages 1532–1543. ACL. 740

Philip Resnik. 1992. Left-corner parsing and psycho- 741
logical plausibility. In Proceedings of the Four- 742
teenth International Conference on Computational 743
Linguistics, Nantes, France. 744

M. Schuster and K.K. Paliwal. 1997. Bidirectional 745
recurrent neural networks. Trans. Sig. Proc., 746
45(11):2673–2681. 747

Elizabeth Scott. 2008. SPPF-Style Parsing From Ear- 748
ley Recognisers. Electronic Notes in Theoretical 749
Computer Science, 203(2):53–67. 750

Richard S Sutton and Andrew G Barto. 2018. Rein- 751
forcement learning: An introduction. MIT press. 752

Masaru Tomita. 1986. Efficient Parsing for Natural 753
Language: A Fast Algorithm for Practical Systems. 754
Kluwer, Boston, MA. 755

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 756
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 757
Kaiser, and Illia Polosukhin. 2017. Attention is all 758
you need. In Advances in Neural Information Pro- 759
cessing Systems, pages 5998–6008. 760

Christopher J. C. H. Watkins and Peter Dayan. 1992. 761
Q-learning. Machine Learning, 8(3):279–292. 762

Christopher John Cornish Hellaby Watkins. 1989. 763
Learning from Delayed Rewards. Ph.D. thesis, 764
King’s College, Cambridge, UK. 765

R. J. Williams. 1992. Simple statistical gradient- 766
following algorithms for connectionist reinforce- 767
ment learning. Machine Learning, 8:229–256. 768

9

https://doi.org/10.1016/j.cognition.2008.08.011
https://doi.org/10.1016/j.cognition.2008.08.011
https://doi.org/10.1016/j.cognition.2008.08.011
https://doi.org/10.1016/j.cognition.2008.08.011
https://doi.org/10.1016/j.cognition.2008.08.011
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1037/0096-3445.111.2.228
https://doi.org/10.1037/0096-3445.111.2.228
https://doi.org/10.1037/0096-3445.111.2.228
https://doi.org/10.35111/gq1x-j780
https://doi.org/10.1109/78.650093
https://doi.org/10.1109/78.650093
https://doi.org/10.1109/78.650093
https://doi.org/10.1016/j.entcs.2008.03.044
https://doi.org/10.1016/j.entcs.2008.03.044
https://doi.org/10.1016/j.entcs.2008.03.044
https://doi.org/10.1007/BF00992698
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf

	Introduction
	Family of Parsing Environments
	Parsing Actions
	Environment Setup

	Experiments
	Agent Architectures
	Environment Specifics
	Evaluation

	Results

