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Abstract

The rapid growth of AR/VR/MR applications and cloud-
based visual localization has heightened concerns over user
privacy. This privacy concern has been further escalated
by the ability of deep neural networks to recover detailed
images of a scene from a sparse set of 3D or 2D points
and their descriptors - the so-called inversion attacks. Re-
search on privacy-preserving localization has therefore fo-
cused on preventing such attacks through geometry obfus-
cation techniques like lifting points to higher dimensions
or swapping coordinates. In this paper, we reveal a com-
mon vulnerability in these methods that allows approximate
point recovery using known neighborhoods. We further
show that these neighborhoods can be computed by learn-
ing to identify descriptors that co-occur in neighborhoods.
Extensive experiments demonstrate that all existing geomet-
ric obfuscation schemes remain susceptible to such recov-
ery, challenging their claims of being privacy-preserving.
Code will be available at https://github.com/
kunalchelani/RecoverPointsNeighborhood.

1. Introduction

Visual localization estimates the position and orientation
of a camera in a given scene and is central for au-
tonomous navigation [64, 65], Simultaneous Localization
and Mapping (SLAM) [14, 18], Augmented and Virtual
Reality (AR/VR) [27, 48, 51], and Structure-from-Motion
(StM) [55, 56]. The best performing methods represent the
scene with a 3D map, e.g., a Structure-from-Motion (SfM)
point cloud [49, 52]. To localize a given query image, they
match the descriptors of 2D local features [17, 38] extracted
from the query image against the descriptors of the 3D
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points in the map. The resulting 2D-3D point correspon-
dences are used for camera pose estimation [23, 28, 32—
34]. Such feature-based approaches are known to handle
challenging conditions and to provide accurate pose esti-
mates [51, 66]. However, they also pose a potential pri-
vacy risk because of inversion attacks [47]: it is possible
to recover the query image in high detail from the 2D im-
age features with inversion networks [16, 47]. One can
also recover the map’s content from the 3D points and their
descriptors [47, 60]. Thus, feature-based methods cannot
be directly applied in settings where privacy is of con-
cern [61, 62], such as when a user sends data to a local-
ization service in the cloud or when 3D maps are stored on
an external server.

Privacy-preserving localization methods aim to prevent
content recovery and mainly fall into two categories: de-
scriptor obfuscation approaches, which modify descriptors
to prevent inversion while enabling accurate 2D-3D match-
ing [22, 42, 45, 46], and geometry obfuscation approaches,
which replace each 2D or 3D point with a potentially in-
finite set of points [24-26, 35, 41, 43, 58, 61, 62]. An
example of geometry obfuscation is lifting points to lines,
which replaces each point with an infinite set of points
lying on a line through the corresponding point [35, 61]
(see Fig. 1). By substituting points with potentially infinite
sets, these methods prevent the direct application of inver-
sion attacks [22, 47]. Geometric obfuscation approaches
carefully design the function mapping a point to a set of
points so that the resulting sets still enable pose estimation;
for instance, in [61], 2D-3D point matches are replaced by
2D point-to-3D line matches.

Geometry obfuscation methods are considered privacy-
preserving by the community since it is unclear how to re-
cover the original point positions from the obfuscations.
However, none of the previous work proves that approxi-
mating the original point positions is impossible. On the
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Figure 1. Geometry obfuscations allow the recovery of image details. The original point representations are privacy revealing as full
images can be recovered from them [47]. Different obfuscation schemes are used to modify them. In this paper, we show that given
neighborhood information, it is possible to approximately recover the original point positions, again enabling

contrary, [11] reveals the need for more scrutiny before
claiming that a method is privacy-preserving: they show
that when each 3D point is obfuscated by a line passing
through the point with a random direction [61], it is possi-
ble to approximate the original 3D point position, thus en-
abling an inversion attack [47]. Their approach is based on
two key insights: (1) the closest points on two such 3D lines
are likely to be relatively close to the original 3D points. (2)
to recover the position of a point X,; obfuscated by a line
1;, it is important to know the neighbors of 1; (defined as the
set of lines {1; } corresponding to original 3D points that are
neighbors of X;). [11] cannot be applied to 2D point obfus-
cations [43, 62] and does not generalize since property (1)
does not hold for all obfuscation schemes [26, 43, 62].

Inspired by observation (2) from [11], we derive a novel
and conceptually simple method for approximating the po-
sitions of the original points that is applicable for all of the
currently proposed geometry obfuscation schemes [26, 35,
41,43, 61, 62]. Our approach uses information about neigh-
borhoods, i.e., about which obfuscated points correspond to
nearest neighboring original points, and is computationally
efficient'. We show that the approximate point positions
obtained with our method enable inversion attacks [22, 47].
Through extensive qualitative and quantitative experiments,
we demonstrate that the proposed method is robust to er-
rors in neighborhoods, i.e., it does not require access to
neighborhoods containing only the nearest neighbors of the
original points. Additionally, we present a simple approach
for learning neighborhoods from the descriptors associated
with geometric obfuscations, which must be provided to en-
able visual localization. Our method for computing neigh-
borhoods serves as a proof of concept, demonstrating that
our scheme for recovering points from geometric obfusca-
tions is practically applicable.

In some cases, e.g., [35], our point recovery is faster to compute than
obfuscating the points in the first place.

In summary, this paper makes the following contribu-
tions: (1) we present a novel framework for recovering ap-
proximate point positions from obfuscated scene represen-
tations. Our framework relies on neighborhood informa-
tion and is applicable to all geometry obfuscation schemes
from the literature. (2) we propose a learning-based ap-
proach for computing the required neighborhoods from the
descriptors used for visual localization. (3) extensive ex-
periments with neighborhoods provided by an oracle and
our approach show the effectiveness of our recovery frame-
work. Our results show that methods that are currently
considered privacy-preserving do not in fact guarantee pri-
vacy, and highlight the need to derive clear conditions under
which privacy can be guaranteed when proposing privacy-
preserving localization approaches.

2. Related Work

Visual Localization. State-of-the-art localization meth-
ods rely on features and 2D-3D correspondences between
query images and the map. These matches are fed into
a robust estimation framework [5, 6, 13, 23] to estimate
the pose of a camera [29, 36, 44, 49, 52]. The 3D scene
map is generally represented as 3D points generated using
Structure-from-Motion [55, 56] or SLAM pipelines [58].
A drawback of feature-based methods is that sparse sets
of points and descriptors are vulnerable to inversion at-
tacks in which a neural network recovers detailed images
of the scene from the points and their associated descrip-
tors [1, 16, 19-22, 30, 40, 45, 47, 60, 69-71]. While spar-
sifying the set of points improves privacy by reducing the
inversion performance, it comes at the cost of reduced lo-
calization accuracy.

Alternative localization methods include Scene Coordi-
nate Regression (SCR) [8, 10, 59] where the 3D map is rep-
resented by a neural network that predicts the 3D coordi-
nates of every image pixel, resulting in 2D-3D correspon-



dences. SCR is said to be inherently privacy-preserving [73]
because there is no set of 2D or 3D points to run the in-
version attack [22, 47] on. However, current SCR meth-
ods [7, 9, 39] do not scale and do not handle challeng-
ing conditions as well as feature-based methods although
these limitations are investigated [10]. Absolute Pose Re-
gression (APR) [54, 57] and Relative Pose Regression
(RPR) [2, 4] methods are end-to-end localization alter-
natives that share similar characteristics: they are inher-
ently privacy-preserving but their performance falls behind
feature-based methods, as pointed in [54]. In this paper,
we analyze the privacy properties of features-based meth-
ods that remain the gold standard for accurate, robust, and
efficient localization.

Privacy Aspects of Visual Localization. Cloud-based
localization services require the exchange of information
about the scene between the client and the server, leaving
several cracks for possible privacy leaks. Naturally, such
services should preserve the privacy of the 3D maps stored
online from a curious/malicious server [11, 16, 26, 43, 61].
They should also preserve the client’s private information
that is potentially sent to the server for localization, as part
of the query image [16, 42, 62]. As noted in [26], even
the server knowing the client’s accurate pose can poten-
tially be a privacy risk. It is also shown that even the min-
imal requirements for running a robust localization service
- returning the camera pose to the client - enable the ap-
proximate recovery of the scene layout by a malicious third
party[12]. In this paper, we analyze the extent to which
privacy-preserving geometric obfuscations can reveal pri-
vate content from a 3D map stored on a server and from a
client’s query image.

Privacy-Preserving Representations. Inversion at-
tacks [22, 47] take as input sparse feature maps to produce
detailed images of the scene. The feature maps are made
of descriptors located at keypoint positions and the key-
points are either 2D points or the projection of 3D points
onto the image. Therefore, there are two obvious ways to
counter such an attack by preventing the construction of
the feature map: i) descriptor obfuscations that preserve the
point information but modify the descriptors so that local-
ization remains possible but not the inversion [22, 42, 46],
ii) and geometric obfuscations that modify the geometry of
the points.

The first geometric methods obfuscate points with ran-
dom lines [24, 26, 61, 62] but [11] later shows that the
3D lines [61] are not as privacy-preserving as originally
claimed: the original points can be approximated using the
geometry preserved in the random 3D lines. [11] exploit
the spatial distribution of the lines to estimate the points’
nearest neighbors in the original space and then estimate
the point positions that best agree with the neighborhood.
Subsequent works account for this important limitation to

design geometric obfuscations that are less susceptible to
recovery with [11]. One solution is to modify the distri-
bution of line directions by lifting points to paired-point
lines [35] so that one line contains two points instead of one
or constraining the lines to intersect at specific points [41].
To further reduce the spatial correlation between the orig-
inal points and their obfuscated representations, [26] lifts
points to parallel planes and [43] permutes coordinates of
pairs of points, which prevents the estimation of nearest
neighbors based on the geometric distances between ob-
fuscations. Overall, these methods obfuscate the position
of the points while still allowing localization. Here, we
question their claim to be privacy-preserving: we reveal a
weakness common to all the obfuscation schemes and pro-
pose a generic method that approximately recovers the orig-
inal points from all obfuscations when information on their
neighborhood is available.

3. Geometric Obfuscation of Points

This section provides a general definition of obfuscations
applied to points. Based on this definition, Sec. 4 then pro-
poses an attack that recovers approximate positions of the
original points from an obfuscated representation given the
knowledge about the neighborhoods of the original points.
Definition: Geometry obfuscation. A geometry obfusca-
tion applied to a point x € R™ is a mapping

O:R™ — PR™) , ey

where P(R™) is the power set of R™, i.e., the set of all sub-
sets of R™. O maps a point in R™ to a (potentially infinite)
set of points in R™. Given a set of n original points P =
{z; e R™, j =1,...,n}, an obfuscated representation of
Pisaset O(P) = {O(z;) € P(R™), j=1,...,n} ob-
tained by obfuscating all of the n points.

This definition can be used to model all obfuscation
schemes for 2D and 3D points in the literature. In the
case of mapping a point x; to a line [35, 41, 61, 62] or a
plane [26], O(x;) contains all points on a line, respectively
plane, that passes through z;.? In the case of obfuscation by
coordinate permutation [43], the set O(x;) contains a single
point a:; obtained by replacing one coordinate of x; with the
corresponding coordinate of another point z; € P \ z;.

4. Recovering Obfuscated Points using Neigh-
borhood Information

In this paper, we propose an attack designed to recover im-
age content from obfuscated representations. It enables in-
version attacks by approximating the original points from
the obfuscated representations. Ideally, we would like to

Note that while the set O(z;) might be infinite, it can be represented
compactly by the parameters of a line or plane.



find the inverse of the obfuscation mapping O from (1), i.e.,
O 1 PR™) = R™, st O HO@)=x . (2

However, recovering such an inverse mapping is generally
impossible *. Thus, we aim to find a mapping R

R:PR™) = R™ | 3)

such that the set of points R(O(P)) =
{R(O(z;)) e R™, j=1,...,n} and their corresponding
descriptors can reveal private information through inver-
sion attacks [47]. Le., the mapping R should facilitate
recognizing objects, text, or persons in images recovered
from the point positions in R(O(P)) and their descriptors.

Naturally, if the points R(O(x;)) are close to the orig-
inal points x; in the space R™, it can be expected that an
inversion attack recovers a detailed image, potentially con-
taining private information. Thus, if d(R(O(z;)),z;) < €,
for some small € %, the obfuscation @ cannot be considered
as privacy preserving. In this paper, we show that having
information about the neighborhoods of the original points,
we can compute a mapping R for which e is sufficiently
small for most points. Thus, private details can be identi-
fied in images recovered from the R(O(P)).
Recovering points using neighborhood information. Let
us assume that for each obfuscated input point O(zx;)
we are given a set of neighbors N(O(z;)) =
{O(x},) : ji € [j1---jx]}. Here, [j1 . .. jx] are the indices
of the K nearest neighbors (in R™) of the point x; among
all points in P. In other words, the set N (O(z;)) con-
tains the obfuscated representations corresponding to the K
nearest neighbors in P of the original point x;. The as-
sumption that each original point x; is contained in its set
O(z;), i.e.,, Vj x; € O(z;) holds for approaches that map
x to lines [35, 41, 61, 62] or planes [26] passing through x.
It does not hold for coordinate permutation-based obfusca-
tion. However, as detailed below, for this case we can ex-
tend O(x;) to include all points on m lines passing through
O(z;) as one of them contains ;.

We propose a strategy for computing a recovery mapping
R (3) based on the following fact: for a recovered point
R(O(x;)) for which d(R(O(z;)), ;) < €, for some small
€, it holds that d(R(O(x;)),xj,) < €2, for all K nearest
neighbors x;,,i = 1,..., K of x; and a small €3 . Since
by assumption z;, € O(x;,) for all j;, it also holds that
d(R(O(x;)), 0(x;,)) < e for all Oj,) € N(O(;))

and e3 < €9, i.e., the recovered point R(O(x;)) has a small

3For the coordinate permutation method [43], the recovery of the in-
verse mapping is theoretically possible; however, it results in a combina-
torial problem that can be computationally infeasible to solve [43].

4Here, d is the Euclidean distance in R,

SHere €2 = € + d(z;, zj,) for the farthest neighbor ;, from the K
nearest neighbors of z;.

distance from all obfuscated representations of the K near-
est neighbors of the point z;. Since z; € O(x;), we know
that O(z;) contains a point that is close to z; and also close
to all O(zj,) € N(O(x;)). We thus propose to compute a
recovery mapping R by minimizing the cost function:

R(O(z;)) = argmin Z
z€0(z;) O(x5,)EN(O(x;))

d(O(xj,),2) . (4)

Here, d(O(z;,),x) is the Euclidean distance of a point
x € R™ from its closest point in O(x;,). Note that the
point R(O(z;)) that minimizes (4) can be far away from
the true point position x;. However, in our experience, us-
ing sufficiently many neighbors pulls” R(O(x;)) towards
x;. Also note that we solve (4) per point x;, rather than
taking point estimates for the neighbors into account. This
makes our recovery approach parallelizable.

In the following, we concretely discuss how we compute
the recovery mapping for individual obfuscation schemes.
Points lifted to lines. For the obfuscation that maps a point
x; to a line passing through « ;, O(x ;) can be represented by
the parameters of a line in R™. Thus, each point has a single
degree of freedom, i.e., a shift along the line. We solve (4)
via least-squares minimization in this variable, which can
be easily implemented using existing optimization libraries,
e.g., Ceres [3]. In our experience, the choice of initialization
for R(O(z;)) is not critical (see the supp. mat. for details).

In the case of paired-point lifting [35], each line passes
through two original points. Each line contains the de-
scriptors of both points, creating additional confusion as to
which descriptor belongs to which point. Although this is
not necessary for computing R, it is important for apply-
ing inversion attacks. We provide implementation details in
Sec. 6.

In the case of 3D ray clouds [41], each line passes
through one original point and one of two additional center
points. The center points are derived by clustering the point
cloud into two clusters which centers are the center points.
When solving (4), we ignore all neighbors corresponding to
lines passing through the same center as O(x;).

Points lifted to planes. The method suggested in [26] first
splits the set of points into three disjoint sets P, P, and P,.
Each set is stored on a separate server. For the server storing
P,, each point x € P, is represented by a plane parallel to
the xz-plane passing through the y-coordinate of x. Similar
obfuscations are used for the points in P, and P, [26]. We
consider the case where an attacker has access to all three
servers - hence having three sets of parallel planes, each or-
thogonal to the other two. This setting is realistic as access
to all three servers is needed for 6D camera pose estimation.

Each obfuscated point O(z) can be represented by two
parameters corresponding to shifts along two basis vectors
of a plane. Thus, each point has two degrees of freedom.
We solve (4) via a two-variable optimization problem to find



the position on a plane that minimizes the sum of distances
to neighboring planes. As for line lifting, the initialization
of the point positions is not critical (¢f. supp. mat.).
Coordinate permutation. The obfuscation scheme based
on permuting coordinates [43] randomly subdivides P into
pairs of points. For a pair of points x; and x;, [43] randomly
chooses a coordinate, e.g., the y-coordinate, and exchanges
that coordinate between x; and x;. The obfuscation thus
maps a point z; to a single point O(x;). Clearly, in general,
it holds that z; # O(z;). However, note that O(x;) shares
m — 1 coordinates with ;. Thus x; is contained in one of
m lines, each parallel to one of the m axes, passing through
O(z,) [43]. These lines are used for camera pose estimation
in [43]. We thus extend the obfuscation O(z;) to contain all
points on these lines, allowing us to use (4) to compute the
mapping R. In essence, this approach corresponds to lifting
x; to m lines, each one parallel to one of the m coordinate
axes. In order to recover R(O(x;)), we propose a method
to determine along which of the m lines z; has been moved
(i.e., which coordinate of x; was exchanged). For details
on this method, please see the supp. mat. Given the line,
we then use the same approach as for point-to-line lifting to
compute R(O(z;)).

Robustness to imperfect neighborhoods. So far, we have
assumed that we are given an estimate of the neighbor-
hood N (O(z,)) for O(x;). Sec. 5 presents a practical ap-
proach for computing such estimates. However, the com-
puted neighborhood estimates will contain outliers, i.e., ob-
fuscated representations of points that do not correspond to
one of the K nearest neighbors of ;. As detailed above,
we compute the mapping R via least-squares minimization,
which is affected by outliers. To add robustness to outliers
in the given neighborhood estimates, we include the min-
imization problem in a RANSAC-like loop [23]. In each
iteration, we select a small number of neighbors and use
them to compute an estimate for R(O(x;)). We compute
the distances of this estimate to all O(z;,) € N(O(z;))
and classify O(z;,) € N(O(z;)) into inliers and outliers
using a pre-decided threshold §. We obtain the final esti-
mate by solving (4) over the largest inlier set found by this
approach. In practice, this approach is more robust than us-
ing a robust cost function in (4).

5. Estimating Neighborhoods From Descrip-
tors

Computing the recovered points R(O(z;)) from the obfus-
cations O(x;) using (4) assumes that we have information
about the neighbors of each original point ;. In [11], such
a neighborhood is geometrically estimated by using the dis-
tance between pairs of 3D lines as a proxy for the distance
between the original points. However, their approach re-
quires that the line directions are random and that lines are
thus unlikely to intersect in 3D. This assumption does not

hold for 2D lines, orthogonal 3D planes and ray clouds [41].
In the context of visual localization, each obfuscated
point is associated with a descriptor that is used for match-
ing the 2D image query with the 3D map points. We use
these descriptors to estimate the required neighborhoods.

Intuitively, local structures (captured by the neighbors of
a point) are not unique for each scene, but similar-looking
structures can be found in other scenes. This motivates our
learning-based approach for estimating the neighborhoods.
Given enough scenes as training data, we let a neural net-
work learn about such patterns, which in turn can be used
to determine neighborhoods. We pose the task of neigh-
borhood estimation as a feature matching task [37, 50, 63]:
given a set of descriptors, we learn a similarity score be-
tween all pairs of descriptors that is inversely proportional
to the distance between the original points. More specif-
ically, the network takes as input the descriptors and out-
puts a row-normalized similarity matrix with high entries
between the points that are likely to correspond to neigh-
boring points. The network is made of several self-attention
blocks [68] that draw contextual cues between the descrip-
tors. It is trained in a supervised manner with the binary
cross-entropy loss. The entry (4, j) of the similarity matrix
is positive if the 5™ point is within the K closest points to
the i point.

The network training is only tied to the descriptor, and
thus, a network can be trained on any data where point po-
sitions and associated descriptors are available, As shown
in the experiments, such a simple network predicts neigh-
borhoods that are sufficiently reliable to allow the proposed
recovery method to reveal private content robustly. Note
that our approach is intended as a proof-of-concept to show
that our attack from Sec. 4 is practically feasible. We be-
lieve that better results can be obtained by tuning the net-
work architecture and using larger training sets. However,
such optimizations are outside the scope of this work.

6. Experimental Evaluation

We evaluate the recovery method based on how well it
recovers the points obfuscated by 6 different obfuscation
schemes in 3D - random lines [61] (OLC), two variants
of paired points lines [35] (PPL and PPL+), the default
ray clouds [41], planes [26], and Coordinate Permutation
(CP) [43]. In 2D, we evaluate the recovery from points ob-
fuscated using random lines [62] and with CP [43]. We
experiment with two widely used descriptors: the hand-
crafted SIFT [38] and the learning-based SuperPoint [17].
To visually assess the information revealed by the point
recovery, we further invert the recovered points and their
descriptors into images of the scene with an inversion net-
work [22, 47]. For most of our analysis, we use oracle-
provided neighborhoods, i.e., neighborhoods directly ob-
tained from the nearest neighbors of the original points,



Lines [62]

Coordinate Permutation [43]

7-scenes [59]

Cambridge [31]

7-scenes [59] Cambridge [31]

In. Spx  10px  25px  5px 10px  25px  Spx  10px 25px  5Spx  10px  25px
1.0 475 751 95.0 603  88.1 99.0 456 717 923 610 874 985
075 493 716 961 614 894 993 464 727 918 61.7 8.0 98.1
0.5 497 788 969 61.1 899 994 402 639 802 556 809 905
0.3 446 731 920 563 8.6 965 198 323 436 252 382 46.1
0.2 343 569 748 445 690 80.6 9.7 159 246 9.7 148 205
0.1 160 262 40.0 184 28.1 38.2 4.1 6.9 132 3.1 49 8.4

Table 1. Geometric accuracy of recovery from obfuscation of 2D SIFT [38] points. Percentage of points recovered within error
thresholds using oracle neighborhoods with different inlier ratios. Sizes: 7-scenes [59] - 640 x 480 and Cambridge [31] - 1024 x 576.

PPL [35] Plane [26] CP [43] Ray [41]

7-scenes [59] Cambridge [31] 7-scenes [59] Cambridge [31] 7-scenes [59] Cambridge [31] 7-scenes [59] Cambridge [31]
In. 10cm  25cm  25cm 50cm 10cm  25cm  25cm 50cm 10cm  25cm  25cm 50cm 10cm  25cm  25cm 50cm
1.0 94.6 97.3 69.2 83.2 93.4 97.5 65.2 81.1 88.2 94.5 65.3 81.0 94.6 97.9 72.1 83.6
0.75 94.7 97.1 66.9 80.4 93.0 97.0 56.2 67.7 89.1 95.8 66.3 82.0 93.3 96.8 72.9 83.1
0.5 95.0 97.2 67.2 79.3 82.8 88.7 332 38.5 67.7 75.0 61.4 72.5 91.9 95.7 74.4 84.1
0.3 94.8 97.1 68.2 78.8 42.1 60.4 15.0 17.1 409 46.2 354 40.6 86.2 90.5 75.5 84.8
0.2 94.0 96.8 69.0 78.4 20.9 39.6 8.1 9.4 31.1 35.1 24.1 272 78.7 83.6 75.0 84.2
0.1 78.2 84.5 69.1 76.2 7.5 20.7 29 3.8 22.8 26.2 16.5 18.2 49.9 57.1 63.8 72.7

Table 2. Geometric accuracy of recovery from obfuscation of 3D points (suing SIFT [38]). Ratio of points recovered within error
thresholds from oracle neighborhoods with different inlier ratios (In.) on 7-scenes [59] and Cambridge [31] datasets. The line obfuscations
PPL [35] and [41] are more susceptible to point recovery as compared to plane [26] and point-permutation [43] obfuscations.

rather than neighborhoods computed using our approach
from Sec. 5. This provides us full control over the quality of
assumed neighborhoods, i.e., the inlier ratios, which is well
suited for our analysis. This also allows us to showcase the
robustness of our approach. Finally, to show the practical
feasibility of the attack, we present results with neighbor-
hoods estimated by our learning-based approach. The point
recovery on these estimated neighborhoods reveals private
content even though the proposed neighborhood network is
only a proof of concept. As such, it is simple and has lim-
ited scalability to a few thousand descriptors whereas point
clouds usually involve several hundred thousand descrip-
tors. Therefore we run this end-to-end evaluation only in
2D. This network however shows the potential that a simi-
lar architecture could be trained for more descriptors given
hardware with enough memory.

Implementation details. The minimization problem (4) is
formulated as a least-square problem solved using the Ceres
solver [3] in a RANSAC [23]-like loop. Given a set of ob-
fuscated representations, each point is recovered individu-
ally using only its neighborhood. Although this approach
does not model the dependencies between the recovery of
each point, it allows for a simple parallelization and effi-
cient runtimes, even on a single CPU (see the supp. mat.).

The oracle based neighborhoods are generated using the
original points: a neighborhood of size K with inlier ratio
In. is made by first selecting the K nearest neighbor of the
original point and replacing (1 — In.) - K of them with
points randomly chosen from the set of non-neighbors. The
learned neighborhoods are derived as the top-K elements
of each row in the similarity matrix output by the network.
The network is trained on the top K=20 neighbors of 309K

images from 184 Scannet [15] scenes (see supp. mat.).

The recovered positions of the obfuscated points, to-

gether with the descriptors are fed to an inversion net-
work [22, 47] to generate images of the scene. As a valid as-
sumption in the context of visual localization, the descriptor
is assumed to be not modified. This is true for all the obfus-
cations discussed in this paper except for PPL/PPL+ [35].
These obfuscations map a pair of points and the correspond-
ing descriptors to the same line, without preserving the
mapping between the points and their descriptors. We again
use the neighborhood information to recover this point-
descriptor mapping (see supp. mat. for details).
Datasets and metrics. We evaluate on the two indoor
datasets 7-scenes [59] and 12-scenes [67], and the outdoor
dataset Cambridge [31]. Results on 12-scenes are included
in the supp. mat as they follow the same trend as results
on 7-scenes. Similarly, results for SuperPoint [17] are left
for supp. mat as they follow a similar trend as the results
using SIFT [38]. We report the geometric accuracy as the
fraction of points recovered within chosen error thresholds.
The threshold is in pixels for 2D obfuscations and in cm for
3D. Larger thresholds are used for larger (outdoor) scenes in
3D. We compare the quality of the images generated from
the recovered points against the ones generated from the
original points by comparing their respective similarities to
the real image. The similarity is computed with standard
perceptual metrics: SSIM, PSNR and LPIPS [72]. We re-
port the last two metrics in the supp. material.

Geometric evaluation. The geometric accuracies for 2D
and 3D are reported in Tables 1 and 2, respectively. The
proposed generic recovery method can consistently recover
the points within a few pixels in the 2D case and within a
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Figure 2. Visual content revealed by the inversion [47] from the original points (‘Baseline’) and the points recovered from the 3D
obfuscations with neighborhood information at various levels of inlier ratios (In.). The original points are triangulated from SIFT [38]
features. Line obfuscations (OLC) [61, 62], Point-Pair-Lines PPL [35] and RayClouds [41] are more vulnerable to neighborhood-based

attacks than Planes [26] and Coordinate Permutation [43].
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Figure 3. (Best viewed when zoomed in.) Visual content revealed by the inversion applied on points recovered from the obfuscated
representations when using two different kinds of keypoints extractors and descriptors - SuperPoint [17] and SIFT [38]. The columns
titled Estimated NN show the content revealed with an end-to-end attack, i.e., starting from only descriptors, we carry out neighborhood
estimation, point recovery, and inversion to the image space. The presence of identifiable scene content in the inverted images emphasizes

the vulnerability of current geometry obfuscation techniques.

few cms in 3D maps. Note that for 2D and 3D line-based
obfuscations the performance can peak when the neighbor-
hood is not perfect, i.e., when the inlier ratio is lower than
1.0, although the variation is small. This is because our
robust method identifies outliers in the neighborhood and
filters them out and using fewer close points can result in
better accuracy using our method.

Perceptual evaluation. All perceptual metrics show con-
sistent results so we report only the SSIM in Sec. 6. ‘GT’ is
the baseline SSIM between the real image and the one gen-
erated from the original points, which can be interpreted as
an upper bound for the SSIM between the real image and
the one generated from the recovered points. The differ-
ence from this bound is higher for 2D than for 3D. This
is because even a high geometric error in 3D can reduce to
very few pixels upon projection while the recovery from ob-
fuscations in 2D leads to several pixels of error. The larger
error in 2D keypoint position estimation leads to worse im-
age reconstructions in case of 2D obfuscations.

Learned neighborhoods. We evaluate the 2D point re-
covery from lines [62] and CP [43] using learned neighbor-

hoods. We use the top-K=20 neighbors derived from the
similarity output by our network from Sec.5. Tab. 4 shows
the geometric and perceptual performance of an end-to-end
attack, while Fig. 3 shows the inverted images.

An interesting observation is that the network learns
the neighborhood more easily for SuperPoint [17] than for
SIFT [38] as indicated by the accuracy gap between the two:
for SuperPoint [17], the network leads to neighborhoods
with acc. between 70% and 80% for K € [10, 100] while
for SIFT [38], the accuracy remains around 35%. Thus one
could argue that SIFT is more privacy-preserving than Su-
perPoint, although there is no guarantee that better neigh-
borhood estimators for SIFT will not become available in
the future. Moreover, SIFT [38] typically achieves lower lo-
calization performance than SuperPoint [53] and sacrificing
performance for privacy might not be a satisfying solution
in all scenarios.

Even though the images inverted from the recovered
points are not perfect, the outline and the objects in the
scene are recognizable. These results highlight an important
limitation of pure geometric obfuscations and support the



7Scenes. GT: 0.74  Cambridge. GT: 0.53

In. Lines CP Lines CP In.
1.0 062 0.62 0.40 041 1.0
0.5 0.62 0.58 0.40 0.37 0.5
02 057 0.53 0.31 0.23 0.2

7Scenes. GT: 0.58 Cambridge. GT: 0.39

PPL  Plane CP Ray PPL  Plane CP Ray

057 055 056 057 036 036 036 037
056 049 051 056 036 032 034 037
054 043 043 054 036 031 027  0.37

Table 3. Perceptual Evaluation of point recoveries from geometric obfuscations in 2D (left) and 3D (right) with oracle neighborhoods.
The original points are derived from SIFT [38] features. The SSIM1 compares the original image to the images inverted [47] from recovered
points. GT refers to the SSIM of the image inverted from the original points and sets the baseline. The SSIM for recovered points is in
general close to the baseline, demonstrating that the image content is recovered.

Superpoint [17] SIFT [38]
Geometric Perceptual Geometric Perceptual

Lines Cp Lines Ccp Lines cp Lines Cp
Neighborhood 10px  25px  10px 25px SSIM-GT:0.57 10px 25px  10px  25px  SSIM - GT:0.74
Oracle In. 0.75 614 912 544 834 0.46 0.45 77.6  96.1 727 91.8 0.62 0.58
Oracle In. 0.5 63.0 929 456 703 0.46 0.42 788 969 639 802 0.62 0.58
Oracle In. 0.3 578 878 237 384 0.45 0.40 73.1 92.0 323 436 0.61 0.53
Oracle In. 0.2 45.1 708 133 231 0.40 0.40 569 748 159 246 0.57 0.53
Oracle In. 0.1 229 390 6.7 13.3 0.33 0.40 262 40.0 6.9 132 0.51 0.52

Estimated (Ours) 532 862 483 803 0.46

045 473 681 301 458 057 055

Table 4. End-to-end attack evaluation. Geometric and perceptual evaluation of the recovery when using neighbors estimated by our
network described in Sec. 5 (last row) for two different types of keypoint detectors and extractors—Superpoint [17] and SIFT [38]. The
performance when using oracle-provided neighborhoods of different qualities is provided for comparison. The recovery of neighborhoods
is observed to be much more effective using Superpoint [17] descriptors compared to SIFT [38].

two claims made in the paper: i) the neighborhood informa-
tion can be learned from the descriptors, and reiterates that
geometric obfuscations alone are not as privacy-preserving
as they claim. One needs to also prevent neighborhood in-
formation from being inferred from the obfuscations. ii) it
shows that the proposed proof of concept to compute the
neighborhood information is already sufficient for the pro-
posed point recovery to be applicable. We expect that more
complex neighborhood learning will lead to better results.
This calls for potential future work on fusing geometric and
descriptor obfuscation to prevent neighborhood recovery.

Discussion. The results reveal that the proposed recovery
method performs well even if the neighborhoods contain
significant fractions of outliers. Fig. 2 and Fig. 3 further
show that images generated from recovered points can re-
veal potentially private user content, which is particularly
true for line-based obfuscations [35, 61, 62]. The geomet-
ric constraints of parallel planes [26] make recovery diffi-
cult, but neighborhoods with reasonable inlier ratios make
the plane obfuscation also susceptible to the proposed re-
covery. The same holds for Coordinate Permutation [43]:
the additional step of estimating which coordinate was per-
muted brings in more noise into our method for recovering
points. However, neighborhoods with inlier ratios of 0.5
or more are enough to enable recovery accurate enough to
reveal identifiable scene content. The network described
in Sec. 5 can produce such informative neighborhoods even
with its simple design. We expect methods in future works
to improve the estimation of neighborhoods from descrip-
tors, further highlighting the discussed vulnerability of ob-
fuscation schemes. Future methods in de-noising the neigh-

borhood graphs estimated from descriptor and/or geometry
can help reduce the error in point position recovery. Simi-
larly, more sophisticated inversion attacks that are robust to
small noise in point positions can increase the privacy risk.

7. Conclusion

In this work, we highlight a common vulnerability of
all geometry-based obfuscation techniques that have so
far been presented as privacy-preserving representations.
We present a simple optimization-based method that uses
knowledge of point neighborhoods to recover point posi-
tions from the discussed obfuscation schemes. We show the
robustness of our method and analyze the recovery accuracy
by using oracle-provided neighborhoods with varying inlier
ratios. Finally, using a neural network that learns to iden-
tify local feature descriptors co-occurring across scenes, we
show that it is possible to estimate these neighborhoods
from the descriptors associated with points. The inverted
images from the recovered point positions reveal private
scene content, highlighting the drawback of current meth-
ods and the need for guarantees on under which circum-
stances a data representation is indeed privacy-preserving.
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