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Abstract

In-context learning (ICL) is a remarkable capabil-
ity of pretrained transformers that allows models
to generalize to unseen tasks after seeing only
a few examples. We investigate empirically the
conditions necessary on the pretraining distribu-
tion for ICL to emerge and generalize out-of-
distribution. Previous work has focused on the
number of distinct tasks necessary in the pretrain-
ing dataset. Here, we use a different notion of task
diversity to study the emergence of ICL in trans-
formers trained on linear functions. We find that
as task diversity increases, transformers undergo
a transition from a specialized solution, which
exhibits ICL only within the pretraining task dis-
tribution, to a solution which generalizes out of
distribution to the entire task space. We also in-
vestigate the nature of the solutions learned by
the transformer on both sides of the transition,
and observe similar transitions in nonlinear re-
gression problems. We construct a phase diagram
to characterize how our concept of task diversity
interacts with the number of pretraining tasks. In
addition, we explore how factors such as the depth
of the model and the dimensionality of the regres-
sion problem influence the transition.

1. Introduction

The ability of transformers (Vaswani et al., 2017) to do
few-shot learning from examples seen in their context is a
striking phenomenon exhibited by modern large language
models called in-context learning (ICL) (Brown et al., 2020).
ICL has been extensively studied (Raventos et al., 2023; Lu
et al., 2024; Garg et al., 2023; Chan et al., 2022; Singh
et al., 2023) and enables models to solve certain new tasks
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without re-training. Of particular interest is how the ability
for transformers to perform ICL arises from pretraining and
what the limits of ICL generalization are: What conditions
must be met in order for ICL to emerge and generalize
outside of the pretraining distribution?

Prior work (Raventos et al., 2023; Lu et al., 2024; He et al.,
2024) has focused on understanding how the number of
pretraining tasks affects the ability of the model to gener-
alize to unseen tasks (generated from the same distribution
as the pretraining tasks). Here, we ask a related but dis-
tinct question: If a model is pretrained only on tasks from a
subset of the full task space, what conditions are necessary
for it to generalize to the rest of the space? We think of
this question as asking about the out-of-distribution (OOD)
performance of models trained to do in-context learning.
This question prompts us to consider a more general notion
of task diversity that depends not only on task enumeration
but also on how different or similar they are. Sampling
a distribution with many similar tasks has the potential to
induce the model towards a more specialized ICL solution
that performs well only on novel tasks within its pretraining
distribution. However, we observe that transformers trained
to do ICL of linear functions undergo a transition from a
specialized solution to one that generalizes over the full task
space as we increase the degree of task diversity. This phe-
nomenon of out-of-distribution task generalization sheds

new light on in-context learning behavior!.

1.1. Related work

Our investigation into the effects of task diversity on the
emergence of ICL was motivated by the results of Raventos
et al. (2023) on pretraining task diversity for linear regres-
sion tasks in-context, where they find that the number of pre-
training tasks impacts the emergence of ICL in-distribution.

Here, we investigate in-context learning of linear functions
in the out-of-distribution setting, and investigate the domain
generalization performance of transformers. Our experimen-
tal setups are intentionally similar to those in Raventos et al.
(2023) in order to aid comparison between in- and out-of-
distribution ICL behavior. See e.g., Gulrajani & Lopez-Paz
(2020); Arjovsky (2021); Liu et al. (2023); Yang et al. (2023)

!Code available at https://github.com/cwgoddard/OOD_ICL
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for more background on domain generalization.

Similarly, He et al. (2024) look at the setting of modular
arithmetic ICL tasks and analyze how the number of pre-
training tasks affects generalization. Lu et al. (2024) provide
an exactly solvable model of linear attention transformers
for linear regression ICL tasks and empirically show agree-
ment of their theory with traditional transformers. Other
work has analyzed how transformers implement an inter-
nal gradient-descent algorithm to learn tasks in-context,
shedding light on the mechanistic properties behind ICL
(Akylirek et al., 2023; Ahn et al., 2023; Von Oswald et al.,
2023). Fu et al. (2024a) argue that transformers must be
implementing second-order optimization methods instead in
order to solve ICL linear regression tasks. Chan et al. (2022);
Edelman et al. (2024); Singh et al. (2023); Nguyen & Reddy
(2024) investigate how properties of the data and optimiza-
tion dynamics impact the emergence of ICL throughout the
course of training.

1.2. Distribution Shift & Generalization

In-context learning is a powerful capability of language
models, and in order to build trust in models, we should
better understand how well such capabilities extend to novel
tasks beyond those in the training data.” In addition to
generalizing to tasks that interpolate between those seen
in training, we’d like models that generalize to genuinely
novel tasks. Whether this is possible depends on the nature
of the distribution shift, and this question is in the purview
of out-of-distribution generalization but at the level of tasks
instead of samples.

In this work, we characterize when transformers develop in-
context learning behaviors that are robust to task distribution
shift. Since ICL can be thought of as generalization to novel
tasks, here we ask when models succeed at domain general-
ization with respect to tasks. Indeed, a common assumption
in the literature on out-of-distribution generalization (Gulra-
jani & Lopez-Paz, 2020; Arjovsky, 2021; Liu et al., 2023;
Yang et al., 2023) is the so-called “covariate shift” assump-
tion where the conditional distribution of the label given the
input is held fixed, but the distribution of inputs changes at
test time. In the context of tasks, we consider sampling tasks
during training from a subset of the task space and ask about
generalization to tasks outside of that subset. All tasks share
the common property of being linear relationships, and thus
we are studying domain generalization of tasks.

2We note that another perspective is to train on as large and
diverse a pretraining dataset as possible so nothing is out of dis-
tribution, but there will always be novel tasks that have not been
encountered before.

1.3. Contributions

Our core contributions are as follows:

* We train transformers to exhibit ICL of linear func-
tions with weight vectors drawn from a subset of
the unit hypersphere. As the size of this subset in-
creases, we observe a transition from specialized mod-
els, which perform well only on the training portion of
the hypersphere, to models that generalize out-of-task-
distribution to the entire hypersphere.

* We investigate the nature of the solutions found by our
transformers, and find that specialized solutions out-
perform optimal Bayesian solutions to the regression
problem on small numbers of examples. In contrast,
transformers that generalize to the entire hypersphere
exhibit performance similar to optimal solutions.

* We examine how two notions of task diversity (number
of tasks and task similarity3) interact, and construct
a phase diagram that reveals three distinct regimes of
ICL generalization.

* We show that specialization-generalization transitions
also occur in nonlinear regression problems, suggesting
that the phenomenon may be a general feature of ICL
in transformers.

2. Training setup and task distribution
geometry

ICL of linear functions: We investigate the ability of
transformers to perform in-context learning of linear func-
tions when pretraining tasks are drawn from distributions
with varying levels of rask diversity. Specifically, each rask
is a linear map in d dimensions, w € R4, and we con-
trol task diversity by sampling tasks from hyperspherical
caps of varying half-angles. The transformer takes as in-
put a sequence of up to n pairs {z1,y1,...,z,}, Where
yi = wla; + ¢, with z; ~ N(0, 1) and €; ~ N(0, 0?).

Pretraining task distribution: We define a family of
task distributions parameterized by ¢ € [0, 7] (See Fig
1B). We take S4~1(¢) to be a section of the surface of the
hypersphere in d dimensions, i.e. S¢~1(¢) = {w € S9! |
angle(w,v) < ¢}, withv € R< a fixed vector. We then
define the task distribution as a uniform distribution on this
spherical cap, i.e., py(w) = Unif(S¢71(¢)). For details
on how to effectively sample from such a distribution, see
section A.5 in the appendix.

3For linear problems, it is natural to choose the inner product
between tasks w] w2 as a similarity measure.
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Figure 1: Testing ICL generalization via task similarity. A: The transformer takes as input a sequence of pairs {x;, y; }7"_;

and is trained to predict y, from a context Cy, = {z1, y1, - .

.,k +. The elements x; and y; are related linearly by a task w

via y; = wTz; + ¢;. B: The training tasks wy,,iy are drawn from a hyperspherical cap with half-angle ¢ (with ¢ = 180°
corresponding to the entire hypersphere). The test tasks wyqs; are drawn from a hyperspherical band of width Ad starting an

angle § away from the “pole” of the sphere.

Pretraining: During pretraining, the transformer Ty is op-
timized to minimize the mean squared error (MSE) between
a context of data Cy, = {z1,41,..., 2} and the target yy.
During pretraining, the tasks w are drawn i.i.d. for each
context from p,(w). We use AdamW (Loshchilov & Hutter,
2017) to optimize the MSE,

1 n
Llrain(e) = E1u~p¢ |: Zk:l (Te(ck) - yk)2 . (1)

n

Test task distribution: We evaluate the performance of
the transformer over a family of task distributions parame-
terized by d, Ad € [0, 7] (See Fig 1B). We define the hyper-
spherical band starting at angle  with width AJ to be the set
Ba1(5,A8) = {w € %71 | § < angle(w, v) < & + Ad},
with v some fixed vector. The test task distribution is then
uniform over this set: ps as(w) = Unif(B4~1(8, Ad)). For
more on how to sample from these bands, see section A.5.2
in the appendix.

Evaluation: We evaluate models by computing the MSE
between the full context C), and the final target y,,. During
test time, we draw w 1.i.d. for each context from ps as:

Lies(0) = Bumpo s [(To(C) = 9a)*] @)

3. Experimental Results

Unless stated otherwise, we study d = 10 dimensional
regression with n = 50 examples in each context. We use a
GPT-2 style transformer (Radford et al., 2019) with learned
positional embeddings, a hidden dimension of d;, = 128,

10 layers (except in Fig 9), and 8 attention heads. We use
a learned linear embedding to map z; and y; to the hidden
dimension dj, = 128. The target values y; are padded with
d — 1 zeroes. For further training details, see Appendix
section A.1.

During pretraining, we train 12 models over pretraining
distributions py(w) for ¢ € [15°,180°] in 15° increments.
We observe that repeated runs, with different initializations
and trained on data generated from different sampled tasks
w ~ pg, yield consistent results* (see Fig 11). For small ¢,
we also see the model go through two stages of specializa-
tion over the course of training (see Appendix A.2), the first
of which is before this plateau.

3.1. Modes of out-of-distribution generalization

Before we investigate experimental results, it is instructive
to discuss the ways in which models may (or may not)
generalize out-of-task-distribution:

1. Models may fail to meaningfully generalize out-of-
task-distribution. (For example, when prompted to
solve a task we not in the support of the pretraining
distribution S%~!(¢), models may simply pick the task
Welose € S971(¢) that is closest to W, but fail to
generalize beyond this level.)

2. Models may generalize out-of-task-distribution, but
only achieve maximum performance when pretrained
on the entire task space (¢ = 180°) .

“During training, the loss generically “plateaus,” staying at a
constant value for many steps before beginning to decrease. This
phenomenon has been observed before, as in (Fu et al., 2024b).
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Figure 2: Task distribution diversity induces a transition
from specialized to general-purpose ICL. A: Test error in
A = 5° bands (see Fig 1) for transformers pretrained to do
in-context learning of linear functions with pretraining task
distributions pg(w). For distributions with ¢ < 120°, the
transformer learns a specialized solution that performs well
on unseen tasks drawn from the py(w), but fails for tasks
outside this distribution. However, for pretraining distribu-
tions with ¢ 2> 120°, the transformer learns a solution that
performs well for all test angles 0. Here, the label noise is
o2 = 0. B: With 02 = 0.25, we still observe a transition
from a specialized to a generic solution, but the transition
point has moved to ¢ ~ 135°. The vertical axis measures
the excess test error above the noise floor set by o2.

3. Models may generalize out-of-task-distribution in a
sharp way with increasing ¢: there may be some ¢, <

180° such that models achieve maximum performance
for all ¢ > ¢..

We view the last option as perhaps the most striking: it
implies that models can achieve optimal performance with
incomplete data. In the following, we show that transform-
ers can generalize out-of-task-distribution in this fashion.

3.2. Specialization-generalization transition

We show the results from evaluating these models on the
test task distributions ps as(w) in Fig 2. We pick Ad =

- - Optimal Bayes*
—-O- 0'2 = 0
- 0'2 = 41‘

Test MSE
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Figure 3: Pretrained transformers outperform Bayes-
optimal solutions in out-of-task-distribution generaliza-
tion. For 6 = 175° (shaded grey region), we plot the excess
test loss for models with varying pretraining distributions.
The dashed line shows the test error for the optimal in-task-
distribution Bayesian solution (see section 3.2).

5° and examine a range of ¢ (see legend). For models
with a pretraining task distribution with ¢ < 120°, we
observe good test performance only within the portion of
the hypersphere covered by the pretraining distribution, and
performance degrades outside of this range. However, for
models trained over pg(w) with ¢ = 120°, we observe low
test error for all §. In fact, the model performs similarly for
all test angles 4, suggesting that transformers learn a general-
purpose solution in this regime. This occurs despite the fact
that these models were trained using only data restricted to
a subset of the full task space. Notice also that even before
the transition, models trained on a cap with ¢ > 45° exhibit
nontrivial out-of-distribution task generalization (Fig 3).

In Fig 2B, we see that the transition is sensitive to the level
of label noise 2. For noisy regression with 02 = i, we see
that the transition now occurs around ¢ ~ 135°, but that the
qualitative behavior of the transition is unchanged.

Optimal Bayes & OOD generalization How well do
transformers generalize out-of-task-distribution? Here, we
compare their out-of-task-distribution performance to that
of the optimal Bayesian estimator for a given p,(w). Fol-
lowing (Raventos et al., 2023), we derive an expression for
the optimal estimator of y,, under the prior py(w). Observe
that in order to minimize L.y (6), the optimal estimator is
given by the posterior mean of y,, conditioned on the full
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Figure 4: Specialized ICL outperforms OLS for small
context length. We evaluate the models in-task-distribution
for varying context lengths, and plot the performance of
the transformer (solid) and ordinary least squares (dashed)
for the same data. For low context length, the specialized

solution learned by models with ¢ < 90° outperforms OLS.

For ¢ = 15°, the specialized solution is worse than OLS for
large context length.

context C),,

z/dwdyn YnP(Yn|Tn, w)p(w|Cr—1,Yn-1)

= / dww?z,p(w|Ch_1, Yn_1)

=w T,
with
J dwp(w)w Tp=; pyslzs, w)
[ dwp(w) [T7Z1 pyk| 2, w)

We now consider the choice p(w) = pg(w). Although the
integrals in Eqn 3 are intractable in this case, it is clear that
because pg(w) lacks support outside of S¢~1(¢), @ must
always be contained in S%~'(¢). The optimal Bayesian
estimator (wop ) for this problem therefore fails to meaning-
fully generalize out-of-task-distribution, as the best one can
hope for is to assign w0 to that vector wop € S?~ () that
is closest to the target task.

W =

(€)

In Fig 3, the test loss for wgp is given by the dashed line.
Notice that the ability of pretrained transformers to out-
perform this optimal estimator out-of-task-distribution is
therefore a direct consequence of the failure of these trans-
formers to fit the optimal Bayesian solution. It remains an
interesting avenue for further work to ask what form the
prior p(w) should take in order to give rise to the out-of-
task-distribution performance we see here.
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Figure 5: Transformers trained to do ICL on the sphere
generalize beyond it. A: The test error for tasks drawn
uniformly from subsets of a hypersphere of radius 12, when
a model is pretrained on tasks taken only from subsets of
the unit hypersphere. When ¢ 2 45°, the model generalizes
to tasks with R < 1 (shaded), despite being pretrained with
R = 1. B: Increasing task diversity drives generalization
beyond the sphere: With sufficient task diversity (¢ 2 45°),
transformers generalize not only to OOD tasks on the sphere
(Fig 2), but also to OOD tasks within it.

Comparison to ordinary least squares We next investi-
gate the solutions learned by the transformer on both sides
of the transition. In Fig 4, we compare the performance of
the transformer and ordinary least squares (OLS), solid and
dashed curves, respectively. For short contexts, the special-
ized solution which is learned for ¢ < 120° outperforms
OLS within the task distribution. For ¢ 2 120°, the perfor-
mance of the transformer is similar to OLS, except that the
models’ test error is not identically zero after d = 10 exam-
ples, unlike the least-squares solution. This sheds light on
the nature of the specialization occurring: by fitting a strong
prior to the pretraining data, models with low ¢ sacrifice
out-of-distribution performance, but this bias enables them
to outperform the general-purpose solution (OLS) for low
context length. See also Appendix Figs 16 & 17 for models’
performance for varying context length in other settings.
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Figure 6: Phase diagrams reveal three phases of generalization. A: Phase diagram for in-task-distribution test loss
(6 = 0°). B: Phase diagram for out-of-task-distribution test loss (0 = 175°). Diagonal structure reveals interplay between
two the measures of task diversity (Training ¢, number of tasks V). C: Combining the earlier two phase diagrams reveals
three phases of in-context learning. In-weights learning, teal: the model fits the training data but fails to generalize, both in-
and out-of-task-distribution. In-task-distribution generalization, yellow: The model generalizes within the support of the
pretraining distribution, but fails to generalize out of distribution. Out-of-task-distribution generalization, purple: The model
generalizes well both in- and out-of-task-distribution. In constructing the phase diagram, we set the threshold between high

and low generalization losses to 102,

Beyond the unit hypersphere What happens to the gen-
eralization ability of the model as the radius of the task
distribution changes? We train several models on data gen-
erated from tasks on the surface of the unit hypersphere,
and evaluate them on tasks drawn from spheres of varying
radii. Each model is trained on tasks from py(w) and evalu-
ated on the equivalent distribution (with the same ¢) on a
hypersphere with a different radius. In Fig 5, we observe
that for ¢ 2 45° the model is able to generalize perfectly to
tasks with R < 1 (shaded region), despite being trained only
on tasks with R = 1. Increasing task diversity therefore
drives the model to generalize not only to new portions of
the hypersphere, but also beyond the hypersphere entirely.

3.3. Interplay between the two forms of task diversity

In order to examine the effect of both forms of task di-
versity (number of tasks and task similarity), we train
4 sets of 120 models (480 models total) with task sim-
ilarity ¢ and number of tasks N in the set: (¢, N) €
{15°,30°,...,180°} x {22,23 ... 2} In Fig 6A, we
plot the resulting in-task-distribution loss averaged over the
4 sets: the loss for a test angle ¢ between 0° and 5° (these
test angles are always in the training task distribution). In
order to more effectively compare across different ¢, we
normalize the loss for each ¢ by the maximum possible loss
achievable from a predictor @ and target w* in S4~1().
Without such a normalization scheme, models with small ¢
would trivially outperform those with larger ¢, since even
an arbitrary choice of estimator 1 € S¢~! cannot be too
far from the target w*. We see that models with low NV

3To see this, set v = —w™*.

and large ¢ perform poorly in-distribution, suggesting that
the density of tasks may be important. For a more detailed
analysis of the in-distribution performance of these models,
see Appendix A.4.

In Fig 6B, we plot the resulting out-of-task-distribution
loss averaged over the 4 sets, corresponding to test angles
0 = 175°. In order to compare effectively with the normal-
ized in-task-distribution results, we normalize these losses
by dividing by 4, the maximum loss possible when w, w*
are on the sphere’. We see that models with small ¢ perform
poorly, and observe a diagonal boundary dividing models
that generalize well and those that do not, suggesting in-
terplay between these two forms of task diversity. In 6C,
we summarize these results as a phase diagram, depicting
three distinct phases with a threshold of 0.01 as a cut-off
between low loss (good generalization) and high loss (poor
generalization):

1. Good generalization both in- and out-of-task-

distribution (top right, purple).

2. Good in-task-distribution generalization, poor out-of-
task-distribution generalization (bottom right, yellow).

3. Poor generalization both in- and out-of-task-
distribution (left, teal); the model exhibits only
in-weights learning (IWL).

Scaling Dimension and Depth In Fig 8, we investigate
how the transition changes with changes in d, the dimen-

*



sionality of the regression problem. Unlike what is observed
in Raventos et al. (2023), where as d increases, a greater pre-
training task diversity [V is necessary to induce ICL, here
we observe that as d increases the transition along the ¢
axis does not seem to change location. This suggests that
the transition along this axis is not merely a result of high-
dimensional geometry — in low dimensions (e.g., d = 3),
the transition is still around ¢ ~ 120°.

Similarly, we vary the number of layers in the transformer
in Fig 9 to study how the transition from specialization to
generalization changes with respect to model depth. We
find that depth does not affect the angle (¢ ~ 120°) of the
transition for out-of-task-distribution test loss (6 = 175°).
These models were trained using N = 2! pretraining tasks.
We further show in Fig 19 in the appendix that the transi-
tion point remains the same across depth even for different
testing angles . These results further corroborate the phase
diagram results in Fig 6 and show that model depth does not
affect the transition point.

3.4. Classification

To investigate the generality of specialization-generalization
transitions, we investigate the possibility of seeing a tran-
sition in a classification task: logistic regression. We now
take the mapping between x and y to be:

(o(w"zy)) )

where H (-) is the Heaviside step function with threshold

Yy = H

1
2

1 and o(-) is the logistic function. In Fig 7, we observe a
specialization-generalization transition for this task. The
transition now occurs at ¢ = 135°. The fact that we observe
a specialization-generalization transition in a classification
setting hints that such transitions may be a more universal
phenomenon.

3.5. Nonlinear regression

We now change the mapping between input and label for
the regression to be a nonlinear function of the weights.
Specifically, we consider y; = wi ReLU(Wx;), with
zi,we € R4 and W; € R¥4 We choose d = 3 so
that the model has 12 parameters. In Fig 10, we see that
specialization-generalization transitions still occur, and in-
vestigate two ways of choosing the parameters. In Fig
10A, we pick the full 12-dimensional parameter vector
0 = {vec(W1),ws} from the surface of S'. This choice
induces a bias towards ||wz|| < 1 for angles ¢ near the
‘poles’ (v = (£1, 6)T). This bias is relaxed, however, when
¢ ~ 90°, near the equator of the sphere. This leads to
nonmonotonic behavior as § changes — the tasks near the
poles are more similar to each other than to those near the
equator. In Fig 10A, we only show § < 90° for this reason.
In Fig 18 in the appendix, we show results for all 4, and the

Test Loss (Cross Entropy)
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Figure 7: Task distribution diversity induces a transi-
tion from specialized to general-purpose ICL in clas-
sification tasks: We now consider logistic regression.
yi = Hy (o(wTx;)). We see a similar transition to the
one observed in the case of regression, but the transition
occurs at ¢ =~ 135°.

non-monotonicity can be observed where the red and blue
lines, corresponding to  near the poles, have lower test loss
than the yellow lines, corresponding to 6 ~ 90°.

In contrast, in Fig 10B, we pick from two separate hyper-
spheres: vec(W;) € S® and wo € S2. This choice leads
to a qualitatively similar transition to those we see in the
linear case, with a transition around ¢ ~ 135°. Observation
of a specialization-generalization transition beyond the lin-
ear regime suggests that such transitions may be a general
phenomenon in ICL.

4. Discussion and future work

We propose another “axis” to training task diversity, distinct
from the task diversity measure in (Raventos et al., 2023)
(i.e., the number of pretraining tasks). This new axis of
task diversity, based on the size of the subset of the task
space, accounts for the similarity present between tasks.
Depending on the level of task diversity present during
pretraining, we have shown that transformers learn either
a specialized solution that fails to generalize out-of-task-
distribution, or a generic solution with good performance
across the entire task space.

While we focus on the case of learning linear tasks, the
phenomena of specialization-generalization transitions are
likely more general. In particular, such transitions appear
also in the presence of label noise (Fig 2) and in nonlinear
regression problems (Fig 10). To extend our analysis to
more complex tasks, it would be interesting to investigate
ICL performance in richer settings as more general notions
of “task similarity” are varied. In the context of linear
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Figure 8: Distributional diversity threshold is unaffected
by task dimension. Out-of-task-distribution test loss vs
training spherical cap polar angle ¢ at various task dimen-
sions d (see legend). The test tasks are drawn from the
spherical cap opposite to the “pole” of the training task
distribution, § = 175° (shaded region). We see that the
threshold for out-of-task-distribution generalization stays
close to ¢ ~ 120° (dashed line), regardless of the task di-
mension.

problems on the sphere, the similarity between tasks w; and
ws is naturally measured by their inner product wf ws, but
for more general problem settings it is less clear how to
measure the similarity between tasks. Even within the linear
setting, it may be interesting to explore task geometries
beyond the sphere.

4.1. Types of distribution shift

In this work, we considered how transformers’ ICL perfor-
mance responds to a domain shift in the task distribution.
To make this precise, we can formulate ICL as a supervised
learning problem. Let’s just consider the linear regression
setting for now. Our supervised learning dataset is then:

D={Cpn,yn} (&)

with C,, = {z1,y1,...,%,}, and y; = w’ ;. The problem
of task generalization we consider is then a special case
of the domain generalization problem. To see this, notice
that during training we see a given context C,, according to
a distribution C,, ~ p(w) [[;—, p(z;). The label function
p(yn|Cr) is deterministic given the context:

p/(yn|0n) = 5(,% - wan) (6)

When we ask about contexts with w outside the support of
the training distribution, what we have done is to change the
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Figure 9: Distributional diversity threshold is unaffected
by model depth. Out-of-task-distribution test loss vs train-
ing spherical cap polar angle ¢ from transformer models
with two (blue), three (red), and ten (black) layers. The
test tasks are drawn from the spherical cap opposite to the
training task distribution, § = 175° (shaded region). We see
that the threshold for out-of-task-distribution generalization
stays close to ¢ ~ 120° (dashed line), regardless of the
model depth.

data generating process to:

p(cmlln) :pl(cn)p(yn‘cn) @)

:Fwﬁhm%%—wm ®)

Notice that this is a special type of covariate shift: we do
not allow the full distribution p(C,,) to vary — rather, we
impose that 1) the sample generation distribution p(x;) re-
mains unchanged; and that 2) we still draw w independently
from the samples z;. It may be the case that this additional
structure allows the network to more easily deal with the
distribution shift.

This is not the only type of distribution shift one may
care about, however, and prior work has investigated ICL
under different distribution shifts. Ahuja & Lopez-Paz
(2023) investigate instead a domain shift of the x;’s, (i.e.
p(xz;) — p'(z;) and find that transformers fail to generalize
when exposed to such shifts. We suggest that this may be
because the authors do not expose the model to sufficient
data diversity during pretraining. In Appendix A.6 we in-
vestigate the effect of data diversity in the linear regression
setting and see a (noisy) transition in the behavior of the
model’s OOD generalization. Yadlowsky et al. (2024; 2023)
instead consider ICL under concept shift: the mapping of
data to labels p(y,|C,) changes between train and test. The
authors here find that transformers largely fail to generalize
to such distribution shifts, even when exposed to a diver-
sity of tasks during pretraining. Hill et al. (2025) consider
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Figure 10: Task distribution diversity induces a transi-
tion from specialized to general-purpose ICL in nonlin-
ear regression tasks. A: All parameters in the nonlinear
model (a small one-hidden-layer network) are drawn from
the same hypersphere. The transition occurs at ¢ ~ 60°.
Although the curves for each ¢ do not collapse onto each
other after the transition, they remain within a band of size
~1073. B: The parameters in the nonlinear model are drawn
separately from a different hypersphere for each layer in the
model. The transition occurs at ¢ ~ 135°.

ICL of linear functions where task vectors at test time are
orthogonal to those seen during training, and again see that
transformers fail to generalize to this distribution shift. We
expect that this is because the natural task similarity mea-
sure for linear tasks, the inner product, is zero for orthogonal
tasks. The ability our models display in successfully adapt-
ing to distribution shift between train and test time may
therefore depend on the type of distribution shift considered,
in addition to task/data diversity thresholds.

4.2. Future directions

A natural next step would be to develop an analytic the-
ory for analyzing specialization-generalization transitions
in transformers, similar to the analysis Lu et al. (2024) per-
formed for the setting studied in Raventos et al. (2023).
Such a model could provide further insight into the condi-
tions necessary for out-of-task-distribution ICL to emerge.

Additionally, it would be interesting to study the dynamics
of how out-of-task-distribution ICL emerges during training,
shedding light on the learning processes & implicit biases of
the optimization algorithms that enable models to generalize
beyond their training task distribution.

Our experiments open a new direction for understanding
how general-purpose models are able to solve unseen tasks
using only a few examples in their context: we show em-
pirically that transformers can learn to do ICL over much
more of the task space than they are trained on. Understand-
ing the generality of this behavior may help explain why
language models are able to perform well on ICL tasks not
present in their pretraining distribution. Although our exper-
iments here are limited by their focus on relatively simple
functions as the ICL task, we believe investigations into
specialization-generalization transitions for more complex
tasks are a promising direction for future study. Building
trust in LLMs is an important challenge with positive so-
cietal impacts, and understanding the degree and nature of
task generalization via ICL takes a step towards this goal.

Impact statement

We present work on linear regression ICL tasks with the goal
of understanding more broadly the factors that lead to the
development of ICL behavior. While we focus on simplified
experimental settings compared to the more complex ICL
phenomena seen in LLMs, the impact of understanding the
underpinnings of specialization and generalization in ICL
will provide insights into the learning dynamics of LLMs,
building trust in Al and producing positive consequences
for society.
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A. Appendix / supplemental material
A.1. Further experimental details

All code was written in Python using the PyTorch library
(Paszke et al., 2019). All models were trained for 58,000
steps using a batch size of 128 and a constant learning rate
of 3 x 107*. All models were converged at the end of
training. All models were trained on a single GPU, either a
MIG GPU with 10GB of memory or an A100 with 40GB of
memory, and took ~ 3hrs to train.
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Figure 11: A second run of Fig 2, with a different initial-
ization and sampling of w ~ pg.
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Figure 12: Transformers undergo two stages of special-
ization during training: A: For small ¢, the transformer
rapidly (within the first epoch) learns a solution that only
takes into account the component of x; in the direction of
the vector v forming the center of the hyperspherical cap.
Blue: A transformer trained normally on training data with
¢ = 45°. Orange: A transformer trained on data with the
components of x; perpendicular to v zeroed out. The train-
ing loss is smoothed with an exponential moving average
for clarity of visualization.
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A.2. Two stages of specialization during training

In Fig 12, we compare the training loss of a transformer
trained normally on data with ¢ = 45° to a transformer
trained on modified data. To modify the data, we zero out
all components of x; that are perpendicular to the vector
v defining the center of the hyperspherical training cap.
We see that during early stages of training, the transformer
trained on unmodified data performs similarly to the trans-
former trained on modified data, suggesting that early in
training, transformers trained to do linear regression only
take into account the component of x; parallel to v. Later
in training, the unmodified transformer learns to take into
account other directions in the training data. This suggests
that there are two distinct specialized solutions learned by
transformers when ¢ is small, the first of which is transient
and disappears after training long enough.

A.3. Defining the transition point

To more precisely define the transition point, we quantify
the degree to which a model trained with a given ¢ performs
similarly across test angles §. The intuition for this defini-
tion is that for a model with ¢ above the transition point,
we should expect similar performance across all § due to
the rotational symmetry in the linear regression problem.
To quantify this, we measure the standard deviation of the
model’s performance across J, and normalize this by the
mean performance across 0 :

\/Varé [EwNP(s,Aa [(Te(Cn) - y”)QH

R = T B s (T0(Co) — 9]

©))

This definition resembles an inverse signal-to-noise ratio,
or “NSR”. To identify the transition point, we then look
for a sharp drop in the NSR. In Fig 13, we plot the NSR
against ¢ for the models in Fig 2A. We see a sharp drop in
the NSR on a logarithmic scale, and identify which phase
of learning we are in by thresholding the NSR. The fact that
the drop is sharp means that our phase identification is not
very sensitive to our choice of threshold.

A.4. Comparison with dAMMSE estimator

Plugging the uniform distribution over a finite pretraining
set W = {wy,ws ..., wy} into Eqn 3 yields the discrete
minimum mean-squared error (AMMSE) estimator (for the
case of zero label noise):

n

WyMMSE = arg min g (ngy — y‘)2
weW 4 1 ¢ ¢
1=

(10)

In Fig 14A, we investigate the in-distribution performance
of pretrained transformers by comparing their performance
to a IMMSE estimator. To do this, we interpolate between
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Figure 13: Blue: NSR (Eqn 9) vs ¢ for the models in Fig
2A. Green: Phase identification by thresholding the NSR,
with a threshold of 0.5.

tasks in WV along a great circle, and test both the transformer
and dMMSE along this path. For a low number of tasks,
transformers perform about as well as AMMSE, but trans-
formers outperform dMMSE for larger numbers of tasks.

In Fig 14B, we plot a heatmap of the quantity:
N 2
D = max | (fusera — )~ (To(za) = va)?] (A1)

where z,, Y, is the regression problem generated by the
interpolant weight vector w,, at interpolation step o. The
quantity D measures the performance of the transformer
relative to the AIMMSE estimator: when D < 0, the trans-
former outperforms dMMSE. In the heatmap, we see that
increasing number of tasks drives the transformer to a solu-
tion that outperforms dMMSE for all ¢. In order to compare
across different values of ¢, we normalize D using the
scheme described in section 3.3. Notice that this normaliza-
tion aligns the transition points for the transition from IWL
to ICL across increasing number of tasks.

A.5. Sampling from a portion of the hypersphere

The curse of dimensionality precludes sampling from a
portion of the hypersphere via rejection sampling. Instead,
we consider the problem of sampling uniformly from the
intersection of the sphere with a cone in d+1 dimensions: i.e.
sampling from the sphere S%(R) subject to the restriction:

|w—v|* > r? < angle(w,v) < 0 < w'v > R? —r?/2
(12)

where w is our sampled vector and v is a fixed vector that
defines the hypercone. The opening half-angle of the cone
0 is related to r via r> = 2R%(1 — cos 0).

WLOG, we take v = Ré; = (R 0), where 0 € R%. Then,
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Figure 14: In-task-distribution generalization. A: Solid:
The loss for a transformer with ¢ = 30° along a great
circle connecting two weight vectors in the pretraining
set. Dashed: The loss along the same great circle for the
dMMSE estimator (Eqn 10) corresponding to the pretrain-
ing set. B: Transformers outperform dMMSE for all ¢ with
sufficiently many pretraining tasks. The color shows the
excess loss of the transformer over the dMMSE estimator.
When it is negative, the transformer outperforms dAMMSE
(see Eqn 11).

writing w = (Z y) with Z € R and y € R?, we see that

RZ > R* —1%)2 (13)
We will show that, up to this restriction, Z = R(2U — 1),
with U ~ Beta(%, 4). To generate y, we first draw Z, then
draw a vector uniformly from the sphere S¢~1(v/R2 — Z2)

- ) 4 d
Proposition A.1. Z = R(2U — 1), with U ~ Beta(5, 5)
Proof. Observe that p(Z)dZ is proportional to the (d-

dimensional) surface area of the conical frustum with height
dZ and radii vVR? — Z2, \/R? — (Z + dZ)2. Expanding




to first order in dZ, the slant height ¢ of the frustum is given

by:
R2
£2:(dZF{RQ_2p] (14)
so that:
p(2) chxé(\/RQ —Z2>d (15)
x (R? — z%)4=2/2qz7 (16)

Making the change of variables Z = R(2u — 1), we obtain:

p(u) du o (u —u?)4=2/2 du (17)
ocu%_l(l—u)%_ldu (18)
which has the form of a Beta(%, 4) random variable. [

A.5.1. SAMPLING Z

As we have seen, Z follows a scaled & shifted Beta(4, 4)
distribution, except for the constraint that RZ > R? —
r2 /2. To implement this constraint, observe first that it is
equivalent to:

,,,2

>1- —
v 4R2

(19)

Since the distribution of U ~ Beta(%, %)

about 1/2, this condition is equivalent to:

is symmetric

r2

<
U_4R2

(20)

It follows that to sample from Z, we can perform the fol-
lowing sequence of transformations:

. r?
T ~ Unif (0, F<4R2>> 21
U=FYT) (22)
Z =R(2U — 1) (23)

where F(+) is the cdf of the Beta(%, 2) distribution.

A.5.2. MINIMUM ANGLES

It is straightforward to implement an additional constraint
corresponding to a minimum distance/angle away from the
vector v. If v/ is this minimum distance, then we perform:

) (T‘/)Q ,,,2
U=FYT) (25)
Z = R(2U —1) (26)
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Figure 15: Data diversity transition: When instead
drawing z; from a hyperspherical cap, we see a (noisy)
specialization-generalization transition at ¢ ~ 105°.
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Figure 16: In-distribution test error vs context length for
the noisy case (02 = 1).

A.6. Data diversity thresholds

In this section we investigate the level of diversity necessary
in the data: i.e. when we instead draw z; ~ S94=1(¢), with
w drawn uniformly over the entire unit sphere. In Fig 15, we
show the results. We still observe a transition, suggesting
that sufficient diversity is also required in the data in order to
generalize out-of-distribution. We notice that the transition
is much noisier than that observed in Fig 2. This difference
in behavior may be due to the fact that the model directly
observes x; in the context, whereas the task vector w is a
latent variable.

A.7. Different Context Lengths

In Figures 16 and 17, we investigate models trained with
various ¢ across many context lengths in different settings
to the setting in Fig 4.
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Figure 17: Out-of-distribution (§ = 175°) test error vs
context length.

A.8. Supplemental plots for section 3.3

In Fig 19, we show the data from Fig 9, but for all §, high-
lighting that the transition point does not change with in-
creasing model depth.

In Fig 18, we reproduce Fig 10, but show many values
of §, highlighting the non-monotonic behavior that arises
as a result of the rotational symmetry of the sphere being
violated by the nonlinearity.

0.1F o)
180

102}
7 90
E 1073 0
&

10

0 45 90 135 180

¢ (degrees)

Figure 18: Same as Fig 10A, but shows all values of §.
Notice how the behavior of the test loss is non-monotonic
as d increases.
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Figure 19: Distributional diversity threshold is unaf-
fected by model depth, even across test angles. Test loss
vs training spherical cap polar angle ¢ from transformer
models with two (blue), three (red), and ten (black) layers.
We show results for test tasks drawn from A = 5° bands
from § = 15° to 175°, where lighter shades indicate smaller
0. We see that the threshold for out-of-task-distribution gen-
eralization stays close to ¢ ~ 120°, regardless of the model
depth.



