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“This backpack is alongside a “Find the white sneakers that
square green chair.” are closer to the desk chair.”

Fig. 1: Illustration of open-vocabulary 3D semantic scene understanding. We
propose Diff2Scene, a 3D model that performs open-vocabulary semantic segmentation
and visual grounding tasks given novel text prompts, without relying on any annotated
3D data. By leveraging discriminative-based and generative-based 2D foundation mod-
els, Diff2Scene can handle a wide variety of novel text queries for both common and
rare classes, like “desk” and “soap dispenser”. It can also handle compositional queries,
such as “find the white sneakers that are closer to the desk chair.”

Abstract. In this paper, we investigate the use of diffusion models
which are pre-trained on large-scale image-caption pairs for open-vocabulary
3D semantic understanding. We propose a novel method, namely Diff2Scene,
which leverages frozen representations from text-image generative mod-
els, along with salient-aware and geometric-aware masks, for open-vocabulary
3D semantic segmentation and visual grounding tasks. Diff2Scene gets
rid of any labeled 3D data and effectively identifies objects, appearances,
materials, locations and their compositions in 3D scenes. We show that

it outperforms competitive baselines and achieves significant improve-
ments over state-of-the-art methods. In particular, Diff2Scene improves
the state-of-the-art method on ScanNet200 by 12%.

Keywords: 3D Semantic Understanding - Open-Vocabulary Perception
- Diffusion Model
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1 Introduction

3D semantic scene understanding, with the task of assigning semantics to every
3D point, plays a fundamental role in many computer vision applications, such
as robotics [88], autonomous driving [36], human-computer interaction [22], and
augmented reality [27]. Traditional studies in this field usually target solving
this problem in a closed-set fashion [16,73], resulting in models that can only be
used to make predictions within the predefined label space.

Recent progress in computer vision have witnessed the emerging interests in
solving semantic understanding tasks in open-vocabulary settings [35,62,67, 78,
94]. In contrast to closed-set setting, models targeting open-vocabulary tasks
must make predictions for any semantics described in text, including object
category and fine-grained attributes (e.g., shape, color, material, property) as
well as their complicated compositions. However, this is a challenging task due to
the wide diversity and complexity of possible queries. Motivated by the advance
of aligning text and image embeddings with large-scale foundation models |2,
39,48, 65], existing methods mitigate this challenge by lifting the image features
from foundation models such as CLIP [65] or their descendants [25,47] to 3D.
These lifted feature representations for 3D points can then be used to query with
open-vocabulary descriptions, achieving semantic understanding in 3D. Despite
these achievements, contrastively trained CLIP-based models exhibit limitations
in handling fine-grained classes [66] and novel compositional text queries [58],
restricting their performance in open-vocabulary 3D semantic understanding.

The recently developed text-to-image diffusion models have shown outstand-
ing abilities for image generation even with challenging text prompts [55,68,72],
such as combinational descriptions with multiple attributes (e.g., A bucket bag
made of blue suede with intricate golden paisley patterns.) The internal visual
representation of these models, entangled with text embedding through cross-
attention, have proven correlate well with semantic concepts described by lan-
guage [43,60,61,89]. On the other hand, CLIP-based foundation models have
been shown to struggle with compositionality [58]. Moreover, compared with
the CLIP model which is optimized for global representation, diffusion models
have proven to be superior at local representation [80], which is a key for dense
prediction tasks. Specifically, ODISE [87] applied the internal representations of
Stable Diffusion [68] to open-vocabulary 2D semantic understanding tasks and
achieved promising results.

One of the key challenges in 3D perception is the severe scarcity of point
clouds and their dense labels. Several existing methods have been proposed to
solve the lack of data issue in a zero-shot fashion by leveraging the CLIP model
pre-trained on large-scale text-image data [37,62,79]. The prior art [62] extracts
dense CLIP features from 2D images and distill the knowledge of their lifted
3D counterpart into a 3D mask predictor. However, CLIP features, as discussed
above, struggle to handle fine-grained classes [66] and show worse localization ca-
pability compared with diffusion features. We leverage diffusion model as feature
backbone along with a mask-based segmentation head (e.g., Mask2Fromer [10])
for its intrinsic nature that decouples mask and its semantic representations.
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This is intuitively suitable for leveraging semantically-rich embeddings from 2D
foundation models and further learning geometrically-accurate masks from the
3D branch. However, performing multi-modal distillation with mask-based seg-
mentation head is a non-trivial task. The frozen features extracted from the
decoder of the U-Net in the diffusion model are trained with generative objec-
tives, and cannot be directly used for the perception task. Therefore, directly
distilling knowledge from these features as normally done in prior art [54,56,62]
is infeasible. Another intuitive way is to leverage a supervised 3D mask proposal
network and pool the feature representations from 2D CLIP features for each
mask [79]. However, the training of 3D mask proposal network requires labeled
3D data, which may not be feasible in practice.

To mitigate these issues, we propose a novel mask distillation method tailored
to distill knowledge from the Mask2Former style 2D branch [10,87] to the 3D
branch, which is shown in Fig. 2. Specifically, we design our 3D branch to take
a 3D point cloud as input and to predict their 3D features. The semantically
meaningful mask embeddings produced from our 2D branch are used as linear
classifiers to assign class probability to these 3D features. Their corresponding
2D masks are lifted to 3D based on pixel-point correspondence and used to force
the consistency learning of the 2D and 3D branch.

We evaluate Diff2Scene quantitatively on ScanNet [17], ScanNet200 [69],
Matterport 3D [7] and Replica [77] for open-vocabulary 3D semantic segmenta-
tion and qualitatively on Nr3D [1] for visual grounding tasks. Our experimental
results show that Diff2Scene outperforms state-of-the-art models [62] on all the
four semantic segmentation datasets and achieves promising results on visual
grounding tasks. In summary, we make the following contributions:

— To the best of our knowledge, we are the first to leverage text-image diffusion
to perform open-vocabulary 3D semantic segmentation.

— We propose a novel mask distillation method to train a 3D mask prediction
model by distilling knowledge from the Mask2Former style 2D segmentation
model.

— The proposed method achieves state-of-the-art performance on several open-
vocabulary 3D semantic segmentation and visual grounding benchmarks.

2 Related Work

Closed-vocabulary 3D semantic segmentation. In 3D semantic segmenta-
tion, a semantic category is assigned for each 3D point. It has been long stud-
ied [3-5,20,21,26,31,32,42,45,49,57,63, 64, 82,86, 95] due to its importance in
computer vision and robotics applications. One challenge of this task is that 3D
point clouds are not in a regular structured format; network architectures that
work well for 2D tasks cannot handle 3D point clouds effectively. As a result,
most of the early studies focus on designing effective and efficient network archi-
tectures that are suitable for 3D point clouds [16, 20,21, 26, 31, 32,45, 63, 64, 83].
This line of work achieved great success and significantly improves the results of
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Fig. 2: Illustration of open-vocabulary 3D perception methods. Lpp and Ly p
denote point-based distillation loss and mask-based distillation loss. M3p denote a set
of predicted 3D masks; Map and Z,,; denote a set of predicted 2D masks and their
semantic embeddings; Z,; denote the high-resolution 3D feature map. (a) Directly min-
imizing the per-point feature distance between the CLIP-based model and the tuned
3D model [62]. (b) Directly using a 3D mask proposal network trained on labeled
3D data to produce class-agnostic masks, and then pool corresponding representa-
tions from the CLIP feature map [79]. (c) The proposed mask distillation approach,
namely Diff2Scene, that uses Stable Diffusion and performs mask-based distillation.
Diff2Scene leverages the semantically-rich mask embeddings from 2D foundation mod-
els and geometrically accurate masks from the tuned 3D model, and thus achieves
superior performance compared to previous methods.

3D semantic segmentation. Another challenge is the lack of large scale data with
ground truth annotations. Due to the intensive labeling effort and high cost of
data annotation [69], the available datasets for 3D semantic segmentation are
usually small in scale. In the absence of large scale data, early studies usually
target solving this problem in a closed-vocabulary setting, where the trained
model can only predict categories that appear during training. To mitigate the
scale limitation of existing datasets, a handful of works [12-15,52,60,91] have
applied zero-shot learning in 3D scene understanding tasks. [12-15,91] focused
on 3D point classification task and [52,60] tried to address the 3D semantic
segmentation problem. However, these zero-short methods still require ground
truth annotations for a certain amount of 3D point clouds.

Open-vocabulary 3D segmentation. The recent progress of large-scale vision
and language representation learning [2,28,39,48,65,90] has advanced the study
of semantic and instance segmentation in an open-vocabulary setting. [25, 47,
51] first explored open-vocabulary 2D semantic segmentation. They proposed
aligning per-pixel features [47] or features from mask regions [25,51] with the
corresponding text embedding. Following these works, [8,19,24,33,37,59,62, 74,
75] focus on 3D semantic segmentation in an open-vocabulary setting. Among
them, [8,24,33,37,59,71,74] project 3D points to 2D images and solve the 3D
problem in the 2D space, instead of targeting the 3D open-vocabulary semantic
segmentation directly. As [19] pointed out, the projection from 3D to 2D has
information loss and the solution is suboptimal.

T
J
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To make better use of information from the 3D point cloud, [19], [18] and [62]

proposed to directly applying semantic segmentation on the 3D point cloud. [19]
and its extension [18] proposed associating captions generated for 2D images to
corresponding 3D point clouds to build the pseudo-ground truth captions for
3D point clouds. A neural network is trained to associate the 3D point cloud
with these pseudo labels through contrastive loss. Similar to the zero-shot set-
ting, [19] evaluated their model in a leave-one-out fashion, which still requires
annotations for 3D point cloud. Inspired by the strong open-vocabulary ability of
large-scale vision and language models, Peng et al. [62] proposed distilling knowl-
edge to a 3D point cloud model. They trained 3D semantic segmentation model
by only distilling the knowledge from a CLIP-style [65] 2D open-vocabulary
semantic segmentation model [25,47]. They demonstrated that without train-
ing with any ground truth labels, the model can achieve great performance on
many open-vocabulary tasks. However, we observe that [62] is strongly limited
by the 2D open-vocabulary semantic segmentation models used as the teacher.
Its performance on rare classes that are not used in training these models are
not satisfactory. Our method follows this idea by distilling the knowledge of
2D open-vocabulary semantic segmentation model to a 3D model. In constrast
to the approach in [62], we use a diffusion-based 2D open vocabulary semantic
segmentation model [87] as the teacher model.
Diffusion models for scene understanding. The last few years have wit-
nessed the success of diffusion models in image generation [68,70]. Recent stud-
ies also observed the diffusion models are strong representation learners [43, 60,
61,89]. As a result, researchers have applied it to many understanding tasks
such as image classification [46], object detection [9], image semantic segmenta-
tion [6,38,87], instance segmentation [50], human pose estimation [23,29,76], ac-
tion segmentation [53], camera pose estimation [84], to name a few, and achieved
great success. Especially, [87] and [50] showed that Stable Diffusion [68], whose
internal representation being well correlated with text embedding, has strong
open-vocabulary abilities for understanding tasks. Inspired by this, we are the
first to apply text-to-image diffusion models to open vocabulary 3D semantic
segmentation task.

3 Diff2Scene

We introduce Diff2Scene, an open-vocabulary 3D semantic understanding method.
Similar to [62], our proposed model operates in a zero-shot fashion, where no
ground truth 3D annotations are needed during training.

3.1 Overview

An overview of Diff2Scene is shown in Fig. 3. It takes posed RGB images and the
reconstructed 3D point cloud as model inputs. The model predicts the semantic
label for each 3D point. Diff2Scene has two branches. The 2D branch is designed



6 X. Zhu et al.

% Text-to-lmage Diffusion U-Net
M > 2D Salient-Aware Masks

# 2D Mask Generator -
N N — — R .
- -
L L . - \
Diffusion Mask Embeddings Multimodal

3D Sparse Convolutional U-Net ) EEEEEE Mask Distillation

— — g e 2
3
: :

| M L5 " am

@ |
& ||

- - 5 ||
I

3D Mask 3D ic-Aware Masks

Fig. 3: Overview of our method. We propose Diff2Scene, an open-vocabulary 3D
semantic understanding model. Diff2Scene contains two branches. The 2D branch is de-
signed to be a diffusion-based 2D semantic segmentation model. It accepts a 2D image
as input and predicts a set of 2D probabilistic masks with corresponding semantically-
rich mask embeddings. The 3D branch utilizes the point cloud and 2D mask embeddings
as input. The 2D mask embeddings are used as “semantic queries” to generate corre-
sponding 3D probabilistic masks. The model learns salient patterns from the RGB
images and geometric information from the point clouds.

to be an open-vocabulary 2D semantic segmentation model. It leverages text-to-
image generative model [68] which is pre-trained on massive text-image pairs.
The model takes a 2D image as input to predict a set of 2D probabilistic masks
with their corresponding 2D mask embeddings. Thanks to the generative pre-
training process with large-scale text-image pairs, the 2D mask embeddings are
semantically rich. The model leverages the salient patterns in RGB images to
produce the 2D salient masks. The 3D branch takes the point cloud and the
2D mask embeddings as inputs. The 2D mask embeddings are used as linear
classifiers to assign class probabilities to each of 3D features output from the
3D branch, resulting in a 3D probabilistic mask termed as geometric masks.
To predict the per-point semantic class, the model first computes the per-mask
category logits for both salient and geometric masks. Then we ensemble the per-
mask logits for those two types of masks. In the way, the model can learn salient
patterns from the RGB images and geometric information from the point clouds.

3.2 2D Semantic Understanding Model

One challenge of 3D semantic understanding is the severe scarcity of 3D point
clouds with groundtruth labels. To tackle the challenge brought by limited
training data, vision-language foundation models have been used to transfer
semantically-rich 2D features into the 3D space [37,62,79]. [79] used on a model
trained on labeled 3D data to produce class-agnostic masks, and then pooled
the corresponding 2D representations as the mask embeddings. On the other
hand, [62] proposed to leverage a pre-trained 2D semantic segmentation model as
feature extractor to perform open-vocabulary 3D segmentation, and no ground
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truth 3D annotations are needed during training. In this work, we follow the
setting in [62] to reduce the 3D annotation efforts.

The 2D segmentation model consists of an image backbone ¢ which is a foun-
dation model pretrained on large-scale text-image pairs; and a segmentation head
o to predict the semantic embedding. There are multiple design options for the
2D backbone ¢ and segmentation head o. (1) The 2D backbone could either be
contrastively pretrained or generatively pre-trianed. The popular frame-
works for contrastive representation learning include CLIP [65] and ALIGN [40].
On the other hand, a few works [85,87,92] have demonstrated promising perfor-
mance by using generatively pre-trained representations for perception task. The
feature representations from Diffusion U-Net blocks are extracted for different
downstream tasks.

Once feature representations from text-image foundation models are ex-
tracted, a segmentation head is added upon those features to predict the per-
point semantic classes. The segmentation problem could be formulated as pixel-
based classification or mask-based classification. For pixel-based classifica-
tion [25,47], the intermediate output of segmentation head is of shape Hx W x C,
where H and W is image height and width, and C is the dimension of feature em-
bedding. For mask-based classification [10,11,87], the segmentation head takes
the 2D feature map F2¢ and N fixed mask queries {¢;}}¥; as input. The inter-
mediate output is N 2D probabilistic masks {824} | and their corresponding
mask embeddings {f29} Y ;.

In this work, we choose diffusion model as the feature backbone ¢, consider-
ing its strong localization ability brought by generative pre-training. Besides, we
leverage mask-based segmentation head for its intrinsic nature that decouples
mask and its semantic representations. This is intuitively suitable for leverag-
ing semantically-rich embeddings from 2D foundation models, and further learn
geometrically-accurate masks from the 3D branch.

3.3 Geometry-Aware 3D Mask Model

While mask-based segmentation has achieved promising performance in fully-
supervised setting [10,11,73], it has been rarely explored to transfer the learned
mask-level representations into another domain. On the other hand, the point-
based feature representations from 2D foundation model can be naively distilled
by minimizing the per-point feature distance. For example, [62] proposed to
train a 3D model to predicts 3D semantic meaningful features by distilling pixel
aligned 2D features. However, similar methods are not applicable in our proposed
method. First of all, our 2D semantic understanding model uses a mask-based
segmentation head which does not provide semantically-rich features in the pixel
level. Secondly, the backbone of our 2D semantic understanding model is a frozen
stable diffusion model [68] which is designed to generate realistic images with rich
details and not tuned for semantic segmentation tasks. The per-pixel features
extracted from it are not feasible to supervise the training of our 3D mask
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model’. In the following, we introduce our proposed mask distillation which is
tailored to distill knowledge from the mask-based 2D foundation model to the
geometry-aware 3D mask model.

The mask-based 2D foundation model predicts N 2D probabilistic masks
{B24}N | and their corresponding mask embeddings {24} ;. Specifically, B¢
represents a probabilistic map whose elements represent the probability of the
corresponding pixel being foreground. We first compute the pixel-point corre-
spondence following [62]. Subsequently, a set of 3D probabilistic masks {B3?}Y,
can be generated by lifting the 2D masks {B?¢}¥ | to 3D space based on the
pixel-point correspondence. We proposed a novel mask distillation which distills
information from both 3D probabilistic masks {837}~ ; and the corresponding
semantic rich mask embeddings { f2}% | generated from the 2D branch. Specif-
ically, we train a Minkowski network [16] as the 3D mask prediction model to
generate geometry-aware 3D masks. The 3D point cloud is quantized into voxels
by averaging the pixels within each voxel to save memory and reduce computes.
The 3D mask prediction model generates a 3D feature to represent each voxel
and this feature is assigned to all points within the voxel. This produces a full
feature map F3¢ € RM*D for the point cloud, where D is the dimension of the
3D feature. The semantic rich 2D mask embeddings {f?4}}¥, are used as lin-
ear classifiers to compute the logits S; € RM of a 3D feature belonging to the
corresponding class:

Si= <F3d’fi2d>7 (1)

where (-,-) denotes inner product. The 3D probabilistic mask B’ ?d is then gen-
erated by applying the sigmoid function on §;. We propose a multimodal mask
distillation loss to train our 3D mask generator:

N
L= Z 1-— COS(B/?d, B3). (2)
i=1

The distillation loss aims at forcing the 2D and 3D branch to make consistent
predictions. It serves as an implicit distillation objective to make the 3D model
learn high-resolution, semantically-rich feature representations.

3.4 Open-Vocabulary Inference

During inference, Diff2Scene takes a 3D point cloud and its multiview 2D images
as inputs. The 2D semantic understanding model consumes the 2D images and
generates a set of 2D probabilistic masks {B2¢}¥ | with their corresponding
mask embeddings {f?4}Y,, where f2¢ € RP. The 3D mask model takes the
3D point cloud and the mask embeddings {29}, as inputs to predict the 3D
probabilistic mask {5’ ?d}f\il. To ground a semantic label ¢ to the 3D point cloud,
we first apply the same idea from [87] to compute the geometric mean (denoted
as pg) of label probabilities from diffusion and discriminative models for each 2D

1The 3D mask model trained to distill these features does not converge.
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mask {B24}Y . Next, the label probabilities p¢ are assigned to 3D points via
the following equation:

N N
pC =AY pf B (1-N)Y e B (3)

=1 i=1

where A = 0.5. When multiple labels can be assigned to a 3D point, the label
with the highest probability from Eq. 3 is taken.

4 Experiment

We conduct a series of experiments to demonstrate the effectiveness of Diff2Scene
on a variety of zero-shot 3D scene understanding benchmarks. We first evaluate
the proposed model on zero-shot open-vocabulary semantic segmentation tasks
following the evaluation protocol of [62]. We then perform comprehensive abla-
tion studies to validate our designs. Finally, we qualitatively demonstrate the
strong ability of the proposed model for open-vocabulary 3D segmentation and
grounding complicated compositional text queries.

4.1 Datasets

We use ScanNet [17], Matterport3D [7], ScanNet200 [69] and Replica [77] for the
open-vocabulary 3D semantic segmentation task. We provide qualitative analysis
of the visual grounding task on Nr3D [1]. Except for Replica, point clouds and
multi-view images in the training split without ground truth annotations are used
for model training. As Replica does not provide the training data, we perform
training on ScanNet and perform evaluation on Replica, following the setting
in [79].

ScanNet is one of the largest 3D semantic segmentation dataset. It provides
80,554 images from 1201 scans for training and 21,300 images from 312 scans
for testing with 20 semantic labels.

Matterport3D is a large scale RGB-D dataset containing 10,800 panoramic views
from 194,000 RGB-D images of 90 building-scale scenes. It splits 61 scenes for
training, 11 scenes for validation and 18 for testing. We train our 3D branch
using the images in the training splits and report the results on test split.

ScanNet200 has 200 semantic labels with long-tailed classes. It also provides a
grouping of the 200 categories based on the number of labeled surface points in
the training set, resulting in 3 subsets: head, common, and tail. This enables
us to evaluate the performance of our method on the long-tail distribution,
making ScanNet200 a natural choice as an evaluation dataset. We report the
mean intersection over union (mlIoU) metric on the validation set consisting of
312 scenes following the split in [62,69, 78].
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Table 1: Comparison to state-of-the-art models. We report mIoU for all benchmarks.
Best results in zero-shot, open-vocabulary setting are shown in bold.

‘ ScanNet ‘ Matterport3D ‘ ScanNet200 ‘ Replica

| Al | All |Head Common Tail All |[Head Tail All
Fully-supervised
TangentConv [81] 40.9 - - - - - - - -
TextureNet [34] 54.8 - - - - - - - -
SFSS-MMSTI [16] - 35.9 - - - - - - -
CSC-Pretrain [30] - - 45.5 17.1 7.9 249 - - -
SupCon [93] - - 48.6 19.2 10.3 26.0| - - -
LGround [69)] - - 485 184 106272 - - -
MinkowskiNet [16] 69.0 54.2 46.3 154 10.2 25.3| - - -
Zero-shot, open-vocabulary
MSeg Voting [44] 31.0 334 - - - - - - -
ConceptFusion [37] 33.3 - 17.5 6.3 2.8 88 |11.6 3.5 4.6
OpenMask3D [79] 34.0 - 19.6 7.5 4.5 10.5(13.2 3.4 48
OpenScene (2D) [62] 41.4 324 21.9 10.8 5.5 12.7|33.4 11.5 14.5
OpenScene (3D) [62] 46.0 41.3 17.6 0.0 0.0 6.3(326 7.7 11.1
OpenScene (2D/3D) [62]| 47.5 42.6 20.0 9.7 5.1 11.6]34.2 11.9 14.9
Diff2Scene (Ours) 48.6 45.5 25.6 11.5 6.9 14.2/46.2 12.9 17.5

Replica contains 51 categories, and we further split those categories into head
and tail sets based on their appearance frequency. We report the mloU on the
office0, officel, office2, office3, office4, room0, room1, and room2.

Nr3D is a 3D visual grounding dataset which contains diverse text prompts.
To further evaluate the ability of our model to distinguish between objects in
the same class but with different attributes, we perform qualitative evaluation
on the visual grounding dataset Nr3D [1]. We perform zero-shot evaluation on
the validation set without training on any labeled data for the visual grounding
task.

4.2 Baseline Methods

We compare Diff25cene with the current state-of-the-art fully-supervised 3D
semantic segmentation models including TangentConv [81], TextureNet [34],
SFSS-MMSI [16], CSC-Pretrain [30], SupCon [93], LGround [69] and Minkowsk-
iNet [16] on the 3D semantic segmentation benchmark. We also compare our
model against OpenScene [62] and ConceptFusion [37], the recently proposed
open-vocabulary 3D semantic understanding model. For OpenScene [62], we
compare with its OpenSeg [25] variant which has the same feature and pre-
trained datasets for a fair comparison. We also compare our model with its
three different variants (2D Fusion, 3D Distill, and 2D /3D Ensemble). Besides,
we adapt the state-of-the-art 3D instance segmentation model OpenMask3D [79]
for comparison on the 3D semantic segmentation benchmark.
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4.3 Implementation Details

We use posed multi-view RGB images and 3D point clouds for all the datasets.
ODISE [87], which consists of a diffusion backbone and mask-based segmentation
head, is used as the model in our 2D branch. It uses a stable diffusion model
[68] pre-trained on Laion-5B [72] as the feature backbone. The dimensions for
diffusion and CLIP features are 256 and 768 respectively. The number of queries
of Mask2Former [10] is 100. Similar to OpenScene [62], we use MinkowskiNet18A
[16] as the model in our 3D branch to extract 3D features from the 3D point
clouds. Our 3D model is trained for 200 epochs with a batch size of 8. Adam
optimizer [41] is used with a learning rate of 0.0001 and polynomial learning rate
policy is used as the learning rate scheduler with power 0.9. During inference,
text-embeddings are computed by the ViT-L/14 CLIP model [65] for each of the
semantic categories and grounding queries. We use the same pre-processing step
and pre-trained dataset as OpenScene [62] (OpenSeg [25]) for a fair comparison.

4.4 Quantitative Results

Evaluation on zero-shot 3D semantic segmentation. We first compare our
method with the state-of-the-art open-vocabulary scene understanding models
and fully-supervised 3D segmentation models. We report the mIoU for Scannet,
Matterport3D, Scannet200, and Replica in Table 1. We find that our method
achieves better results than the state-of-the-art open-vocabulary models and
their variants on all the benchmarks. Besides, although our zero-shot model has
noticeable performance drop compared with fully-supervised model, the gap of
tail categories between the proposed method and those methods are relatively
small (e.g. 6.9 vs. 7.9 from CSC-Pretrain) on Scannet200. This demonstrates
the strong potential of the proposed method for long-trailed 3D semantic seg-
mentation tasks.

Generalization to unseen dataset. To test the generalization ability of our
proposed model, we evaluate it on an unseen dataset Replica [77] and report the
results in Table 1. The results shown that our proposed method significantly out-
performs the state-of-the-art models on head, tail and all categories in Replica.
This demonstrates the strong generalization ability of the proposed model on
novel datasets.

Effectiveness of Different Distillation Settings. We compare our mask-
based distillation method with point-based ones under different settings and
report the performance of the 3D branch on Replica [77] in Table 2. The super-
visions for point-based method include: (1) Fine-tuned CLIP feature, which fol-
lows the same setting as OpenScene [62]; (2) Frozen diffusion feature extracted
from the last layer of diffusion U-Net block. We observe that distilling frozen
diffusion features does not converge. Our proposed method, by introducing the
semantic meaningful mask embedding output from the 2D branch as a fixed
classifier, significantly boost the performance of the 3D branch.

Ablation studies. We conduct ablation studies using the Replica dataset [77]
and show the results in Table 3. We first analyze the effectiveness of combining
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Table 2: Effectiveness of Different Distillation Settings. We report mloU of
different methods on the Replica [77] dataset.

Setting | Distillation Type|Head Tail All
fine-tuned CLIP feature [62] Point-based |32.6 7.7 11.1
frozen diffusion feature Point-based Divergence

multimodal mask distillation (ours)| Mask-based [43.3 8.0 12.8

Table 3: Performance of different model ablations. We observe that each com-
ponent of our model gains consistent improvements.

Method ‘mIoU
Our full model ‘ 17.5
Without 2D (salient) mask 12.8
Without 3D (geometric) mask 16.5
Without discriminative (CLIP) features 15.5

Without generative (Stable Diffusion) features| 15.3

2D and 3D masks using equation 3. We observe that compared with using salient
or geometric mask only, using both types of masks achieves the best performance.
This is intuitive as both salient patterns and geometric information are helpful to
segment accurate class boundaries. We then analyze the effectiveness of different
semantic features. We find that discriminative and diffusion features serve as
strong complementary to each other. We also observe that using those two types
of semantic features jointly can significantly outperform using any of them alone.

4.5 Qualitative analysis

Visualizations of zero-shot semantic segmentation. In Fig. 4, we provide
qualitative analysis of our approach and OpenScene for the zero-shot 3D seman-
tic segmentation task. Compared with OpenScene, our model generates coherent
and consistent masks (e.g., the table mask in first column and the bed mask in
third column) thanks to the mask-instance representations. It predicts accurate
semantic labels for both head and tail categories by leveraging both CLIP and
diffusion features.

Visualizations of visual grounding results. We provide qualitative analysis
of our approach and OpenScene for the zero-shot visual grounding task in Fig. 5.
We observe that our model can accurately identify objects given complicated
text queries. It demonstrates that the proposed method, Diff2Scene, has good
capability at the following types of queries. Fig. 5 (a) describes object shape
and color, and even in comparative degree ([t’s the shorter, red box); Fig. 5 (b)
describes a rare object (rack) and its surrounded object with surface appearance
descriptions (wrinkled towel); Fig. 5 (c) describes the relative location of the
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Input 3D

Ground
Truth

OpenScene

Ours

M wall M cabinet W picture book towel B ceiling B object B laptop W telephone M windowsill

W chair M desk W light switch B armchair clothes M bathtub M shower curtain M paper B clock M bar

H floor office chair M toilet B box v M bag W trash can M blackboard M light B soap dish
table bed window refrigerator M nightstand backpack shoe M suitcase M shower wall Ml kitchen counter
door pillow M bookshelf M lamp W vent W toiletpaper M mirror M wardrobe W mat M doorframe
ledge sink W curtain W kitchen cabinet

Fig. 4: Qualitative results from our model and OpenScene on zero-shot se-
mantic segmentation. We visualize the segmentation results on the validation set of
ScanNet200 [69]. We observe that our model can predict coherent masks with accurate
semantic labels compared to OpenScene for both head and tail categories.

object (next to the desk); Fig. 5 (d) describes the usage of the object (recycling).
In addition, we can see that given vague usage descriptions without common
category names like trash bin in the text prompts, the model can still accurately
identify the object.

5 Conclusion

In this paper, we investigate the problem of leveraging frozen representations
from large text-to-image diffusion models for open-vocabulary 3D semantic un-
derstanding. Diff2Scene sets a new state-of-the-art in the zero-shot 3D semantic
segmentation task and shows promising performance in the visual grounding
task. Our method also shows outstanding generalization ability towards unseen
datasets and novel text queries. It provides a new way to effectively leverage
generative text-to-image foundation models for 3D semantic scene understand-
ing tasks.

There are several limitations of the proposed model. First, while our model
achieves better performance compared to existing methods in small objects, it
still misclassified some small and rare categories (e.g. rail). Second, we observe
that the model can be easily confused by fine-grained categories that with similar
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Input 3D

I

OpenScene @g

Ours
Text “It’s the shorter “The rack with the  «¢ j5 the trash can “A blue waste
Query red box” smaller, more next to the desk” basket possibly

wrinkled towel” for recycling”

(a) (b) © @

Fig. 5: Qualitative results from our model and OpenScene on zero-shot vi-
sual grounding. Our open-vocabulary semantic understanding model is capable of
handling different types of novel and compositional queries. Novel object classes as well
as objects described by colors, shapes, appearances, locations, and usages are success-
fully retrieved by our method. Note that the located points are colored in yellow.

semantic meaning. For example, the model sometimes wrongly classifies points
of windowsill to the window class. In future work, it will be interesting to design
models that can accurately distinguish between fine-grained categories in the
open-vocabulary setting.
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