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ABSTRACT

Transformers are remarkably good at in-context learning (ICL)—learning from
demonstrations without parameter updates—but how they perform ICL remains a
mystery. Recent work suggests that Transformers may learn in-context by inter-
nally running Gradient Descent (GD), a first-order optimization method. In this
paper, we instead demonstrate that Transformers learn to implement higher-order
optimization methods to perform ICL. Focusing on in-context linear regression,
we show that Transformers learn to implement an algorithm very similar to Iter-
ative Newton’s Method, a higher-order optimization method, rather than Gradi-
ent Descent. Empirically, we show that predictions from successive Transformer
layers closely match different iterations of Newton’s Method linearly, with each
middle layer roughly computing 3 iterations. In contrast, exponentially more GD
steps are needed to match an additional Transformers layer; this suggests that
Transformers have an comparable rate of convergence with high-order methods,
which are exponentially faster than GD. We also show that Transformers can learn
in-context on ill-conditioned data, a setting where Gradient Descent struggles but
Iterative Newton succeeds. Finally, we show theoretical results which support
our empirical findings and have a close correspondence with them: we prove that
Transformers can implement k iterations of Newton’s method with O(k) layers.

1 INTRODUCTION

Transformer neural networks (Vaswani et al., 2017) have become the default architecture for natural
language processing (Devlin et al., 2019; Brown et al., 2020; OpenAI, 2023), and have even been
adopted by other areas like computer vision (Dosovitskiy et al., 2021). As first demonstrated by
GPT-3 (Brown et al., 2020), Transformers excel at in-context learning (ICL)—learning from input-
output pairs provided as inputs to the model, without updating their model parameters. Through
in-context learning, Transformer-based Large Language Models (LLMs) can achieve state-of-the-
art few-shot performance across a wide variety of downstream tasks (Rae et al., 2022; Smith et al.,
2022; Thoppilan et al., 2022; Chowdhery et al., 2022).

Given the importance of Transformers and ICL, many prior efforts have attempted to understand
how Transformers perform in-context learning. Prior work suggests Transformers can approximate
linear functions well in-context (Garg et al., 2022). Specifically to linear regression tasks, prior
work has tried to understand the ICL mechanism and the dominant hypothesis is that Transformers
learn in-context by running optimizations internally through gradient-based algorithms (von Oswald
et al., 2022; 2023; Ahn et al., 2023; Dai et al., 2023).

This paper presents strong evidence for a competing hypothesis: Transformers trained to perform in-
context linear regression learn to implement a higher-order optimization method rather than a first-
order method like Gradient Descent. In particular, Transformers implement a method very similar to
Newton-Schulz’s Method, also known as the Iterative Newton’s Method, which iteratively improves
an estimate of the inverse of the design matrix to compute the optimal weight vector. Across many
layers of the Transformer, subsequent layers approximately compute more and more iterations of
Newton’s Method, with increasingly better predictions; both eventually converge to the optimal
minimum-norm solution found by ordinary least squares (OLS). Interestingly, this mechanism is
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Figure 1: Progression of Algorithms. (a) Transformer’s performance improves over the layer index
ℓ. (b) Iterative Newton’s performance improves over the number of iterations k, in a way that closely
resembles the Transformer. We plot the best-matching k to Transformer’s ℓ following Definition 4.
(c) In contrast, LSTM’s performance does not improve from layer to layer.

specific to Transformers: LSTMs do not learn these same higher-order methods, as their predictions
do not even improve across layers.

We present both empirical and theoretical evidence for our claims. Empirically, Transformer in-
duced weights and residuals are similar to Iterative Newton and deeper layers match Newton with
more iterations (see Figures 1 and 9). Transformers can also handle ill-conditioned problems with-
out requiring significantly more layers, where GD would suffer from slow convergence but Iterative
Newton would not. Crucially, Transformers share the same rate of convergence as Iterative Newton
and are exponentially faster than GD. Theoretically, we show that Transformer circuits can effi-
ciently implement Iterative Newton, with the number of layers depending linearly on the number of
iterations and the dimensionality of the hidden states depending linearly on the dimensionality of
the data. Overall, our work provides a mechanistic account of how Transformers perform in-context
learning that not only explains model behavior better than previous hypotheses, but also hints at
what makes Transformers so well-suited for ICL compared with other neural architectures.

2 RELATED WORK

In-context learning by large language models. GPT-3 (Brown et al., 2020) first showed that
Transformer-based large language models can “learn” to perform new tasks from in-context demon-
strations (i.e., input-output pairs). Since then, a large body of work in NLP has studied in-context
learning, for instance by understanding how the choice and order of demonstrations affects results
(Lu et al., 2022; Liu et al., 2022; Rubin et al., 2022; Su et al., 2023; Chang & Jia, 2023; Nguyen
& Wong, 2023), studying the effect of label noise (Min et al., 2022c; Yoo et al., 2022; Wei et al.,
2023), and proposing methods to improve ICL accuracy (Zhao et al., 2021; Min et al., 2022a;b).

In-context learning beyond natural language. Inspired by the phenomenon of ICL by large lan-
guage models, subsequent work has studied how Transformers learn in-context beyond NLP tasks.
Garg et al. (2022) first investigated Transformers’ ICL abilities for various classical machine learn-
ing problems, including linear regression. We largely adopt their linear regression setup in this work.
Li et al. (2023) formalize in-context learning as an algorithm learning problem where a Transformer
model implicitly constructs a hypothesis function at inference-time and obtain generalization bounds
for ICL. Han et al. (2023) suggests that Transformers learn in-context by performing Bayesian in-
ference on prompts, which can be asymptotically interpreted as kernel regression. Tarzanagh et al.
(2023a) and Tarzanagh et al. (2023b) show that Transformers can find max-margin solutions for clas-
sification tasks and act as support vector machines. Zhang et al. (2023) prove that a linear attention
Transformer trained by gradient flow can indeed in-context learn class of linear models. Raventós
et al. (2023) explore how diverse pretraining data can enable models to perform ICL on new tasks.

Do Transformers implement Gradient Descent? A growing body of work has suggested that
Transformers learn in-context by implementing gradient descent within their internal representa-
tions. Akyürek et al. (2022) summarize operations that Transformers can implement, such as multi-
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plication and affine transformations, and show that Transformers can implement gradient descent for
linear regression using these operations. Concurrently, von Oswald et al. (2022) argue that Trans-
formers learn in-context via gradient descent, where one layer performs one gradient update. In sub-
sequent work, von Oswald et al. (2023) further argue that Transformers are strongly biased towards
learning to implement gradient-based optimization routines. Ahn et al. (2023) extend the work of
von Oswald et al. (2022) by showing Transformers can learn to implement preconditioned Gradient
Descent, where the pre-conditioner can adapt to the data. Bai et al. (2023) provides detailed con-
structions for how Transformers can implement a range of learning algorithms via gradient descent.
Finally, Dai et al. (2023) conduct experiments on NLP tasks and conclude that Transformer-based
language models performing ICL behave similarly to models fine-tuned via gradient descent. In this
paper, we argue that Transformers actually learn to perform in-context learning by implementing a
higher-order optimization method, not gradient descent. Predictions made by different Transformer
layers match iterations of higher-order optimization methods better than they match iterations of
gradient descent; moreover, Transformers can handle ill-conditioned data, unlike Gradient Descent.

Mechanistic interpretability for Transformers. Our work attempts to understand the mechanism
through which Transformers perform in-context learning. Prior work has studied other aspects of
Transformers’ internal mechanisms, including reverse-engineering language models (Wang et al.,
2022), the grokking phenomenon (Power et al., 2022; Nanda et al., 2023), manipulating attention
maps (Hassid et al., 2022), and automated circuit finding (Conmy et al., 2023).

3 PROBLEM SETUP

Transformers
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Figure 2: Illustration of how Transformers
are trained to do in-context linear regression.

In this paper, we focus on the following linear
regression task. The task involves n examples
{xi, yi}ni=1 where xi ∈ Rd and yi ∈ R. The ex-
amples are generated from the following data gen-
erating distribution PD, parameterized by a distri-
bution D over (d × d) positive semi-definite ma-
trices. For each sequence of n in-context exam-
ples, we first sample a ground-truth weight vector
w⋆ i.i.d.∼ N (0, I) ∈ Rd and a matrix Σ

i.i.d.∼ D. For
i ∈ [n], we sample each xi

i.i.d.∼ N (0,Σ). The label
yi for each xi is given by yi = w⋆⊤xi. Note that
for much of our experiments D is only supported on
the identity matrix I ∈ Rd×d and hence Σ = I , but we also consider some distributions over
ill-conditioned matrices which will give rise to ill-conditioned regression problems.

3.1 SOLVING LINEAR REGRESSION WITH TRANSFORMERS

We will use neural network models such as Transformers to solve this linear regression task. As
shown in Figure 2, at time step t+1, the model sees the first t in-context examples {xi, yi}ti=1, and
then makes predictions for xt+1, whose label yt+1 is not observed by the Transformers model.

We randomly initialize our models and then train them on the linear regression task to make pre-
dictions for every number of in-context examples t, where t ∈ [n]. Training and test data are both
drawn from PD. To make the input prompts contain both xi and yi, we follow same the setup as
Garg et al. (2022)’s to zero-pad yi’s, and use the same decoder-only GPT-2 model (Radford et al.,
2019) with softmax activation and causal attention mask (discussed later at definition 1).

We now present the key mathematical details for the Transformer architecture, and how they can be
used for in-context learning. First, the causal attention mask enforces that attention heads can only
attend to hidden states of previous time steps, and is defined as follows.
Definition 1 (Causal Attention Layer). An causal attention layer with M heads and activation
function σ is denoted as Attn on any input sequence H = [h1, · · · ,hN ] ∈ RD×N , where D is the
dimension of hidden states and N is the sequence length. In the vector form,

h̃t = [Attn(H)]t = ht +

M∑
m=1

t∑
j=1

σ (⟨Qmht,Kmhj⟩) · Vmhj . (1)
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Vaswani et al. (2017) originally proposed the Transformer architecture with the Softmax activation
function for the attention layers. Later works have found that replacing Softmax(·) with 1

tReLU(·)
does not hurt model performance (Cai et al., 2022; Shen et al., 2023; Wortsman et al., 2023). The
Transformers architecture is defined by putting together attention layers with feed forward layers:

Definition 2 (Transformers). An L-layer decoder-based transformer with Causal Attention Layers
is denoted as TFθ and is a composition of a MLP Layer (with a skip connection) and a Causal
Attention Layers. For input sequence H(0), the transformers ℓ-th hidden layer is given by

TFℓ
θ(H

(0)) := H(ℓ) = MLP
θ
(ℓ)
mlp

(
Attn

θ
(ℓ)
attn

(H(ℓ−1))
)

(2)

where θ = {θ(ℓ)
mlp,θ

(ℓ)
attn}Lℓ=1 and θ

(ℓ)
attn = {Q(ℓ)

m ,K
(ℓ)
m ,V

(ℓ)
m }Mm=1 consists of M heads at layer ℓ.

In particular for the linear regression task, Transformers perform in-context learning as follows

Definition 3 (Transformers for Linear Regression). Given in-context examples {x1, y1, . . . ,xt, yt},
Transformers make predictions on a query example xt+1 through a readout layer parameterized as
θreadout = {u, v}, and the prediction ŷTF

t+1 is given by

ŷTF
t+1 := ReadOut

[
TFL

θ ({x1,y1, · · · ,xt,yt,xt+1})︸ ︷︷ ︸
H(L)

]
= u⊤H

(L)
:,2t+1 + v. (3)

3.2 STANDARD METHODS FOR SOLVING LINEAR REGRESSION

Our central research question is:

Does the algorithm Transformers learn for linear regression resemble any known algorithm?

Here we discuss various known algorithms we compare Transformers with.

For any time step t, let X(t) = [x1 · · · xt]
⊤ be the data matrix and y(t) = [y1 · · · yt]

⊤ be
the labels for all the datapoints seen so far. Note that since t can be smaller than the data dimension
d, X(t) can be singular. We now consider various algorithms for making predictions for xt+1 based
on X(t) and y(t). When it is clear from context, we will drop the superscript and refer to X(t) and
y(t) as X and y, where X and y correspond to all the datapoints seen so far.

Ordinary Least Squares. This method finds the minimum-norm solution to the objective:

L(w |X,y) =
1

2n
∥y −Xw∥22. (4)

The Ordinary Least Squares (OLS) solution has a closed form given by the Normal Equations:

ŵOLS = (X⊤X)†X⊤y (5)

where S := X⊤X and S† is the pseudo-inverse (Moore, 1920) of S.

Gradient Descent. Gradient descent (GD) finds the weight vector ŵGD by initializing ŵGD
0 = 0

and using the iterative update rule:

ŵGD
k+1 = ŵGD

k − η∇wL(ŵGD
k |X,y). (6)

It is known that Gradient Descent requires O (κ(S) log(1/ϵ)) steps to converge to an ϵ error where
κ(S) = λmax(S)

λmin(S) is the condition number. Thus, when κ(S) is large, Gradient Descent converges
slowly (Boyd & Vandenberghe, 2004).

Online Gradient Descent. While GD computes the gradient with respect to the full data matrix
X at each iteration, Online Gradient Descent (OGD) is an online algorithm that only computes
gradients on the newly received data point {xk, yk} at step k:

ŵOGD
k+1 = ŵOGD

k − ηk∇wL(ŵOGD
k | xk, yk). (7)
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Picking ηk = 1
∥xk∥2

2
ensures that the new weight vector ŵOGD

k+1 makes zero error on {xk, yk}.

Iterative Newton’s Method. This method finds the weight vector ŵNewton by iteratively apply
Newton’s method to finding the pseudo inverse of S = X⊤X (Schulz, 1933; Ben-Israel, 1965).

M0 = αS, where α =
2

∥SS⊤∥2
, ŵNewton

0 = M0X
⊤y,

Mk+1 = 2Mk −MkSMk, ŵNewton
k+1 = Mk+1X

⊤y.

(8)

This computes an approximation of the psuedo inverse using the moments of S. In contrast to GD,
the Iterative Newton’s method only requires O(log κ(S) + log log(1/ϵ)) steps to converge to an ϵ
error (Soderstrom & Stewart, 1974; Pan & Schreiber, 1991). Note that this is exponentially faster
than the convergence rate of Gradient Descent.

3.3 LSTM

While our primary goal is to analyze Transformers, we also consider the LSTM architecture
(Hochreiter & Schmidhuber, 1997) to understand whether Transformers learn different algorithms
than other neural sequence models trained to do linear regression. In particular, we train a unidirec-
tional L-layer LSTM, which generates a sequence of hidden states H(ℓ) for each layer ℓ, similarly
to an L-layer Transformer. As with Transformers, we add a readout layer that predicts the ŷLSTM

t+1

from the final hidden state at the final layer, H(L)
:,2t+1.

3.4 MEASURING ALGORITHMIC SIMILARITY

We propose two metrics to measure the similarity between linear regression algorithms.

Similarity of Errors. For a linear regression algorithmA, letA(xt+1 | {xi, yi}ti=1) denote its pre-
diction on the (t+1)-th in-context example xt+1 after observing the first t examples (see Figure 2).
We write A(xt+1) := A(xt+1 | {xi, yi}ti=1) for brevity. The errors (i.e., residuals) on the data
sequence are:1

E(A | {xi, yi}n+1
i=1 ) =

[
A(x2)− y2, · · · ,A(xn+1)− yn+1

]⊤
∈ Rn. (9)

For any two algorithms Aa and Ab, their similarity of errors, corresponding to the metric C(·, ·), is

SimE(Aa,Ab) = E
{xi,yi}n+1

i=1 ∼PD

C
(
E(Aa | {xi, yi}n+1

i=1 ), E(Ab | {xi, yi}n+1
i=1 )

)
(10)

where we use the cosine similarity as our correlation metric C(u,v) =
⟨u,v⟩
∥u∥2∥v∥2

. Here n is the

total number of in-context examples and PD is the data generation process discussed previously.

Similarity of Induced Weights. All standard algorithms for linear regression estimate a weight
vector ŵ. While neural ICL models like Transformers do not explicitly learn such a weight vector,
similar to Akyürek et al. (2022), we can induce an implicit weight vector w̃ learned by any algorithm
A by fitting a weight vector to its predictions. To do this, for any fixed sequence of t in-context
examples {xi, yi}ti=1, we sample T ≫ d query examples x̃k

i.i.d.∼ N (0,Σ), where k ∈ [T ]. For this
fixed sequence of in-context examples {xi, yi}ti=1, we create T in-context prediction tasks and use
the algorithm A to make predictions A(x̃k | {xi, yi}ti=1). We define the induced data matrix and
labels as

X̃ =

x̃
⊤
1
...

x̃⊤
T

 Ỹ =

A(x̃1 | {xi, yi}ti=1)
...

A(x̃T | {xi, yi}ti=1)

 . (11)

Then, the induced weight vector for A and these t in-context examples is:

w̃t(A) := w̃t(A | {xi, yi}ti=1) = (X̃⊤X̃)−1X̃⊤Ỹ . (12)

1the indices start from 2 to n+ 1 because we evaluate all cases where t can choose from 1, · · · , n.
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We measure the similarity between two algorithms Aa and Ab by measuring the similarity of in-
duced weight vectors w̃t(Aa) and w̃t(Ab). We define the similarity of induced weights between
two algorithms as

SimW(Aa,Ab) = E
{xi,yi}n

i=1∼PD

1

n

n∑
t=1

C
(
w̃t(Aa | {xi, yi}ti=1), w̃t(Ab | {xi, yi}ti=1))

)
.

Each algorithm we consider has its own hyper-parameter(s), for example the number of iterations for
Iterative Newton and Gradient Descent, and the number of layers for Transformers (see Section 4.1).
When comparing two algorithms, given a choice of hyper-parameters for the first algorithm, we
compare with the hyper-parameters for the second algorithm that maximize algorithmic similarity.
In other words, we measure whether there exists hyperparameters for the second algorithm that make
the two algorithms are similar.
Definition 4 (Hyper-Parameter Matching). LetM be the metric for evaluating similarities between
two algorithmsAa andAb, which have hyper-parameters pa ∈ Pa and pb ∈ Pb, respectively. For a
given choice of pa, We define the best-matching hyper-parameters of algorithm Ab for Aa as:

pMb (pa) := argmin
pb∈Pb

M(Aa(· | pa),Ab(· | pb)). (13)

The matching processes can be visualized as heatmaps as shown in Figure 3, where best-matching
hyperparameters are highlighted. This enables us to better compare the rate of convergence of
algorithms and we will discuss these results further in §4.

4 EXPERIMENTAL EVIDENCE

We mainly work on the Transformers-based GPT-2 model with 12 layers with 8 heads per layer.
Alternative configurations with fewer heads per layer also support our findings and we defer them to
Appendix A. We initially focus on isotropic cases where Σ = I and later consider ill-conditioned Σ
in §4.3. Our training setup is exactly the same as Garg et al. (2022): models are trained with at most
n = 40 in-context examples for d = 20 (with the same learning rate, batch size etc.). We claim that
Transformers learn high-order optimization methods in-context.

4.1 TRANSFORMERS IMPROVE PROGRESSIVELY OVER LAYERS

Many known algorithms for linear regression, including GD, OGD, and Iterative Newton, are iter-
ative: their performance progressively improves as they perform more iterations, eventually con-
verging to a final solution. How could a Transformer implement such an iterative algorithm? von
Oswald et al. (2022) propose that deeper layers of the Transformer may correspond to more itera-
tions of an iterative method; in particular, they show that there exist Transformer parameters such
that each attention layer performs one step of Gradient Descent.

Following this intuition, we first investigate whether the predictions of a trained Transformer im-
prove as the layer index ℓ increases. For each layer of hidden states H(ℓ) (defined in defini-
tion 2), we re-train the ReadOut layer to predict yt for each t; the new predictions are given by
ReadOut(ℓ)

[
H(ℓ)

]
. Thus for each input prompt, there are L Transformer predictions parameterized

by layer index ℓ. All parameters besides the Readout layer parameters are kept frozen.

As shown in Figure 1a, as we increase the layer index ℓ, the prediction performance improves
progressively. Hence, Transformers progressively improve their predictions over layers ℓ, similar
to how iterative algorithms improve over steps.

4.2 TRANSFORMERS ARE MORE SIMILAR TO ITERATIVE NEWTON’S METHOD

Next, we test the more specific hypothesis that the iterative updates performed across Transformer
layers are similar to the iterative updates for known iterative algorithms. Specifically, we test
whether each layer ℓ of the Transformer corresponds to performing k steps of some iterative al-
gorithm, for some k depending on ℓ. We focus here on Gradient Descent and Iterative Newton’s
Method; we will discuss online algorithms in Section 4.4.
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Figure 3: Heatmaps of Similarity. The best matching hyper-parameters are highlighted in yellow.
See Figure 8 for an additional heatmap where Gradient Descent’s steps are shown in log scale.

For each layer ℓ of the Transformer, we measure the best-matching similarity (see Def. 4) with can-
didate iterative algorithms with the optimal choice of the number of steps k. As shown in Figure 3,
the Transformer has very high error similarity with Iterative Newton’s method at all layers. More-
over, we see a clear linear trend between layer 3 and layer 9 of the Transformer, where each layer
appears to compute roughly 3 additional iterations of the Iterative Newton’s method. This trend only
stops at the last few layers because both algorithms converge to the OLS solution; Newton is known
to converge to OLS (see §3.2), and we verify in Appendix A.1 that the last few layers of the Trans-
former also basically compute OLS (see Figure 10 in the Appendix). We observe the same trends
when using similarity of induced weights as our similarity metric (see Figure 7 in the Appendix),

In contrast, even though GD has a comparable similarity with the Transformers at later layers, their
best matching follows an exponential trend. For well-conditioned problems, to achieve ϵ error, the
convergence rate of GD is O(log(1/ϵ)) while the convergence rate of Newton is O(log log(1/ϵ))
(see §3.2). Therefore the convergence rate of Newton is exponentially faster than GD. Transformer’s
linear correspondence with Newton and its exponential correspondence with GD provides strong
evidence that the rate of convergence of Transformers is similar to Newton, i.e., O(log log(1/ϵ)).
Overall, we conclude that a Transformer trained to perform in-context linear regression learns to
implement an algorithm that is very similar to Iterative Newton’s method, not Gradient Descent.
Starting at layer 3, subsequent layers of the Transformer compute more and more iterations of It-
erative Newton’s method. This algorithm successfully solves the linear regression problem, as it
converges to the optimal OLS solution in the final layers.

4.3 TRANSFORMERS PERFORM WELL ON ILL-CONDITIONED DATA
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Figure 4: Transformers perfor-
mance on ill-conditioned data.

We repeat the same experiments with data xi
i.i.d.∼ N (0,Σ) sam-

pled from an ill-condition covariance matrix Σ with condition
number κ(Σ) = 100, and eigenbasis chosen uniformly at random.
The first d/2 eigenvalues of Σ are 100, the last d/2 are 1.

As shown in Figure 4, the Transformer model’s performance still
closely matches Iterative Newton’s Method with 21 iterations,
same as when Σ = I (see layer 10-12 in Figure 3). The con-
vergence of higher-order methods has a mild logarithmic depen-
dence on the condition number since they correct for the curva-
ture. On the other hand, Gradient Descent’s convergence is af-
fected polynomially by conditioning. As κ(Σ) increase from 1
to 100, the number steps required for GD’s convergence increases
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Table 1: Similarity of errors be-
tween algorithms. Transformers
are more similar to full-observation
methods such as Newton and GD;
and LSTMs are more similar to on-
line methods such as OGD.

Transformers LSTM

Newton 0.991 0.920
GD 0.957 0.916

OGD 0.806 0.954

Figure 5: In the left figure, we measure model predictions with normalized MSE. Though LSTM
is seemingly most similar to Newton’s Method with only 5 steps, neither algorithm converges yet.
OGD also has a similar trend as LSTM. In the center figure, we measure model’s forgetting phe-
nomenon (see Appendix A.4 for explanations), and find both Transformers and not-converged New-
ton have better memorization than LSTM and OGD. In the right table, we find that Transformers are
more similar to Newton and GD than LSTMs do while LSTM is significantly more similar to OGD.

significantly (see Fig. 4 where GD requires 800 steps to converge), making it impossible for a 12-
layer Transformers to implement these many gradient updates. We also note that preconditioning the
data by (X⊤X)† can make the data well-conditioned, but since the eigenbasis is chosen uniformly
at random, with high probability there is no sparse pre-conditioner or any fixed pre-conditioner
which works across the data distribution. Computing (X⊤X)† appears to be as hard as computing
the OLS solution (Eq. 4)—in fact Sharan et al. (2019) conjecture that first-order methods such as
gradient descent and its variants cannot avoid polynomial dependencies in condition number in the
ill-conditioned case.

See Appendix A.2 for detailed experiments on ill-conditioned problems. These experiments on
ill-conditioned data further strengthen our hypothesis that Transformers are learning to perform
higher-order optimization methods in-context, not Gradient Descent.

4.4 LSTM IS MORE SIMILAR TO OGD THAN TRANSFORMERS

As discussed in Section 3, LSTM is an alternative auto-regressive model widely used before the
introduction of Transformers. Thus, a natural research question is: If Transformers can learn in-
context, can LSTMs do so as well? If so, do they learn the same algorithms? To answer this
question, we train a 10-layer LSTM model, with 5.3M parameters, in an identical manner to the
Transformers (with 9.5M parameters) studied in the previous sections.2

Figure 5 plots the mean squared error of Transformers, LSTMs, and other standard methods as a
function of the number of in-context (i.e., training) examples provided. While LSTMs can also
learn linear regression in-context, they have much higher mean-squared error than Transformers.
Their error rate is similar to Iterative Newton’s Method after only 5 iterations, a point where it is far
from converging to the OLS solution.

LSTMs’ inferior performance to Transformers can be explained by the inability of LSTMs to use
deeper layers to improve their predictions. Figure 1 shows that LSTM performance does not improve
across layers—a readout head fine-tuned for the first layer makes equally good predictions as the
full 10-layer model. Thus, LSTMs seem poorly equipped to fully implement iterative algorithms.

Finally, we show that LSTMs behave more like an online learning algorithm than Transformers.
In particular, its predictions are biased towards getting more recent training examples correct, as
opposed to earlier examples, as shown in Figure 5. This property makes LSTMs similar to online
Gradient Descent. In contrast, five steps of Newton’s method has the same error on average for
recent and early examples, showing that the LSTM implements a very different algorithm from a
few iterations of Newton. Similarly, Table 1 shows that LSTMs are more similar to OGD than

2While the LSTM has fewer parameters than the Transformer, we found in preliminary experiments that
increasing the hidden dimension or number of layers in the LSTM would not substantively change our results.
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Transformers are, whereas Transformers are more similar to Newton and GD than LSTMs. We
hypothesize that since LSTMs have limited memory, they must learn in a roughly online fashion; in
contrast, Transformers’ attention heads can access the entire sequence of past examples, enabling it
to learn more complex algorithms.

5 MECHANISTIC EVIDENCE

Our empirical evidence demonstrates that Transformers behave much more similarly to Iterative
Newton’s than to Gradient Descent. Iterative Newton is a higher-order optimization method, and is
algorithmically more involved than Gradient Descent. We begin by first examining this difference
in complexity. As discussed in Section 3, the updates for Iterative Newton are of the form,

ŵNewton
k+1 = Mk+1X

⊤y where Mk+1 = 2Mk −MkSMk (14)
and M0 = αS for some α > 0. We can express Mk in terms of powers of S by expanding
iteratively, for example M1 = 2αS − 4α2S3,M2 = 4αS − 12α2S3 +16α3S5 − 16α4S7, and in
general Mk =

∑2k+1−1
s=1 βsS

s for some βs ∈ R (see Appendix B.3 for detailed calculations). Note
that k steps of Iterative Newton’s requires computing Ω(2k) moments of S. Let us contrast this with
Gradient Descent. Gradient Descent updates for linear regression take the form,

ŵGD
k+1 = ŵGD

k − η(SŵGD
k −X⊤y). (15)

Like Iterative Newton, we can express ŵGD
k in terms of powers of S and X⊤y. However, after

k steps of Gradient Descent, the highest power of S is only O(k). This exponential separation is
consistent with the exponential gap in terms of the parameter dependence in the convergence rate—
O (κ(S) log(1/ϵ)) steps for Gradient Descent compared to O(log κ(S) + log log(1/ϵ)) steps for
Iterative Newton. Therefore, a natural question is whether Transformers can actually represent as
complicated of a method as Iterative Newton with only polynomially many layers?

Theorem 1 shows that this is indeed possible.
Theorem 1. There exist Transformer weights such that on any set of in-context examples {xi, yi}ni=1

and test point xtest, the Transformer predicts on xtest using x⊤
testŵ

Newton
k . Here ŵNewton

k are the
Iterative Newton updates given by ŵNewton

k = MkX
⊤y where Mj is updated as

Mj = 2Mj−1 −Mj−1SMj−1, 1 ≤ j ≤ k, M0 = αS,

for some α > 0 and S = X⊤X . The number of layers of the transformer is O(k) and the
dimensionality of the hidden layers is O(d).

We note that our proof uses full attention instead of causal attention and ReLU activations for the
self-attention layers. The definitions of these and the full proof appear in Appendix B.

6 CONCLUSION AND DISCUSSION

In this work, we studied how Transformers perform in-context learning for linear regression. In
contrast with the hypothesis that Transformers learn in-context by implementing gradient descent,
our experimental results show that different Transformer layers match iterations of Iterative New-
ton’s method linearly and Gradient Descent exponentially. This suggests that Transformers share
a similar rate of convergence to Iterative Newton’s method but not Gradient Descent. Moreover,
Transformers can perform well empirically on ill-conditioned linear regression, whereas first-order
methods such as Gradient Descent struggle. Theoretically, we provide exact Transformer circuits
that can implement k-steps of Iterative Newton’s method withO(k) layers to make predictions from
in-context examples.

An interesting direction is to explore a wider range of higher-order methods that Transformers can
implement. It also seems promising to extend our analysis to classification problems, especially
given recent work showing that Transformers resemble SVMs in classification tasks (Li et al., 2023;
Tarzanagh et al., 2023b;a). Finally, a natural question is to understand the differences in the model
architecture that make Transformers better in-context learners than LSTMs. Based on our investi-
gations with LSTMs, we hypothesize that Transformers can implement more powerful algorithms
because of having access to a longer history of examples. Investigating the role of this additional
memory in learning appears to be an intriguing direction.
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APPENDIX

A ADDITIONAL EXPERIMENTAL RESULTS

A.1 ADDITIONAL RESULTS ON ISOTROPIC DATA

A.1.1 HEATMAPS

We present heatmaps with all values of similarities.
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Figure 6: Similarity of Errors. The best matching hyper-parameters are highlighted in yellow.
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Figure 7: Similarity of Induced Weight Vectors. The best matching hyper-parameters are high-
lighted in yellow.
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Figure 8: Similarity of Errors of Gradient Descent in Log Scale. The best matching hyper-
parameters are highlighted in yellow. Putting the number of steps of Gradient Descent in log scale
further verifies the claim that Transformer’s rate of covergence is exponentially faster than that of
Gradient Descent.

A.1.2 ADDITIONAL RESULTS ON COMPARISON OVER TRANSFORMER LAYERS
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Figure 9: Similarities between Transformer and candidate algorithms. Transformers resemble Iter-
ative Newton’s Method the most.
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A.1.3 ADDITIONAL RESULTS ON SIMILARITY OF INDUCED WEIGHTS

We present more details line plots for how the similarity of weights changes as the models see more
in-context observations {xi, yi}ni=1, i.e., as n increases. We fix the number of Transformers layers ℓ
and compare with other algorithms with their best-match hyperparamters to ℓ in Figure 10.
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Figure 10: Similarity of induced weights over varying number of in-context examples, on three layer
indices of Transformers, indexed as 2, 3 and 12. We find that initially at layer 2, the Transformers
model hasn’t learned so it has zero similarity to all candidate algorithms. As we progress to the
next layer number 3, we find that Transformers start to learn, and when provided few examples,
Transformers are more similar to OLS but soon become most similar to the Iterative Newton’s
Method. Layer 12 shows that Transformers in the later layers converge to the OLS solution when
provided more than 1 example. We also find there is a dip around n = d for similarity between
Transformers and OLS but not for Transformers and Newton, and this is probably because OLS has
a more prominent double-descent phenomenon than Transformers and Newton.
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A.2 EXPERIMENTS ON ILL-CONDITIONED PROBLEMS

In this section, we repeat the same experiments as we did on isotropic data in the main text and in
Appendix A.1, and we change the covariance matrix to be ill-conditioned such that κ(Σ) = 100.
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Figure 11: Progression of Algorithms on Ill-Conditioned Data. Transformer’s performance still
improves over the layer index ℓ; Iterative Newton’s Method’s performance improves over the number
of iterations t and we plot the best-matching t to Transformer’s ℓ following definition 4.

We also present the heatmaps to find the best-matching hyper-parameters and conclude that Trans-
formers are similar to Newton’s method than GD in ill-conditioned data.
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.393 .394 .563 .765 .907 .968 .984 .985 .984 .984 .984 .985

.393 .394 .563 .764 .905 .967 .984 .985 .984 .984 .984 .985

.393 .394 .562 .763 .905 .967 .984 .985 .984 .984 .984 .985

.392 .392 .562 .763 .904 .966 .983 .985 .984 .984 .984 .985

.392 .392 .561 .762 .903 .965 .983 .985 .984 .984 .985 .985

.391 .392 .561 .762 .903 .965 .984 .985 .984 .985 .985 .986

Similarity of Errors  (Transformers v.s. Gradient Descent)

Figure 12: Similarity of Errors on Ill-Conditioned Data. The best matching hyper-parameters are
highlighted in yellow.
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.003 .023 .646 .739 .747 .721 .650 .626 .617 .615 .612 .608

.003 .024 .659 .778 .793 .765 .690 .664 .654 .653 .649 .645

.003 .024 .662 .808 .834 .805 .726 .699 .688 .687 .683 .679

.002 .024 .655 .827 .868 .838 .755 .728 .717 .715 .711 .707

.002 .024 .644 .836 .893 .864 .779 .751 .740 .738 .734 .729

.002 .024 .632 .838 .907 .881 .795 .766 .755 .753 .749 .744

.002 .023 .622 .835 .915 .892 .805 .777 .765 .764 .760 .755

.001 .023 .615 .831 .919 .900 .814 .785 .773 .772 .768 .763

.002 .023 .610 .827 .920 .906 .820 .792 .780 .779 .775 .770

.002 .023 .606 .824 .920 .911 .828 .800 .788 .787 .783 .778

.002 .023 .603 .821 .919 .917 .837 .810 .798 .797 .793 .789

.002 .023 .599 .816 .917 .924 .851 .826 .813 .812 .809 .804

.002 .023 .592 .807 .910 .930 .868 .846 .834 .832 .829 .825

.002 .022 .579 .791 .896 .932 .885 .868 .856 .855 .853 .849

.002 .021 .562 .768 .873 .926 .897 .889 .878 .877 .876 .873

.002 .021 .544 .744 .849 .914 .904 .906 .895 .894 .895 .893

.002 .020 .528 .722 .826 .900 .905 .918 .909 .908 .910 .909

.002 .020 .515 .704 .807 .886 .902 .925 .918 .918 .922 .921

.003 .019 .505 .690 .792 .873 .897 .929 .924 .925 .929 .929

.003 .019 .498 .680 .781 .863 .891 .931 .926 .928 .933 .933

.003 .019 .492 .672 .772 .854 .885 .930 .927 .929 .935 .935

.003 .019 .488 .666 .766 .848 .880 .929 .926 .929 .935 .935

.003 .019 .485 .662 .761 .843 .877 .927 .925 .927 .934 .935
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.010 -.062 .292 .337 .346 .333 .294 .287 .280 .284 .273 .274

.009 .010 .625 .829 .913 .907 .831 .807 .798 .796 .790 .787

.008 .011 .611 .821 .916 .924 .858 .839 .830 .828 .822 .820

.008 .012 .602 .812 .912 .931 .874 .858 .850 .848 .843 .841

.008 .012 .595 .804 .906 .934 .884 .873 .864 .862 .858 .857

.008 .012 .589 .796 .899 .935 .892 .883 .875 .873 .870 .868

.008 .013 .583 .789 .893 .934 .897 .892 .884 .882 .879 .878

.008 .013 .577 .782 .886 .932 .901 .898 .891 .889 .886 .885

.008 .013 .572 .775 .880 .930 .904 .904 .896 .895 .892 .892

.008 .014 .568 .769 .875 .928 .906 .908 .901 .899 .898 .897

.008 .014 .564 .764 .870 .926 .908 .912 .905 .903 .902 .901

.007 .014 .560 .759 .865 .924 .909 .915 .908 .907 .906 .905

.007 .014 .557 .755 .860 .922 .910 .918 .911 .910 .909 .909

.007 .014 .554 .750 .856 .919 .910 .920 .914 .912 .912 .911

.007 .014 .551 .747 .852 .917 .911 .922 .916 .914 .914 .914

.007 .014 .548 .743 .848 .915 .911 .923 .918 .916 .916 .916

.007 .014 .546 .740 .845 .913 .911 .925 .919 .918 .918 .918

.007 .015 .544 .737 .842 .911 .911 .926 .921 .920 .920 .920

.007 .015 .542 .734 .839 .909 .911 .927 .922 .921 .921 .922

.008 .015 .540 .731 .836 .907 .910 .928 .923 .922 .923 .923

.007 .015 .538 .729 .834 .906 .910 .929 .924 .923 .924 .924

.007 .015 .536 .726 .831 .904 .910 .930 .925 .924 .925 .926

.007 .015 .534 .724 .829 .902 .910 .931 .926 .925 .926 .927

.007 .015 .533 .722 .827 .901 .909 .931 .927 .926 .927 .928

.007 .015 .531 .720 .825 .900 .909 .932 .928 .927 .928 .929

.007 .015 .530 .718 .822 .898 .909 .932 .928 .927 .929 .929

.007 .015 .529 .716 .821 .897 .908 .933 .929 .928 .929 .930

.007 .015 .528 .715 .819 .896 .908 .933 .929 .929 .930 .931

.007 .015 .527 .713 .817 .894 .908 .934 .930 .929 .931 .932

.007 .015 .525 .712 .816 .893 .907 .934 .930 .929 .931 .932

.007 .015 .524 .710 .814 .892 .907 .934 .931 .930 .932 .933

Similarity of Induced Weight w (Transformers v.s. Gradient Descent)

Figure 13: Similarity of Induced Weights on Ill-Conditioned Data. The best matching hyper-
parameters are highlighted in yellow.

A.3 EXPERIMENTS ON ALTERNATIVE CONFIGURATIONS

In this section, we present experimental results from an alternative model configurations than the
main text. We show in the main text that Transformers learn higher-order optimization methods
in-context where the experiments are using a GPT-2 model with 12 layers and 8 heads per layer. In
this section, we present experiments with a GPT-2 model with 12 layers but only 1 head per layer.
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.920 .920 .911 .909 .861 .785 .707 .671 .647 .631 .626 .619

.876 .876 .892 .912 .879 .823 .749 .709 .685 .667 .663 .655

.829 .829 .864 .901 .887 .859 .791 .750 .726 .706 .702 .694

.780 .780 .829 .877 .884 .887 .832 .792 .768 .746 .743 .735

.733 .733 .791 .845 .872 .906 .867 .832 .810 .787 .784 .776

.690 .690 .753 .811 .853 .913 .896 .869 .849 .825 .823 .816

.654 .654 .719 .777 .829 .910 .916 .900 .884 .861 .860 .852

.624 .624 .688 .746 .805 .900 .927 .924 .912 .894 .893 .885

.598 .598 .661 .719 .780 .885 .930 .939 .934 .920 .920 .913

.576 .576 .637 .695 .757 .867 .926 .947 .947 .941 .942 .935

.559 .559 .619 .676 .738 .851 .918 .948 .955 .956 .957 .951

.546 .546 .605 .662 .723 .837 .910 .947 .958 .966 .968 .963

.537 .537 .595 .651 .712 .826 .903 .944 .959 .973 .976 .972

.530 .530 .587 .644 .704 .817 .896 .940 .958 .977 .981 .979

.525 .525 .582 .638 .698 .810 .890 .936 .957 .980 .984 .984

.522 .522 .578 .634 .693 .806 .886 .933 .955 .981 .986 .987

.519 .519 .576 .631 .690 .802 .882 .930 .953 .981 .987 .989

.518 .517 .573 .629 .688 .799 .880 .928 .951 .981 .987 .991

.516 .516 .572 .627 .686 .798 .878 .926 .949 .980 .986 .992

.515 .515 .571 .626 .685 .796 .876 .924 .948 .979 .986 .992

.514 .514 .570 .625 .684 .795 .874 .923 .946 .978 .985 .992

.513 .513 .569 .624 .683 .793 .872 .920 .945 .976 .983 .991

.510 .510 .565 .620 .679 .787 .865 .914 .938 .969 .976 .984
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.954 .955 .915 .885 .840 .757 .685 .655 .630 .615 .609 .604

.584 .585 .645 .703 .764 .870 .923 .943 .945 .943 .944 .939

.552 .552 .610 .668 .729 .841 .911 .945 .955 .964 .966 .962

.539 .539 .596 .653 .713 .826 .902 .941 .956 .970 .973 .971

.532 .532 .588 .645 .705 .819 .897 .938 .955 .973 .977 .975

.528 .528 .583 .640 .700 .813 .892 .936 .954 .974 .979 .978

.525 .525 .581 .637 .697 .810 .889 .934 .953 .975 .980 .979

.522 .522 .578 .635 .694 .807 .887 .932 .952 .975 .980 .980

.520 .520 .576 .632 .692 .804 .885 .931 .951 .976 .981 .982

.519 .520 .575 .631 .691 .803 .884 .930 .950 .976 .981 .983

.519 .519 .574 .630 .689 .801 .882 .928 .950 .976 .981 .983

.518 .518 .573 .629 .688 .801 .881 .928 .949 .976 .981 .983

.517 .517 .572 .628 .687 .799 .880 .927 .948 .976 .982 .984

.516 .516 .572 .628 .687 .799 .880 .926 .948 .976 .982 .985

.516 .516 .571 .627 .686 .798 .879 .926 .948 .976 .981 .985

.516 .516 .570 .626 .686 .797 .878 .925 .947 .976 .981 .985

.516 .516 .571 .626 .685 .797 .878 .925 .947 .976 .982 .985

.515 .515 .570 .626 .685 .796 .877 .924 .947 .976 .982 .985

.514 .514 .569 .625 .684 .795 .876 .924 .946 .976 .982 .985

.513 .514 .568 .625 .684 .795 .876 .923 .946 .976 .981 .986

.514 .514 .569 .624 .683 .795 .876 .923 .946 .976 .982 .986

.513 .513 .568 .624 .683 .795 .875 .923 .946 .976 .982 .986

.513 .513 .568 .624 .683 .794 .875 .922 .945 .975 .981 .986

.513 .513 .568 .624 .683 .794 .875 .922 .945 .975 .981 .986

.513 .513 .567 .623 .682 .794 .874 .922 .945 .975 .981 .986

.513 .513 .567 .623 .682 .794 .875 .922 .945 .975 .981 .986

.513 .513 .568 .623 .682 .793 .874 .921 .944 .975 .981 .986

Similarity of Errors  (Transformers v.s. Gradient Descent)

Figure 14: Similarity of Errors on an alternative Transformers Configuration. The best match-
ing hyper-parameters are highlighted in yellow.
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.000 -.003 .581 .756 .740 .757 .734 .717 .713 .710 .711 .712

.001 -.003 .590 .767 .770 .802 .782 .766 .762 .759 .760 .761

.002 -.002 .588 .764 .789 .840 .827 .811 .807 .805 .806 .807

.002 -.002 .580 .751 .797 .868 .864 .850 .847 .844 .845 .846

.003 -.002 .567 .734 .796 .885 .891 .881 .878 .876 .877 .877

.003 -.002 .553 .716 .789 .893 .911 .905 .903 .901 .902 .902

.003 -.001 .541 .700 .780 .894 .923 .922 .921 .921 .922 .922

.003 -.001 .531 .686 .770 .891 .930 .934 .935 .936 .937 .937

.003 -.001 .522 .675 .761 .886 .932 .941 .944 .947 .948 .948

.002 -.000 .515 .666 .753 .880 .932 .945 .949 .954 .955 .955

.003 -.000 .510 .660 .746 .875 .930 .946 .952 .959 .961 .961

.003 .000 .506 .655 .741 .870 .928 .947 .954 .963 .964 .965

.003 .000 .503 .652 .738 .867 .926 .946 .954 .965 .967 .968

.003 .001 .501 .650 .736 .864 .924 .945 .954 .966 .968 .969

.003 .001 .500 .648 .734 .862 .922 .944 .954 .967 .969 .971

.003 .001 .499 .647 .732 .861 .921 .943 .953 .968 .970 .972

.003 .001 .498 .646 .731 .860 .920 .942 .953 .968 .970 .972

.003 .001 .498 .645 .731 .859 .919 .942 .952 .968 .970 .973

.003 .001 .498 .645 .730 .858 .919 .941 .952 .968 .970 .973

.003 .001 .497 .644 .730 .858 .918 .941 .951 .967 .970 .973

.003 .001 .497 .644 .729 .858 .918 .941 .951 .967 .970 .973

.003 .001 .497 .644 .729 .857 .918 .940 .951 .967 .970 .973

.003 .001 .497 .644 .729 .857 .918 .940 .951 .967 .969 .973
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.001 .119 .522 .684 .689 .702 .688 .680 .673 .669 .668 .669

.003 .020 .517 .675 .758 .885 .936 .951 .955 .961 .961 .963

.002 .019 .508 .662 .746 .876 .933 .952 .959 .968 .968 .970

.002 .019 .503 .657 .741 .871 .930 .952 .959 .970 .971 .973

.003 .019 .502 .655 .739 .869 .928 .951 .959 .971 .972 .974

.003 .019 .501 .653 .737 .867 .927 .950 .959 .971 .972 .975

.002 .019 .500 .652 .736 .866 .927 .950 .958 .971 .972 .975

.003 .019 .499 .652 .735 .865 .926 .950 .958 .972 .973 .976

.003 .019 .499 .651 .735 .865 .925 .949 .958 .972 .973 .976

.003 .019 .498 .651 .734 .864 .925 .949 .958 .972 .973 .976

.003 .019 .498 .650 .734 .864 .925 .949 .958 .972 .973 .976

.003 .019 .498 .650 .734 .863 .924 .948 .957 .972 .973 .976

.003 .019 .498 .650 .733 .863 .924 .948 .957 .972 .973 .976

.002 .019 .498 .650 .733 .863 .924 .948 .957 .972 .973 .977

.003 .019 .497 .649 .733 .863 .924 .948 .957 .972 .973 .977

.003 .019 .497 .649 .733 .862 .923 .948 .957 .972 .973 .977

.003 .019 .497 .649 .733 .862 .923 .948 .957 .972 .973 .977

.003 .019 .497 .649 .733 .862 .923 .948 .957 .972 .973 .977

.003 .019 .497 .649 .732 .862 .923 .948 .957 .972 .973 .977

.003 .019 .497 .649 .732 .862 .923 .947 .957 .972 .973 .977

.003 .019 .497 .649 .732 .862 .923 .947 .957 .972 .973 .977

.003 .019 .497 .649 .732 .862 .922 .947 .957 .972 .973 .977

.003 .019 .497 .649 .732 .862 .923 .947 .957 .972 .973 .977

.003 .019 .497 .649 .732 .862 .923 .947 .956 .972 .973 .977

.003 .019 .496 .648 .732 .861 .922 .947 .956 .972 .973 .977

.003 .019 .497 .648 .732 .861 .922 .947 .956 .972 .973 .977

.003 .019 .496 .648 .732 .861 .922 .947 .956 .972 .973 .977

Similarity of Induced Weight w (Transformers v.s. Gradient Descent)

Figure 15: Similarity of Induced Weights on an alternative Transformers Configuration. The
best matching hyper-parameters are highlighted in yellow.

We conclude that our experimental results are not restricted to a specific model configurations,
smaller models such as GPT-2 with 12 layers and 1 head each layer also suffice in implementing
the Iterative Newton’s method, and more similar than gradient descents, in terms of rate of conver-
gence.

A.4 DEFINITIONS FOR EVALUATING FORGETTING

We measure the phenomenon of model forgetting by reusing an in-context example within
{xi, yi}ni=1 as the test example xtest. In experiments of Figure 5, we fix n = 20 and reuse
xtest = xi. We denote the “Time Stamp Gap” as the distance the reused example index i from
the current time stamp n = 20. We measure the forgetting of index i as

Forgetting(A, i) = E
{xi,yi}n

i=1∼PD

MSE
(
A(xi | {xi, yi}ni=1), yi

)
(16)

Note: the further away i is from n, the more possible algorithm A forgets.

B DETAILED PROOFS FOR SECTION 5

In this section, we work on full attention layers with normalized ReLU activation σ(·) = 1
nReLU(·)

given n examples.
Definition 5. A full attention layer with M heads and ReLU activation is also denoted as Attn on
any input sequence H = [h1, · · · ,hN ] ∈ RD×N , where D is the dimension of hidden states and
N is the sequence length. In the vector form,

h̃t = [Attn(H)]t = ht +
1

n

M∑
m=1

n∑
j=1

ReLU (⟨Qmht,Kmhj⟩) · Vmhj (17)

Remark 1. This is slightly different from the causal attention layer (see definition 1) in that at each
time stamp t, the attention layer in definition 5 has full information of all hidden states j ∈ [n],
unlike causal attention layer which requires j ∈ [t].

B.1 HELPER RESULTS

We begin by constructing a useful component for our proof, and state some existing constructions
from Akyürek et al. (2022).
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Lemma 1. Given hidden states {h1, · · · ,hn}, there exists query, key and value matrices Q,K,V
respectively such that one attention layer can compute

∑n
j=1 hj .

Proof. We can pad each hidden state by 1 and 0’s such that h′
t ←

[
ht

1
0d

]
∈ R2d+1 . We con-

struct two heads where Q1 = K1 = Q2 =

[
Od×d Od×1 Od×d

O1×d 1 O1×d

Od×d Od×1 Od×d

]
and K2 = −K1. Then[

Od×d Od×1 Od×d

O1×d 1 O1×d

Od×d Od×1 Od×d

]
h′
t =

[
0d

1
0d

]
.

Let V1 = V2 =

[
O(d+1)×d O(d+1)×(d+1)

nId×d Od×(d+1)

]
so that Vm

[
hj

1
0d

]
=

[
0d+1

nhj

]
.

We apply one attention layer to these 1-padded hidden states and we have

h̃t = h′
t +

1

n

2∑
m=1

n∑
j=1

ReLU
(〈
Qmh′

t,Kmh′
j

〉)
· Vmh′

j

= h′
t +

1

n

n∑
j=1

[
ReLU(1) + ReLU(−1)

]
·
[
0d+1

nhj

]

=

[
ht

1
0d

]
+

[
0d+1∑n
j=1 hj

]
=

 ht

1∑n
j=1 hj


(18)

Proposition 1 (Akyürek et al., 2022). Each of mov, aff, mul, div can be implemented by a single
transformer layer. These four operations are mappings RD×N → RD×N , expressed as follows,

mov(H; s, t, i, j, i′, j′): selects the entries of the s-th column of H between rows i and j, and copies
them into the t-th column (t ≥ s) of H between rows i′ and j′.

mul(H; a, b, c, (i, j), (i′, j′), (i′′, j′′)): in each column h of H , interprets the entries between i and
j as an a × b matrix A1, and the entries between i′ and j′ as a b × c matrix A2, multiplies these
matrices together, and stores the result between rows i′′ and j′′, yielding a matrix in which each
column has the form [h:i′′−1,A1A2,hj′′:]

⊤. This allows the layer to implement inner products.

div(H; (i, j), i′, (i′′, j′′)): in each column h of H , divides the entries between i and j by the
absolute value of the entry at i′, and stores the result between rows i′′ and j′′, yielding a matrix in
which every column has the form [h:i′′−1,hi:j/|hi′ |,hj′′:]

⊤.

aff(H; (i, j), (i′, j′), (i′′, j′′),W1,W2,b): in each column h of H , applies an affine transfor-
mation to the entries between i and j and i′ and j′, then stores the result between rows i′′ and
j′′, yielding a matrix in which every column has the form [h:i′′−1,W1hi:j +W2hi′:j′ + b,hj′′:]

⊤.
This allows the layer to implement subtraction by setting W1 = I and W2 = −I .

B.2 PROOF OF THEOREM 1

Theorem 1. There exist Transformer weights such that on any set of in-context examples {xi, yi}ni=1

and test point xtest, the Transformer predicts on xtest using x⊤
testŵ

Newton
k . Here ŵNewton

k are the
Iterative Newton updates given by ŵNewton

k = MkX
⊤y where Mj is updated as

Mj = 2Mj−1 −Mj−1SMj−1, 1 ≤ j ≤ k, M0 = αS,

for some α > 0 and S = X⊤X . The number of layers of the transformer is O(k) and the
dimensionality of the hidden layers is O(d).
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Proof. We break the proof into parts.

Transformers Implement Initialization T (0) = αS. Given input sequence H := {x1, · · · ,xn},
with xi ∈ Rd, we first apply the mov operations given by Proposition 1 (similar to Akyürek et al.
(2022), we show only non-zero rows when applying these operations):[

x1 · · · xn

]
mov−→

[
x1 · · · xn

x1 · · · xn

]
(19)

We call each column after mov as hj . With an full attention layer, one can construct two heads with

query and value matrices of the form Q⊤
1 K1 = −Q⊤

2 K2 =

[
Id×d Od×d

Od×d Od×d

]
such that for any

t ∈ [n], we have

2∑
m=1

ReLU (⟨Qmht,Kmhj⟩) = ReLU(x⊤
t xj) + ReLU(−x⊤

t xj) = ⟨xt,xj⟩ (20)

Let all value matrices Vm = nα

[
Id×d Od×d

Od×d Od×d

]
for some α ∈ R. Combining the skip connections,

we have

h̃t =

[
xt

xt

]
+

1

n

n∑
j=1

⟨xt,xj⟩nα
[
xj

0

]
=

[
xt

xt

]
+

[
α
(∑n

j=1 xjx
⊤
j

)
xt

0

]
=

[
xt + αSxt

xt

]
(21)

Now we can use the aff operator to make subtractions and then[
xt + αSxt

xt

]
aff−→
[
(xt + αSxt)− xt

xt

]
=

[
αSxt

xt

]
(22)

We call this transformed hidden states as H(0) and denote T (0) = αS:

H(0) =
[
h
(0)
1 · · · h

(0)
n

]
=

[
T (0)x1 · · · T (0)xn

x1 · · · xn

]
(23)

Notice that S is symmetric and thereafter T (0) is also symmetric.

Transformers implement Newton Iteration. Let the input prompt be the same as Equation (23),

H(0) =
[
h
(0)
1 · · · h

(0)
n

]
=

[
T (0)x1 · · · T (0)xn

x1 · · · xn

]
(24)

We claim that the ℓ’s hidden states can be of the similar form

H(ℓ) =
[
h
(ℓ)
1 · · · h

(ℓ)
n

]
=

[
T (ℓ)x1 · · · T (ℓ)xn

x1 · · · xn

]
(25)

We prove by induction that assuming our claim is true for ℓ, we work on ℓ+ 1:

Let Qm = Q̃m

[
Od −n

2 Id
Od Od

]
︸ ︷︷ ︸

G

,Km = K̃m

[
Id Od

Od Od

]
︸ ︷︷ ︸

J

where Q̃⊤
1 K̃1 := I , Q̃⊤

2 K̃2 := −I and

V1 = V2 =

[
Id Od

Od Od

]
︸ ︷︷ ︸

J

. A 2-head self-attention layer, with ReLU attentions, can be written has

h
(ℓ+1)
t = [Attn(H(ℓ))]t = h

(ℓ)
t +

1

n

2∑
m=1

n∑
j=1

ReLU
(〈

Qmh
(ℓ)
t ,Kmh

(ℓ)
j

〉)
· Vmh

(ℓ)
j (26)
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where
2∑

m=1

ReLU
(〈

Qmh
(ℓ)
t ,Kmh

(ℓ)
j

〉)
· Vmh

(ℓ)
j

=
[
ReLU

(
(Gh

(ℓ)
t )⊤ Q̃⊤

1 K̃1︸ ︷︷ ︸
I

(Jh
(ℓ)
j )
)
+ReLU

(
(Gh

(ℓ)
t )⊤ Q̃⊤

2 K̃2︸ ︷︷ ︸
−I

(Jh
(ℓ)
j )
)]
· (Jh(ℓ)

j )

=
[
ReLU((Gh

(ℓ)
t )⊤(Jh

(ℓ)
j )) + ReLU(−(Gh

(ℓ)
t )⊤(Jh

(ℓ)
j ))

]
· (Jh(ℓ)

j )

= (Gh
(ℓ)
t )⊤(Jh

(ℓ)
j )(Jh

(ℓ)
j )

= (Jh
(ℓ)
j )(Jh

(ℓ)
j )⊤(Gh

(ℓ)
t )

(27)

Plug in our assumptions that h(ℓ)
j =

[
T (ℓ)xj

xj

]
, we have Jh(ℓ)

j =

[
T (ℓ)xj

0d

]
and Gh

(ℓ)
t =

[
−n

2xt

0d

]
,

we have

h
(ℓ+1)
t =

[
T (ℓ)xt

xt

]
+

1

n

n∑
j=1

[
T (ℓ)xj

0d

] [
T (ℓ)xj

0d

]⊤ [−n
2xt

0d

]

=

[
T (ℓ)xt − 1

2

∑n
j=1(T

(ℓ)xj)(T
(ℓ)xj)

⊤xt

xt

]
=

[
T (ℓ)xt − 1

2T
(ℓ)
(∑n

j=1 xjx
⊤
j

)
T (ℓ)⊤xt

xt

]

=

[(
T (ℓ) − 1

2T
(ℓ)ST (ℓ)⊤

)
xt

xt

]
(28)

Now we pass over an MLP layer with

h
(ℓ+1)
t ← h

(ℓ+1)
t +

[
Id Od

Od Od

]
h
(ℓ+1)
t =

[(
2T (ℓ) − T (ℓ)ST (ℓ)⊤

)
xt

xt

]
(29)

Now we denote the iteration
T (ℓ+1) = 2T (ℓ) − T (ℓ)ST (ℓ)⊤ (30)

We find that T (ℓ+1)⊤ = T (ℓ+1) since T (ℓ) and S are both symmetric. It reduces to

T (ℓ+1) = 2T (ℓ) − T (ℓ)ST (ℓ) (31)

This is exactly the same as the Newton iteration.

Transformers can implement ŵTF
ℓ = T (ℓ)X⊤y. Going back to the empirical prompt format

{x1, y1, · · · ,xn, yn}. We can let parameters be zero for positions of y’s and only rely on the skip

connection up to layer ℓ, and the H(ℓ) is then

T (ℓ)xj 0
xj 0
0 yj

n

j=1

. We again apply operations from

Proposition 1:T (ℓ)xj 0
xj 0
0 yj

n

j=1

mov−→

T (ℓ)xj T (ℓ)xj

xj 0
0 yj

n

j=1

mul−→

T
(ℓ)xj T (ℓ)xj

xj 0
0 yj
0 T (ℓ)yjxj


n

j=1

(32)

Now we apply Lemma 1 over all even columns in Equation (32) and we have

Output =

n∑
j=1

 T (ℓ)xj

0
yj

T (ℓ)yjxj

 =

[
ξ

T (ℓ)
∑n

j=1 yjxj

]
=

[
ξ

T (ℓ)X⊤y

]
(33)
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where ξ denotes irrelevant quantities. Note that the resulting T (ℓ)X⊤y is also the same as Iterative
Newton’s predictor ŵk = MkX

⊤y after k iterations. We denote ŵTF
ℓ = T (ℓ)X⊤y.

Transformers can make predictions on xtest by
〈
ŵTF

ℓ ,xtest

〉
.

Now we can make predictions on text query xtest:[
ξ xtest

ŵTF
ℓ xtest

]
mov−→

 ξ xtest

ŵTF
ℓ xtest

0 ŵTF
ℓ

 mul−→


ξ xtest

ŵTF
ℓ xtest

0 ŵTF
ℓ

0
〈
ŵTF

ℓ ,xtest

〉
 (34)

Finally, we can have an readout layer βReadOut = {u, v} applied (see definition 3) with u =

[03d 1]
⊤ and v = 0 to extract the prediction

〈
ŵTF

ℓ ,xtest

〉
at the last location, given by xtest. This

is exactly how Iterative Newton makes predictions.

To Perform k steps of Newton’s iterations, Transformers need O(k) layers.

Let’s count the layers:

• Initialization: mov needs O(1) layer; gathering αS needs O(1) layer; and aff needs
O(1) layer. In total, Transformers need O(1) layers for initialization.

• Newton Iteration: each exact Newton’s iteration requires O(1) layer. Implementing k
iterations requires O(k) layers.

• Implementing ŵTF
ℓ : We need one operation of mov and mul each, requiring O(1) layer

each. Apply Lemma 1 for summation also requires O(1) layer.

• Making prediction on test query: We need one operation of mov and mul each, requiring
O(1) layer each.

Hence, in total, Transformers can implement k-step Iterative Newton and make predictions accord-
ingly using O(k) layers.

B.3 ITERATIVE NEWTON AS A SUM OF MOMENTS METHOD

Recall that Iterative Newton’s method finds S† as follows

M0 =
2

∥SS⊤∥2︸ ︷︷ ︸
α

S⊤, Mk = 2Mk−1 −Mk−1SMk−1,∀k ≥ 1. (35)

We can expand the iterative equation to moments of S as follows.

M1 = 2M0 −M0SM0 = 2αS⊤ − 4α2S⊤SS⊤ = 2αS − 4α2S3. (36)

Let’s do this one more time for M2.
M2 = 2M1 −M1SM1

= 2(2αS − 4α2S3)− (2αS − 4α2S3)S(2αS − 4α2S3)

= 4αS − 8α2S3 − 4α2S3 + 16α3S5 − 16α4S7

= 4αS − 12α2S3 + 16α3S5 − 16α4S7.

(37)

We can see that Mk are summations of moments of S, with respect to some pre-defined coefficients
from the Newton’s algorithm. Hence Iterative Newton is a special of an algorithm which computes
an approximation of the inverse using higher-order moments of the matrix,

Mk =

2k+1−1∑
s=1

βsS
s (38)
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with coefficients βs ∈ R.

We note that Transformer circuits can represent other sum of moments other than Newton’s method.
We can introduce different coefficients βi than in the proof of Theorem 1 by scaling the value
matrices or through the MLP layers.

B.4 ESTIMATED WEIGHT VECTORS LIE IN THE SPAN OF PREVIOUS EXAMPLES

What properties can we infer and verify for the weight vectors which arise from Newton’s method?
A straightforward one arises from interpreting any sum of moments method as a kernel method.

We can expand Ss as follows

Ss =

(
t∑

i=1

xix
⊤
i

)s

=

t∑
i=1

 ∑
j1,··· ,js−1

⟨xi,xj1⟩
s−2∏
v=1

〈
xjv ,xjv+1

〉xix
⊤
js−1

. (39)

Then we have

ŵt = MtX
⊤y =

2t+1−1∑
s=1

βsS
sX⊤y

=

2t+1−1∑
s=1

βs


t∑

i=1

 ∑
j1,··· ,js−1

⟨xi,xj1⟩
s−2∏
v=1

〈
xjv ,xjv+1

〉xix
⊤
js−1


{

t∑
i=1

yixi

}

=

2t+1−1∑
s=1

βs

 t∑
i=1

 ∑
j1,··· ,js

yjs ⟨xi,xj1⟩
s−1∏
v=1

〈
xjv ,xjv+1

〉xi


=

t∑
i=1

2t+1−1∑
s=1

∑
j1,··· ,js

βsyjs ⟨xi,xj1⟩
s−1∏
v=1

〈
xjv ,xjv+1

〉
︸ ︷︷ ︸

ϕt(i|X,y,β)

xi

=

t∑
i=1

ϕt(i |X,y,β) xi

(40)

where X is the data matrix, β are coefficients of moments given by the sum of moments method
and ϕt(·) is some function which assigns some weight to the i-th datapoint, based on all other
datapoints. Therefore if the Transformer implements a sum of moments method (such as Newton’s
method), then its induced weight vector w̃t(Transformers | {xi, yi}ti=1) after seeing in-context
examples {xi, yi}ti=1 should lie in the span of the examples {xi}ti=1:

w̃t(Transformers | {xi, yi}ti=1)
?
= Span{x1, · · · ,xt} =

t∑
t=1

aixi for coefficients ai. (41)

We test this hypothesis. Given a sequence of in-context examples {xi, yi}ti=1, we fit coefficients
{ai}ti=1 in Equation (41) to minimize MSE loss:

{âi}ti=1 = argmin
a1,a2,··· ,at∈R

∥∥∥∥∥w̃t(Transformers | {xi, yi}ti=1)−
t∑

t=1

aixi

∥∥∥∥∥
2

2

. (42)

We then measure the quality of this fit across different number of in-context examples t, and visualize
the residual error in Figure 16. We find that even when t < d, Transformers’ induced weights still
lie close to the span of the observed examples xi’s. This provides an additional validation of our
proposed mechanism.

24



Under review as a conference paper at ICLR 2024

1 5 10 15 20 25 30 35 40
# of In-Context Examples

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

Li
ne

ar
ity

 E
rr

or
 (M

SE
)

Linearity Error  vs. # In-Context Examples

Transformers
OLS

Figure 16: Verification of hypothesis that the Transformers induced weight vector w lies in the span
of observed examples {xi}.
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