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ABSTRACT

Inductive link prediction with knowledge hypergraphs is the task of predicting
missing hyperedges involving completely novel entities (i.e., nodes unseen during
training). Existing methods for inductive link prediction with knowledge hyper-
graphs assume a fixed relational vocabulary and, as a result, cannot generalize
to knowledge hypergraphs with novel relation types (i.e., relations unseen during
training). Inspired by knowledge graph foundation models, we propose HYPER
as a foundation model for link prediction, which can generalize to any knowledge
hypergraph, including novel entities and novel relations. Importantly, HYPER can
learn and transfer across different relation types of varying arities, by encoding
the entities of each hyperedge along with their respective positions in the hyper-
edge. To evaluate HYPER, we construct 16 new inductive datasets from existing
knowledge hypergraphs, covering a diverse range of relation types of varying ar-
ities. Empirically, HYPER consistently outperforms all existing methods in both
node-only and node-and-relation inductive settings, showing strong generalization

to unseen, higher-arity relational structures.

1 INTRODUCTION

Generalizing knowledge graphs with relations between any num-
ber of nodes, knowledge hypergraphs offer flexible means of
storing, processing, and managing relational data. Knowl-
edge hypergraphs can encode rich relationships between enti-
ties; e.g., consider a relationship between four entities: “Bengio
has a research project on topic ClimateAl in Montreal funded
by CIFAR”. This relational information can be represented in
a knowledge hypergraph (see Figure [T) via an (ordered) hy-
peredge Research(Bengio, ClimateAl, Montreal, CIFAR), where
Research represents a relation of arity four.

The generality of knowledge hypergraphs motivated a body of
work for machine learning with knowledge hypergraphs (Guan
et al., 20215 |[Fatemi et al., 20205 |Yadati, [2020; |[Zhou et al., |2023b;
Huang et al.||2025b)). One of the most prominent learning tasks is
inductive link prediction with knowledge hypergraphs, where the
goal is to predict missing hyperedges involving completely novel
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Figure 1: A knowledge hy-
pergraph with three hyperedges
over distinct relation types.

entities (Yadati, 2020; [Zhou et al.,[2023bj; [Huang et al., 2025b). The main shortcoming of existing
methods for inductive link prediction with knowledge hypergraphs is that they cannot generalize
to knowledge hypergraphs with novel relation types. This constitutes the main motivation of our
work: Can we design an effective model architecture for inductive link prediction with knowledge
hypergraphs, where the predictions can involve both novel entities and novel relations?

Example. Consider the knowledge hypergraphs depicted in Figure 2} The training hypergraph
Glrain 18 over the relations Research, Teaches, and AtConference, while the inference graph Giys
is over the novel relations Trading, Sells, and AtFair. The task is to predict missing links such as
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Sells(Samsung, Best Buy, Q60D TV) in Gjyy. Ideally, the model should learn relation invariants that
map Teaches — Sells, Research — Trading, and AtConference — AtFair, as these relation types
play analogous structural roles in their respective graphs, even though their labels and entities are
entirely different.

Approach. In essence, our study builds on

the success of knowledge graph foundation Sasha AtConference CTA  AtFair
models (KGFMs) (Galkin et al.,|2024; Mao Bengio ClimateAl | Montrea! Somsung  LED TLES Vegas
et al., 2024), whlc;h have shown. remark-  geccoch o - g - ¢ -> ®ci o« -o-$ >0
able performance in link prediction tasks . T LG Display
involving both novel entities and novel re- I ® +2015 BestBuy @ +2024
lations. However, KGFMs can only per- ' '

form link prediction using binary relations, @ Ethicalal ® Q50D TV
which raises the question of how to trans- v v

late the success of KGFMs to fully rela- Glsain ® NeurlPs Gint ® ces

tional data. To this end, we propose HYPER,
a class of knowledge hypergraph founda-
tion models for inductive link prediction,
which can generalize to any knowledge hy-
pergraph. The fundamental idea behind our
approach is to learn properties of relations
that are transferable between different types
of relations of varying arity. Consider, for example, the two hyperedges (from Figure 2)):

AtConference(Sasha, Montreal, 2015, EthicalAl, NeurlPS),
Research(Bengio, ClimateAl, Montreal, CIFAR),

which “intersect” with each other. The entity Montreal appears in the second position of the first
hyperedge and in the third position of the second hyperedge. Such (pairwise) interactions between
relations can be viewed as fundamental relations to learn from: any model learning from relations
between relations can transfer this knowledge to novel relation types that have similar interactions.

Figure 2: A model is trained on relations like
Research, Teaches, and AtConference, and is ex-
pected to generalize to structurally similar relations
TradingDeal, Sells, and AtBusinessFair at test time.
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Figure 3: The relation graph
Gy corresponding to the
knowledge hypergraph Gain.

Furthermore, we can encode such relations between relations in a
separate relation graph, which can be used to learn from. We illus-
trate this on our running example in Figure [3] where the relations
appear as nodes; the interactions between relations as edges; and
finally, the positions of the interactions as edge weights. In our set-
ting, a directed edge from relation 71 to ro with edge label (i, j)
indicates that “The i-th position of vy and the j-th position of ry in-
tersect in G, which captures a fundamental interaction between
and r,. Critically, however, there is no upper bound on the number
of such possible interactions. While there are at most m X n inter-
actions between an m-ary relation and an n-ary relation, we cannot
impose any bound on the arity of the relations since then the model

would not generalize to all knowledge hypergraphs.

Contributions.

Our main contributions can be summarized as follows:

* To the best of our knowledge, HYPER is the first foundation model that allows zero-shot
generalization to knowledge hypergraphs of arbitrary arity with novel nodes and novel

relations at test time.

* We evaluate HYPER on 3 existing benchmark datasets and additionally on 16 new bench-
mark datasets with varying proportions of test-time tuples involving unseen relations.
HYPER consistently outperforms existing hypergraph baselines trained end-to-end, par-
ticularly when the proportion of new relations is high.

* To assess the performance of KGFMs on hypergraphs, we reify the knowledge hypergraphs
into KGs and apply KGFMs on them. Remarkably, HYPER, trained on only 2 hypergraphs
and 3KGs, consistently outperforms the popular KGFM model ULTRA trained on 50 KGs.

* We conduct an empirical investigation over the positional interaction encoding scheme
within HYPER, demonstrating the critical role of encoding choices.
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2 RELATED WORK

Link Prediction with Knowledge Graphs. Table I: Method§’ abilit}{ to ha?’dle high—ari.ty re-
Early knowledge graph embedding methods lations (ngh-arlty) and 1nduct1v.ely generalize to
(Bordes et al), 2013: [Sun et al), 2019: Trouil] unseen entities (Ind. e) and relations (Ind. 7).
lon et al.l 2016; |Balazevic et al., 2019; |Ab-

boud et al., 2020) are limited to the trans-  Methods High-arity Ind.e Ind.r
ductive setup: these methods do not general-

ize to unseen entities or to unseen relations. EYB%];:\};?OXENet ')/( ‘); ;
Multi-relational graph neural networks (GNNs) G-MPNN. HCNet v v X
such as RGCN (Schlichtkrull et al, 2018) and  {j;r A, KG-ICL X v v
CompGCN (Vashishth et al.l 2020) similarly

HYPER v v v

rely on stored entity embeddings, remaining in-
herently transductive. To overcome these limitations, [Teru et al.| (2020) introduced GralL, a pio-
neering method enabling node-inductive link prediction, which is later shown to be a form of the
labeling trick (Zhang et al.l |2021). Subsequently, architectures such as NBFNet (Zhu et al.,|2021)),
A*Net (Zhu et al.,[2023)), RED-GNN (Zhang & Yao| 2022), and AdaProp (Zhang et al.,|[2023) lever-
aged conditional message passing, significantly enhancing expressivity and performance (Huang
et al., 2023). However, these methods are not inductive on relations, as they assume a fixed rela-
tional vocabulary. KGFMs are specifically tailored for inductive predictions on both unseen nodes
and relations. InGram (Lee et al.| 2023)), RAILD (Gesese et al., |[2022), and ULTRA (Galkin et al.}
2024])) introduced new KGFM frameworks. Following these, TRIX (Zhang et al.| [2024) introduced
recursive updating of entity and relation embeddings with provably improved expressiveness over
ULTRA. KG-ICL (Cui et al., 2024) employed in-context learning with unified tokenization for en-
tities and relations. Additionally, double-equivariant GNNs, like ISDEA (Gao et al.l [2023) and
MTDEA (Zhou et al., [2023a), emphasized relational equivariance, enhancing robustness to unseen
relations. [Huang et al.|(2025a) proposed MOTIF as a general KGFM framework and formally stud-
ied the expressive power of KGFMs. All of these methods are confined to KGs with binary relations,
and they do not naturally apply to higher-arity relations, as shown in Table|T]

Link Prediction with Knowledge Hypergraphs. Knowledge hypergraphs generalize traditional
KGs to handle higher-arity relational data. Initial researches such as HypE (Fatemi et al., [2020)
and BoxE (Abboud et al., |2020) leveraged shallow embedding models adapted from KG embed-
ding frameworks. Later approaches extended graph neural networks to knowledge hypergraphs. G-
MPNN (Yadati, |2020) and RD-MPNNs (Zhou et al.| 2023b) introduced relational message passing
mechanisms explicitly designed for hypergraph settings, incorporating positional entity information
critical for high-arity relations. [Huang et al.| (2025b) proposed HCNets as a conditional message-
passing approach tailored for inductive hypergraph link prediction and conducted an expressivity
analysis. While these methods can handle knowledge hypergraphs, they are not inductive on re-
lations: none of these methods can generalize to unseen relations (shown in Table [T). Our work
on HYPER builds on these foundations by combining the strengths of conditional message passing
on knowledge hypergraphs with the powerful inductive generalization techniques explored in re-
cent KGFMs (Galkin et al.l 2024; |Lee et al., [2023} |Huang et al., [2025a)) to effectively generalize to
knowledge hypergraphs within unseen nodes and relations.

Foundation Models on Hypergraphs. Existing foundation models on hypergraphs are tailored to
text-attributed hypergraphs. HyperBERT (Bazaga et al., 2024) integrates pretrained language mod-
els with hypergraph convolution for node classification, while HyperGene (Du et al., 2021)) and
SPHH (Abubaker et al., [2023)) propose self-supervised objectives tailored to local and global hyper-
graph structures. More recent works such as Hyper-FM (Feng et al., 2025) and IHP (Yang et al.,
2024) introduce multi-domain pretraining and instruction-guided adaptation, respectively, marking
the first steps toward generalizable hypergraph models. These methods rely heavily on text attributes
for generalization and are predominantly tailored to node classification tasks; they do not support
link prediction over knowledge hypergraphs with unseen relations at test time.

3 PRELIMINARIES

Knowledge Hypergraphs. A knowledge hypergraph G = (V, E, R) consists of a set of nodes
V, hyperedges E (i.e., facts) of the form e = r(uy,...,ux), where r € R is a relation type,
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and u; € V, 1 < i < k, are nodes. The arity of a relation r is given by £ = ar(r), where
ar : R — Nyq. For an hyperedge e, p(e) denotes its relation, and e(7) denotes the node at the
i-th position of e. We refer to the knowledge hypergraph with all edges having arity of exactly
2 as a knowledge graph. The set of edge-position pairs associated with a node v is defined as:
E(v) ={(e,i) | e(i) =v,e € E,1 <i < ar(p(e))}. The positional neighborhood of a hyperedge
e with respect to a position 7 is: N;(e) = {(e(4),5) | j # 1,1 < j < ar(p(e))}.

Link Prediction on Hyperedges. Given a knowledge hypergraph G = (V, E, R) and a query
q(ur, ... up—1, 7, Ugr1 - - ., ug), the link prediction task involves scoring all possible hyperedges
formed by replacing the placeholder ‘7’ with each node v € V. We denote a k-tuple of nodes by
u = (uq,...,u;) and the tuple excluding position ¢ by &t = (w1, ..., ut—1, Ut41,- - -, Uk). Thus, we
represent a query succinctly as q = (¢, 0, t). In the fully-inductive setting for link prediction (i.e.,
node and relation-inductive link prediction), the goal is to answer queries of the form q = (¢, u, t)
on an inference hypergraph Gins = (Ving, Einf, Rin), Where both the entity set Vi, and the relation set
Ry are entirely disjoint from those seen during training. The model is trained on a separate training
knowledge hypergraph Girin = (Virains Firains Rirain)» With Vigain N Vigr = 0 and Rygin N Rinr = (), and
must learn transferable representations that generalize across both novel entities and unseen relation
types of arbitrary arity. At inference time, each hyperedge ¢ = r(uy,...,ug) € Eiy corresponds
to a fact involving a relation r € Riy, and queries involve predicting a missing node at position ¢
within such a tuple, using the surrounding nodes  and relation ¢ = p(e). The model must score
candidate completions q(u1, ..., Ut—1,V,Uts1,- .., ug) for each v € Viy.

Reification. To apply the mod-
els designed for KGs on knowl-
edge  hypergraphs, we  trans-
form an input knowledge hy-

pergraph G = (V,E,R) into

a KG via a reification pro-

cess, similar to the one pro- . .

posed i Fatemi et al (zozoﬂ BengioCllmateAIMontreal CIFAR Sasha 2015 EthlcalAlNeurIPS lan
Specifically, for each hy-

peredge r(ug, ..., ug) €

Figure 4: Reified KG corresponding to the knowledge
hypergraph Gyin from Fig[I} R-i abbreviates Research-i,
similarly for A as AtConference, and T as Teaches.

s we introduce a node
edge_id ¢ V in the KG
to represent the hyperedge it-
self and add £k binary edges
r-1(edge-id,u1), r-2(edge.id,us), ..., r-k(edge-id,u;), one for each position. Note
that each new edge encodes a position-specific relation such as Research-3 or AtConference-5.
For instance, Figure [4| shows the reified KG of our running example in Figure [I} This reification
procedure encodes the full higher-order structure of the original knowledge hypergraph into a KG.

Link Prediction over Reified Knowledge Hypergraphs. Given a high-arity query of the form
q(ur, ..., up—1,?, U1, ..., ux) over the original knowledge hypergraph, we perform link predic-
tion in the reified KG by encoding the query as a subgraph which is used to augment the testing
knowledge graph. Concretely, we add a new node edge_id and binary triples ¢;(edge_id, u;)
for all ¢ # t. The prediction task is then reduced to a standard tail prediction problem: ranking all
candidate entities v € V for the fact g,(edge_id,v). We evaluate the model performance using
standard ranking metrics over the original entity vocabulary. We use superscript (*) to denote models
evaluated under this regime.

4 HYPER: A KNOWLEDGE HYPERGRAPH FOUNDATION MODEL

We now present HYPER, a general framework for learning foundation models over knowledge hy-
pergraphs. Given a knowledge hypergraph G = (V, E, R) and a query ¢ = (¢, @,t), HYPER
computes link prediction scores through the following steps:

1. Relation encoder: Relations are encoded in three steps:

"We also include alternative ways for reification in Appendix
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Figure 5: Overall framework of HYPER. HYPER first constructs a relation graph G, based on the
observed positional interactions between the relations. Encp; then computes embeddings for each
position pair, which are refined via message passing over Gy. The resulting relation representations
are then used for message passing over the original knowledge hypergraph G (shown in color).

(a) Relation graph: Build a relation graph G, where each node corresponds to a relation
r € R, and edges capture observed positional interactions between relations.

(b) Encoding positional interactions: Use an encoder Encp; to embed each interacting posi-
tion pair (a, b) from Gy into fundamental relation representations.

(c) Encoding the relations: Perform conditional message passing over Gy using fundamental
relation representations to obtain relation embeddings for all r € R.

2. Entity encoder: Use learned relation representations to conduct conditional message passing
over the original knowledge hypergraph G and obtain link probability via decoder Dec.

The overall framework is illustrated in Figure [5] and the detailed architecture is presented in Ap-
pendix |Gl We now describe each component.

Relation graph. Given a knowledge hypergraph G = (V, E, R), we construct the relation graph
Grel = (Viely Exel; Ree). The set of nodes is given as Vi = R, i.e., each node in Gy corresponds to a
relation type in the knowledge hypergraph G. The relation types R, are defined as all ordered pairs
(a,b) for {1 < a,b < kmax}, Where kpax = max{ar(r) | r € R} denotes the maximum arity
among the observed relations. The edge set Ei. captures positional interactions between relation
types: for each pair of hyperedges e1,es € E with relation types 1 = p(e1) and ro = p(eq), if
there exists a shared entity v appearing in position ¢ in e; and position j in e, we add a directed edge
(r1,72) with relation type (7, j) to E;. These positional interactions can be computed efficiently
via sparse matrix multiplication (see Appendix [B)) and are invariant over the renaming of relations.

Encoding positional interactions. Unlike knowledge graphs, where each fact involves two entities
and naturally leads to four types of fundamental relations (head-to-head, head-to-tail, tail-to-head,
and tail-to-tail) as introduced in |Galkin et al.[ (2024), knowledge hypergraphs allow facts with ar-
bitrary arity. This introduces a key challenge: How fo build a foundation model that can adapt to
unseen knowledge hypergraphs with varying and arbitrarily large arities?

The natural extension of the concept of fundamental relations from KGs to knowledge hypergraphs
results in mn types of positional interactions between an hyperedge of arity m and an hyperedge of
arity n. Each of such interaction is characterized by a pair (a,b), where a and b denote the entity
positions involved in the relation. As a consequence, a foundation model for knowledge hypergraphs
must be capable of encoding positional interactions in a way that generalizes across different arities.

A naive solution would be to associate a separate embedding to each (a,b) pair. However, such
an approach does not generalize to unseen arities, as it would require pre-training embeddings for
all possible (a,b) combinations. To address this, we propose a shared, compositional position in-
teraction encoding scheme. Specifically, given a positional interaction labeled (a, b), we define a
positional interaction encoder Encpy : N+ ¢ x N — R?, which maps a pair of argument positions
to a dense vector representation of d dimensions. To be effective in inductive settings, we require
the encoder Encpy to satisfy the following requirements:
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1. Extrapolation. The encoder should generalize to unseen positions and combinations, allowing
the model to operate on arities and interaction patterns not present during training.

2. Injectivity. Distinct position pairs (a,b) and (a’,d’) should map to distinct embeddings to
preserve the identifiability of positional interactions:

Va,b,a’, b’ € Nsy, (a,b) # (a’,b') = Encpi((a,b)) # Encpi((a’,1')).

In practice, we implement Encp; as a two-layer multilayer perceptron (MLP) over concatenated
sinusoidal encodings of the input positions. Let p,, p, € R¢ denote the sinusoidal positional encod-
ings of positions a and b, respectively. Then, the embedding corresponding to the interaction (a, b) is
computed as x,,, = MLP([p, || p»]), where MLP denotes a shared two-layer feedforward network
with ReLLU activations. This produces a dense embedding that captures the interaction between the
two positions. Theoretically, we show that our chosen Encp; satisfies these properties and is also
locally smooth. (See Appendix [C|for formal theorems and proofs.)

Theorem 4.1 (Informal). There exists a set of parameter for HYPER such that ENncp; is injective,
has a bounded range, and is Lipschitz (and hence locally smooth).

Empirically, we find that this instantiation of Encpy also enables strong generalization across knowl-
edge hypergraphs with varying arities and relational structures. When applied to knowledge graphs,
our method recovers standard encoding patterns employed in many KGFMs (Galkin et al., 2024;
Lee et al., 2023; Zhang et al., [2024}; Huang et al., 2025a). In particular, head-to-tail, head-to-head,
tail-to-tail, and tail-to-head interactions correspond to Encpr((1,2)), Encpi((1,1)), Encei((2,2)),
and Encpr((2,1)), respectively.

Encoding the relations. HYPER uses Hypergraph Conditional Networks (HCNets) (Huang et al.,
2025b) to encode relations for its strong inductive performance, support for bidirectional message
passing, and easy extensibility to higher-order relational patterns (Huang et al.| 2025a). HCNets
produce query-conditioned representations by aggregating messages from neighboring edges with
relation and position information. Here, we take Encp((a, b)) as the computed messages for each
typed edges when message-passing over relation graph with positional encoding (a, b).

Entity encoder. Similarly to how we encode the relation, HYPER uses a variant of HCNet to
encode the entities. In the context of the entity encoder, we apply a separate HCNet over the original
knowledge hypergraph G = (V, E, R). Each node v € V aggregates from its incident hyperedges

by first taking the relation embeddings h£|Tq) obtained from the relation encoder as the messages

for each typed hyperedges and then transformed by a layer-specific MLP. The resulting HYPER
instances will preserve equivariance over nodes and relations. (See Appendix [C|for proof.)

5 EXPERIMENTS

In this section, we aim to evaluate the generalization and effectiveness of HYPER across inductive
link prediction tasks on both knowledge hypergraphs and knowledge graphs. We focus on answering
the following questions:

Q1: How well does HYPER generalize to unseen entities and relation types?

Q2: How does HYPER handle varying proportions of unseen relations in the test set?

Q3: How does HYPER compare to KGFMs on reified knowledge hypergraphs?

Q4: What is the impact of different variants of pretraining mix on HYPER?

QS5: How does the encoding of positional information impact the model’s ability to generalize?
Q6: How well does HYPER perform on standard knowledge graphs (see Appendix [E)?

Q7: What are computational complexity and empirical scalability of HYPER (see Appendix [F)?

5.1 EXPERIMENTAL SETUPS

Models. We evaluate models using the datasets summarized in Table[T3] As a supervised learning
baseline, we include G-MPNN (Yadati, 2020) and HCNet as node-inductive methods on knowledge
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Table 2: MRR results on node and relation inductive knowledge hypergraph datasets. Superscript §
means the model is applied over the reification of hypergraphs.

JF MFB wp WD

Method
25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100
End-to-End Inference
G-MPNN 0.006 0.003 0.001 0.002 0.002 0.004 0.007 0.003 0.005 0.002 0.001 0.000 0.001 0.001 0.001 0.001
HCNet 0.011 0.009 0.069 0.028 0.033 0.026 0.016 0.082 0.104 0.050 0.019 0.003 0.086 0.043 0.015 0.007
HYPER 0.202 0.468 0.207 0.198 0.332 0.200 0.135 0.222 0.159 0.143 0.139 0.202 0.215 0.205 0.172 0.205
Zero-shot Inference
ULTRA*(3KG) 0.103 0.437 0.168 0.144 0.255 0.235 0.154 0.277 0.039 0.077 0.073 0.078 0.117 0.155 0.116 0.161
HYPER(3KG) 0.148 0.297 0.112 0.130 0.248 0.191 0.039 0.276 0.143 0.147 0.186 0.221 0.167 0.158 0.123 0.146
ULTRA® (4KG) 0.011 0.298 0.042 0.082 0.217 0.170 0.043 0.135 0.009 0.006 0.006 0.004 0.027 0.069 0.063 0.065
HYPER(4KG) 0.109 0.065 0.128 0.087 0.116 0.117 0.089 0.148 0.074 0.212 0.175 0.180 0.148 0.111 0.150 0.255
ULTRA¥ (50KG) 0.001 0.096 0.010 0.001 0.225 0.083 0.001 0.190 0.006 0.009 0.009 0.004 0.008 0.001 0.001 0.001
HYPER(50KG) 0.056 0.294 0.084 0.111 0.122 0.156 0.126 0.148 0.067 0.198 0.191 0.155 0.073 0.055 0.130 0.088
ULTRA* (4HG) 0.154 0.442 0.175 0.170 0.338 0.236 0.129 0.280 0.052 0.091 0.089 0.089 0.076 0.175 0.052 0.136
HYPER(4HG) 0.187 0.377 0.188 0.181 0.349 0.244 0.139 0.278 0.075 0.068 0.086 0.168 0.087 0.158 0.057 0.165

ULTRA* (3KG+2HG) 0.209 0.446 0.187 0.168 0.343 0.236 0.128 0.283 0.045 0.086 0.080 0.090 0.183 0.182 0.127 0.137
HYPER(BKG+2HG)  0.216 0.455 0.213 0.173 0.363 0.250 0.140 0.299 0.132 0.152 0.192 0.222 0.223 0.200 0.154 0.182

Finetuned Inference

ULTRA*(3KG+2HG) 0.214 0.438 0.193 0.174 0.351 0.244 0.136 0.291 0.051 0.092 0.086 0.097 0.191 0.189 0.134 0.145
HYPER(BKG+2HG)  0.217 0.456 0.209 0.176 0.347 0.243 0.158 0.275 0.169 0.171 0.194 0.210 0.225 0.234 0.166 0.210

hypergraphs, which are representative of the performance methods relying on end-to-end training.
These models, by design, cannot generalize to unseen relations since they explicitly store the trained
relation embeddings, and thus have to assign a randomly initialized vector for the representation of
the unseen relations. For a fair comparison, we evaluate HYPER(end2end), HYPER models trained
directly on the corresponding train set for each dataset.

To also evaluate the pretraining paradigm for foundation models, we include
ULTRA¢(3KG/4KG/50KG) from |Galkin et al.| (2024) as baseline KGFM model They are
pretrained on increasingly large KG corpora and evaluated on reified hypergraphs for tail-only link
prediction, following Section [3] To assess the benefits of pretraining on different relational struc-
tures, we experimented with four HYPER variants: HYPER(3KG/4KG/50KG), trained only on 3,
4, and 50 knowledge graph datasets with the same pre-training mix as ULTRA*(3KG/4KG/50KG)
from |Galkin et al.| (2024), and HYPER(4HG), trained on four knowledge hypergraph datasets
(JF17K (Wen et al,, [2016), Wikipeople (Guan et all 2021)), FB-AUTO (Fatemi et al. 2020), and
M-FB15K (Fatemu et al., [2020)). We further include HYPER(3KG + 2HG), a HYPER model trained
on a comprehensive mixture of three knowledge graph (FB15k-237, WN18RR, Codex Medium)
and two knowledge hypergraph datasets (JF17K, Wikipeople), aiming to combine the advantages of
both types of data, and fine-tuned this checkpoint over the training sets for each downstream task.
For a fair comparison, we additionally pretrain ULTRA over the same pretraining mixture on reified
hypergraphs and include ULTRA*(4HG) and ULTRA*(3KG+2HG).

Evaluations. We adopt filtered ranking protocol: for each query q(uq,- -+ ,u) where k = ar(q)
and for each position ¢t < k, we replace the ¢-th position by all other entities such that the resulting
hyperedges does not appear in training, validation, or testing knowledge hypergraphs. We report
Mean Reciprocal Rank (MRR) and provide averaged results for three runs for the experiments. We
report the standard deviation along with the full tables in Tables [I9] and 20| and Table 2I] The
codebase is provided in https://github.com/HxyScotthuang/HYPER, See computation
resources used in Appendix [Dand further experimental details in Appendix

5.2 NODE-RELATION INDUCTIVE LINK PREDICTION OVER KNOWLEDGE HYPERGRAPHS

Dataset construction and task settings. To evaluate the transferability and generalization capa-
bilities of HYPER, we follow the methodology proposed in InGram (Lee et al., |2023) to construct
new datasets with varying proportions of unseen relations. We derive these datasets from three

2We also include additional baseline results for other reification method KGFM in Appendices and
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hypergraph datasets: JF17K (Wen et al.l 2016) (JF), Wikipeople (Guan et al.| 2021 (WP), and M-
FB15K (Fatemi et al.,[2020) (MFB). We also include WD50K (WD) (Galkin et al.,2020), originally
a hyper-relational KG, which we convert into a knowledge hypergraph by hashing the main relation
and predicates in canonical order. For each source dataset, we create four variants with different
percentages of test tuples containing previously unseen relations: 25%, 50%, 75%, and 100%. For
instance, JF-25 includes 25% test tuples with unseen relations, while JF-100 contains only entirely
unseen relations. This setulﬂ allows us to systematically evaluate how models perform under in-
creasingly challenging inductive scenarios. We present all the details in Appendix

Overall performances of HYPER (Q1). We

report model performance across each dataset Table 3: MRR results on node-inductive datasets.

in Table 2l Note that HYPER and its vari- i means the model is applied after reification.
ants drastically outperform HCNet in node

and relation-inductive settings. ~ HCNet re- g o JF-IND WP-IND MFB-IND

lies on learnable embeddings for each rela-

tion type and struggles with unseen relations, End-to-End Inference

leading to sharp performance drops under in- HGNN 0.102 0.072 0.121

ductive settings. In contrast, HYPER lever-  HyperGCN 0.099  0.075 0.118

ages a pretrained relation encoder, enabling  G-MPNN 0.219  0.177 0.124

strong generalization and robust performance =~ RD-MPNN 0402 0304  0.122

even with entirely unseen relations. Note that ~ HCNet 0.435 0414 0.368

fine-tuning HYPER(3KG+2HG) further boosts ~ HYPER(end2end) 0422 0435  0.427

results, often matching or surpassing HYPER Zero-shot Inference

trained from end-to-end. This derflonstrates the i TRAl (3KG) 0321 0305 0277

strong transferability pf HY.PER s representa- HyYPER(3KG) 0263 0259 0184

tions and shows that lightweight finetuning on

small task-specific datasets can approach end- ~ ULTRA*(4KG) 0.065 0.123  0.096

to-end performance without full retraining. HYPER(4KG) 0.266  0.231  0.120

Impact on the ratio of known relations (Q2). ULTRA*(50KG) 0.007  0.029 0.026

We experiment with multiple relation-split set- HYPER(S0KG) 0.302  0.253 0.248
p P P

tings that vary the proportion of test triplets =~ ULTRA*(4HG) 0.397 0319 0.264

involving unseen relations, ranging from 25%  HYPER(4HG) 0403 0375 0.497

to 100%. While node-inductive baselines such  j; rra? (3KG+2HG) 0410  0.341 0.294
HCNet already perform poorly under low rela-  fypgr(3KG + 2HG) 0459 0415  0.404
tional shift (e.g., 25%), their performance de-
grades substantially as the proportion of un-
seen relations increases (e.g., 100%), reflect-  ULTRA¥(3KG+2HG) 0421  0.349 0.303
ing the difficulty of generalizing to novel rela-  HYPER(3KG +2HG) 0.463  0.446 0.455
tion types. In contrast, HYPER maintains con-
sistently strong performance across all splits,
demonstrating its robustness and ability to generalize effectively under an increased proportion of
unseen relations.

Finetuned Inference

HYPER vs. ULTRA on reified knowledge hypergraph (Q3). Across all datasets, HYPER con-
sistently outperforms KGFMs like ULTRAY on reified hypergraphs. While KGFMs can in prin-
ciple generalize to binary relations, reified hypergraphs form atypical structures, e.g., tripartite
graphs with auxiliary edge nodes, which is not commonly seen in pretraining corpora. Notably,
ULTRA*(50KG), trained on 50 knowledge graphs, performs much worse than the version trained
on just 3, and remains substantially behind HYPER(3KG + 2HG). This suggests that increasing the
number of training graphs does not close the gap introduced by the lack of explicit hypergraph
modeling. Moreover, ULTRA*(4HG) and ULTRA*(3KG+2HG) also underperform compared with
HYPER(4HG) and HYPER(3KG + 2HG), which are trained on the same pretraining mix contain-
ing hypergraph datasets, respectively. While reification makes knowledge hypergraphs compatible
with KGFMs, it can hinder generalization: auxiliary edge nodes increase hop distances, inverse re-
lations are modeled ineffectively, and the resulting structures deviate from standard KG pre-training
distributions. Together, this leads to inefficient reasoning and weaker performance.

3These percentages are meaningful only in the end-to-end evaluation setting. In the zero-shot setting, all
relation types are unobserved.
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Table 4: Averaged zero-shot performance

of HYPER(3KG + 2HG) with different po- 0.5 1 = Original

0.445 mmm Corrupted

sitional interaction encoders.

Total Avg
Model (19 hypergraphs)

MRR Hits@3

All-one 0.236 0.262

Random 0.213 0.239 |
Magnitude  0.227 0.251 ' JF-50  Overall Average
Sinusoidal ~ 0.285  0.281

Figure 6: Zero-shot performance of HYPER(3KG +
2HG) over original and corrupted datasets.

Impact of different pretraining datasets (Q4). The composition of pretraining data has a notice-
able impact on generalization. While HYPER(4HG), pretrained on hypergraph datasets, performs
strongly on JF and MFB, both of which contain a large proportion of higher-arity relations, it strug-
gles on WP, which primarily consists of binary edges. Conversely, WP benefits more from pretrain-
ing on binary relational graphs, as seen with HYPER(3KG). The best overall performance comes
from HYPER(3KG + 2HG), which combines both binary and hypergraph pretraining sources. This
suggests that pretraining on diverse relation structures and thus the underlying distribution improves
generalization across tasks with varying arities.

5.3 NODE INDUCTIVE LINK PREDICTION OVER KNOWLEDGE HYPERGRAPHS

Settings. To further assess the applicability of node-inductive link prediction tasks with knowl-
edge hypergraphs, we follow [Yadati| (2020) and Huang et al.| (2025b), and experiment on three
existing datasets: JF-IND, WP-IND, and MFB-IND. We compare our models with several existing
approaches for inductive link prediction on knowledge hypergraphs. These include HGNN (Feng
et al.,2018) and HyperGCN (Yadati et al.,2019)), which were originally designed for simple hyper-
graphs and adapted to knowledge hypergraphs by ignoring relations (Yadati, [2020).

We also compare with G-MPNN (Yadati, 2020) and RD-MPNN (Zhou et al., 2023b)), which were
modified for inductive settings by replacing learned entity embeddings with a uniform vector, and
HCNet (Huang et al.| [2025b). We also include the zero-shot performance of standard KGFM UL-
TRA on the reification of hypergraphs.

Results and discussion. Table 3| presents the performance of all models across the node-inductive
datasets. We continue to observe that HYPER significantly outperforms prior node-inductive base-
lines such as HCNet, G-MPNN, and RD-MPNN in the zero-shot setting. Among HYPER variants,
even without fine-tuning, pretrained HYPER models achieve strong results. Fine-tuned HYPER fur-
ther improves performance, achieving the best MRR on JF-IND and WP-IND, and competitive re-
sults on MFB-IND compared with HYPER trained end-to-end. Notably, HYPER consistently outper-
forms ULTRA, which struggles to generalize to the distinct structure of reified hypergraphs. These
results confirm HYPER’s robust generalization across a variety of datasets.

5.4 IMPACT OF POSITIONAL INTERACTION ENCODERS

To evaluate the importance of design choices in the positional interaction encoder Encp; (Q5), we
compare HYPER to three alternatives Encp; equipped with different positional encoding schemes:
(i) all-one encoding (p, = 1%), which collapses all positions and violates injectivity; (ii) random
encoding (p, ~ N(0,1;)), which lacks structure and hinders generalization; and (iii) magnitude
encoding (p, = a1?), which is unbounded and thus unsuitable for MLPs. In contrast, HYPER
uses sinusoidal encoding, which is both injective and bounded, enabling effective extrapolation and
robust zero-shot performance. As shown in Table f] sinusoidal encoding yields the best overall
performance across 19 hypergraphs, significantly outperforming other schemes in both MRR and
Hits@3. This highlights the critical property of injectivity and extrapolation of Encpy in achieving
robust zero-shot generalization.
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5.5 CORRUPTION OVER ARGUMENT POSITION

To validate the significance of ordered information in knowledge hypergraphs (QS5), we conduct
an ablation study to corrupt positional information. Specifically, for each of 16 newly proposed
datasets, we take the most frequent relation type in each test graph and randomly and inconsistently
permuted the argument positions for 50% of its hyperedges, making the semantic role of each argu-
ment position ambiguous. For instance, a hyperedge r(a, b, ¢) might become (b, a, ¢). We evaluate
our HYPER(3KG + 2HG) model in the zero-shot setting on these corrupted datasets. Empirically,
we observe that when we permute those relations that explicitly stored ordered information, such
as cvg.musical_game_song_relationship in JE-50, the performance drops dramatically, as shown
in Figure[6] This is because each argument position carries a distinct semantic role (e.g., musical,
game, song), and HYPER relies on implicitly learning these roles to generalize. Corrupting this
positional structure prevents HYPER from inferring roles for unseen relations, leading to a dramatic
decline in performance.

6 CONCLUSION

In this work, we introduced HYPER, the first foundation model for inductive link prediction over
knowledge hypergraphs with arbitrary arity, capable of generalizing to both unseen entities and
unseen relations. Through extensive experiments on 16 newly constructed and 3 existing induc-
tive benchmarks, we demonstrate that HYPER consistently outperforms state-of-the-art knowledge
hypergraph baselines and KGFMs applied to reified hypergraphs, demonstrating its strong general-
ization across varied domains and relational structures. One limitation of HYPER lies in its com-
putational complexity of relation arity: the number of positional interactions grows quadratically
with the arity of each hyperedge. Future work may explore scalable approximations to mitigate
the cost. Additionally, KGFMs, such as ULTRA, generally performs better on standard knowledge
graph tasks (See Appendix [E). Future work may explore bridging the performance gap between
higher-order and binary settings.
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A DATASET GENERATION DETAILS

A.1 GENERATING DATASETS FOR NODE AND RELATION-INDUCTIVE LINK PREDICTION

To evaluate our models in an inductive setting, we created multiple dataset variants with different
proportions of unseen relations. Our dataset generation process, following InGram (Lee et al.| 2023)),
is detailed in Algorithm [l This process creates training and inference hypergraphs with controlled
percentages of unseen relations in the test set.

Algorithm 1 Generating Datasets for Node and Relation-inductive Link Prediction

Require: Source knowledge hypergraph G = (V, E, R), number of training entities i, number
of inference entities ng, relation percentage py, tuple percentage pyi, seed value

Ensure: Training knowledge hypergraph Giuin = (Viain, Firain, Ruain) and Inference knowledge
hypergraph Gint = (Vint, Eint, Rinf)

1: G <+ Giant connected component of G
2: Randomly split R into Ry, and Riye such that | Ryin| @ |Rint| = (1 — Drel) : Prel

Uniformly sample ny.;i, entities from V' and form Vi, by taking the sampled entities and their

neighbors

Etrain = {7‘(1}1, V2. .. ,Un)|’Ui € V;rain; (S Rtraina T(Ula V2, ... 7Un) € E}

FElain < Hyperedges in the giant connected component of Fi,i,

Virain < Entities involved in iy

Riain < Relations involved in Ei .,

Let G’ be the subgraph of G where the entities in Vi, are removed

In G’, uniformly sample n entities and form Vi by taking the sampled entities and their

neighbors

10: Eiy := X UY such that | X| : |Y| = (1 — pwi) : pw where X = {r(vi,ve,...,v,)|v; €
‘/inf/r € Rtrainvr(vl7v27--~7vn) € E} and Y = {T(U17U2,---7vn)‘vi € ‘/}nﬁr €
Ring,r(v1,v2,...,0,) € E}

11: FEjy¢ < Hyperedges in the giant connected component of Fi¢

12: Vins < Entities involved in Fj,¢

13: R;,r < Relations involved in Ei,¢

14: Split Eiy into auxiliary, validation, and test sets with a ratio of 3:1:1

el

R RNk

The parameter py; controls the percentage of test tuples containing unseen relations. For example,
when py; = 0.25, approximately 25% of the tuples in the inference hypergraph contain relations not
seen during training. This allows us to systematically evaluate how models perform under increas-
ingly challenging inductive scenarios.

After generating the inference hypergraph, we split it into three disjoint sets: auxiliary (for training),
validation, and test sets with a ratio of 3:1:1. For a fair comparison, these sets are fixed and provided
to all models.

A.2 DATASET STATISTICS

Table [5] and Table [ summarize the statistics of our constructed datasets and the hyperparameters
used to generate them, respectively. Additionally, Table[7| presents the arity distribution across these
datasets. Together, these tables illustrate that our benchmarks vary significantly in terms of arity,
density, and number of relation types, ensuring a diverse and comprehensive evaluation setting.

B SPARSE MATRIX MULTIPLICATION FOR COMPUTING POSITIONAL
INTERACTION

In this section, we describe the procedure to generalize sparse matrix multiplication to effi-
ciently construct knowledge hypergraphs from hyperedges of arbitrary arity. Unlike knowledge
graphs (Galkin et al.| [2024), where only two positions (head and tail) exist per relation, resulting
in only 4 fundamental relations (head-to-head, head-to-tail, tail-to-head, tail-to-tail), knowledge hy-

13
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Table 5: Statistics of datasets for inductive hypergraph completion. Max arity is shown for training

graph and inference graph, respectively.

Dataset Train Inference Test Max Arity
v IR |E| Vi Rl |El V] R |E]

JF-25 2,616 41 3,371 1,159 36 1,056 209 15 103 5/4
JF-50 2,859 53 3,524 1,102 37 1,292 157 5 109 5
JF-75 3,129 67 4287 1,488 38 1,697 225 11 131 5
JF-100 2,123 48 2,449 1,696 35 2,159 52 5 25 5
WP-25 6,378 128 7453 2784 66 4,794 830 19 959 6/4
WP-50 7,586 155 9,536 3,608 87 4390 531 29 413 7/6
WP-75 7,787 118 9271 4,737 101 6,221 629 27 459 6
WP-100 7,787 118 9271 4891 63 7,516 275 15 155 6
WD-25 4,533 239 5,482 3,008 191 3,106 250 37 148 22/5
WD-50 3,796 162 4,147 2303 188 2,353 145 30 91 19/6
WD-75 6,518 243 6,305 5,194 244 5831 547 57 385 22/5
WD-100 6,798 237 7,271 3,576 105 3951 385 29 282 19/4
MFB-25 1,266 11 8,182 1929 12 2802 146 7 87 3/5
MFB-50 1,415 11 8,400 1,528 13 2426 472 10 486 3/5
MFB-75 2,225 15 5271 1,363 16 4,008 675 11 803 3/4
MFB-100 2,013 19 11,658 2,406 5 4514 808 5 904 3/5

Table 6: Hyperparameters used to create fully inductive knowledge hypergraph datasets.

HP JF-25 JF-50 JF-75 JF-100 WP-25 WP-50 WP-75 WP-100

Nuain 1000 1000 1200 1200 900 800 1000 1000
Nest 900 800 1200 1200 800 1000 1000 1000
Drel 0.4 0.5 0.4 0.5 0.4 0.3 0.5 0.5
Pui 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0
HP WD-25 WD-50 WD-75 WD-100 MFB-25 MFB-50 MFB-75 MFB-100
Ngrain 700 1000 10000 10000 100 100 80 120
Nest 1200 1000 8000 8000 95 85 80 100
Prel 0.25 0.5 0.5 0.5 0.5 0.6 0.5 0.5
DPui 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0

pergraphs involve k positions per hyperedges, leading to k2 types of possible positional interactions
in total.

Given a knowledge hypergraph G = (V, E, R) with n = |V/| nodes, m = |R)| relations, and maxi-
mum arity k, we start by representing the knowledge hypergraph via sparse tensors: the edge index

E < NF*IEl and corresponding edge types r € NIZl. Each column of FE lists the k participating
nodes for a hyperedge, with each edge associated with its relation type.

To encode positional interactions between relations, we perform sparse matrix multiplication in the
following steps:

1. For each position a € {1,--- ,k}, we construct sparse matrices E, € R™*™ where each
nonzero entry indicates the presence of an entity at position a for a given relation type.

2. For each pair of positions (a,b) € {1,--- ,k} x {1, -+, k}, we compute a sparse matrix
multiplication:
Ao = spmm(E, | Ep) € R™*™,

Here, (Aagb)i’j is nonzero if there exists an entity that simultaneously plays position a in
a hyperedge of relation ¢ and position b in a hyperedge of relation j.
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This operation systematically captures all intersections between hyperedges that share at least one
common node, generalized across different positions.

C PROOF

We first define isomorphisms and invariants of knowledge hypergraphs, following Huang et al.
(2025bja). The detailed architecture used in the experiments is shown in Appendix [G.4]

C.1 ISOMORPHISMS AND LINK INVARIANTS OF KNOWLEDGE HYPERGRAPHS

Isomorphisms. An (node-relation) isomorphism from a knowledge hypergraph G = (V, E, R) to a
knowledge hypergraph G’ = (V', E’, R') is a pair of bijections (7, ¢), where 7 : V' — V' and ¢ :
R — R’, such that every fact r(uy, - - - ,ux) is in G if and only if the fact ¢(r)(7(u1), -, w(uk))
is in G'. Two graphs are isomorphic if there is an isomorphism between them.

Invariants. For & > 1, a k-ary relation invariant is a function £ associating to each knowledge
hypergraph G = (V, E, R) a function £(G) with domain R¥ such that for every pair of isomorphic
knowledge hypergraphs G and G, every isomorphism (7, ¢), and every tuple 7 € RF of relations

in G, we have
§(G)(F) = &(G")(6(7)).

A (link) invariant is a function w assigning to each knowledge hypergraph G = (V, E, R) a function
w(G) with domain R x V¥ such that for every pair of isomorphic knowledge hypergraphs G and
G’, every isomorphism (7, ¢), and every hyperedge r(u1, ..., ux) in G, we have

w(@)(r(u,...,ur)) = w(G)(P(r)(m(ur), ..., m(ur))).

For a query ¢ = (q,0,t) in G, where ¢ € R is the relation type, @ = (U1, ..., Ut—1, Ut41,-- -, Uk)
are the observed arguments, and ¢ is the masked position, we define its image under (7, ¢) as

(m,¢) - q = (¢(Q)a (m(ur), ..., m(ue—1), T(Ug1), - -, m(ug)), t)'

That is, the relation symbol is mapped via ¢ and each entity argument via 7, while the masked
position ¢ (and thus the argument order) is preserved.

C.2 EQUIVARIANCE

We show that HYPER indeed computes a link invariant on knowledge hypergraphs.

Proposition C.1 (invariance). Let G = (V,E,R) and G' = (V',E', R’) be knowledge hyper-
graphs, and let (7, ¢) be a (node-relation) isomorphism from G to G'. Then, the HYPER ar-
chitecture with T' layer relation encoders and L layer entity encoders computes link invariant on
knowledge hypergraphs, i.e., for every query ¢ = (q, 0, t) in G and every candidate u; € V,

HYPER(G) (q(ul, . ,uk)) = HYPER(G") (qb(q)(w(ul), . ,ﬂ(uk))).
Proof. We show that each stage of HYPER is invariant under the action (7, ¢).

Relation graph construction. By definition, Gye] = (Viel, Erel, Rrel) has Viep = R and contains
a directed edge (r1,r2) with edge label (i, j) whenever there exist hyperedges e1,e2 € E with
p(e1) =1, p(e2) = ro and anode x € V such that « occurs at position 4 in e; and at position j in
ez. Under an isomorphism map (7, ¢), given G, = (V, El, R.,). ¢ is a bijection between R
and R’, and 7 is a bijection between V' to V’. Thus, the isomorphism map preserves membership

and positional indices inside hyperedges. It holds that

(T17T27 (Zv.])) S Erel — (¢(T1)7¢(T2)7 (’L?])) € Ell*el

In particular, the construction is invariant to renaming of relations and respects the same positional
labels (7, j). Thus, Gye and G’ are isomorphic via ¢ with the same edge labels (3, ).

rel
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Positional-interaction encoder. By design, Encp; : N+ x N g — R? maps a position pair (a, b)
to ., = MLP([p,||ps]), where p,, py are the sinusoidal encodings of @ and b. Since MLP is
shared across all position pairs, x, ; depends only on (a,b). Because edge labels in G, and Gre]
are the same pairs (a, b) under ¢, we have a label-consistent edge feature assignment: for every
edge (1,72, (a,b)) in Gye and the corresponding (¢(r1), ¢(r2), (a,b)) in G';, the edge message
features coincide, i.e., T4 = a::l,b.

rel?

Relation encoder. Let hf"fl denote the hidden state of the relation node r € V; computed by the

HCNet relation encoder at the ¢-th layer, conditioned on query relation g. We prove by induction on
t that for any isomorphism (7, ¢) between G and G’,

h(t)

rlq

0

s(r) () rel) = (Grel) Vr e R,Vt € N.

Base case: The initialization function INIT, assigns the same parameters to all relations, depending
only on whether » = ¢. Because the query relation ¢ maps to ¢(¢) under the isomorphism, and all
other relations share the same initialization, we have

©
R () (Gret) = By (Grer)-

Inductive step: Assume the inductive hypothesis holds for layer ¢. We remind that each update of
the relation encoder is defined as]

R = up(B), AGG ({456, ({(BY],.9) | (7, 1) €N ()}, @) | (e:) € Bra(1)) )

Under the isomorphism ¢, the neighborhood of each relation node is preserved: for every (e,i) €
Eei(r) in Gy there exists a unique (e’,7) € El,(¢(r)) in GL;, and N ; (€) corresponds bijectively
to V3 ;(e’). Moreover, for each positional label (a, b), the corresponding fundamental relation em-
bedding x, 5 is identical in both graphs since it depends only on (a, b). By the inductive hypothesis,

the neighboring states satisfy h;(,/)w(q)(G;ﬂ) = hff,)‘q(Gra) for all r’. Because MSG(c), AGGrel,
and up, are all shared, differentiable functions applied pointwise across nodes and edges, and AGGye
is permutation-invariant, The resulting updates are preserved under the action of ¢:

(t+1) /oy g (t41)
h¢(7‘)|¢(q)( rel) - hr\q (Grel)-

Entity encoder. This encoder applies an HCNet over the original knowledge hypergraph G =
(V, E, R), where each node v € V represents an entity and each hyperedge e = r(uq,...,u;) € E
connects entities according to their argument positions in relation p(e) = 7.

We prove by induction on £ that for any isomorphism (7, ¢) between G and G’,

(G = 30

v|q

©
) (r6)-q

(@) Yo eV, VleN.
Base case: The initialization INIT is shared and depends only on whether the entity participates in
the query g and at which position. Since both participation and positional roles are preserved under

(7, 9),

B

/ (0)
r(w)|(r.0)-q(G) =P

vlg

(@).

Inductive step: Assume the inductive hypothesis holds for layer ¢. Under (7, ¢), each inci-
dent pair (e,7) € E(v) in G corresponds bijectively to (¢’,4) € E'(w(v)) in G', where e/ =
o(p(e))(m(uy),...,m(ug)) preserves both arity and argument order. The neighborhood mapping
N (e) between N (¢') is therefore bijective. For every positional index j, the sinusoidal encoding

(g Which
(@)

by relation-encoder equivariance, (ii) the neighboring states hu‘q, which

p; is fixed and identical across graphs. The message computation depends on (i) R

(T)
equals by o)i(r.6).q

“Note that h(t“) h(tJr ) since the position and entity information in query q has been dropped in relation
encoder, and thus itis enough to write ¢(g) rather than (7, ¢) - q
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match hff()u)l(ﬂ $)q by the inductive hypothesis, and (iii) the fixed positional encodings p;. Since
MSG(c), AGG, and UP are shared differentiable functions and AGG is permutation-invariant, the up-
dates are preserved under (7, ¢):

+1 +1
R (@) = b (G).

L

Decoder. The unary decoder is a shared map Dec : RUL) — [0, 1] applied to hi ) to score the

la
(@) = h(L)(G), hence

candidate v for the masked position ¢ in g. We have hgrle)))l (r =h,q

#)-q
Dec (i) (x.0)-q(G1)) = Dec(h)(G)).

v|q

C.3 REQUIREMENTS OF POSITIONAL INTERACTION ENCODERS

In this section, we justify our choice of positional interaction encoder MLP([p,, || ps]) by showing
that it satisfies the two key properties: extrapolation and injectivity. We further show that the en-
coder exhibits smooth dependence on positional indices.

In practice, we implement Encpy as a two-layer multilayer perceptron (MLP) applied to the concate-
nation of sinusoidal encodings of the two input positions. Let p,,p, € R? denote the sinusoidal
encodings of positions a, b € N, defined componentwise by

= i a4 1 = coS a4 = d_
(pa)Qi = bln<m> y (pa)27,+1 = COb(lOOOOQi/d> y fori = 0, 1, ) 1,

and analogously for p,. The concatenated positional pair is E(a, b) = [pa||ps] € [~1,1]?%, and the
positional-interaction encoder outputs x, ;, = MLP(E(a,b)).

Theorem C.2 (Properties of the positional—interaction encoder). Assume d is even and 10%/% is
irrational (i.e., d ¢ {2,4,8}). Let p,,py € RY be the sinusoidal positional encodings of positions
a,b € Nxg and E(a,b) = [p.||ps] € [—1,1]?¢ as above. Then there exists a choice of parameters
of MLP such that the positional interaction encoder Encps : N2>0 — R™ satisfies:

1. Injectivity. For all distinct (a,b), (a’,b") € N2,
(a,b) # (a’,b') = Encei(a,b) # Encpi(a’, V).

2. Boundedness of the range. There exists a compact set K C R™ such that
Encpi(a,b) € K forall (a,b) € N2.
3. Lipschitz continuity, smoothness. There exists a constant L > 0 such that for all
(a,b), (a', V') € R?,
| Encp1(a,b) — Encpi(a’,b)|| < L(la—a'|+ |b—b']).
Proof. Injectivity. First we show that map a — p, is injective. Let w; := 10000~2¥/%. Suppose
Pa = Py. Then for each index i there exists k; € Z such that
wi(a —b) = 27k;.
Taking i’ = 4 + 1, applying the same argument and dividing the two equalities gives
Wi k;

= € Q.

wit1 ki

But by construction j*— = 10~8/4, which is irrational whenever d ¢ {2, 4,8}. This is a contradic-
tion unless @ = b. Hence a = b, and the map is injective.

Now we show that the concatenation E(a,b) = [p.||ps] € [—1,1]*¢ itself is injective. Suppose
E((a,b)) = E((a/,V)). By definition of concatenation, the first d dimension coordinates give
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Po = Po and the last d dimension give p, = pyr. By the previous part, a = @’ and b = b’. Thus
(a,b) = (a’,b), so E is injective.

Finally, we show that there exists a parameterization of MLP(x) = Wy o(Wix + by) + by that
is injective. Choose W; € R™*24 and by € R” so that Wiz + by > 0 coordinatewise for all
x € [—1,1]%4. Then o is the identity on the entire domain, and

f(x) = Wo(Wiz +b1) + by = (Wo W) x + (Waby + by)

is an affine map. With n > 2d we can pick W7 to have full column rank 2d, and with m > 2d we
can pick Wy, so that W := W3y W also has rank 2d. Hence © — Wz + c is injective on R2¢_thus
on [—1,1]2?, Therefore, the class contains injective functions.

Boundedness of the range. We need to show that the range of MLP(E([p.||ps])) is compact.
Observe that MLP(E(p,||py)) € M LP([—1,1]2?), since sinusoidal encodings are bounded within
[—1,1] and the concatenation given by F only affects the dimensionality of the embedding. MLP
is a continuous function over a compact domain [—1,1]?¢, and as a result, its range is compact.
Consequently, even for unseen arity indices (a, b), the resulting positional representations remain
within the same bounded set as those observed during training.

Lipschitz continuity (smoothness). Set

d
41

23 w?  Luwe = [[Wal2 [Wil2, L= CposLurp.
=0

For any z,y € R and w > 0, the mean value theorem gives | sin(wz) — sin(wy)| < w|r — y| and
| cos(wz) — cos(wy)| < w|z —y| (as sin and cos are all 1-Lipschitz). Hence, with w; = 100002/,
we have that

d_q 4_q
2 2
: . 2 2
|lPa — Par |3 = Z (sin(w;a) — sin(w;a’))” + Z (cos(w;a) — cos(w;a’))

i=0 i=0

41

< (2 Z wf) la —a'|?.
i=0

Thus ||ps — Parl|2 < Cpos|la — @'|, and similarly ||py, — Py ||2 < Cpos|b — V| By triangle inequality
on the concatenation,
1E(a,b) = E(a,b)|l2 = ||[Pa = par Py — Po/]l2
< lpa — Parll2 + [IPo — P2
< Cpos(|a —ad|+|b— b'|).
MLP(xz) = Wyo(Wix + by) + by is Lipschitz with constant Lip(MLP) <
[|[W2|l2 Lip(o) |[W1l]l2 = Lmwp since ReLU is 1-Lipschitz (c = ReLU, Lip(c) = 1). There-
fore, by compositions of Lipschitz function,
|Encei(a, b) — Encpr(a', )| = [MLP(E(a, b)) — MLP(E(a', )]
< Lue [|E(a,b) — E(a’, V)2
< Lmrp Cpos(‘a - a,| + ‘b — b/|)

D COMPUTATIONAL RESOURCES

All the pretraining experiments is carried out on a single NVIDIA H100 80GB, and the rest of the
experiments are carried out using a NVIDIA A10 24GB. Pretraining of HYPER over a single H100
with parameter specified in Appendix [G] takes 4 days, while fine-tuning and end-to-end training
typically require less than 3 hours.
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HYPER is implemented primarily using PyTorch and PyTorch Geometric (Fey & Lenssen, |2019),
with its core hypergraph message passing implemented via a custom-built Triton kerneﬂ This
optimization approximately halves the training time and reduces memory consumption by a factor
of five on average. Instead of explicitly materializing all hyperedge messages, as is done in PyTorch
Geometric, we directly write neighboring features to the corresponding memory locations during
aggregation. While the naive materialization approach incurs O(k|E|) memory complexity, where
k denotes the maximum arity and | E| the number of hyperedges, our Triton-based approach achieves
O(|V']) memory complexity, depending only on the number of nodes, which enables efficient and
scalable training of HYPER models.

E ADDITIONAL EXPERIMENTS ON KNOWLEDGE GRAPHS

In addition to the knowledge hypergraph inductive settings, we also evaluate our models on inductive
knowledge graph link prediction tasks where both nodes and relations can be unseen during training
(Q6). This setting presents the most challenging scenario as it requires models to generalize to
entirely new knowledge domains with both unseen entities and relation types. We also include
inductive node-only knowledge graph link prediction to further strengthen our point.

Datasets. For inductive on both nodes and relations task, we includes 13 datasets in INGRAM (Lee
et al.,2023)): FB-25, FB-50, FB-75, FB-100, WK-25, WK-50, WK-75, WK-100, NL-0, NL-25, NL-
50, NL-75, NL-100; and 10 datasets in MTDEA (Zhou et al., 2023al): MT1 tax, MT1 health, MT2
org, MT2 sci, MT3 art, MT3 infra, MT4 sci, MT4 health, Metafram, FBNELL. We also include
inductive link prediction on nodes only experiments, containing 12 datasets from GralL (Teru et al.,
2020): WN-v1, WN-v2, WN-v3, WN-v4, FB-v1, FB-v2, FB-v3, FB-v4, NL-v1, NL-v2, NL-v3,
NL-v4; 4 datasets from INDIGO (Liu et al.| [2021): HM 1k, HM 3k, HM 5k, HM Indigo; and 2
datasets from Nodepiece (Galkin et al.}[2022): ILPC Small, ILPC Large.

Baseline. We included the zero-shot version of all the models and also include an existing knowl-
edge graph foundation model as baseline, ULTRA (Galkin et al., 2024), shown in Table [8] Table [9]
Notably, following standard convention, for every triplet r(u, v) in a knowledge graph, we also in-
clude its inverse triplet 7 ~* (v, u), where 7 ~* denotes a newly introduced relation symbol represent-
ing the inverse of r for ULTRA. However, HYPER does not need this procedure as the entity encoder
employs a variant of HCNet (Huang et al., 2025b), which uses bi-directional message-passing and
automatically considers the message from the inverse direction.

Results and Discussion. We observe that ULTRA generally performs better on standard inductive
link prediction on knowledge graphs, although HYPER is still competitive overall. Across both node-
only and node-and-relation inductive benchmarks, HYPER performs on par with ULTRA, and often
outperforms it on datasets with higher relational diversity or structure. These results demonstrate
that the architectural inductive bias of HYPER, originally designed for knowledge hypergraphs, also
transfers well to standard knowledge graphs, without compromising generalization ability.

F COMPLEXITY AND SCALABILITY ANALYSIS OF HYPER

To answer Q7, we first examine the theoretical computational complexity of HYPER in Ap-
pendix [F.1] then present its empirical scalability results when applying on FB15k-237 Appendix[F2]

F.1 THEORETICAL COMPUTATIONAL COMPLEXITY

In this section, we analyze the computational complexity of HYPER. Let G = (V, E, R) denote the
input knowledge hypergraph, where n = |V|, m = |E|, and |R| are the number of entities, hyper-
edges, and relation types, respectively. Let k£ be the maximum arity of R, d the hidden dimension,
and 7' the number of message-passing layers in the relation encoder, and denote L as the number of
message-passing layers in the entity encoder.

Relation Graph Construction The complexity of generating the relation graph in HYPER arises
from computing pairwise positional interactions between relation types across hyperedges of ar-

>https://github.com/triton-lang/triton
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bitrary arity. Unlike knowledge graphs, where each relation involves exactly two fixed positions
(head and tail), knowledge hypergraphs induce up to k2 positional interaction types for a maxi-
mum arity k. For each position a € {1,...,k}, we construct sparse matrices F, € R™*™ that
index entities by their position and relation type. Then, for every pair (a,b), we perform a sparse
matrix multiplication: spmm(E, , E;). Each such multiplication has a worst-case complexity of
O(nnz(E]) - nnz(E,)), where nnz(-) denotes the number of nonzero entries. Since there are k2
position pairs, the total time complexity of constructing the relation graph becomes

O(k? - ?1%)>}<{nnz(EI) -nnz(Ey)}).

In practice, this is significantly accelerated by sparse tensor and batching across position pairs. With-
out sparse matrix multiplication, the naive construction would require iterating over all hyperedge
pairs, resulting in O(k?|E|?) complexity, which is infeasible for large-scale datasets.

Additionally, for the positional interaction encoders, we associate a positional encoding vector
Encpi((a, b)) € R This construction requires O(k?d) time and space to compute and store.

Relation Encoder The relation encoder in HYPER performs 7" layers of message passing over the
relation graph Gye) = (Viel, Erel, Rrel), as constructed before.

There are at most k2 position pairs per pair of relation types, where k is the maximum arity, so the
total number of edges is bounded by

|Erel| = O(|RI?K?).

In each message passing layer, each relation node aggregates messages from up to | R|?k? neigh-
bors, with each edge contributing a message via the corresponding positional interaction embedding
xqp = Encpr((a,b)) € RY. Each node then applies an update with cost O(d?). Thus, the total
complexity of the relation encoder over T layers is

O (T(|R|*k*d + |R|d?)) .

Entity Encoder After obtaining relation embeddings from the relation encoder, HYPER applies
L layers of conditional message passing over the original knowledge hypergraph G = (V, E, R)
using HCNet (Huang et al., [2025b). In each layer, every entity v € V aggregates messages from

its incident hyperedges e € F(v), where each hyperedge contributes a query-conditioned message,
taking O(L(k|E|d), that incorporates its relation embedding h(p:(re))‘q
specific MLP, which takes O(L|R|d?). Each entity then updates its representation through a neural

update function with cost O(d?).

€ R4, followed by a relation-

The total complexity of the entity encoder over L layers is thus

O(L(k|E|d + |V |d® + |R|d?)).

F.2 SCALABILITY ANALYSIS

To empirically assess the scalability of HYPER, we compare HYPER with ULTRA, a prominent
knowledge graph foundation model, and HCNet, a state-of-the-art node-inductive method on link
prediction with knowledge hypergraph. All experiments are conducted on the transductive knowl-
edge graph dataset FB15k-237 using a batch size of 64 to ensure a fair comparison among all three
methods. We summarize the model parameter size, training/inference times, and GPU memory
usage.

Compared with HCNets, HYPER’s training and inference times are approximately doubled since
HYPER employs rwo HCNet encoders, one for relations and one for entities. We argue that this over-
head represents a reasonable trade-off for the substantial performance improvements and stronger
inductive generalization demonstrated by HYPER compared with HCNets.

Compared with ULTRA, the main bottleneck of scalability is the complex modeling of knowledge
graphs as knowledge hypergraphs. These differences essentially reduce to the difference between
HCNet and NBFNets. For a detailed discussion, we refer the reader to|Huang et al.[(2025b).
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Figure 7: Two different reification KG corresponding to the knowledge hypergraph G, from Fig
On the left figure (1), ¢ abbreviates hasEntity,. On the right figure (), R-i abbreviates Research-i,
similarly for A as AtConference, and T as Teaches.

G FURTHER EXPERIMENTAL DETAILS

In this section, we provide detailed experimental configurations and dataset statistics. In particular,
Table [T3] summarizes the training corpora used for each model variant across knowledge graph
and knowledge hypergraph settings. Tables [T4] and [T5] present arity distributions and structural
statistics for the node-inductive datasets, while Table |16] reports the corresponding statistics for
pretraining datasets. For inductive link prediction involving unseen entities and relations, we provide
comprehensive dataset breakdowns in Tables[T7and [T8]

We also include the complete performance tables together with standard deviation for the node-
inductive and node-relation inductive settings shown in Tables [19]to [21] respectively. Table [22]lists
all hyperparameter choices used for pretraining, fine-tuning, and end-to-end training of HYPER.
Finally, Table 23]specifies the dataset-specific training schedules for each experimental regime.

G.1 HYPERPARAMETER DETAILS FOR BASELINES

For G-MPNNs, we adopt the best-performing hyperparameters from the original codebase. Specif-
ically, we set the input dimension d = 64, hidden dimension h = 150, and dropout rate to 0.5.
We use a training batch size b = 128, evaluation batch size B = 4, and negative sampling ratio
nr = 10. The learning rate is set to 0.0005, and models are trained for up to 5000 epochs with
validation evaluated every 5 epochs. Aggregation is performed using the max.

For HCNet, we use a 6-layer encoder with an input dimension of 64 and a hidden dimension of 64 for
all layers. We adopt sum as the aggregation function and enable shortcut connections to facilitate
training. Optimization is performed using AdamW with a learning rate of 5 x 10~%. Training
is conducted with a batch size of 8, using the same number of epochs and batches per epoch as
HYPER, with validation performed every 100 steps. The model is trained with 256 adversarial
negatives sampled per positive example, and strict negative sampling is enforced to prevent overlap
with true triples.

G.2 ADDITIONAL BASELINES FOR KGFMs

To provide a more comprehensive evaluation of Knowledge Graph Foundation Models (KGFMs),
we expanded our analysis beyond ULTRA, which served as the representative KGFM in the main
paper. We additionally evaluated KG-ICL (Cui et al.l [2024), a model that has demonstrated strong
performance on inductive knowledge graph completion tasks. For KG-ICL, we performed zero-
shot experiments across all 16 proposed datasets after reification with 3 variants of KG-ICL using
4 Layer, 5 Layer, and 6 Layer encoders, respectively. We highlight that KG-ICL learns over dif-
ferent pretraining mix than ULTRA (FB-v1, NL-vl, and Codex Small). The results, summarized
in Table [I2] indicate that KG-ICL’s performance is substantially lower than that of HYPER, fur-
ther supporting the conclusion that existing KGFMs exhibit limited generalization on hypergraph
structures.
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G.3 IMPACT OF REIFICATION METHODS ON KGFMs

We proposed an alternative reification used in Section [3] where each hyperedge becomes an auxil-
iary node with outgoing edges hasEntity i to its arguments and one hasRelationType edge to the
relation node (left of Fig. [7), noted as (})). After edge_id node is generated for each edge, we
then generate binary edges of the form hasEntity;(edge_id, u;) for each i € [k] to capture the
positions of the entities in the relation. Finally, we add the original relation r as a node to the KG
and add an edge hasRelationType(edge_id,r).

Intuitively, t adds a two-hop detour (edge_id — hasRelationType — r), unlike { which encodes
the relation and positional information together at the edge types itself. This generally decreases the
performance by over-simplifying the graph structure and disallows KGFM to use different represen-
tations for different relations, making the model less efficient. As a result, we opt not to use this in
reification in the main experiments.

Table shows two main trends. (i) With KG-only pretraining (3KG/4KG/S0KG), ULTRA? is
volatile with the relation explosion and we do not observe scaling behavior, while ULTRA is gener-
ally more robust to the reified knowledge hypergraphs and shows a more consistent trend as number
of pretraining mix grows. (ii) When pretraining includes hypergraphs (4HG), (3KG +2HG), expos-
ing role information at the edge type helps a lot: ULTRA? typically matches or exceeds ULTRA'
across splits.

Nevertheless, all of the reficiation schemes with ULTRA underperform compared with HYPER,
which avoids reification entirely by design and remains strongest by operating directly on hyper-
graph.

G.4 ARCHITECTURE CHOICES OF HYPER

Both the relation and entity encoders in HYPER follow the design based on HCNets (Huang et al.,
2025b), with a minor variant on the relation-specific message functions.

Positional Interactions. In practice, we implement Encp; as a two-layer multilayer perceptron
(MLP) over concatenated sinusoidal encodings of the input positions. Let p,, p, € R¢ denote the
sinusoidal positional encodings of positions a and b, respectively. Specifically, let p,,p, € R?
denote the sinusoidal positional encodings of positions a, b € N, defined componentwise as
fori=0,1,...,% -1,

(Pa)2i = Sin( (Pa)2i+1 = cos(

To000%7) To000%7)
100002/4 /"’ 100002/4 )’

and similarly for py.

Then, the embedding corresponding to the interaction (a, b) is computed as X, , = MLP([p, || Ps]),
where MLP denotes a shared two-layer feedforward network with ReLU activations. This produces
a dense embedding that captures the interaction between the two positions. Empirically, we find that
this instantiation of Encpy enables strong generalization across knowledge hypergraphs with varying
arities and relational structures.

Relation Encoder. The relation encoder applies an HCNet over the constructed relation graph
(Viel; Exel, Rie1). Here, each node r» € Vi represents a relation type in GG, and an edge captures
the induced interactions among relations. For each relation r» € V., HCNet iteratively updates its
()

representation hr |q 35

) = NIl (1, q),

R+ = v (B, A0Gm (§M56,0) ({(BU]4, ) | (7,9) € Noale)} @) | (e,7) € Eua(1)})),

rlq

where FE.(r) is the set of edge-position pairs incident to r, and AN, (e) is the positional neigh-
borhood of hyperedge e at position ¢. After 7" layers, we obtain the final relation encoding hg;).
Here, INITre], UPrel, AGGrel, and MSG,(.) are differentiable initialization, update, aggregation, and
fundamental relation-specific message functions, respectively. The initialization function INIT is

designed to satisfy generalized target node distinguishability as formalized in [Huang et al.| (2025b)).
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Empirically, we initialize the query node ¢ € V} with an all-one vector and all other relation nodes
with zero vectors.

In the experiments, we adopt the fundamental relation-specific message function MsG,, using the
fundamental relation embedding r, ;. Specifically, given a set of neighbor features {(hgf‘)q7 i)
(w, ) € Neer;(€)} for hyperedge e and center position 7, the message is computed as:

Ms6r,., ({(AU)0) | (w.5) € Nai(e)}) = { O (aWR) g+ (1= a)py) | © %

J#i

where © is the elemental-wise multiplication, «(*) is a learnable scalar, p; is the sinusoidal posi-
tional encoding at position j, and X, ; is the fundamental relation embedding computed as described
earlier.

Entity Encoder. In the context of the entity encoder, we apply a separate HCNet over the original

knowledge hypergraph G = (V, E, R). Each node v € V aggregates information from its incident
(T)

rla obtained from the relation encoder.

hyperedges, incorporating the relation embeddings h

Given a query g = (q, @, t), where @ = (uq, ..., ug) denotes the entities in the hyperedge and ¢ is
the target position, each node v € V receives an initial representation defined as:

) _ , (T)
hv|q = Z ]]-v:ui : (pz + hq‘q)v
i#t
where p; € R? is the positional encoding at position .

HYPER then iteratively updates the node representations hfﬂ as:

hv(J(I)t)z = NIt (v, q),

hia D = ue (bl aco(§sG(e) ({(hyjg )| (w, ) € Ni(e)} b)) o @) [(ei) € E()})).

where INIT, UP, AGG, and MSG, are differentiable initialization, update, aggregation, and relation-
specific message functions, respectively, with INIT satisfying generalized targets node distinguisha-
bility (Huang et al., 2025b). After L layers of message passing, we obtain the final entity encoding

hq(J‘Lg. A final unary decoder Dec : RUE) — [0, 1] predicts the score for completing the missing

position ¢ in the query q.

Empirically, we select the relation-specific message function MsG,,(c) to be

ple

¢ . . 4 T
wsa, ({(A).9) | (w,j) € Ni(e)}) = g(a”hi&)qﬂl—a(@)m) oMLpO (AT ),
JF

where additionally MLP®) s a 2-layer MLP with ReLU to transform the relation representation
most suitable for each specific layer during message passing.

Update. We use summation as the aggregation operator for both relation and entity nodes. Each
node updates its representation via a two-layer MLP applied to the concatenation of its current state
and the aggregated message:

RHD — MLP® ([hfﬁl I AGGREGATESJ?]}) ,

v|q

where AGGREGATE'")

vlg )
and || represents vector concatenation.

denotes the sum of incoming messages to node v under query q at layer /,

Other. We also apply layer normalization and shortcut connections after aggregation and before
the ReLU activation in both encoders.
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G.5 TRAINING OBJECTIVE

Following prior work (Huang et al.| [2025b)), we train HYPER under the partial completeness as-
sumption (Galarraga et al., [2013)), where each k-ary fact g(us, ..., u) is used to generate training
samples by randomly masking one position 1 < ¢ < k. Given a query ¢ = (g, u,t), we model

the conditional probability of entity v € V filling the missing position as p(v|q) = o(Dec(hfleq))),
where Dec is a two-layer MLP and o denotes the sigmoid activation. We optimize the following

self-adversarial negative sampling loss (Sun et al.| 2019):

L(vlg) = ~logp(vlg) — D wi,alog(l — p(vilq)),
i=1
where v; are corrupted negative samples, n is the number of negatives per query, o being the adver-
sarial temperature, and w; ,, are the importance weights defined by

— !
Wi, o0 = Softmax (M> )
«

To mitigate overfitting, we exclude edges that directly connect query node pairs during training.
The best model checkpoint is selected based on validation performance. Following the implementa-
tion of ULTRA (Galkin et al.l [2024), for pertaining over multiple knowledge graph and knowledge
hypergraphs, for each batch, we sample from one of the pretrained (hyper)graphs with probability
proportional to the number of edges it contains.
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Table 7: Arity distribution across node-relation inductive datasets.

Dataset Arity Training Graph Inference Graph Training % Inference %
2 1585 266 47.02% 25.19%
JE-25 3 1441 670 42.75% 63.45%
4 326 120 9.67% 11.36%
>5 19 0 0.56% 0.00%
2 1942 321 55.11% 24.85%
JF-50 3 1297 692 36.80% 53.56%
4 285 279 8.09% 21.59%
>5 0 0 0.00% 0.00%
2 2641 824 61.60% 48.56%
JE.75 3 848 846 19.78% 49.85%
4 779 27 18.17% 1.59%
>5 19 0 0.44% 0.00%
2 1349 1637 55.08% 75.82%
JE-100 3 570 283 23.27% 13.11%
4 511 159 20.87% 7.36%
>5 19 80 0.78% 3.71%
2 4,331 2,799 79.00% 90.12%
9
WD-25 3 612 162 11.16% 5.22%
4 463 144 8.45% 4.64%
>5 76 1 1.39% 0.03%
2 7709 4355 80.84% 99.20%
WP-50 3 1106 28 11.60% 0.64%
4 667 3 6.99% 0.07%
>5 54 4 0.57% 0.09%
2 6471 6121 69.80% 98.39%
WP-75 3 1725 82 18.61% 1.32%
4 1026 15 11.07% 0.24%
>5 49 3 0.53% 0.05%
2 6471 7413 69.80% 98.63%
g L
WP-100 3 1725 91 18.61% 1.21%
4 1026 6 11.07% 0.08%
>5 49 6 0.53% 0.08%
2 3,680 1,941 87.60% 93.81%
WD-25 3 211 114 5.02% 5.51%
4 279 12 6.64% 0.58%
>5 31 2 0.74% 0.10%
2 3,238 2,127 78.08% 90.40%
WD-50 3 417 86 10.06% 3.65%
4 438 136 10.56% 5.78%
>5 54 4 1.30% 0.17%
2 4,900 5,669 77.72% 97.22%
0] 0
WD-75 3 769 139 12.20% 2.38%
4 548 22 8.69% 0.38%
>5 88 1 1.40% 0.02%
2 5,858 3,631 80.57% 91.90%
WD-100 3 906 186 12.46% 4.71%
4 397 134 5.46% 3.39%
>5 110 0 1.51% 0.00%
2 137 1555 1.67% 55.50%
MEB-25 3 8045 831 98.33% 29.66%
4 0 0 0.00% 0.00%
>5 0 416 0.00% 14.85%
2 149 1400 1.77% 57.711%
q 0]
MFB-50 3 8260 756 98.23% 31.16%
4 0 0 0.00% 0.00%
>5 0 270 0.00% 11.13%
2 2774 368 52.63% 9.18%
MEB-75 3 2497 3639 47.37% 90.79%
4 0 1 0.00% 0.02%
>5 0 0 0.00% 0.00%
2 726 3234 6.23% 71.64%
MEB-100 3 10932 370 93.77% 8.20%
4 0 0 0.00% 0.00%
>5 0 910 0.00% 20.16%
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Table 8: Zero-shot experiment results on node and relation inductive knowledge graph datasets

Method FB-25 | FB-50 | FB-75 | FB-100 | WK-25 | WK-50 | WK-75 | WK-100
MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10
ULTRA(BKG) 0.388 0.640 0.338 0.543 0.403 0.604 0.449 0.642 0.316 0.532 0.166 0.324 0.365 0.537 0.164 0.286
HYPER(3KG) 0.372 0.614 0.313 0.513 0.373 0.568 0.412 0.598 0.276 0.410 0.145 0.281 0.334 0.460 0.171 0.271
HYPER(4HG) 0.277 0.538 0.225 0.427 0.287 0.503 0.336 0.567 0.215 0.422 0.117 0.245 0.280 0.491 0.125 0.247
HYPER(3KG + 2HG) 0.382 0.635 0.326 0.535 0.389 0.598 0.434 0.632 0.281 0.428 0.158 0.280 0.365 0.522 0.160 0.280
NL-25 NL-50 NL-75 NL-100 MT1-tax MT1-health MT2-org MT2-sci
Method
MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10
ULTRA(3G) 0.395 0.569 0.407 0.570 0.368 0.547 0.471 0.651 0.224 0.305 0.298 0.374 0.095 0.159 0.258 0.354
HYPER(3KG) 0.321 0.550 0.350 0.520 0.320 0.483 0.415 0.627 0.234 0.306 0.361 0.431 0.088 0.142 0.256 0.339
HYPER(4HG) 0.214 0.431 0.226 0.480 0.252 0.455 0.333 0.618 0.200 0.274 0.266 0.358 0.063 0.116 0.195 0.320
HYPER(3KG + 2HG) 0.360 0.558 0.376 0.547 0.342 0.540 0.473 0.685 0.204 0.396 0.222 0.399 0.087 0.149 0.258 0.428
Method MT3-art MT3-infra MT4-sci MT4-health Metafam FBNELL NL-0 Average
MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10
ULTRA(BKG) 0.259 0.402 0.619 0.755 0.274 0.449 0.624 0.737 0.238 0.644 0.485 0.652 0.342 0.523 0.345 0.513
HYPER(3KG) 0.257 0.402 0.562 0.695 0.259 0.415 0.547 0.723 0.395 0.804 0.447 0.617 0.312 0.501 0.318 0.492
HYPER(4HG) 0.152 0.265 0.363 0.451 0.232 0.412 0.380 0.556 0.191 0.606 0.320 0.537 0.171 0.393 0.228 0.419

HYPER(3KG + 2HG) 0.270 0.425 0.573 0.716 0.270 0.441 0.560 0.724 0.457 0.875 0.450 0.639 0.334 0.526 0.336 0.520

Table 9: Zero-shot experiment results on node inductive knowledge graph datasets. The best result
for each dataset is in bold.

Method WN-v1 WN-v2 WN-v3 WN-v4 FB-vl FB-v2
MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10
ULTRA(BKG) 0.648 0.768 0.663 0.765 0.376 0.476 0.611 0.705 0.498 0.656 0.512 0.700
HYPER(3KG) 0.703 0.799 0.681 0.788 0.400 0.522 0.644 0.721 0.450 0.622 0.474 0.663
HYPER(4HG) 0.530 0.720 0.533 0.691 0.287 0.392 0.514 0.652 0.263 0.476 0.308 0.527
HYPER(3KG +2HG) 0.702 0.782 0.686 0.785 0.385 0.503 0.640 0.710 0.454 0.648 0.480 0.695
Method FB-v3 FB-v4 NL-v1 NL-v2 NL-v3 NL-v4
MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@I10
ULTRA(3KG) 0.491 0.654 0.486 0.677 0.785 0.913 0.526 0.707 0.515 0.702 0.479 0.712
HYPER(3KG) 0.460 0.627 0.460 0.653 0.619 0.868 0.514 0.719 0.510 0.692 0.468 0.697
HYPER(4HG) 0.276 0.482 0.280 0.504 0.516 0.863 0.345 0.639 0.340 0.610 0.269 0.582
HYPER(3KG + 2HG) 0.466 0.648 0.460 0.663 0.570 0.719 0.521 0.741 0.509 0.705 0.501 0.728
Method ILPC Small ILPC Large HM 1k HM 3k HM 5k HM Indigo
MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@I10
ULTRA(3KG) 0.302 0.443 0290 0.424 0.059 0.092 0.037 0.077 0.034 0.071 0.440 0.648
HYPER(3KG) 0.291 0.438 0293 0412 0.046 0.092 0.036 0.073 0.033 0.069 0.437 0.644
HYPER(4HG) 0.169 0.347 0.183 0.327 0.027 0.075 0.024 0.064 0.024 0.058 0.298 0.484

HYPER(3KG +2HG) 0.296 0.448 0.289 0.417 0.043 0.106 0.037 0.092 0.034 0.086 0.401 0.614

Table 10: Scalability comparison on FB15k-237 with batch size = 64.

Training Time Inference Time

Model # Parameters (s/batch) (s/batch) GPU Memory (GB)
ULTRA 168,705 1.19 0.066 12.87
HCNet 159,297 2.64 0.156 18.03
HYPER 225,409 4.51 0.272 25.30
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Table 11: Zero-shot MRR results on node and relation inductive knowledge hypergraph datasets.
Superscript § means the model is applied over the reification shown in the main body, and } means
the model is applied with the alternative reification.

Method JF MFB WP WD
25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100

ULTRA* (3KG) 0.103 0.437 0.168 0.144 0.255 0.235 0.154 0.277 0.039 0.077 0.073 0.078 0.117 0.155 0.116 0.161
ULTRA? (4KG) 0.011 0.298 0.042 0.082 0.217 0.170 0.043 0.135 0.009 0.006 0.006 0.004 0.027 0.069 0.063 0.065
ULTRA¥ (50KG) 0.001 0.096 0.010 0.001 0.225 0.083 0.001 0.190 0.006 0.009 0.009 0.004 0.008 0.001 0.001 0.001
ULTRA* (4HG) 0.154 0.442 0.175 0.170 0.338 0.236 0.129 0.280 0.052 0.091 0.089 0.089 0.076 0.175 0.052 0.136
ULTRA*(3KG+2HG) 0.209 0.446 0.187 0.168 0.343 0.236 0.128 0.283 0.045 0.086 0.080 0.090 0.183 0.182 0.127 0.137
ULTRAT (3KG) 0.119 0.304 0.109 0.091 0.209 0.153 0.062 0.222 0.040 0.070 0.067 0.071 0.171 0.201 0.149 0.176
ULTRAT (4KG) 0.099 0.325 0.102 0.132 0.343 0.215 0.111 0.274 0.047 0.091 0.089 0.086 0.094 0.141 0.054 0.075
ULTRAT (50KG) 0.147 0.407 0.126 0.111 0.310 0.218 0.100 0.262 0.045 0.071 0.045 0.065 0.062 0.124 0.104 0.150
ULTRAT (4HG) 0.093 0.293 0.102 0.113 0.226 0.143 0.065 0.236 0.043 0.069 0.065 0.068 0.147 0.159 0.092 0.089
ULTRAT(3KG+2HG) 0.114 0.340 0.121 0.120 0.272 0.197 0.109 0.240 0.026 0.070 0.052 0.066 0.128 0.167 0.117 0.138
HYPER(3KG) 0.148 0.297 0.112 0.130 0.248 0.191 0.039 0.276 0.143 0.147 0.186 0.221 0.167 0.158 0.123 0.146
HYPER(4KG) 0.109 0.065 0.128 0.087 0.116 0.117 0.089 0.148 0.074 0.212 0.175 0.180 0.148 0.111 0.150 0.255
HYPER(50KG) 0.056 0.294 0.084 0.111 0.122 0.156 0.126 0.148 0.067 0.198 0.191 0.155 0.073 0.055 0.130 0.088
HYPER(4HG) 0.187 0.377 0.188 0.181 0.349 0.244 0.139 0.278 0.075 0.068 0.086 0.168 0.087 0.158 0.057 0.165

HyYPER(KG+2HG)  0.216 0455 0213 0.173 0.363 0250 0.140 0.299 0.132 0.152 0.192 0222 0.223 0200 0.154 0.182

Table 12: Average zero-shot inference MRR over 16 newly proposed dataset comparison across
KG-ICL, ULTRA, and HYPER variants.

Model Average MRR
KG-ICL(4 Layer) 0.139
KG-ICL(5 Layer) 0.048
KG-ICL(6 Layer) 0.143
ULTRA3KG) 0.162
ULTRA(4KG) 0.078
ULTRA(50KG) 0.040
ULTRA(4HG) 0.168
ULTRA(BKG+2HG) 0.183
HYPER (3KG) 0.161
HYPER (4KG) 0.135
HYPER (50KG) 0.135
HYPER (4HG) 0.128
HYPER (3KG+2HG) 0.236

Table 13: Training datasets for model variants

[l Knowledge Hypergraph | Knowledge Graph
|| JF17K FB-AUTO Wikipeople MFBI5K | FB15k-237 WNI8RR CodEx Medium NELL995 Others(46G)

Model

ULTRA(3KG)
ULTRA(4KG)
ULTRA(50KG)
ULTRA(4HG) v v
ULTRA(3KG + 2HG) v

HYPER(3KG)
HYPER(4KG)
HYPER(50KG)
HYPER(4HG)
HYPER(BKG + 2HG)

HYPER(end2end)
HCNet

v
v

SN

NN RN NENEN
NN RN NN

AN RN NENEN
SEN

s
SN
&\
\

Trained directly on target dataset’s training graph
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Table 14: Arity distribution across node inductive datasets.

Dataset Arity Training Graph Inference Graph Training % Inference %
2 264 9 4.28% 2.93%
JFIND 3 4586 216 74.36% 70.36%
4 1317 82 21.36% 26.71%
>5 0 0 0.00% 0.00%
2 0 0 0.00% 0.00%
WP-IND 3 3375 476 81.54% 86.39%
4 764 75 18.46% 13.61%
>5 0 0 0.00% 0.00%
2 0 0 0.00% 0.00%
MFB-IND 3 336733 7527 100.00% 100.00%
4 0 0 0.00% 0.00%
>5 0 0 0.00% 0.00%

Table 15: Dataset statistics of inductive link prediction task with knowledge hypergraph.

Statistic JF-IND WP-IND MFB-IND
# seen vertices 4,685 4,463 3,283

# train hyperedges 6,167 4,139 336,733
# unseen vertices 100 100 500

# relations 31 32 12

# max arity 4 4 3

Table 16: Dataset statistics of pretrained knowledge hypergraphs and knowledge graphs with re-

spective arity.

Dataset | FB-AUTO  WikiPeople JF17K  MFBI15K | FB15k237 WNI8RR CoDEx-M
V] 3,410 47,765 29,177 10,314 14541 40943 17050
|R| 8 707 327 71 237 11 51

# train 6,778 305,725 61,104 415,375 272115 86835 185584
# valid 2,255 38,223 15,275 39,348 17535 3034 10310
# test 2,180 38,281 24,915 38,797 20466 3134 10311
# max arity 5 9 6 5 2 2 2

# arity= 2 3,786 337,914 56,322 82,247 310,116 93,003 206,205
# arity= 3 0 25,820 34,550 400,027 0 0 0

# arity= 4 215 15,188 9,509 26 0 0 0

# arity> 5 7,212 3,307 2,267 11,220 0 0 0
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Table 17: Dataset statistics for inductive on both node and relation link prediction datasets. Triples
are the number of edges given at training, validation, or test graphs, respectively, whereas Valid and
Test denote triples to be predicted in the validation and test graphs.

Dataset Training Graph Validation Graph Test Graph

Entities Rels  Triples \ Entities Rels  Triples  Valid \ Entities Rels  Triples Test
FB-25 5190 163 91571 4097 216 17147 5716 4097 216 17147 5716
FB-50 5190 153 85375 4445 205 11636 3879 4445 205 11636 3879
FB-75 4659 134 62809 2792 186 9316 3106 2792 186 9316 3106
FB-100 4659 134 62809 2624 77 6987 2329 2624 77 6987 2329
WK-25 12659 47 41873 3228 74 3391 1130 3228 74 3391 1131
WK-50 12022 72 82481 9328 93 9672 3224 9328 93 9672 3225
WK-75 6853 52 28741 2722 65 3430 1143 2722 65 3430 1144
WK-100 9784 67 49875 12136 37 13487 4496 12136 37 13487 4496
NL-0 1814 134 7796 2026 112 2287 763 2026 112 2287 763
NL-25 4396 106 17578 2146 120 2230 743 2146 120 2230 744
NL-50 4396 106 17578 2335 119 2576 859 2335 119 2576 859
NL-75 2607 96 11058 1578 116 1818 606 1578 116 1818 607
NL-100 1258 55 7832 1709 53 2378 793 1709 53 2378 793
Metafam 1316 28 13821 1316 28 13821 590 656 28 7257 184
FBNELL 4636 100 10275 4636 100 10275 1055 4752 183 10685 597
Wiki MT1 tax 10000 10 17178 10000 10 17178 1908 10000 9 16526 1834
Wiki MT1 health 10000 7 14371 10000 7 14371 1596 10000 7 14110 1566
Wiki MT2 org 10000 10 23233 10000 10 23233 2581 10000 11 21976 2441
Wiki MT2 sci 10000 16 16471 10000 16 16471 1830 10000 16 14852 1650
Wiki MT3 art 10000 45 27262 10000 45 27262 3026 10000 45 28023 3113
Wiki MT3 infra 10000 24 21990 10000 24 21990 2443 10000 27 21646 2405
Wiki MT4 sci 10000 42 12576 10000 42 12576 1397 10000 42 12516 1388
Wiki MT4 health 10000 21 15539 10000 21 15539 1725 10000 20 15337 1703

Table 18: Dataset statistics for inductive-e link prediction datasets. Triples are the number of edges
given at training, validation, or test graphs, respectively, whereas Valid and Test denote triples to be
predicted in the validation and test graphs.

Dataset Rels Training Graph Validation Graph Test Graph
Entities Triples | Entities Triples Valid | Entities Triples  Test
FB-vl 180 1594 4245 1594 4245 489 1093 1993 411
FB-v2 200 2608 9739 2608 9739 1166 1660 4145 947
FB-v3 215 3668 17986 3668 17986 2194 2501 7406 1731
FB-v4 219 4707 27203 4707 27203 3352 3051 11714 2840
WN-v1 9 2746 5410 2746 5410 630 922 1618 373
WN-v2 10 6954 15262 6954 15262 1838 2757 4011 852
WN-v3 11 12078 25901 12078 25901 3097 5084 6327 1143
WN-v4 9 3861 7940 3861 7940 934 7084 12334 2823
NL-vl 14 3103 4687 3103 4687 414 225 833 201
NL-v2 88 2564 8219 2564 8219 922 2086 4586 935
NL-v3 142 4647 16393 4647 16393 1851 3566 8048 1620
NL-v4 76 2092 7546 2092 7546 876 2795 7073 1447
ILPC Small 48 10230 78616 6653 20960 2908 6653 20960 2902
ILPC Large 65 46626 202446 | 29246 77044 10179 | 29246 77044 10184
HM 1k 11 36237 93364 36311 93364 1771 9899 18638 476
HM 3k 11 32118 71097 32250 71097 1201 19218 38285 1349
HM 5k 11 28601 57601 28744 57601 900 23792 48425 2124
HM Indigo 229 12721 121601 12797 121601 14121 14775 250195 14904
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Table 19: Experiment result on node and relation inductive knowledge hypergraph datasets for JF

and WP.
Method JEF-25 JF-50 JF-75 JF-100
MRR H@l H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10
G-MPNN 0.006 0.004 0.004 0.007 0.003 0.000 0.000 0.003 0.001 0.000 0.000 0.000 0.002 0.000 0.000 0.000
HCNet 0.011 0.004 0.007 0.011 0.009 0.000 0.000 0.024 0.069 0.038 0.072 0.125 0.028 0.000 0.018 0.054
0.202 0.117 0.226 0.346 0.468 0.358 0.540 0.653 0.207 0.125 0.226 0.357 0.198 0.107 0.161 0.411
HYPER(end2end)

+.003 £.002 £.006

+.005

4.004 £.007 £.002

+.003

+.005 £.004 +£.006

+.003

+.008 £.002 +.004

+.003

ULTRA*(3KG)(0-shot)
ULTRA* (4KG)(0-shot)
ULTRA*(50KG)(0-shot)
ULTRA (4HG)(0-shot)
ULTRA¥ (3KG+2HG)(0-shot)

0.103 0.039 0.095
0.011 0.004 0.011
0.001 0.000 0.000
0.154 0.067 0.155
0.209 0.113 0.216

0.240
0.035
0.000
0.336
0.413

0.437 0.301 0.581
0.298 0.196 0.368
0.096 0.089 0.102
0.442 0.288 0.539
0.446 0.293 0.547

0.699
0.468
0.105
0.696
0.707

0.168 0.100 0.160
0.042 0.025 0.050
0.010 0.006 0.013
0.175 0.085 0.185
0.187 0.097 0.197

0.288
0.072
0.016
0.339
0.342

0.144 0.089 0.143
0.082 0.071 0.089
0.001 0.000 0.000
0.170 0.107 0.143
0.168 0.107 0.143

0.196
0.107
0.000
0.286
0.286

HYPER(3KG)(0-shot)
HYPER(4KG)(0-shot)
HYPER(50KG)(0-shot)
HYPER(4HG)(0-shot)
HYPER(3KG + 2HG)(0-shot)

0.148 0.071 0.152
0.109 0.078 0.122
0.056 0.022 0.044
0.187 0.095 0.219
0.216 0.122 0.233

0.318
0.178
0.167
0.360
0.413

0.297 0.212 0.336
0.065 0.009 0.037
0.294 0.204 0.352
0.377 0.239 0.476
0.455 0.325 0.556

0.460
0.241
0.463
0.608
0.664

0.112 0.041 0.132
0.128 0.078 0.104
0.084 0.026 0.104
0.188 0.110 0.204
0.213 0.122 0.231

0.254
0.247
0.208
0.370
0.367

0.130 0.018 0.107
0.087 0.000 0.054
0.111 0.018 0.089
0.181 0.089 0.161
0.173 0.071 0.179

0.375
0.286
0.321
0.464
0.446

ULTRA (3KG+2HG)(finetuned)

HYPER(3KG + 2HG)(finetuned)

0.214 0.109 0.221
+.005 £.003 +.006
0.217 0.131 0.226
£.001 £.002 £.004

0.406
+.007
0.389
=+.006

0.438 0.301 0.539
+.006 £.004 +.008
0.456 0.331 0.554
£.003 £.005 £.002

0.698
+.007
0.672
=+.001

0.193 0.102 0.204
4.003 £.002 +.005
0.209 0.119 0.238
4.004 £.006 £.003

0.351
+.006
0.361
+.007

0.174 0.103 0.149
+.004 £.003 4-.002
0.176 0.089 0.161
+.005 £.003 £.008

0.279
4.005
0.393
+.002

Method WP-25 WP-50 WP-75 WP-100
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10
G-MPNN 0.005 0.003 0.005 0.006 0.002 0.001 0.000 0.002 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.001
HCNet 0.104 0.048 0.114 0.230 0.050 0.025 0.059 0.087 0.019 0.010 0.020 0.032 0.003 0.000 0.000 0.003
0.159 0.071 0.172 0.358 0.143 0.082 0.157 0.260 0.139 0.072 0.129 0.294 0.202 0.106 0.190 0.418
HYPER(end2end)

+.003 £.004 +£.005

=+.006

4.002 £.003 £.004

+.007

=4.003 £.001 +£.005

=+.006

=£.002 £.003 +.004

+.007

ULTRA? (3KG)(0-shot)
ULTRA? (4KG)(0-shot)
ULTRA* (50KG)(0-shot)
ULTRA ¥ (4HG)(0-shot)
ULTRA* (3KG+2HG)(0-shot)

0.039 0.015 0.034
0.009 0.000 0.002
0.006 0.005 0.007
0.052 0.023 0.070
0.045 0.016 0.060

0.108
0.041
0.007
0.103
0.096

0.077 0.035 0.098
0.006 0.000 0.002
0.009 0.007 0.012
0.091 0.044 0.121
0.086 0.041 0.110

0.160
0.022
0.012
0.166
0.161

0.073 0.037 0.079
0.006 0.001 0.001
0.009 0.008 0.010
0.089 0.048 0.102
0.080 0.039 0.096

0.158
0.024
0.011
0.168
0.159

0.078 0.048 0.084
0.004 0.000 0.000
0.004 0.003 0.006
0.089 0.055 0.103
0.090 0.055 0.109

0.148
0.023
0.006
0.158
0.158

HYPER(3KG)(0-shot)
HYPER(4KG)(0-shot)
HYPER(50KG)(0-shot)
HYPER(4HG)(0-shot)
HYPER(3KG + 2HG)(0-shot)

0.143 0.057 0.138
0.074 0.016 0.094
0.067 0.016 0.094
0.075 0.033 0.094
0.132 0.058 0.151

0.349
0.219
0.156
0.186
0.296

0.147 0.073 0.159
0.212 0.141 0.250
0.198 0.109 0.234
0.068 0.056 0.080
0.152 0.086 0.178

0.327
0.391
0.406
0.081
0.295

0.186 0.097 0.186
0.175 0.078 0.188
0.191 0.078 0.172
0.086 0.066 0.107
0.192 0.107 0.201

0.391
0.438
0.500
0.114
0.384

0.221 0.106 0.241
0.180 0.062 0.188
0.155 0.031 0.109
0.168 0.080 0.190
0.222 0.132 0.209

0.498
0.516
0.563
0.360
0.453

ULTRA* (3KG+2HG)(finetuned)

HYPER(3KG + 2HG)(finetuned)

0.051 0.019 0.066
+.003 £.002 +.004
0.169 0.078 0.164
+.003 £.002 +.004

0.104
+.005
0.399
+.005

0.092 0.046 0.118
+.004 £.003 +.006
0.171 0.103 0.201
+.001 £.006 +.002

0.169
+.007
0.306
+.007

0.086 0.044 0.103
+.005 £.002 +.004
0.194 0.112 0.199
4.003 £.004 +.002

0.167
+.006
0.375
+.005

0.097 0.061 0.116
+.004 £.003 4.005
0.210 0.116 0.206
4.006 £.003 £-.004

0.166
+.007
0.424
4.002
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Table 20: Experiment result on node and relation inductive knowledge hypergraph datasets for WD

and MFB.

Method WD-25 WD-50 WD-75 WD-100
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10
G-MPNN 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.001 0.000 0.000 0.001
HCNet 0.086 0.050 0.096 0.136 0.043 0.027 0.044 0.060 0.015 0.006 0.023 0.030 0.007 0.004 0.005 0.007
HyPER(end2end) 0.215 0.132 0.225 0.394 0.205 0.153 0.219 0.317 0.172 0.105 0.194 0.298 0.205 0.139 0.226 0.342
encze 4,002 £.006 £.005 004 =£.007 £.003 £.006 £.002 £.003 +.004 £.003 £.007 £.002 £.008 +.004 +.005
ULTRA1(3KG)(0»ShOt) 0.117 0.040 0.132 0.315 0.155 0.087 0.175 0.311 0.116 0.060 0.109 0.263 0.161 0.105 0.165 0.311
ULTRA1(4KG)(0—shOt) 0.027 0.013 0.033 0.063 0.069 0.060 0.077 0.093 0.063 0.040 0.069 0.128 0.065 0.040 0.070 0.137
ULTRAI(SOKG)(O—ShOl) 0.008 0.007 0.010 0.010 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.004 0.004
ULTRAi(4HG)(0—Sh0t) 0.076 0.096 0.185 0.348 0.175 0.109 0.191 0.311 0.052 0.084 0.162 0.303 0.136 0.128 0.212 0.344
ULTRAi(3KG+2HG)(0—ShOt) 0.183 0.103 0.209 0.351 0.182 0.115 0.202 0.328 0.127 0.092 0.161 0.302 0.137 0.130 0.211 0.347
HYPER(3KG)(0-shot) 0.167 0.010 0.172 0.331 0.158 0.104 0.175 0.295 0.123 0.005 0.142 0.255 0.146 0.077 0.168 0.281
HYPER(4KG)(0-shot) 0.148 0.061 0.167 0.394 0.111 0.016 0.203 0.297 0.150 0.047 0.188 0.375 0.255 0.209 0.269 0.373
HYPER(50KG)(0-shot) 0.073 0.046 0.091 0.136 0.055 0.031 0.078 0.109 0.130 0.078 0.141 0.281 0.088 0.015 0.164 0.194
HYPER(4HG)(0-shot) 0.087 0.076 0.093 0.103 0.158 0.142 0.164 0.197 0.057 0.051 0.062 0.064 0.165 0.139 0.177 0.233
HYPER(3KG + 2HG)(0-shot) 0.223 0.156 0.225 0.404 0.200 0.148 0.208 0.317 0.154 0.093 0.168 0.275 0.182 0.133 0.177 0.286
1 0.191 0.108 0.218 0.364 0.189 0.121 0.210 0.341 0.134 0.097 0.169 0.314 0.145 0.137 0.219 0.349
ULTRA®(3KG+2HG)(finetuned) | 00, 1 003 4 005 +.006 +.003 £.004 £.006 £.007 +.004 £.002 +.005 £.006 +.003 £.004 +.006 +.007
HYPER(3KG + 2HG)(finetuned) 0.225 0.146 0.245 0.397 0.234 0.186 0.230 0.355 0.166 0.101 0.189 0.294 0.210 0.140 0.235 0.351
CUNCE) " 1 003 +£.005 £.004 £.006 £.002 £.007 £.003 £.001 =+.005 £.003 £.006 £.004 £.002 +.008 £+.003 +.005

Method MFB-25 MFB-50 MFB-75 MFB-100
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10
G-MPNN 0.002 0.000 0.000 0.004 0.004 0.001 0.003 0.007 0.007 0.003 0.004 0.010 0.003 0.000 0.002 0.005
HCNet 0.033 0.008 0.008 0.108 0.026 0.013 0.022 0.041 0.016 0.007 0.009 0.021 0.082 0.028 0.085 0.227
HyPER(end2end) 0.332 0.221 0.388 0.533 0.200 0.105 0.251 0.374 0.135 0.070 0.143 0.255 0.222 0.169 0.228 0.317
4,005 £.004 £.003 £.002 £.006 £+.004 £.007 £.005 £.003 £.006 £.002 £.008 £.001 £.005 +.004 003
ULTRAI(?)KG)(O—ShOI) 0.255 0.258 0.408 0.525 0.235 0.148 0.269 0.384 0.154 0.084 0.166 0.274 0.277 0.201 0.315 0.412
ULTRAI(4KG)(O-sh0t) 0.217 0.158 0.267 0.308 0.170 0.113 0.206 0.269 0.043 0.025 0.048 0.084 0.135 0.032 0.234 0.271
ULTRAI(SOKG)(OfShOt) 0.225 0.196 0.254 0.263 0.083 0.074 0.094 0.097 0.001 0.000 0.000 0.000 0.190 0.156 0.221 0.247
ULTRA1(4HG)(0»shOt) 0.338 0.225 0.400 0.521 0.236 0.145 0.282 0.404 0.129 0.081 0.171 0.344 0.280 0.194 0.323 0.435
ULTRA1(3KG+2HG)(O—ShOt) 0.343 0.233 0.413 0.538 0.236 0.137 0.286 0.408 0.128 0.076 0.183 0.352 0.283 0.200 0.325 0.437
HYPER(3KG)(0-shot) 0.248 0.167 0.283 0.396 0.191 0.123 0.216 0.296 0.039 0.016 0.029 0.073 0.276 0.198 0.311 0.416
HYPER(4KG)(0-shot) 0.116 0.061 0.134 0.268 0.117 0.060 0.155 0.238 0.089 0.011 0.129 0.204 0.148 0.073 0.171 0.293
HYPER(50KG)(0-shot) 0.122 0.061 0.134 0.232 0.156 0.119 0.155 0.214 0.126 0.086 0.118 0.204 0.148 0.073 0.195 0.256
HYPER(4HG)(0-shot) 0.349 0.258 0.400 0.546 0.244 0.169 0.286 0.382 0.139 0.082 0.140 0.244 0.278 0.195 0.316 0.441
HYPER(3KG + 2HG)(0-shot) 0.363 0.263 0.417 0.550 0.250 0.167 0.287 0.393 0.140 0.077 0.140 0.260 0.299 0.214 0.339 0.449
1 0.351 0.241 0.425 0.552 0.244 0.145 0.297 0.401 0.136 0.081 0.182 0.364 0.291 0.209 0.336 0.449
ULTRA®(3KG+2HG)(finetuned) |05 1" 004 1 006 +.007 £.003 £.002 £.005 £.006 £.003 £.002 +.004 £.006 £.004 £.003 4005 £.007

HYPER(3KG + 2HG)(finetuned)

0.347 0.229 0.408
+.004 £.006 +£.003

0.533
4.002

0.243 0.163 0.286
+.005 £.006 +.007

0.391
+.004

0.158 0.088 0.161
4.002 £.005 +.003

0.302
+.006

0.275 0.197 0.290
4.002 £.008 £-.003

0.452
+.004
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Table 21: Experiment result on node-inductive knowledge hypergraph datasets.

Method JF-IND WP-IND MFB-IND
MRR H@l H@3 MRR H@l H@3 MRR H@l H@3
HGNN 0.102 0.086 0.128 0.072 0.045 0.112 0.121 0.076 0.114
HyperGCN 0.099 0.088 0.133 0.075 0.049 0.111 0.118 0.074 0.117
G-MPNN 0.219 0.155 0.236 0.177 0.108 0.191 0.124 0.071 0.123
RD-MPNN 0.402 0.308 0.453 0.304 0.238 0.328 0.122 0.082 0.125
HCNet 0.435 0357 0495 0414 0.352 0451 0.368 0.223 0.417
0.422 0.320 0.483 0.435 0.367 0471 0.427 0.290 0.499
HYPER(end2end)
+.004  £.006 4007  +.005 +£.004 £006 +003  £005  =£.004
ULTRA*(3KG)(0-shot) 0.321 0.221 0.383 0.305 0.242 0.320 0.277 0.161 0.316
ULTRA¥(4KG)(0-shot) 0.065 0.004 0.079 0.123 0.102 0.114 0.096 0.068 0.112
ULTRA¥(50KG)(0-shot) 0.008 0.000 0.002 0.029 0.024 0.027 0.026 0.020 0.031
ULTRA¥(4HG)(0-shot) 0.397 0.274 0.466 0.319 0.330 0.467 0.264 0.141 0.299
ULTRA¥(3KG+2HG)(0-shot) 0410 0.294 0.489 0.341 0.352 0.480 0.294 0.164 0.325
HYPER(3KG)(0-shot) 0.263 0.177 0.281 0.259 0.176 0.307 0.184 0.123 0.196
HYPER(4KG)(0-shot) 0.266 0.182 0.313 0.231 0.168 0.267 0.120 0.073 0.115
HYPER(50KG)(0-shot) 0.302 0.212 0.354 0.253 0.188 0.248 0.248 0.157 0.271
HYPER(4HG)(0-shot) 0.403 0.277 0.501 0.375 0.297 0410 0.497 0.351 0.582
HYPER(3KG + 2HG)(0-shot) 0.459 0.365 0.515 0.415 0.338 0.454 0.404 0.267 0.480
ULTRA!(3KG+2HG) (finetuned) 0.421 0.302 0.501 0.349 0.361 0.492 0.303 0.171 0.337
+.006  £.004 4007  +003  £.005 £.006 +004 £002  =£.005
0.463 0.373 0.517 0.446 0.379 0.482 0.455 0.318 0.530

HYPER(3KG + 2HG)(finetuned)

+.002

+.003

+.008

+.008

+.009

+.007

+.003

+.007

+.005
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Table 22: HYPER hyper-parameters for pretraining, fine-tuning, and end-to-end training.

Hyperparameter HYPER
# Layers 2
Positional Interaction Encoder Hidden dimension 64
Dropout 0
Activation ReLU
# Layers T 6
Hidden dimension 64
Relation Encoder Dropout 0
Activation ReLU
Norm LayerNorm
# Layers L 6
Hidden dimension 64
. Dec 2-layer MLP
Entity Encoder Dropout 0
Activation ReLU
Norm LayerNorm
Optimizer AdamW
Learning rate 0.0005
Pre-trainin Training steps 30,000
& Adversarial temperature 1
# Negatives 512
Batch size 32
Optimizer AdamW
Learning rate 0.0005
Fine-tuning Adversarial temperature 1
# Negatives 256
Batch size 8
Optimizer AdamW
Learning rate 0.0005
End-to-End Adversarial temperature 1
# Negatives 256
Batch size 8
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Table 23: Hyperparameters for fine-tuning and training end-to-end for HYPER.

Finetune End-to-End

Datasets
Epoch Batch per Epoch Epoch Batch per Epoch

JF 25-100 3 full 10 full
WP 25-100 3 full 10 full
MFB 25-100 3 full 10 full
WD 25-100 3 full 10 full
JF-IND 1 full 20 full
WP-IND 1 full 20 full
MFB-IND 1 2000 4 10000
FB 25-100 3 full 10 full
WK 25-100 3 full 10 full
NL 0-100 3 full 10 full
MTI1-MT4 3 full 10 full
Metafam, FBNELL 3 full 10 full
FB vl-v4 1 full 10 full
WN vl1-v4 1 full 10 full
NL v1-v4 3 full 10 full
ILPC Small 3 full 10 full
ILPC Large 1 1000 10 1000
HM 1k-5k, Indigo 1 100 10 1000
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