Under review as a conference paper at ICLR 2026

HYPER: A FOUNDATION MODEL FOR INDUCTIVE
LINK PREDICTION WITH KNOWLEDGE HYPERGRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Inductive link prediction with knowledge hypergraphs is the task of predicting
missing hyperedges involving completely novel entities (i.e., nodes unseen during
training). Existing methods for inductive link prediction with knowledge hyper-
graphs assume a fixed relational vocabulary and, as a result, cannot generalize
to knowledge hypergraphs with novel relation types (i.e., relations unseen during
training). Inspired by knowledge graph foundation models, we propose HYPER
as a foundation model for link prediction, which can generalize to any knowledge
hypergraph, including novel entities and novel relations. Importantly, HYPER can
learn and transfer across different relation types of varying arities, by encoding
the entities of each hyperedge along with their respective positions in the hyper-
edge. To evaluate HYPER, we construct 16 new inductive datasets from existing
knowledge hypergraphs, covering a diverse range of relation types of varying ar-
ities. Empirically, HYPER consistently outperforms all existing methods in both
node-only and node-and-relation inductive settings, showing strong generalization
to unseen, higher-arity relational structures.

1 INTRODUCTION

Generalizing knowledge graphs with relations between any num-
ber of nodes, knowledge hypergraphs offer flexible means of
storing, processing, and managing relational data. Knowl-
edge hypergraphs can encode rich relationships between enti-
ties; e.g., consider a relationship between four entities: “Bengio
has a research project on topic ClimateAl in Montreal funded

sasha AtConference

Bengio ClimateAl j Montreal

1
Research (@ = - @- = - @ - > @ CFAR
1

by CIFAR”. This relational information can be represented in n @GP
a knowledge hypergraph (see Figure via an (ordered) hy- '
peredge Research(Bengio, ClimateAl, Montreal, CIFAR), where - hicalAl
Research represents a relation of arity four. A

@ NeurlPS

The generality knowledge hypergraphs motivated a body of work
for machine learning with knowledge hypergraphs (Guan et al.,
2021; [Fatemi et al., [2020; |Yadati, |2020; Zhou et al.l 2023b}
Huang et al., 2025b)). One of the most prominent learning tasks is
inductive link prediction with knowledge hypergraphs, where the
goal is to predict missing hyperedges involving completely novel
entities (Yadati, [2020; Zhou et al., 2023b; Huang et al., [2025b). The main shortcoming of existing
methods for inductive link prediction with knowledge hypergraphs is that they cannot generalize
to knowledge hypergraphs with novel relation types. This constitutes the main motivation of our
work: Can we design an effective model architecture for inductive link prediction with knowledge
hypergraphs, where the predictions can involve both novel entities and novel relations?

Figure 1: A knowledge hy-
pergraph with three hyperedges
over distinct relation types.

Example. Consider the knowledge hypergraphs depicted in Figure 2} The training hypergraph
Glrain 18 over the relations Research, Teaches, and AtConference, while the inference graph Giys
is over the novel relations Trading, Sells, and AtFair. The task is to predict missing links such as
Sells(Samsung, Best Buy, Q60D TV) in Gjys. Ideally, the model should learn relation invariants that
map Teaches — Sells, Research — Trading, and AtConference — AtFair, as these relation types

Under review as a conference paper at ICLR 2026

play analogous structural roles in their respective graphs, even though their labels and entities are
entirely different.

Approach. In essence, our study builds on

the success of knowledge graph foundation Sasha_AtConference CTA AtFair
models (KGFMs) (Galkin et al.,|2024; Mao Bengio ClimateAl | ontreal Someung LED ?Las Vegas
et al., [2024), whlgh have sh0\.>vn. remark- gecesrch B o - _+ e . B o + S
able performance in link prediction tasks . T LG Display
involving both novel entities and novel re- @ +2015 BestBuy @ +2024
lations. However, KGFMs can only per- ' '

form link prediction using binary relations, @ Ethicalal @ Q60D TV
which raises the question of how to trans- v v

late the success of KGFMs to fully rela- Glisain @ NeurlPs Gint ® ces
tional data. To this end, we propose HYPER,

a class of knowledge hypergraph founda-))))
tion models for inductive link prediction, Figure 2: A model is trained on relations like

Research, Teaches, and AtConference, and is ex-
pected to generalize to structurally similar relations
TradingDeal, Sells, and AtBusinessFair at test time.

which can generalize to any knowledge hy-
pergraph. The fundamental idea behind our
approach is to learn properties of relations
that are transferable between different types
of relations of varying arity. Consider, for example, the two hyperedges (from Figure |2):

AtConference(Sasha, Montreal, 2015, EthicalAl, NeurlPS),
Research(Bengio, ClimateAl, Montreal, CIFAR),

which “intersect” with each other. The entity Montreal appears in the second position of the first
hyperedge and in the third position of the second hyperedge. Such (pairwise) interactions between
relations can be viewed as fundamental relations to learn from: any model learning from relations
between relations can transfer this knowledge to novel relation types that have similar interactions.

Furthermore, we can encode such relations between relations in a
separate relation graph, which can be used to learn from. We illus-

Research

@
trate this on our running example in Figure [3] where the relations
) 32 appear as nodes; the interactions between relations as edges; and
(2,3) finally, the positions of the interactions as edge weights. In our set-
@3 o ting, a directed edge from relation r; to 7o with edge label (i, 7)
(3,4) indicates that “The i-th position of 1 and the j-th position of ro in-

AtConference . s . . .
. tersect in G, which captures a fundamental interaction between
rel

Figure 3: The relation graph
Grel corresponding to the
knowledge hypergraph Giain.

and ry. Critically, however, there is no upper bound on the number
of such possible interactions. While there are at most m x n inter-
actions between an m-ary relation and an n-ary relation, we cannot
impose any bound on the arity of the relations since then the model

would not generalize to all knowledge hypergraphs.

Contributions. Our main contributions can be summarized as follows:

* To the best of our knowledge, HYPER is the first foundation model that allows zero-shot
generalization to knowledge hypergraphs of arbitrary arity with novel nodes and novel
relations at test time.

* We evaluate HYPER on 3 existing benchmark datasets and additionally on 16 new bench-
mark datasets with varying proportions of test-time tuples involving unseen relations.
HYPER consistently outperforms existing hypergraph baselines trained end-to-end, par-
ticularly when the proportion of new relations is high.

* To assess the performance of KGFMs on hypergraphs, we reify the knowledge hypergraphs
into KGs and apply KGFMs on them. Remarkably, HYPER, trained on only 2 hypergraphs
and 3KGs, consistently outperforms the popular KGFM model ULTRA trained on 50 KGs.

* We conduct an empirical investigation over the positional interaction encoding scheme
within HYPER, demonstrating the critical role of encoding choices.

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Link Prediction with Knowledge Graphs.
Link prediction in knowledge graphs (KGs) has
been extensively explored. Early knowledge
graph embedding methods (Bordes et al., 2013

Table 1: Methods’ ability to handle high-arity re-
lations (High-arity) and inductively generalize to
unseen entities (Ind. e) and relations (Ind. 7).

Sun et al., [2019; [Trouillon et al.l 2016; Balaze-| Methods High-arity Ind.e Ind.r
vic et al.,2019; Abboud et al.L[2020) are limited HypE, BoxE v X X
to the transductive setup: these methods donot \BENet. A*Net X v X
generalize to unseen entities or to unseen rela- G-MPNI’\I, HCNet v/ J/ X
tions. Multi-relational graph neural networks ULTRA, KG-ICL X v v

(GNNs) such as RGCN (Schlichtkrull et al.,

2018) and CompGCN (Vashishth et al, 2020) _ 1 YPER v v v

similarly rely on stored entity embeddings, remaining inherently transductive. To overcome these
limitations, [Teru et al.[(2020) introduced GralL, a pioneering method enabling node-inductive link
prediction, which is later shown to be a form of the labeling trick (Zhang et al.|[2021). Subsequently,
architectures such as NBFNet (Zhu et al., 2021), A*Net (Zhu et al.| [2023), RED-GNN (Zhang &
Yaol 2022)), and AdaProp (Zhang et al., 2023)) leveraged conditional message passing, significantly
enhancing expressivity and performance (Huang et al., |2023). However, these methods are not in-
ductive on relations, as they assume a fixed relational vocabulary. KGFMs are specifically tailored
for inductive predictions on both unseen nodes and relations. InGram (Lee et al., [2023) and UL-
TRA (Galkin et al.} 2024) introduced new KGFM frameworks. Following these, TRIX (Zhang et al.,
2024) introduced recursive updating of entity and relation embeddings with provably improved ex-
pressiveness over ULTRA. KG-ICL (Cui et al., 2024) employed in-context learning with unified
tokenization for entities and relations. Additionally, double-equivariant GNNs, like ISDEA (Gao
et al., 2023) and MTDEA (Zhou et al.l [2023a), emphasized relational equivariance, enhancing ro-
bustness to unseen relations. |Huang et al.| (2025a) proposed MOTIF as a general KGFM framework
and formally studied the expressive power of KGFMs. All of these methods are confined to KGs
with binary relations, and they do not naturally apply to higher-arity relations, as shown in Table[I}

Link Prediction with Knowledge Hypergraphs. Knowledge hypergraphs generalize traditional
KGs to handle higher-arity relational data. Initial researches such as HypE (Fatemi et al., [2020)
and BoxE (Abboud et al., |2020) leveraged shallow embedding models adapted from KG embed-
ding frameworks. Later approaches extended graph neural networks to knowledge hypergraphs. G-
MPNN (Yadati, |2020) and RD-MPNNs (Zhou et al.| 2023b) introduced relational message passing
mechanisms explicitly designed for hypergraph settings, incorporating positional entity information
critical for high-arity relations. [Huang et al.| (2025b) proposed HCNets as a conditional message-
passing approach tailored for inductive hypergraph link prediction and conducted an expressivity
analysis. While these methods can handle knowledge hypergraphs, they are not inductive on re-
lations: none of these methods can generalize to unseen relations (shown in Table [T). Our work
on HYPER builds on these foundations by combining the strengths of conditional message passing
on knowledge hypergraphs with the powerful inductive generalization techniques explored in re-
cent KGFMs (Galkin et al.l 2024; |Lee et al., [2023} |Huang et al., [2025a)) to effectively generalize to
knowledge hypergraphs within unseen nodes and relations.

Foundation Models on Hypergraphs. Existing foundation models on hypergraphs are tailored to
text-attributed hypergraphs. HyperBERT (Bazaga et al., 2024) integrates pretrained language mod-
els with hypergraph convolution for node classification, while HyperGene (Du et al., 2021)) and
SPHH (Abubaker et al., [2023)) propose self-supervised objectives tailored to local and global hyper-
graph structures. More recent works such as Hyper-FM (Feng et al., 2025) and IHP (Yang et al.,
2024) introduce multi-domain pretraining and instruction-guided adaptation, respectively, marking
the first steps toward generalizable hypergraph models. These methods rely heavily on text attributes
for generalization and are predominantly tailored to node classification tasks; they do not support
link prediction over knowledge hypergraphs with unseen relations at test time.

3 PRELIMINARIES

Knowledge Hypergraphs. A knowledge hypergraph G = (V, E, R) consists of a set of nodes V/,
hyperedges F (i.e., facts) of the form e = r(uy, ..., uy), where r € R is arelation type, and u; € V,

Under review as a conference paper at ICLR 2026

1 <'i < k, are nodes. The arity of a relation r is given by k = ar(r), where ar : R — N (. For an
hyperedge e, p(e) denotes its relation, and e(%) denotes the node at the i-th position of e. We refer
to the knowledge hypergraph with all edges having arity of exactly 2 as a knowledge graph. The set
of edge-position pairs associated with a node v is defined as:

E(w) ={(e,i) | e(i) =v,e € E,1 <i<ar(p(e))}.

The positional neighborhood of a hyperedge e with respect to a position i is:
Ni(e) = {(e(4),5) | #i,1 < j < ar(p(e))}.

Link Prediction on Hyperedges. Given a knowledge hypergraph G = (V, E, R) and a query
q(ur, ... up—1,?, U1 - . ., ug), the link prediction task involves scoring all possible hyperedges
formed by replacing the placeholder ‘7’ with each node v € V. We denote a k-tuple of nodes by
u = (ug, ..., u) and the tuple excluding position t by @ = (w1, ..., us—1, U1, - - -, ug). Thus, we
represent a query succinctly as q = (g, 0, t). In the fully-inductive setting for link prediction (i.e.,
node and relation-inductive link prediction), the goal is to answer queries of the form q = (¢, @, t)
on an inference hypergraph Gint = (Ving, Eint, Rinf), Where both the entity set Vi, and the relation set
Rins are entirely disjoint from those seen during training. The model is trained on a separate training
knOW]edge hypergraph CT'train = (V;raim Etrainy Rtrain)s with Vieain N Vine = (Z) and Riyin N Rins = Q)» and
must learn transferable representations that generalize across both novel entities and unseen relation
types of arbitrary arity. At inference time, each hyperedge ¢ = r(u1,...,u) € Eiy corresponds
to a fact involving a relation » € Rj,, and queries involve predicting a missing node at position ¢
within such a tuple, using the surrounding nodes @ and relation ¢ = p(e). The model must score
candidate completions g(u1, ..., Ut—1,V,Uts1,. .., u) for each v € Viy.

Reification. To apply the models de-

signed for KGs on knowledge hyper- Research AcConference Teaches
graphs, we transform an input knowl- ° ° °
edge hypergraph G = (V, E7R) into ThasRelationType hasReIationTypeT hasReIationTypeT
a KG via a reification process, simi- el e es

lar to the one proposed in |[Fatemi et al.
(2020). Specifically, for each hyper-
edge r(ui,...,ux) € FE, we intro-
duce a node edge_id ¢ V in the
KG to represent the hyperedge itself. ClimateAl CIFAR

We then generate binary edges of the Beng Montreal Sasha
form hasEntity;(edge_id,u;) for Figure 4: Reified KG corresponding to the knowl-
each i € [k] to capture the positions of edge hypergraph G, from Fig [T} where i abbreviates
the entities in the relation. Finally, we hasEntity,.

add the original relation r as a node to

the KG and add an edge hasRelationType(edge_id,r). For instance, Figure shows the rei-
fied KG of our running example in Figure[I] This reification procedure encodes the full higher-order
structure of the original knowledge hypergraph into a KG.

EthicalAl la
2015 EthicalAly ps 2"

Link Prediction over Reified Knowledge Hypergraphs. Given a high-arity query of the form
qg(ur, ..., up—1,7, U1, ..,u,) over the original knowledge hypergraph, we perform link pre-
diction in the reified KG by encoding the query as a subgraph which is used to augment
the testing knowledge graph. Concretely, we add a new node edge_id and binary triples
hasEntity,;(edge_id,u;) for all i # t, as well as a triple hasRelationType(edge_id,q).
The prediction task is then reduced to a standard tail prediction problem: ranking all candidate
entities v € V for the fact hasEntity,(edge_id,v). We evaluate the model performance using
standard ranking metrics over the original entity vocabulary. We use superscript () to denote models
evaluated under this regime.

4 HYPER: A KNOWLEDGE HYPERGRAPH FOUNDATION MODEL

We now present HYPER, a general framework for learning foundation models over knowledge hy-
pergraphs. Given a knowledge hypergraph G = (V| E,R) and a query ¢ = (¢, @,t), HYPER
computes link prediction scores through the following steps:

Under review as a conference paper at ICLR 2026

T2 T2

% i i ?
: 2 :

- ==O===0=>»0 Q- = -0-==0=>0
AR ! (1,1) (3,2) v
. 1 1
. : 1
2. O, (:) (2,3) ° 6
Yy o — o b X

-
: T3 (3‘ 4) T2 T3 ?
A\ . Y
o Compute x,,;, = Encpi((a, b)) Message Passing on Gl o
Input Hypergraph G Relation Encoder on Gl Entity Encoder on G

Figure 5: Overall framework of HYPER. HYPER first constructs a relation graph G based on the
observed positional interactions between the relations. Encp; then computes embeddings for each
position pair, which are refined via message passing over G . The resulting relation representations
are then used for message passing over the original knowledge hypergraph G (shown in color).

1. Relation encoder: Relations are encoded in three steps:

(a) Relation graph: Build a relation graph Gy, where each node corresponds to a relation
r € R, and edges capture observed positional interactions between relations.

(b) Encoding positional interactions: Use an encoder Encp; to embed each interacting posi-
tion pair (a, b) from Gy into fundamental relation representations.

(c) Encoding the relations: Perform conditional message passing over Gy using fundamental
relation representations to obtain relation embeddings for all » € R.

2. Entity encoder: Use learned relation representations to conduct conditional message passing
over the original knowledge hypergraph G and obtain link probability via decoder Dec.

The overall framework is illustrated in Figure [5] and the detailed architecture is presented in Ap-
pendix [} We now describe each component.

Relation graph. Given a knowledge hypergraph G = (V, E, R), we construct the relation graph
Grel = (Viely Erel; Ree). The set of nodes is given as Vi = R, i.e., each node in Gy corresponds to a
relation type in the knowledge hypergraph G. The relation types R, are defined as all ordered pairs
(a,b) for {1 < a,b < kmax}, Where kpax = max{ar(r) | r € R} denotes the maximum arity
among the observed relations. The edge set Ei. captures positional interactions between relation
types: for each pair of hyperedges e1,es € E with relation types 1 = p(e1) and ro = p(eq), if
there exists a shared entity v appearing in position ¢ in e; and position j in e, we add a directed edge
(r1,72) with relation type (7, j) to E;. These positional interactions can be computed efficiently
via sparse matrix multiplication (see Appendix [B)) and are invariant over the renaming of relations.

Encoding positional interactions. Unlike knowledge graphs, where each fact involves two entities
and naturally leads to four types of fundamental relations (head-to-head, head-to-tail, tail-to-head,
and tail-to-tail) as introduced in |Galkin et al.[(2024), knowledge hypergraphs allow facts with ar-
bitrary arity. This introduces a key challenge: How fo build a foundation model that can adapt to
unseen knowledge hypergraphs with varying and arbitrarily large arities?

The natural extension of the concept of fundamental relations from KGs to knowledge hypergraphs
results in mn types of positional interactions between an hyperedge of arity m and an hyperedge of
arity n. Each of such interaction is characterized by a pair (a,b), where a and b denote the entity
positions involved in the relation. As a consequence, a foundation model for knowledge hypergraphs
must be capable of encoding positional interactions in a way that generalizes across different arities.

A naive solution would be to associate a separate embedding to each (a,b) pair. However, such
an approach does not generalize to unseen arities, as it would require pre-training embeddings for
all possible (a,b) combinations. To address this, we propose a shared, compositional position in-
teraction encoding scheme. Specifically, given a positional interaction labeled (a, b), we define a
positional interaction encoder Encpy : N+ ¢ x N5 — R?, which maps a pair of argument positions
to a dense vector representation of d dimensions. To be effective in inductive settings, we require
the encoder Encpy to satisfy the following requirements:

Under review as a conference paper at ICLR 2026

1. Extrapolation. The encoder should generalize to unseen positions and combinations, allowing
the model to operate on arities and interaction patterns not present during training.

2. Injectivity. Distinct position pairs (a,b) and (a’,d’) should map to distinct embeddings to
preserve the identifiability of positional interactions:

Va,b,a’,b’" € Nsg, (a,b) # (a',b) = Encpi((a,b)) # Encpr((a’,b)).

In practice, we implement Encp; as a two-layer multilayer perceptron (MLP) over concatenated
sinusoidal encodings of the input positions. Let p,, p, € R? denote the sinusoidal positional encod-
ings of positions a and b, respectively. Then, the embedding corresponding to the interaction (a, b)
is computed as x,, = MLP([p, || ps]), where MLP denotes a shared two-layer feedforward net-
work with ReLU activations. This produces a dense embedding that captures the interaction between
the two positions. Empirically, we find that this instantiation of Encp; enables strong generalization
across knowledge hypergraphs with varying arities and relational structures. When applied to knowl-
edge graphs, our method recovers standard encoding patterns employed in many KGFMs (Galkin
et al., 2024; [Lee et al., [2023} Zhang et al., |2024; [Huang et al., 2025a). In particular, head-to-tail,
head-to-head, tail-to-tail, and tail-to-head interactions correspond to Encpi((1,2)), Encer((1,1)),
Encpi((2,2)), and Encp((2, 1)), respectively.

Encoding the relations. HYPER uses Hypergraph Conditional Networks (HCNets) (Huang et al.,
2025b) to encode relations for its strong inductive performance, support for bidirectional message
passing, and easy extensibility to higher-order relational patterns (Huang et al., 2025a). HCNets
produce query-conditioned representations by aggregating messages from neighboring edges with
relation and position information. Here, we take Encp;((a, b)) as the computed messages for each
typed edges when message-passing over relation graph with positional encoding (a, b).

Entity encoder. Similarly to how we encode the relation, HYPER uses a variant of HCNet to
encode the entities. In the context of the entity encoder, we apply a separate HCNet over the original
knowledge hypergraph G = (V, E, R). Each node v € V aggregates from its incident hyperedges
by first taking the relation embeddings hfﬂrﬁl) obtained from the relation encoder as the messages for

each typed hyperedges and then transformed by a layer-specific MLP.

5 EXPERIMENTS

In this section, we aim to evaluate the generalization and effectiveness of HYPER across inductive
link prediction tasks on both knowledge hypergraphs and knowledge graphs. We focus on answering
the following questions:

Q1: How well does HYPER generalize to unseen entities and relation types?

Q2: How does HYPER handle varying proportions of unseen relations in the test set?

Q3: How does HYPER compare to KGFMs on reified knowledge hypergraphs?

Q4: What is the impact of different variants of pretraining mix on HYPER?

QS5: How does the encoding of positional information impact the model’s ability to generalize?

Q6: How well does HYPER perform on standard knowledge graphs (see Appendix [D))?

Q7: What are computational complexity and empirical scalability of HYPER (see Appendix [E)?

5.1 EXPERIMENTAL SETUPS

Models. We evaluate models using the datasets summarized in Table As a supervised learning
baseline, we include G-MPNN (Yadati, [2020) and also HCNet, as a state-of-the-art node-inductive
method on knowledge hypergraphs, which is representative of the performance methods relying
on end-to-end training. These models, by design, cannot generalize to unseen relations since they
explicitly store the trained relation embeddings, and thus have to assign a randomly initialized vector
for the representation of the unseen relations. For a fair comparison, we evaluate HYPER(end2end),
HYPER models trained directly on the corresponding train set for each dataset.

Under review as a conference paper at ICLR 2026

Table 2: MRR results on node and relation inductive knowledge hypergraph datasets. Superscript {
means the model is applied over the reification of hypergraphs.
JF MFB WP WD

Method
25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100
End-to-End Inference
G-MPNN 0.006 0.003 0.001 0.002 0.002 0.004 0.007 0.003 0.005 0.002 0.001 0.000 0.001 0.001 0.001 0.001
HCNet 0.011 0.009 0.069 0.028 0.033 0.026 0.016 0.082 0.104 0.050 0.019 0.003 0.086 0.043 0.015 0.007
HYPER 0.202 0.468 0.207 0.198 0.332 0.200 0.135 0.222 0.159 0.143 0.139 0.202 0.215 0.205 0.172 0.205

Zero-shot Inference

ULTRAT(3KG) 0.119 0.304 0.109 0.091 0.209 0.153 0.062 0.222 0.040 0.070 0.067 0.071 0.171 0.201 0.149 0.176
ULTRAT(4KG) 0.099 0.325 0.102 0.132 0.343 0.215 0.111 0.274 0.047 0.091 0.089 0.086 0.094 0.141 0.054 0.075
ULTRAT (50KG) 0.147 0.407 0.126 0.111 0.310 0.218 0.100 0.262 0.045 0.071 0.045 0.065 0.062 0.124 0.104 0.150
HYPER(3KG) 0.148 0.297 0.112 0.130 0.248 0.191 0.039 0.276 0.143 0.147 0.186 0.221 0.167 0.158 0.123 0.146
HYPER(4HG) 0.187 0.377 0.188 0.181 0.349 0.244 0.139 0.278 0.075 0.068 0.086 0.168 0.087 0.158 0.057 0.165
HYPER(3KG+2HG) 0.216 0.455 0.213 0.173 0.363 0.250 0.140 0.299 0.132 0.152 0.192 0.222 0.223 0.200 0.154 0.182

Finetuned Inference

HYPER(3KG+2HG) 0.217 0.456 0.209 0.176 0.347 0.243 0.158 0.275 0.169 0.171 0.194 0.210 0.225 0.234 0.166 0.210

To also evaluate the pretraining paradigm for foundation models, we include
ULTRAT(3KG/4KG/50KG) from |Galkin et al.| (2024) as baseline KGFM modelﬂ They are
pretrained on increasingly large KG corpora and evaluated on reified hypergraphs for tail-only
link prediction, following Section [3] To assess the benefits of pretraining on different relational
structures, we experimented with two HYPER variants: HYPER(3KG), trained only on three
knowledge graph datasets (FB15k-237 (Toutanova & Chen, [2015), WNI8RR (Dettmers et al.,
2018)), and Codex Medium (Safavi & Koutra, [2020)), and HYPER(4HG), trained on four knowledge
hypergraph datasets (JF17K (Wen et al., 2016), Wikipeople (Guan et al.,2021), FB-AUTO (Fatemi
et al., [2020), and M-FB15K (Fatemi et al., [2020)). We further include HYPER(3KG + 2HG),
a HYPER model trained on a comprehensive mixture of three knowledge graph (FB15k-237,
WNI18RR, Codex Medium) and two knowledge hypergraph datasets (JF17K, Wikipeople), aiming
to combine the advantages of both types of data, and fine-tuned this checkpoint over the training
sets for each downstream task.

Evaluations. We adopt filtered ranking protocol: for each query g(uq,--- ,u) where k = ar(q)
and for each position ¢ < k, we replace the ¢-th position by all other entities such that the resulting
hyperedges does not appear in training, validation, or testing knowledge hypergraphs. We report
Mean Reciprocal Rank (MRR) and provide averaged results for three runs for the end-to-end and
fine-tuned experiments. We report the standard deviation along with the full tables in Table I8 and
Table [I9] The codebase is provided in https://anonymous.4open.science/r/HYPER!
See computation resources used in Appendix [C|and further experimental details in Appendix [F|

5.2 NODE-RELATION INDUCTIVE LINK PREDICTION OVER KNOWLEDGE HYPERGRAPHS

Dataset construction and task settings. To evaluate the transferability and generalization capa-
bilities of HYPER, we follow the methodology proposed in InGram (Lee et al., |2023) to construct
new datasets with varying proportions of unseen relations. We derive these datasets from three
hypergraph datasets: JF17K (Wen et al.| 2016) (JF), Wikipeople (Guan et al.| 2021)) (WP), and M-
FB15K (Fatemi et al.,[2020) (MFB). We also include WD50K (WD) |Galkin et al.|(2020), originally
a hyper-relational KG, which we convert into a knowledge hypergraph by hashing the main relation
and predicates in canonical order. For each source dataset, we create four variants with different
percentages of test tuples containing previously unseen relations: 25%, 50%, 75%, and 100%. For
instance, JF-25 includes 25% test tuples with unseen relations, while JF-100 contains only entirely
unseen relations. This setulﬂ allows us to systematically evaluate how models perform under in-
creasingly challenging inductive scenarios. We present all the details in Appendix [A]

Overall performances of HYPER (Q1). We report model performance across each dataset in Ta-
ble[2] Note that HYPER and its variants drastically outperform HCNet in node and relation-inductive

"We also include additional baseline results for other KGFM in Appendix
These percentages are meaningful only in the end-to-end evaluation setting. In the zero-shot setting, all
relation types are unobserved.

https://anonymous.4open.science/r/HYPER

Under review as a conference paper at ICLR 2026

settings. HCNet relies on learnable embeddings for each relation type and struggles with unseen
relations, leading to sharp performance drops under inductive settings. In contrast, HYPER lever-
ages a pretrained relation encoder, enabling strong generalization and robust performance even with
entirely unseen relations. Note that fine-tuning HYPER(3KG+2HG) further boosts results, often
matching or surpassing HYPER trained from end-to-end. This demonstrates the strong transferabil-
ity of HYPER’s representations and shows that lightweight finetuning on small task-specific datasets
can approach end-to-end performance without full retraining.

Impact on the ratio of known relations (Q2). We experiment with multiple relation-split settings
that vary the proportion of test triplets involving unseen relations, ranging from 25% to 100%. While
node-inductive baselines such as HCNet and G-MPNN already perform poorly under low relational
shift (e.g., 25%), their performance degrades substantially as the proportion of unseen relations
increases (e.g., 100%), reflecting the difficulty of generalizing to novel relation types. In contrast,
HYPER maintains consistently strong performance across all splits, demonstrating its robustness and
ability to generalize effectively under an increased proportion of unseen relations.

HYPER vs. ULTRA on reified knowledge hypergraph (Q3). Across all datasets, HYPER con-
sistently outperforms KGFMs like ULTRAT on reified hypergraphs. While KGEMs can in prin-
ciple generalize to binary relations, reified hypergraphs form atypical structures, e.g., tripartite
graphs with auxiliary edge nodes, which is not commonly seen in pretraining corpora. Notably,
ULTRAT(50KG), trained on 50 knowledge graphs, performs only marginally better than the ver-
sion trained on just 3, and remains substantially behind HYPER(3KG + 2HG). This suggests that
increasing the number of training graphs does not close the gap introduced by the lack of explicit
hypergraph modeling. While reification technically enables the application of KGFMs to knowl-
edge hypergraphs, it fails to capture the structure of entity-role interactions, resulting in significantly
weaker performance.

Impact of different pretraining datasets (Q4). The composition of pretraining data has a notice-
able impact on generalization. While HYPER(4HG), pretrained on hypergraph datasets, performs
strongly on JF and MFB, both of which contain a large proportion of higher-arity relations, it strug-
gles on WP, which primarily consists of binary edges. Conversely, WP benefits more from pretrain-
ing on binary relational graphs, as seen with HYPER(3KG). The best overall performance comes
from HYPER(3KG + 2HG), which combines both binary and hypergraph pretraining sources. This
suggests that pretraining on diverse relation structures and thus the underlying distribution improves
generalization across tasks with varying arities.

5.3 NODE INDUCTIVE LINK PREDICTION OVER KNOWLEDGE HYPERGRAPHS

Settings. To further assess the applicabil- Table 3: MRR results on node-inductive datasets.
ity of node-inductive link prediction tasks Superscript { means the model is applied over the
with knowledge hypergraphs, we follow |Yadati reification of hypergraphs.

(2020) and Huang et al.| (2025b), and experi- Method JF-IND WP-IND MFB-IND
ment on three existing datasets: JE-IND, WP-

IND, and MFB-INng We compare our mod- End-to-End Inference
els with several existing approaches for induc- ~ HGNN 0.102 - 0.072 0.121

tive link prediction on knowledge hypergraphs. gy&"igggN 8(2)?3 8?;3 g};ﬁ
These include HGNN (Feng et al., |2018) and RD-MPNN 0402 0304 0.122

HyperGCN (Yadati et al., 2019), which were HCNet 0435 0414 0.368

originally designed for simple hypergraphs and HYPER (end2end) 0422 0435 0.427
adapted to knowledge hypergraphs by ignoring

relations (Yadati, [2020). Zero-shot Inference

:
We also compare with G-MPNN (Yadati, 2020) giiﬁ:*(igg) 8 gé gig; 8(1)2;1
and RD-MPNN (Zhou et al] 2023b), which 78R (B8 - 2280 0188 102
were modified for inductive settings by replac- u () : : :
. HYPER(3KG) 0.263 0.259 0.184
ing learned entity embeddings with a uniform HyPER(4HG) 0403 0375 0.497

vector, and HCNet (Huang et al.| 2025b). We HYPER(3KG + 2HG) 0459 0.415 0.404
also include the zero-shot performance of stan-
dard KGFM on the reification of hypergraphs
ULTRAT(3KG/4KG/50KG). HYPER(BKG + 2HG) 0.463 0.446 0.455

Finetuned Inference

Under review as a conference paper at ICLR 2026

Results and discussion. Table [3] presents the performance of all models across the node-inductive
datasets. We continue to observe that HYPER significantly outperforms prior node-inductive base-
lines such as HCNet, G-MPNN, and RD-MPNN. Among HYPER variants, even without fine-tuning,
pretrained HYPER models achieve strong results. Fine-tuned HYPER further improves performance,
achieving the best MRR on JF-IND and WP-IND, and competitive results on MFB-IND compared
with HYPER trained end-to-end. Notably, HYPER consistently outperforms ULTRA, which struggles
to generalize to the distinct structure of reified hypergraphs. These results confirm HYPER’s robust
generalization across a variety of datasets.

5.4 IMPACT OF POSITIONAL INTERACTION ENCODERS

To evaluate the importance of design choices in the positional
interaction encoder Encpy (Q5), we compare HYPER to three
alternatives Encp; equipping with different positional encod-
ing schemes: (i) all-one encoding (p, = 1%), which col-
lapses all positions and violates injectivity; (ii) random en-
coding (p, ~ N(0,1,;)), which lacks structure and hinders

Table 4: Averaged zero-shot per-
formance of HYPER(3KG + 2HG)
with different positional interaction
encoders.

generalization; and (iii) magnitude encoding (p, = al®), Total Avg
which is unbounded and thus unsuitable for MLPs. In con- Model (19 hypergraphs)
trast, HYPER uses sinusoidal encoding, which is both injec- MRR Hits@3

tive and bounded, enabling effective extrapolation and ro-
bust zero-shot performance. As shown in Table[d] sinusoidal
encoding yields the best overall performance across 19 hy-
pergraphs, significantly outperforming other schemes in both
MRR and Hits@3. This highlights the critical property of in-
jectivity and extrapolation of Encpy in achieving robust zero-
shot generalization.

All-one 0.236 0.262
Random 0.213 0.239
Magnitude 0.227 0.251
Sinusoidal 0.285 0.281

5.5 CORRUPTION OVER ARGUMENT POSITION

To validate the significance of ordered information in knowledge hy-
pergraphs (QS5), we conduct an ablation study to corrupt positional 054 == Original
information. Specifically, for each of 16 newly proposed dataset, 0.445 mmm Corrupted
we take the most frequent relation type in each test graph and ran-
domly and inconsistently permuted the argument positions for 50%
of its hyperedges, making the semantic role of each argument posi-
tion ambiguous. For instance, a hyperedge r(a, b, ¢) might become
r(b,a,c). We evaluate our HYPER(3KG + 2HG) model in the zero-
shot setting on these corrupted datasets. Empirically, we observe
that when we permute those relations that explicitly stored ordered
information, such as cvg.musical_game_song_relationship in JF- ol
50, the performance drops dramatically, as shown in Figure [f] This JF-50 Overall Average
is because each argument position carries a distinct semantic role
(e.g., musical, game, song), and HYPER relies on implicitly learn-
ing these roles to generalize. Corrupting this positional structure pre-
vents HYPER from inferring roles for unseen relations, leading to a
dramatic decline in performance.

Figure 6: Zero-shot per-
formance of HYPER(3KG +
2HG) over original and cor-
rupted datasets.

6 CONCLUSION

In this work, we introduced HYPER, the first foundation model for inductive link prediction over
knowledge hypergraphs with arbitrary arity, capable of generalizing to both unseen entities and
unseen relations. Through extensive experiments on 16 newly constructed and 3 existing induc-
tive benchmarks, we demonstrate that HYPER consistently outperforms state-of-the-art knowledge
hypergraph baselines and KGFMs applied to reified hypergraphs, demonstrating its strong general-
ization across varied domains and relational structures. One limitation of HYPER lies in its compu-
tational complexity of relation arity: the number of positional interactions grows quadratically with
the arity of each hyperedge. Future work may explore scalable approximations to mitigate the cost.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work proposes a foundation model for inductive reasoning over knowledge hypergraphs, which
may benefit applications in scientific discovery, query answering, and recommendation systems
by improving generalization across relational contexts. However, the same capabilities could also
be misused for generating or reinforcing biased or spurious inferences when applied to real-world
knowledge bases that contain noise, imbalance, or socially sensitive information. Future applications
should therefore include safeguards for interpretability and error auditing, especially in domains with
fairness or safety considerations. We acknowledge and adhere to the ICLR Code of Ethics,

REPRODUCIBILITY STATEMENT

We ensure the reproducibility of our results. A complete description of dataset construction pro-
cedures, including inductive splits with varying proportions of unseen relations, is provided in Ap-
pendix [A] Details of the model architecture, training objectives, and optimization are presented
in Section 4] and Appendix [l We further describe efficient implementation details and compu-
tational resources in Appendix [C| To facilitate verification, we release an anonymous codebase
with all scripts for data preprocessing, model training, and evaluation at https://anonymous.
4open.science/r/HYPER. A detailed method of relation graph constructions is included in
Appendix [B] Together, these materials provide all the necessary information to reproduce the exper-
iments and results reported in this paper.

REFERENCES

Ralph Abboud, Ismail ilkan Ceylan, Thomas Lukasiewicz, and Tommaso Salvatori. Boxe: A box
embedding model for knowledge base completion. In NeurIPS, 2020.

Abdalgader Abubaker, Takanori Maehara, Madhav Nimishakavi, and Vassilis Plachouras. Self-
supervised pretraining for heterogeneous hypergraph neural networks. arXiv preprint
arXiv:2311.11368, 2023.

Ivana Balazevic, Carl Allen, and Timothy Hospedales. Tucker: Tensor factorization for knowledge
graph completion. In EMNLP-IJCNLP, 2019.

Adrian Bazaga, Pietro Lio, and Gos Micklem. Hyperbert: Mixing hypergraph-aware layers with
language models for node classification on text-attributed hypergraphs. In EMNLP, 2024.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. In NIPS, 2013.

Yuanning Cui, Zequn Sun, and Wei Hu. A prompt-based knowledge graph foundation model for
universal in-context reasoning. In NeurIPS, 2024.

Tim Dettmers, Minervini Pasquale, Stenetorp Pontus, and Sebastian Riedel. Convolutional 2D
knowledge graph embeddings. In AAAI, 2018.

Boxin Du, Changhe Yuan, Robert Barton, Tal Neiman, and Hanghang Tong. Hypergraph pre-
training with graph neural networks. arXiv preprint arXiv:2105.10862, 2021.

Bahare Fatemi, Perouz Taslakian, David Vazquez, and David Poole. Knowledge hypergraphs: Pre-
diction beyond binary relations. In ZJCAI, 2020.

Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural networks.
In AAAI 2018.

Yifan Feng, Shiquan Liu, Xiangmin Han, Shaoyi Du, Zongze Wu, Han Hu, and Yue Gao. Hyper-
graph foundation model. arXiv preprint arXiv:2503.01203, 2025.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

10

https://iclr.cc/public/CodeOfEthics
https://anonymous.4open.science/r/HYPER
https://anonymous.4open.science/r/HYPER

Under review as a conference paper at ICLR 2026

Luis Antonio Galarraga, Christina Teflioudi, Katja Hose, and Fabian Suchanek. AMIE: Association
rule mining under incomplete evidence in ontological knowledge bases. In WWW, 2013.

Mikhail Galkin, Priyansh Trivedi, Gaurav Maheshwari, Ricardo Usbeck, and Jens Lehmann. Mes-
sage passing for hyper-relational knowledge graphs. In EMNLP, 2020.

Mikhail Galkin, Etienne Denis, Jiapeng Wu, and William L. Hamilton. Nodepiece: Compositional
and parameter-efficient representations of large knowledge graphs. In ICLR, 2022.

Mikhail Galkin, Xinyu Yuan, Hesham Mostafa, Jian Tang, and Zhaocheng Zhu. Towards foundation
models for knowledge graph reasoning. In /CLR, 2024.

Jianfei Gao, Yangze Zhou, Jincheng Zhou, and Bruno Ribeiro. Double equivariance for inductive
link prediction for both new nodes and new relation types. In arXiv, 2023.

Saiping Guan, Xiaolong Jin, Jiafeng Guo, Yuanzhuo Wang, and Xueqi Cheng. Link prediction on
n-ary relational data based on relatedness evaluation. I[EEE Transactions on Knowledge and Data
Engineering, 2021.

Xingyue Huang, Miguel Romero Orth, Ismail ilkan Ceylan, and Pablo Barceld. A theory of link
prediction via relational weisfeiler-leman on knowledge graphs. In NeurIPS, 2023.

Xingyue Huang, Pablo Barceld, Michael M. Bronstein, Ismail ilkan Ceylan, Mikhail Galkin, Juan L
Reutter, and Miguel Romero Orth. How expressive are knowledge graph foundation models? In
ICML, 2025a.

Xingyue Huang, Miguel A. Romero Orth, Pablo Barcel6, Michael M. Bronstein, and Ismail Tlkan
Ceylan. Link prediction with relational hypergraphs. TMLR, 2025b.

Jaejun Lee, Chanyoung Chung, and Joyce Jiyoung Whang. Ingram: Inductive knowledge graph
embedding via relation graphs. In ICML, 2023.

Shuwen Liu, Bernardo Grau, Ian Horrocks, and Egor Kostylev. Indigo: Gnn-based inductive knowl-
edge graph completion using pair-wise encoding. In NeurIPS, 2021.

Haitao Mao, Zhikai Chen, Wenzhuo Tang, Jianan Zhao, Yao Ma, Tong Zhao, Neil Shah, Mikhail
Galkin, and Jiliang Tang. Position: Graph foundation models are already here. In ICML, 2024.

Tara Safavi and Danai Koutra. CoDEx: A Comprehensive Knowledge Graph Completion Bench-
mark. In EMNLP, 2020.

Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and
Max Welling. Modeling relational data with graph convolutional networks. In ESWC, 2018.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph embedding
by relational rotation in complex space. In /CLR, 2019.

Komal K. Teru, Etienne G. Denis, and William L. Hamilton. Inductive relation prediction by sub-
graph reasoning. In ICML, 2020.

Kristina Toutanova and Danqi Chen. Observed versus latent features for knowledge base and text
inference. In Workshop on Continuous Vector Space Models and their Compositionality, 2015.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Eric Gaussier, and Guillaume Bouchard. Com-
plex embeddings for simple link prediction. In ICML, pp. 2071-2080. PMLR, 2016.

Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha Talukdar. Composition-based multi-
relational graph convolutional networks. In ICLR, 2020.

Jianfeng Wen, Jianxin Li, Yongyi Mao, Shini Chen, and Richong Zhang. On the representation and
embedding of knowledge bases beyond binary relations. In IJCAI, 2016.

Naganand Yadati. Neural message passing for multi-relational ordered and recursive hypergraphs.
In NeurIPS, 2020.

11

Under review as a conference paper at ICLR 2026

Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand Louis, and Partha
Talukdar. Hypergen: A new method for training graph convolutional networks on hypergraphs.
In NeurIPS, 2019.

Mingdai Yang, Zhiwei Liu, Liangwei Yang, Xiaolong Liu, Chen Wang, Hao Peng, and Philip S Yu.
Instruction-based hypergraph pretraining. In SIGIR, 2024.

Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. Labeling trick: A theory of using
graph neural networks for multi-node representation learning. In NeurIPS, 2021.

Yongqi Zhang and Quanming Yao. Knowledge graph reasoning with relational digraph. In WebConf,
2022.

Yongqi Zhang, Zhanke Zhou, Quanming Yao, Xiaowen Chu, and Bo Han. Adaprop: Learning
adaptive propagation for graph neural network based knowledge graph reasoning. In KDD, 2023.

Yucheng Zhang, Beatrice Bevilacqua, Mikhail Galkin, and Bruno Ribeiro. TRIX: A more expressive
model for zero-shot domain transfer in knowledge graphs. In LoG, 2024.

Jincheng Zhou, Beatrice Bevilacqua, and Bruno Ribeiro. A multi-task perspective for link prediction
with new relation types and nodes. In NeurIPS GLFrontiers, 2023a.

Xue Zhou, Bei Hui, Ilana Zeira, Hao Wu, and Ling Tian. Dynamic relation learning for link predic-
tion in knowledge hypergraphs. In App! Intell, 2023b.

Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. Neural bellman-ford net-
works: A general graph neural network framework for link prediction. In NeurIPS, 2021.

Zhaocheng Zhu, Xinyu Yuan, Mikhail Galkin, Sophie Xhonneux, Ming Zhang, Maxime Gazeau,
and Jian Tang. A*net: A scalable path-based reasoning approach for knowledge graphs. In
NeurIPS, 2023.

12

Under review as a conference paper at ICLR 2026

A DATASET GENERATION DETAILS

A.1 GENERATING DATASETS FOR NODE AND RELATION-INDUCTIVE LINK PREDICTION

To evaluate our models in an inductive setting, we created multiple dataset variants with different
proportions of unseen relations. Our dataset generation process, following InGram (Lee et al.| 2023)),
is detailed in Algorithm [l This process creates training and inference hypergraphs with controlled
percentages of unseen relations in the test set.

Algorithm 1 Generating Datasets for Node and Relation-inductive Link Prediction

Require: Source knowledge hypergraph G = (V, E, R), number of training entities 7i,, number
of inference entities ny., relation percentage py, tuple percentage pyi, seed value

Ensure: Training knowledge hypergraph Giuin = (Viin, Firain, Ruain) and Inference knowledge
hypergraph Ginr = (Vint, Eint, Rint)

1: G < Giant connected component of G
2: Randomly split R into Ryin and Ry such that | Ryain| @ | Rinf] = (1 — Prel) © Prel

Uniformly sample n.i, entities from V' and form Vi, by taking the sampled entities and their

neighbors

Eain 1= {T(Ula V2, ... ;Un)|vi € Virain, 7 € Ruain, T(Ula V2, ... >'Un> € E}

FElain < Hyperedges in the giant connected component of Ei,in

Virain < Entities involved in Ei;,

Riain < Relations involved in Ei,i,

Let G’ be the subgraph of G where the entities in Vi, are removed

In G’, uniformly sample n entities and form Vi, by taking the sampled entities and their

neighbors

10: Eipe := X UY such that |[X| : |Y| = (1 — pyi) : puw Where X = {r(v1,va,...,0,)|v; €
Vint, 7 € Ruain, 7(v1,02,...,v,) € E} and Y = {r(vi,ve,...,vn)lv; € Vip,r €
Rine,r(v1,v2,...,0,) € E}

11: Ej < Hyperedges in the giant connected component of Ej¢

12: Viye < Entities involved in Ejy¢

13: Rinr < Relations involved in Ejy¢

14: Split Eiys into auxiliary, validation, and test sets with a ratio of 3:1:1

w

R e A

The parameter py; controls the percentage of test tuples containing unseen relations. For example,
when py; = 0.25, approximately 25% of the tuples in the inference hypergraph contain relations not
seen during training. This allows us to systematically evaluate how models perform under increas-
ingly challenging inductive scenarios.

After generating the inference hypergraph, we split it into three disjoint sets: auxiliary (for training),
validation, and test sets with a ratio of 3:1:1. For a fair comparison, these sets are fixed and provided
to all models.

A.2 DATASET STATISTICS

Table [5] and Table [6] summarize the statistics of our constructed datasets and the hyperparameters
used to generate them, respectively. Additionally, Table[7] presents the arity distribution across these
datasets. Together, these tables illustrate that our benchmarks vary significantly in terms of arity,
density, and number of relation types, ensuring a diverse and comprehensive evaluation setting.

B SPARSE MATRIX MULTIPLICATION FOR COMPUTING POSITIONAL
INTERACTION

In this section, we describe the procedure to generalize sparse matrix multiplication to effi-
ciently construct knowledge hypergraphs from hyperedges of arbitrary arity. Unlike knowledge
graphs (Galkin et al., |2024), where only two positions (head and tail) exist per relation, resulting
in only 4 fundamental relations (head-to-head, head-to-tail, tail-to-head, tail-to-tail), knowledge hy-
pergraphs involve k positions per hyperedges, leading to k2 types of possible positional interactions
in total.

13

Under review as a conference paper at ICLR 2026

Table 5: Statistics of datasets for inductive hypergraph completion. Max arity is shown for training

graph and inference graph, respectively.

Dataset Train Inference Test Max Arity
vl Rl |E| Vi Rl |El V] R |E]

JF-25 2,616 41 3,371 1,159 36 1,056 209 15 103 5/4
JF-50 2,859 53 3,524 1,102 37 1,292 157 5 109 5
JF-75 3,129 67 4287 1,488 38 1,697 225 11 131 5
JF-100 2,123 48 2,449 1,696 35 2,159 52 5 25 5
WP-25 6,378 128 7453 2784 66 47794 830 19 959 6/4
WP-50 7,586 155 9,536 3,608 87 4390 531 29 413 716
WP-75 7,787 118 9271 4,737 101 6,221 629 27 459 6
WP-100 7,787 118 9271 4891 63 7,516 275 15 155 6
WD-25 4,533 239 5482 3,008 191 3,106 250 37 148 22/5
WD-50 3,796 162 4,147 2,303 188 2,353 145 30 91 19/6
WD-75 6,518 243 6,305 5,194 244 5831 547 57 385 22/5
WD-100 6,798 237 7271 3,576 105 3,951 385 29 282 19/4
MFB-25 1,266 11 8,182 1,929 12 2802 146 7 87 3/5
MFB-50 1,415 11 8,409 1,528 13 2,426 472 10 486 3/5
MFB-75 2,225 15 5271 1,363 16 4,008 675 11 803 3/4
MFB-100 2,013 19 11,658 2,406 5 4514 808 5 904 3/5

Table 6: Hyperparameters used to create fully inductive knowledge hypergraph datasets.

HP JF-25 JF-50 JF-75 JF-100 WP-25 WP-50 WP-75 WP-100

Niain 1000 1000 1200 1200 900 800 1000 1000
Nest 900 800 1200 1200 800 1000 1000 1000
Prel 0.4 0.5 0.4 0.5 04 0.3 0.5 0.5
Dui 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0
HP WD-25 WD-50 WD-75 WD-100 MFB-25 MFB-50 MFB-75 MFB-100
Ngrain 700 1000 10000 10000 100 100 80 120
nest 1200 1000 8000 8000 95 85 80 100
DPrel 0.25 0.5 0.5 0.5 0.5 0.6 0.5 0.5
Dui 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0

Given a knowledge hypergraph G = (V, E, R) with n = |V| nodes, m = |R)| relations, and maxi-
mum arity k, we start by representing the knowledge hypergraph via sparse tensors: the edge index
E ¢ NF*IEl and corresponding edge types r € NIZl. Each column of E lists the k participating
nodes for a hyperedge, with each edge associated with its relation type.

To encode positional interactions between relations, we perform sparse matrix multiplication in the
following steps:

1. For each position a € {1,--- , k}, we construct sparse matrices E, € R"*™ where each
nonzero entry indicates the presence of an entity at position a for a given relation type.

2. For each pair of positions (a,b) € {1,--- ,k} x {1, -+, k}, we compute a sparse matrix
multiplication:
Ao = spmm(E] | Ey) € R™X™,

Here, (Aq2p)i,; is nonzero if there exists an entity that simultaneously plays position @ in
a hyperedge of relation ¢ and position b in a hyperedge of relation j.

This operation systematically captures all intersections between hyperedges that share at least one
common node, generalized across different positions.

14

Under review as a conference paper at ICLR 2026

C COMPUTATIONAL RESOURCES

All the pretraining experiments is carried out on a single NVIDIA H100 80GB, and the rest of the
experiments are carried out using a NVIDIA A10 24GB. Pretraining of HYPER over a single H100
with parameter specified in Appendix |F| takes 4 days, while fine-tuning and end-to-end training
typically require less than 3 hours.

HYPER is implemented primarily using PyTorch and PyTorch Geometric (Fey & Lenssen, |2019),
with its core hypergraph message passing implemented via a custom-built Triton kerneﬂ This
optimization approximately halves the training time and reduces memory consumption by a factor
of five on average. Instead of explicitly materializing all hyperedge messages, as is done in PyTorch
Geometric, we directly write neighboring features to the corresponding memory locations during
aggregation. While the naive materialization approach incurs O(k|E|) memory complexity, where
k denotes the maximum arity and | E| the number of hyperedges, our Triton-based approach achieves
O(]V]) memory complexity, depending only on the number of nodes, which enables efficient and
scalable training of HYPER models.

D ADDITIONAL EXPERIMENTS ON KNOWLEDGE GRAPHS

In addition to the knowledge hypergraph inductive settings, we also evaluate our models on inductive
knowledge graph link prediction tasks where both nodes and relations can be unseen during training
(Q6). This setting presents the most challenging scenario as it requires models to generalize to
entirely new knowledge domains with both unseen entities and relation types. We also include
inductive node-only knowledge graph link prediction to further strengthen our point.

Datasets. For inductive on both nodes and relations task, we includes 13 datasets in INGRAM (Lee
et al.,2023)): FB-25, FB-50, FB-75, FB-100, WK-25, WK-50, WK-75, WK-100, NL-0, NL-25, NL-
50, NL-75, NL-100; and 10 datasets in MTDEA (Zhou et al.| 2023a)): MT1 tax, MT1 health, MT2
org, MT2 sci, MT3 art, MT3 infra, MT4 sci, MT4 health, Metafram, FBNELL. We also include
inductive link prediction on nodes only experiments, containing 12 datasets from GralL (Teru et al.,
2020): WN-v1, WN-v2, WN-v3, WN-v4, FB-v1l, FB-v2, FB-v3, FB-v4, NL-v1, NL-v2, NL-v3,
NL-v4; 4 datasets from INDIGO (Liu et al., [2021): HM 1k, HM 3k, HM 5k, HM Indigo; and 2
datasets from Nodepiece (Galkin et al.,[2022): ILPC Small, ILPC Large.

Baseline. We included the zero-shot version of all the models and also include an existing knowl-
edge graph foundation model as baseline, ULTRA (Galkin et al., 2024), shown in Table [§] Table [0
Notably, following standard convention, for every triplet r(u, v) in a knowledge graph, we also in-
clude its inverse triplet » ~! (v, u), where r~* denotes a newly introduced relation symbol represent-
ing the inverse of r for ULTRA. However, HYPER does not need this procedure as the entity encoder
employs a variant of HCNet (Huang et al., 2025b), which uses bi-directional message-passing and
automatically considers the message from the inverse direction.

Results and Discussion. We observe that HYPER achieves comparable performance to ULTRA in
zero-shot inductive link prediction on knowledge graphs. Across both node-only and node-and-
relation inductive benchmarks, HYPER performs on par with ULTRA, and often outperforms it on
datasets with higher relational diversity or structure. These results demonstrate that the architectural
inductive bias of HYPER, originally designed for knowledge hypergraphs, also transfers well to
standard knowledge graphs, without compromising generalization ability.

E COMPLEXITY AND SCALABILITY ANALYSIS OF HYPER

To answer Q7, we first examine the theoretical computational complexity of HYPER in Ap-
pendix [ET] then present its empirical scalability results when applying on FB15k-237 Appendix[E.2]

3https://github.com/triton-lang/triton

15

Under review as a conference paper at ICLR 2026

E.1 THEORETICAL COMPUTATIONAL COMPLEXITY

In this section, we analyze the computational complexity of HYPER. Let G = (V, E/, R) denote the
input knowledge hypergraph, where n = |V|, m = |E|, and |R| are the number of entities, hyper-
edges, and relation types, respectively. Let k£ be the maximum arity of R, d the hidden dimension,
and T the number of message-passing layers in the relation encoder, and denote L as the number of
message-passing layers in the entity encoder.

Relation Graph Construction The complexity of generating the relation graph in HYPER arises
from computing pairwise positional interactions between relation types across hyperedges of ar-
bitrary arity. Unlike knowledge graphs, where each relation involves exactly two fixed positions
(head and tail), knowledge hypergraphs induce up to k2 positional interaction types for a maxi-
mum arity k. For each position a € {1,...,k}, we construct sparse matrices F, € R™ ™ that
index entities by their position and relation type. Then, for every pair (a,b), we perform a sparse
matrix multiplication: spmm(E, | E,). Each such multiplication has a worst-case complexity of
O(nnz(E]) - nnz(Ey)), where nnz(-) denotes the number of nonzero entries. Since there are k2
position pairs, the total time complexity of constructing the relation graph becomes

O(k? - ?135}({nnz(E;r) -nnz(Ey)}).
a,
In practice, this is significantly accelerated by sparse tensor and batching across position pairs. With-
out sparse matrix multiplication, the naive construction would require iterating over all hyperedge
pairs, resulting in O(k?|E|?) complexity, which is infeasible for large-scale datasets.

Additionally, for the positional interaction encoders, we associate a positional encoding vector
Encpi((a,b)) € RY. This construction requires O(k2d) time and space to compute and store.

Relation Encoder The relation encoder in HYPER performs 7" layers of message passing over the
relation graph Gyel = (Viel, Erel, Rrel), as constructed before.

There are at most k2 position pairs per pair of relation types, where k is the maximum arity, so the
total number of edges is bounded by

| Erel] = O(|RI?E?).

In each message passing layer, each relation node aggregates messages from up to | R|?k? neigh-
bors, with each edge contributing a message via the corresponding positional interaction embedding
xqp = Encpi((a,b)) € R%. Each node then applies an update with cost O(d?). Thus, the total
complexity of the relation encoder over T layers is

O (T(|RI°k*d + |R|d?)) .

Entity Encoder After obtaining relation embeddings from the relation encoder, HYPER applies
L layers of conditional message passing over the original knowledge hypergraph G = (V, E, R)
using HCNet (Huang et al., 2025b). In each layer, every entity v € V' aggregates messages from

its incident hyperedges e € F/(v), where each hyperedge contributes a query-conditioned message,
taking O(L(k|E|d), that incorporates its relation embedding hge))‘q € R4, followed by a relation-
specific MLP, which takes O(L|R|d?). Each entity then updates its representation through a neural
update function with cost O(d?).

The total complexity of the entity encoder over L layers is thus
O(L(k|E|d + |V|d® + |R|d?)).
E.2 SCALABILITY ANALYSIS
To empirically assess the scalability of HYPER, we compare HYPER with ULTRA, a prominent
knowledge graph foundation model, and HCNet, a state-of-the-art node-inductive method on link

prediction with knowledge hypergraph. All experiments are conducted on the transductive knowl-
edge graph dataset FB15k-237 using a batch size of 64 to ensure a fair comparison among all three

16

Under review as a conference paper at ICLR 2026

methods. We summarize the model parameter size, training/inference times, and GPU memory
usage.

Compared with HCNets, HYPER’s training and inference times are approximately doubled since
HYPER employs rwo HCNet encoders, one for relations and one for entities. We argue that this over-
head represents a reasonable trade-off for the substantial performance improvements and stronger
inductive generalization demonstrated by HYPER compared with HCNets.

Compared with ULTRA, the main bottleneck of scalability is the complex modeling of knowledge
graphs as knowledge hypergraphs. These differences essentially reduce to the difference between
HCNet and NBFNets. For a detailed discussion, we refer the reader to Huang et al.| (2025b).

F FURTHER EXPERIMENTAL DETAILS

In this section, we provide detailed experimental configurations and dataset statistics. In particular,
Table summarizes the training corpora used for each model variant across knowledge graph
and knowledge hypergraph settings. Tables [I3] and [14] present arity distributions and structural
statistics for the node-inductive datasets, while Table [13] reports the corresponding statistics for
pretraining datasets. For inductive link prediction involving unseen entities and relations, we provide
comprehensive dataset breakdowns in Tables[I6and

We also include the complete performance tables together with standard deviation for the node-
inductive and node-relation inductive settings shown in Tables |18| and respectively. Table
lists all hyperparameter choices used for pretraining, fine-tuning, and end-to-end training of HYPER.
Finally, Table 21] specifies the dataset-specific training schedules for each experimental regime.

F.1 HYPERPARAMETER DETAILS FOR BASELINES

For G-MPNNs, we adopt the best-performing hyperparameters from the original codebase. Specif-
ically, we set the input dimension d = 64, hidden dimension h = 150, and dropout rate to 0.5.
We use a training batch size b = 128, evaluation batch size B = 4, and negative sampling ratio
nr = 10. The learning rate is set to 0.0005, and models are trained for up to 5000 epochs with
validation evaluated every 5 epochs. Aggregation is performed using the max.

For HCNet, we use a 6-layer encoder with an input dimension of 64 and a hidden dimension of 64 for
all layers. We adopt sum as the aggregation function and enable shortcut connections to facilitate
training. Optimization is performed using AdamW with a learning rate of 5 x 10~%. Training
is conducted with a batch size of 8, using the same number of epochs and batches per epoch as
HYPER, with validation performed every 100 steps. The model is trained with 256 adversarial
negatives sampled per positive example, and strict negative sampling is enforced to prevent overlap
with true triples.

F.2 ADDITIONAL BASELINES FOR KGFMs

To provide a more comprehensive evaluation of Knowledge Graph Foundation Models (KGFMs),
we expanded our analysis beyond ULTRA, which served as the representative KGFM in the main
paper. We additionally evaluated KG-ICL (Cui et al.l 2024), a model that has demonstrated strong
performance on inductive knowledge graph completion tasks. For KG-ICL, we performed zero-
shot experiments across all 16 proposed datasets after reification with 3 variants of KG-ICL using
4 Layer, 5 Layer, and 6 Layer encoders, respectively. We highlight that KG-ICL learns over dif-
ferent pretraining mix than ULTRA (FB-v1, NL-vl, and Codex Small). The results, summarized
in Table [[1] indicate that KG-ICL’s performance is substantially lower than that of HYPER, fur-
ther supporting the conclusion that existing KGFMs exhibit limited generalization on hypergraph
structures.

F.3 ARCHITECTURE CHOICES OF HYPER

Both the relation and entity encoders in HYPER follow the design based on HCNets (Huang et al.,
2025b), with a minor variant on the relation-specific message functions.

17

Under review as a conference paper at ICLR 2026

Positional Interactions. In practice, we implement Encp; as a two-layer multilayer perceptron
(MLP) over concatenated sinusoidal encodings of the input positions. Let p,,p, € R? denote
the sinusoidal positional encodings of positions a and b, respectively. Then, the embedding cor-
responding to the interaction (a,b) is computed as x,,, = MLP([p,, || ps]), where MLP denotes a
shared two-layer feedforward network with ReLLU activations. This produces a dense embedding
that captures the interaction between the two positions. Empirically, we find that this instantia-
tion of Encp; enables strong generalization across knowledge hypergraphs with varying arities and
relational structures.

Relation Encoder. The relation encoder applies an HCNet over the constructed relation graph
(Viel, Erel, Rie1). Here, each node r» € Vi represents a relation type in GG, and an edge captures
the induced interactions among relations. For each relation r € V., HCNet iteratively updates its

representation hitﬂ, as:

A = NIl (1, q),

hfwtgl) = UPrel (hg;aAGGrel({MSGp(e)({(hg)m»j) ‘ (T/7j> € Meli(e)}>q) ‘ (evi) € Erel(r)}}))’

where E(r) is the set of edge-position pairs incident to r, and N ;(e) is the positional neigh-
borhood of hyperedge e at position i. After T' layers, we obtain the final relation encoding hg;).
Here, INITr|, UPrel, AGGrel, and MSG,(.) are differentiable initialization, update, aggregation, and
fundamental relation-specific message functions, respectively. The initialization function INIT is
designed to satisfy generalized target node distinguishability as formalized in|[Huang et al.|(2025b).

Empirically, we initialize the query node ¢ € V. with an all-one vector and all other relation nodes
with zero vectors.

In the experiments, we adopt the fundamental relation-specific message function MSG,,, using the
fundamental relation embedding r, ;. Specifically, given a set of neighbor features {(hgf‘)q,)|

(w,) € Nre;(€)} for hyperedge e and center position ¢, the message is computed as:

usGr, , ({(AU)) | (w,5) € Nas(@)}) = { O (aPRY) o+ (1= a)py) | © %,
J#i
where © is the elemental-wise multiplication, a9 is a learnable scalar, p; is the sinusoidal posi-

tional encoding at position j, and x, 4 is the fundamental relation embedding computed as described
earlier.

Entity Encoder. In the context of the entity encoder, we apply a separate HCNet over the original
knowledge hypergraph G = (V, E, R). Each node v € V aggregates information from its incident

iT) obtained from the relation encoder.

hyperedges, incorporating the relation embeddings h lq

Given a query ¢ = (g, @, t), where @ = (uq, ..., uy) denotes the entities in the hyperedge and ¢ is
the target position, each node v € V receives an initial representation defined as:

0
h’5;|¢)1 = Z]lU:ui : (pi + zq>7
it
where p; € R? is the positional encoding at position i, and zq € R? is a learned embedding for the
query relation q.
©

HYPER then iteratively updates the node representations h g 38
0
hv(JIt)z = NIT(v, q),
41 ¢ 0 . , T .
hyio) = up (R, ac(fsGoie) (Rl) | (.) € Ni(e)}, RS 1 a) | (e,) € E(0)}))

where INIT, UP, AGG, and MSG, are differentiable initialization, update, aggregation, and relation-
specific message functions, respectively, with INIT satisfying generalized targets node distinguisha-
bility (Huang et al., 2025b)). After L layers of message passing, we obtain the final entity encoding

18

Under review as a conference paper at ICLR 2026

hi‘Lg. A final unary decoder Dec : R — [0, 1] predicts the score for completing the missing

position t in the query q.

Empirically, we select the relation-specific message function MSG (. to be

V4 . . Y4 T
wsG, ({(A\).9) | (w,j) € Ni(e)}) = 9(a<‘>h£(}>q+<1—a<f>>pj) oMpO(RT)),
VE2

where additionally MLP® is a 2-layer MLP with ReLU to transform the relation representation
most suitable for each specific layer during message passing.

Update. We use summation as the aggregation operator for both relation and entity nodes. Each
node updates its representation via a two-layer MLP applied to the concatenation of its current state
and the aggregated message:

RUHD — MLp®) ([hfj; | AGGREGATE"") }) ,

vlq vlq

where AGGREGATE"")

vlq
and || represents vector concatenation.

denotes the sum of incoming messages to node v under query q at layer ¢,

Other. We also apply layer normalization and shortcut connections after aggregation and before
the ReLU activation in both encoders.

F.4 TRAINING OBJECTIVE

Following prior work (Huang et al.| [2025b)), we train HYPER under the partial completeness as-
sumption (Galarraga et al., [2013)), where each k-ary fact g(us, ..., uy) is used to generate training
samples by randomly masking one position 1 < ¢ < k. Given a query ¢ = (g, u,t), we model

the conditional probability of entity v € V filling the missing position as p(v|q) = U(Dec(hijl“g))7
where Dec is a two-layer MLP and o denotes the sigmoid activation. We optimize the following

self-adversarial negative sampling loss (Sun et al.| 2019):

L(v]q) = —logp(v]q) — > w;.alog(l - p(vilg)),

i=1

where v] are corrupted negative samples, n is the number of negatives per query, a being the adver-
sarial temperature, and w; ., are the importance weights defined by

log(1 p(vélq))> .

Wi o = Softmax (
«

To mitigate overfitting, we exclude edges that directly connect query node pairs during training.
The best model checkpoint is selected based on validation performance. Following the implementa-
tion of ULTRA (Galkin et al.| [2024)), for pertaining over multiple knowledge graph and knowledge
hypergraphs, for each batch, we sample from one of the pretrained (hyper)graphs with probability
proportional to the number of edges it contains.

19

Under review as a conference paper at ICLR 2026

Table 7: Arity distribution across node-relation inductive datasets.

Dataset Arity Training Graph Inference Graph Training % Inference %
2 1585 266 47.02% 25.19%
JE.25 3 1441 670 42.75% 63.45%
4 326 120 9.67% 11.36%
>5 19 0 0.56% 0.00%
2 1942 321 55.11% 24.85%
JE-50 3 1297 692 36.80% 53.56%
4 285 279 8.09% 21.59%
>5 0 0 0.00% 0.00%
2 2641 824 61.60% 48.56%
JE-75 3 848 846 19.78% 49.85%
4 779 27 18.17% 1.59%
>5 19 0 0.44% 0.00%
2 1349 1637 55.08% 75.82%
JE-100 3 570 283 23.27% 13.11%
4 511 159 20.87% 7.36%
>5 19 80 0.78% 3.71%
2 4,331 2,799 79.00% 90.12%
0] 0
WD-25 3 612 162 11.16% 5.22%
4 463 144 8.45% 4.64%
>5 76 1 1.39% 0.03%
2 7709 4355 80.84% 99.20%
WP-50 3 1106 28 11.60% 0.64%
4 667 3 6.99% 0.07%
>5 54 4 0.57% 0.09%
2 6471 6121 69.80% 98.39%
WP-75 3 1725 82 18.61% 1.32%
4 1026 15 11.07% 0.24%
>5 49 3 0.53% 0.05%
2 6471 7413 69.80% 98.63%
q q
WP-100 3 1725 91 18.61% 1.21%
4 1026 6 11.07% 0.08%
>5 49 6 0.53% 0.08%
2 3,680 1,941 87.60% 93.81%
WD-25 3 211 114 5.02% 5.51%
4 279 12 6.64% 0.58%
>5 31 2 0.74% 0.10%
2 3,238 2,127 78.08% 90.40%
WD-50 3 417 86 10.06% 3.65%
4 438 136 10.56% 5.78%
>5 54 4 1.30% 0.17%
2 4,900 5,669 77.72% 97.22%
0] 0
WD-75 3 769 139 12.20% 2.38%
4 548 22 8.69% 0.38%
>5 88 1 1.40% 0.02%
2 5,858 3,631 80.57% 91.90%
WD-100 3 906 186 12.46% 4.71%
4 397 134 5.46% 3.39%
>5 110 0 1.51% 0.00%
2 137 1555 1.67% 55.50%
MEB-25 3 8045 831 98.33% 29.66%
4 0 0 0.00% 0.00%
>5 0 416 0.00% 14.85%
2 149 1400 1.77% 57.71%
L) 0
MFB-50 3 8260 756 98.23% 31.16%
4 0 0 0.00% 0.00%
>5 0 270 0.00% 11.13%
2 2774 368 52.63% 9.18%
MEB-75 3 2497 3639 47.37% 90.79%
4 0 1 0.00% 0.02%
>5 0 0 0.00% 0.00%
2 726 3234 6.23% 71.64%
MEB-100 3 10932 370 93.77% 8.20%
4 0 0 0.00% 0.00%
>5 0 910 0.00% 20.16%

20

Under review as a conference paper at ICLR 2026

Table 8: Zero-shot experiment results on node and relation inductive knowledge graph datasets

Method FB-25 \ FB-50 \ FB-75 \ FB-100 \ WK-25 \ WK-50 \ WK-75 \ WK-100
MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10
ULTRA(3KG) 0.388 0.640 0.338 0.543 0.403 0.604 0.449 0.642 0.316 0.532 0.166 0.324 0.365 0.537 0.164 0.286
HYPER(3KG) 0.372 0.614 0.313 0.513 0.373 0.568 0.412 0.598 0.276 0.410 0.145 0.281 0.334 0.460 0.171 0.271
HYPER(4HG) 0.277 0.538 0.225 0.427 0.287 0.503 0.336 0.567 0.215 0.422 0.117 0.245 0.280 0.491 0.125 0.247
HYPER(3KG + 2HG) 0.382 0.635 0.326 0.535 0.389 0.598 0.434 0.632 0.281 0.428 0.158 0.280 0.365 0.522 0.160 0.280
NL-25 NL-50 NL-75 NL-100 MTl1-tax MTI1-health MT2-org MT2-sci
Method
MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10
ULTRA(3G) 0.395 0.569 0.407 0.570 0.368 0.547 0.471 0.651 0.224 0.305 0.298 0.374 0.095 0.159 0.258 0.354
HYPER(3KG) 0.321 0.550 0.350 0.520 0.320 0.483 0.415 0.627 0.234 0.306 0.361 0.431 0.088 0.142 0.256 0.339
HYPER(4HG) 0.214 0.431 0.226 0.480 0.252 0.455 0.333 0.618 0.200 0.274 0.266 0.358 0.063 0.116 0.195 0.320

HYPER(3KG + 2HG) 0.360 0.558 0.376 0.547 0.342 0.540 0.473 0.685 0.204 0.396 0.222 0.399 0.087 0.149 0.258 0.428

MT3-art MT3-infra MT4-sci MT4-health Metafam FBNELL NL-0 Average

Method

MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10
ULTRA(3KG) 0.259 0.402 0.619 0.755 0.274 0.449 0.624 0.737 0.238 0.644 0.485 0.652 0.342 0.523 0.345 0.513
HYPER(3KG) 0.257 0.402 0.562 0.695 0.259 0.415 0.547 0.723 0.395 0.804 0.447 0.617 0.312 0.501 0.318 0.492
HYPER(4HG) 0.152 0.265 0.363 0.451 0.232 0.412 0.380 0.556 0.191 0.606 0.320 0.537 0.171 0.393 0.228 0.419

HYPER(3KG + 2HG) 0.270 0.425 0.573 0.716 0.270 0.441 0.560 0.724 0.457 0.875 0.450 0.639 0.334 0.526 0.336 0.520

Table 9: Zero-shot experiment results on node inductive knowledge graph datasets. The best result
for each dataset is in bold.

Method WN-v1 WN-v2 WN-v3 WN-v4 FB-vl1 FB-v2
MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@I10
ULTRA(3KG) 0.648 0.768 0.663 0.765 0376 0.476 0.611 0.705 0.498 0.656 0.512 0.700
HYPER(3KG) 0.703 0.799 0.681 0.788 0.400 0.522 0.644 0.721 0.450 0.622 0.474 0.668
HYPER(4HG) 0.530 0.720 0.533 0.691 0.287 0.392 0.514 0.652 0.263 0.476 0.308 0.527
HYPER(3KG +2HG) 0.702 0.782 0.686 0.785 0.385 0.503 0.640 0.710 0.454 0.648 0.480 0.695
Method FB-v3 FB-v4 NL-v1 NL-v2 NL-v3 NL-v4
MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10
ULTRA(BKG) 0.491 0.654 0.486 0.677 0.785 0.913 0.526 0.707 0.515 0.702 0.479 0.712
HYPER(3KG) 0.460 0.627 0.460 0.653 0.619 0.868 0.514 0.719 0.510 0.692 0.468 0.697
HYPER(4HG) 0.276 0.482 0280 0.504 0.516 0.863 0.345 0.639 0.340 0.610 0.269 0.582
HYPER(3KG + 2HG) 0.466 0.648 0.460 0.663 0.570 0.719 0.521 0.741 0.509 0.705 0.501 0.728
Method ILPC Small ILPC Large HM 1k HM 3k HM 5k HM Indigo
MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10
ULTRA(BKG) 0.302 0.443 0290 0.424 0.059 0.092 0.037 0.077 0.034 0.071 0.440 0.648
HYPER(3KG) 0.291 0.438 0.293 0.412 0.046 0.092 0.036 0.073 0.033 0.069 0.437 0.644
HYPER(4HG) 0.169 0.347 0.183 0.327 0.027 0.075 0.024 0.064 0.024 0.058 0.298 0.484

HYPER(BKG +2HG) 0.296 0.448 0.289 0.417 0.043 0.106 0.037 0.092 0.034 0.086 0.401 0.614

Table 10: Scalability comparison on FB15k-237 with batch size = 64.
Training Time Inference Time

Model # Parameters (s/batch) (s/batch) GPU Memory (GB)
ULTRA 168,705 1.19 0.066 12.87
HCNet 159,297 2.64 0.156 18.03
HYPER 225,409 4.51 0.272 25.30

21

Under review as a conference paper at ICLR 2026

Table 11: Average zero-shot inference MRR over 16 newly proposed dataset comparison across
KG-ICLT, ULTRAT, and HYPER variants.

Model Average MRR
KG-ICL' (4 Layer) 0.139
KG-ICL' (5 Layer) 0.048
KG-ICL' (6 Layer) 0.143
ULTRA' (3KG) 0.142
ULTRAT (4KG) 0.150
ULTRAT (50KG) 0.154
HYPER (3KG) 0.161
HYPER (4HG) 0.182
HYPER (3KG+2HG) 0.236

Table 12: Training datasets for model variants

Model [l Knowledge Hypergraph | Knowledge Graph

HJF]7K FB-AUTO Wikipeople MFB]SK‘FB]Sk-237 WNI8RR CodEx Medium NELL995 Others(46G)

ULTRA(4G)
ULTRA(50G)

HYPER(3KG)
HYPER(4HG)
HYPER(3KG + 2HG)

ULTRA(3G)

v
v v

SN RN
RN ENCNN
SN RN

v v v v
v v

HYPER(end2end) ‘ ‘

HCNet Trained directly on target dataset’s training graph

Table 13: Arity distribution across node inductive datasets.

Dataset Arity Training Graph Inference Graph Training % Inference %

2 264 9 4.28% 2.93%
JF-IND 3 4586 216 74.36% 70.36%
4 1317 82 21.36% 26.71%
>5 0 0 0.00% 0.00%
2 0 0 0.00% 0.00%
WP-IND 3 3375 476 81.54% 86.39%
4 764 75 18.46% 13.61%
>5 0 0 0.00% 0.00%
2 0 0 0.00% 0.00%
MFB-IND 3 336733 7527 100.00% 100.00%
4 0 0 0.00% 0.00%
>5 0 0 0.00% 0.00%

Table 14: Dataset statistics of inductive link prediction task with knowledge hypergraph.

Statistic JF-IND WP-IND MFB-IND
seen vertices 4,685 4,463 3,283

train hyperedges 6,167 4,139 336,733
unseen vertices 100 100 500

relations 31 32 12

max arity 4 4 3

22

Under review as a conference paper at ICLR 2026

Table 15: Dataset statistics of pretrained knowledge hypergraphs and knowledge graphs with re-
spective arity.

Dataset | FB-AUTO WikiPeople JF17K MFBI15K | FB15k237 WNI8RR CoDEx-M
V] 3,410 47,765 29,177 10,314 14541 40943 17050
|R| 8 707 327 71 237 11 51

train 6,778 305,725 61,104 415,375 272115 86835 185584
valid 2,255 38,223 15,275 39,348 17535 3034 10310
test 2,180 38,281 24915 38,797 20466 3134 10311
max arity 5 9 6 5 2 2 2

arity= 2 3,786 337,914 56,322 82,247 310,116 93,003 206,205
arity= 3 0 25,820 34,550 400,027 0 0 0

arity= 4 215 15,188 9,509 26 0 0 0

arity> 5 7,212 3,307 2,267 11,220 0 0 0

Table 16: Dataset statistics for inductive on both node and relation link prediction datasets. Triples
are the number of edges given at training, validation, or test graphs, respectively, whereas Valid and
Test denote triples to be predicted in the validation and test graphs.

Dataset Training Graph Validation Graph Test Graph

Entities Rels Triples \ Entities Rels Triples Valid \ Entities Rels Triples Test
FB-25 5190 163 91571 4097 216 17147 5716 4097 216 17147 5716
FB-50 5190 153 85375 4445 205 11636 3879 4445 205 11636 3879
FB-75 4659 134 62809 2792 186 9316 3106 2792 186 9316 3106
FB-100 4659 134 62809 2624 77 6987 2329 2624 77 6987 2329
WK-25 12659 47 41873 3228 74 3391 1130 3228 74 3391 1131
WK-50 12022 72 82481 9328 93 9672 3224 9328 93 9672 3225
WK-75 6853 52 28741 2722 65 3430 1143 2722 65 3430 1144
WK-100 9784 67 49875 12136 37 13487 4496 12136 37 13487 4496
NL-0 1814 134 7796 2026 112 2287 763 2026 112 2287 763
NL-25 4396 106 17578 2146 120 2230 743 2146 120 2230 744
NL-50 4396 106 17578 2335 119 2576 859 2335 119 2576 859
NL-75 2607 96 11058 1578 116 1818 606 1578 116 1818 607
NL-100 1258 55 7832 1709 53 2378 793 1709 53 2378 793
Metafam 1316 28 13821 1316 28 13821 590 656 28 7257 184
FBNELL 4636 100 10275 4636 100 10275 1055 4752 183 10685 597
Wiki MT1 tax 10000 10 17178 10000 10 17178 1908 10000 9 16526 1834
Wiki MT1 health 10000 7 14371 10000 7 14371 1596 10000 7 14110 1566
Wiki MT2 org 10000 10 23233 10000 10 23233 2581 10000 11 21976 2441
Wiki MT2 sci 10000 16 16471 10000 16 16471 1830 10000 16 14852 1650
Wiki MT3 art 10000 45 27262 10000 45 27262 3026 10000 45 28023 3113
Wiki MT3 infra 10000 24 21990 10000 24 21990 2443 10000 27 21646 2405
Wiki MT4 sci 10000 42 12576 10000 42 12576 1397 10000 42 12516 1388
Wiki MT4 health 10000 21 15539 10000 21 15539 1725 10000 20 15337 1703

23

Under review as a conference paper at ICLR 2026

Table 17: Dataset statistics for inductive-e link prediction datasets. Triples are the number of edges
given at training, validation, or test graphs, respectively, whereas Valid and Test denote triples to be
predicted in the validation and test graphs.

Dataset Rels Training Graph Validation Graph Test Graph
Entities Triples | Entities Triples Valid | Entities Triples Test
FB-v1 180 1594 4245 1594 4245 489 1093 1993 411
FB-v2 200 2608 9739 2608 9739 1166 1660 4145 947
FB-v3 215 3668 17986 3668 17986 2194 2501 7406 1731
FB-v4 219 4707 27203 4707 27203 3352 3051 11714 2840
WN-v1 9 2746 5410 2746 5410 630 922 1618 373
WN-v2 10 6954 15262 6954 15262 1838 2757 4011 852
WN-v3 11 12078 25901 12078 25901 3097 5084 6327 1143
WN-v4 9 3861 7940 3861 7940 934 7084 12334 2823
NL-v1 14 3103 4687 3103 4687 414 225 833 201
NL-v2 88 2564 8219 2564 8219 922 2086 4586 935
NL-v3 142 4647 16393 4647 16393 1851 3566 8048 1620
NL-v4 76 2092 7546 2092 7546 876 2795 7073 1447
ILPC Small 48 10230 78616 6653 20960 2908 6653 20960 2902
ILPC Large 65 46626 202446 29246 77044 10179 29246 77044 10184
HM 1k 11 36237 93364 36311 93364 1771 9899 18638 476
HM 3k 11 32118 71097 32250 71097 1201 19218 38285 1349
HM 5k 11 28601 57601 28744 57601 900 23792 48425 2124
HM Indigo 229 12721 121601 12797 121601 14121 14775 250195 14904

24

Under review as a conference paper at ICLR 2026

Table 18: Experiment result on node and relation inductive knowledge hypergraph datasets.

Method JF-25 JF-50 JF-75 JF-100
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10
G-MPNN 0.006 0.004 0.004 0.007 0.003 0.000 0.000 0.003 0.001 0.000 0.000 0.000 0.002 0.000 0.000 0.000
HCNet 0.011 0.004 0.007 0.011 0.009 0.000 0.000 0.024 0.069 0.038 0.072 0.125 0.028 0.000 0.018 0.054
0.202 0.117 0.226 0.346 0.468 0.358 0.540 0.653 0.207 0.125 0.226 0.357 0.198 0.107 0.161 0.411
HYPER(end2end)

+.003 £.002 £.006

=+.005

4.004 £.007 £.002

+.003

+.005 £.004 +£.006

+.003

+.008 £.002 £.004 =£.003

ULTRAT (3KG)(0-shot)
ULTRA T (4KG)(0-shot)
ULTRA (50KG)(0-shot)

0.119 0.000 0.166
0.099 0.016 0.078
0.147 0.071 0.145

0.399
0.343
0.368

0.304 0.143 0.427
0.325 0.188 0.382
0.407 0.285 0.513

0.629
0.648
0.605

0.109 0.038 0.116
0.102 0.038 0.085
0.126 0.082 0.154

0.241
0.251
0.207

0.091 0.036 0.054 0.232
0.132 0.089 0.107 0.214
0.111 0.089 0.125 0.161

HYPER(3KG)(0-shot)
HYPER(4HG)(0-shot)
HYPER(3KG + 2HG)(0-shot)

0.148 0.071 0.152
0.187 0.095 0.219
0.216 0.122 0.233

0.318
0.360
0.413

0.297 0.212 0.336
0.377 0.239 0.476
0.455 0.325 0.556

0.460
0.608
0.664

0.112 0.041 0.132
0.188 0.110 0.204
0.213 0.122 0.231

0.254
0.370
0.367

0.130 0.018 0.107 0.375
0.181 0.089 0.161 0.464
0.173 0.071 0.179 0.446

HyPER(3KG + 2HG)(finetuned)

0.217 0.131 0.226
+.001 £.002 4.004

0.389
+.006

0.456 0.331 0.554
+.003 £.005 +.002

0.672
+.001

0.209 0.119 0.238
4.004 £.006 +.003

0.361
+.007

0.176 0.089 0.161 0.393
4.005 £.003 +.008 +.002

Method

WP-25

WP-50

WP-75

WP-100

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3

H@10 MRR H@1 H@3 H@10

G-MPNN
HCNet

HYPER(end2end)

0.005 0.003 0.005
0.104 0.048 0.114
0.159 0.071 0.172
+.003 £.004 +.005

0.006
0.230
0.358
+.006

0.002 0.001 0.000
0.050 0.025 0.059
0.143 0.082 0.157
+.002 £.003 +.004

0.002
0.087
0.260
+.007

0.001 0.000 0.001
0.019 0.010 0.020
0.139 0.072 0.129
+.003 £.001 +.005

0.000
0.032
0.294
+.006

0.000 0.000 0.000 0.001
0.003 0.000 0.000 0.003
0.202 0.106 0.190 0.418
+.002 £.003 4-.004 +.007

ULTRA (3KG)(0-shot)
ULTRA (4KG)(0-shot)
ULTRA (50KG)(0-shot)

0.040 0.010 0.044
0.047 0.004 0.054
0.045 0.011 0.044

0.108
0.145
0.151

0.070 0.034 0.082
0.091 0.044 0.107
0.071 0.040 0.080

0.150
0.176
0.133

0.067 0.026 0.068
0.089 0.038 0.086
0.045 0.021 0.050

0.160
0.229
0.101

0.071 0.039 0.077 0.148
0.086 0.051 0.093 0.161
0.065 0.035 0.074 0.151

HYPER(3KG)(0-shot)
HYPER(4HG)(0-shot)
HYPER(3KG + 2HG)(0-shot)

0.143 0.057 0.138
0.075 0.033 0.094
0.132 0.058 0.151

0.349
0.186
0.296

0.147 0.073 0.159
0.068 0.056 0.080
0.152 0.086 0.178

0.327
0.081
0.295

0.186 0.097 0.186
0.086 0.066 0.107
0.192 0.107 0.201

0.391
0.114
0.384

0.221 0.106 0.241 0.498
0.168 0.080 0.190 0.360
0.222 0.132 0.209 0.453

HYPER(3KG + 2HG)(finetuned)

0.169 0.078 0.164
+.003 £.002 £.004

0.399
+.005

0.171 0.103 0.201
£.001 £.006 £.002

0.306
+.007

0.194 0.112 0.199
£.003 £.004 £.002

0.375
+.005

0.210 0.116 0.206 0.424
+.006 £.003 £.004 £.002

Method ‘WD-25 WD-50 WD-75 ‘WD-100
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10
G-MPNN 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.001 0.000 0.000 0.001
HCNet 0.086 0.050 0.096 0.136 0.043 0.027 0.044 0.060 0.015 0.006 0.023 0.030 0.007 0.004 0.005 0.007
HYPER(end2end) 0.215 0.132 0.225 0.394 0.205 0.153 0.219 0.317 0.172 0.105 0.194 0.298 0.205 0.139 0.226 0.342
endzen 4.002 £.006 +.005 £.004 +.007 £.003 £.006 £.002 £.003 £.004 £.003 +.007 £.002 £.008 +.004 £.005
ULTRAT(3KG)(O-ShOI) 0.171 0.096 0.175 0.351 0.201 0.137 0.208 0.339 0.149 0.088 0.157 0.266 0.176 0.118 0.186 0.298
ULTRAT(4KG)(0-ShOT) 0.094 0.073 0.096 0.142 0.141 0.104 0.148 0.224 0.054 0.043 0.061 0.076 0.075 0.063 0.081 0.102
ULTRAT(S()KG)(O—ShOt) 0.062 0.063 0.063 0.063 0.124 0.115 0.131 0.148 0.104 0.073 0.120 0.170 0.150 0.114 0.167 0.233
HYPER(3KG)(0-shot) 0.167 0.010 0.172 0.331 0.158 0.104 0.175 0.295 0.123 0.005 0.142 0.255 0.146 0.077 0.168 0.281
HYPER(4HG)(0-shot) 0.087 0.076 0.093 0.103 0.158 0.142 0.164 0.197 0.057 0.051 0.062 0.064 0.165 0.139 0.177 0.233
HYPER(3KG + 2HG)(0-shot) ~ 0.223 0.156 0.225 0.404 0.200 0.148 0.208 0.317 0.154 0.093 0.168 0.275 0.182 0.133 0.177 0.286
0.225 0.146 0.245 0.397 0.234 0.186 0.230 0.355 0.166 0.101 0.189 0.294 0.210 0.140 0.235 0.351
HYPERGKG + ZHG)(finetuned) "0 1 105 1 004 4006 £.002 £.007 £.003 4.001 +.005 £.003 £.006 +.004 +.002 £.008 %003 +.005

Method MFB-25 MFB-50 MFB-75 MFB-100
MRR H@l H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10
G-MPNN 0.002 0.000 0.000 0.004 0.004 0.001 0.003 0.007 0.007 0.003 0.004 0.010 0.003 0.000 0.002 0.005
HCNet 0.033 0.008 0.008 0.108 0.026 0.013 0.022 0.041 0.016 0.007 0.009 0.021 0.082 0.028 0.085 0.227
HyPER(end2end) 0.332 0.221 0.388 0.533 0.200 0.105 0.251 0.374 0.135 0.070 0.143 0.255 0.222 0.169 0.228 0.317
endzen 4.005 .04 £.003 £.002 =£.006 £.004 £.007 £.005 £.003 £.006 £.002 £.008 +.001 =£.005 £.004 =+.003
ULTRAT(3KG)(0»sh0t) 0.209 0.071 0.304 0.504 0.153 0.055 0.189 0.377 0.062 0.011 0.025 0.182 0.222 0.104 0.284 0.433
ULTRAT(4KG)(0—Sh0t) 0.343 0.242 0.388 0.542 0.215 0.122 0.249 0.398 0.111 0.060 0.106 0.230 0.274 0.187 0.314 0.435
ULTRAT(SOKG)(O-ShOI) 0.310 0.217 0.371 0.479 0.218 0.134 0.261 0.369 0.100 0.056 0.086 0.219 0.262 0.185 0.309 0.416
HYPER(3KG)(0-shot) 0.248 0.167 0.283 0.396 0.191 0.123 0.216 0.296 0.039 0.016 0.029 0.073 0.276 0.198 0.311 0.416
HYPER(4HG)(0-shot) 0.349 0.258 0.400 0.546 0.244 0.169 0.286 0.382 0.139 0.082 0.140 0.244 0.278 0.195 0.316 0.441
HYPER(3KG + 2HG)(0-shot) 0.363 0.263 0.417 0.550 0.250 0.167 0.287 0.393 0.140 0.077 0.140 0.260 0.299 0.214 0.339 0.449

HYPER(3KG + 2HG)(finetuned)

0.347 0.229 0.408
+.004 £.006 +£.003

0.533
+.002

0.243 0.163 0.286
+.005 £.006 +.007

0.391
+.004

0.158 0.088 0.161
4.002 £.005 +.003

0.302
+.006

0.275 0.197 0.290 0.452
4.002 £.008 +.003 +£.004

25

Under review as a conference paper at ICLR 2026

Table 19: Experiment result on node-inductive knowledge hypergraph datasets.

Method JF-IND WP-IND MFB-IND

MRR H@l H@3 MRR H@l H@3 MRR H@l H@3
HGNN 0.102 0.086 0.128 0.072 0.045 0.112 0.121 0.076 0.114
HyperGCN 0.099 0.088 0.133 0.075 0.049 0.111 0.118 0.074 0.117
G-MPNN 0.219 0.155 0.236 0.177 0.108 0.191 0.124 0.071 0.123
RD-MPNN 0.402 0.308 0.453 0.304 0.238 0.328 0.122 0.082 0.125
HCNet 0.435 0357 0495 0414 0.352 0451 0.368 0.223 0.417

0.422 0.320 0.483 0.435 0.367 0.471 0.427 0.290 0.499
HYPER(end2end)

+.004 £.006 4007 +005 +£.004 £.006 +003 £005 =£.004
ULTRA' (3KG)(0-shot) 0.173 0.043 0.220 0.101 0.000 0.041 0.054 0.003 0.026
ULTRAT (4KG)(0-shot) 0.286 0.171 0.322 0.183 0.029 0.250 0.163 0.069 0.165
ULTRA(50KG)(0-shot) 0.346 0.255 0.381 0.286 0.218 0.295 0.149 0.056 0.135
HYPER(3KG)(0-shot) 0.263 0.177 0.281 0.259 0.176 0.307 0.184 0.123 0.196
HYPER(4HG)(0-shot) 0.403 0.277 0.501 0.375 0.297 0.410 0.497 0.351 0.582

HYPER(3KG + 2HG)(0-shot) 0459 0365 0.515 0415 0338 0.454 0.404 0.267 0.480

0.463 0.373 0.517 0.446 0.379 0.482 0.455 0.318 0.530

HYPER(BKG + 2HG)(finetuned)
4002 £.003 4008 £008 £.009 £.007 £003 £007 =£.005

Table 20: HYPER hyper-parameters for pretraining, fine-tuning, and end-to-end training.

Hyperparameter HYPER
Layers 2
Positional Interaction Encoder Hidden dimension 64
Dropout 0
Activation ReLU
Layers T 6
Hidden dimension 64
Relation Encoder Dropout 0
Activation ReLU
Norm LayerNorm
Layers L 6
Hidden dimension 64
. Dec 2-layer MLP
Entity Encoder Dropout 0
Activation ReLU
Norm LayerNorm
Optimizer AdamW
Learning rate 0.0005
Pre-trainin Training steps 30,000
& Adversarial temperature 1
Negatives 512
Batch size 32
Optimizer AdamW
Learning rate 0.0005
Fine-tuning Adversarial temperature 1
Negatives 256
Batch size 8
Optimizer AdamW
Learning rate 0.0005
End-to-End Adversarial temperature 1
Negatives 256
Batch size 8

26

Under review as a conference paper at ICLR 2026

Table 21: Hyperparameters for fine-tuning and training end-to-end for HYPER.

Finetune End-to-End

Datasets
Epoch Batch per Epoch Epoch Batch per Epoch

JF 25-100 3 full 10 full
WP 25-100 3 full 10 full
MFB 25-100 3 full 10 full
WD 25-100 3 full 10 full
JF-IND 1 full 20 full
WP-IND 1 full 20 full
MFB-IND 1 2000 4 10000
FB 25-100 3 full 10 full
WK 25-100 3 full 10 full
NL 0-100 3 full 10 full
MTI1-MT4 3 full 10 full
Metafam, FBNELL 3 full 10 full
FB v1-v4 1 full 10 full
WN vl1-v4 1 full 10 full
NL v1-v4 3 full 10 full
ILPC Small 3 full 10 full
ILPC Large 1 1000 10 1000
HM 1k-5k, Indigo 1 100 10 1000

27

	Introduction
	Related Work
	Preliminaries
	Hyper: A Knowledge Hypergraph Foundation Model
	Experiments
	Experimental Setups
	Node-Relation Inductive Link Prediction over Knowledge Hypergraphs
	Node Inductive Link Prediction over Knowledge Hypergraphs
	Impact of Positional Interaction Encoders
	Corruption over Argument Position

	Conclusion
	Dataset generation details
	Generating Datasets for Node and Relation-inductive Link Prediction
	Dataset Statistics

	Sparse Matrix Multiplication for Computing Positional Interaction
	Computational Resources
	Additional Experiments on Knowledge Graphs
	Complexity and Scalability Analysis of Hyper
	Theoretical Computational Complexity
	Scalability Analysis

	Further Experimental Details
	Hyperparameter Details for Baselines
	Additional Baselines for KGFMs
	Architecture Choices of Hyper
	Training Objective

