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ABSTRACT

Inductive link prediction with knowledge hypergraphs is the task of predicting
missing hyperedges involving completely novel entities (i.e., nodes unseen during
training). Existing methods for inductive link prediction with knowledge hyper-
graphs assume a fixed relational vocabulary and, as a result, cannot generalize
to knowledge hypergraphs with novel relation types (i.e., relations unseen during
training). Inspired by knowledge graph foundation models, we propose HYPER
as a foundation model for link prediction, which can generalize to any knowledge
hypergraph, including novel entities and novel relations. Importantly, HYPER can
learn and transfer across different relation types of varying arities, by encoding
the entities of each hyperedge along with their respective positions in the hyper-
edge. To evaluate HYPER, we construct 16 new inductive datasets from existing
knowledge hypergraphs, covering a diverse range of relation types of varying ar-
ities. Empirically, HYPER consistently outperforms all existing methods in both
node-only and node-and-relation inductive settings, showing strong generalization
to unseen, higher-arity relational structures.

1 INTRODUCTION

Bengio ClimateAI Montreal

CIFAR

Sasha

2015

EthicalAI

NeurIPS

Ian

Research

AtConference

Teaches

Figure 1: A knowledge hy-
pergraph with three hyperedges
over distinct relation types.

Generalizing knowledge graphs with relations between any num-
ber of nodes, knowledge hypergraphs offer flexible means of
storing, processing, and managing relational data. Knowl-
edge hypergraphs can encode rich relationships between enti-
ties; e.g., consider a relationship between four entities: “Bengio
has a research project on topic ClimateAI in Montreal funded
by CIFAR”. This relational information can be represented in
a knowledge hypergraph (see Figure 1) via an (ordered) hy-
peredge Research(Bengio,ClimateAI,Montreal,CIFAR), where
Research represents a relation of arity four.

The generality of knowledge hypergraphs motivated a body of
work for machine learning with knowledge hypergraphs (Guan
et al., 2021; Fatemi et al., 2020; Yadati, 2020; Zhou et al., 2023b;
Huang et al., 2025b). One of the most prominent learning tasks is
inductive link prediction with knowledge hypergraphs, where the
goal is to predict missing hyperedges involving completely novel
entities (Yadati, 2020; Zhou et al., 2023b; Huang et al., 2025b). The main shortcoming of existing
methods for inductive link prediction with knowledge hypergraphs is that they cannot generalize
to knowledge hypergraphs with novel relation types. This constitutes the main motivation of our
work: Can we design an effective model architecture for inductive link prediction with knowledge
hypergraphs, where the predictions can involve both novel entities and novel relations?

Example. Consider the knowledge hypergraphs depicted in Figure 2: The training hypergraph
Gtrain is over the relations Research, Teaches, and AtConference, while the inference graph Ginf
is over the novel relations Trading, Sells, and AtFair. The task is to predict missing links such as
Sells(Samsung,Best Buy,Q60D TV) in Ginf. Ideally, the model should learn relation invariants that
map Teaches 7→ Sells, Research 7→ Trading, and AtConference 7→ AtFair, as these relation types

1
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play analogous structural roles in their respective graphs, even though their labels and entities are
entirely different.

Bengio ClimateAI Montreal

CIFAR

Sasha

2015

EthicalAI

NeurIPS

Ian

Research

AtConference

Teaches

Gtrain

Samsung LED Las Vegas

LG Display

CTA

2024

Q60D TV

CES

BestBuy

Trading

AtFair

Sells

Ginf

Figure 2: A model is trained on relations like
Research, Teaches, and AtConference, and is ex-
pected to generalize to structurally similar relations
TradingDeal, Sells, and AtBusinessFair at test time.

Approach. In essence, our study builds on
the success of knowledge graph foundation
models (KGFMs) (Galkin et al., 2024; Mao
et al., 2024), which have shown remark-
able performance in link prediction tasks
involving both novel entities and novel re-
lations. However, KGFMs can only per-
form link prediction using binary relations,
which raises the question of how to trans-
late the success of KGFMs to fully rela-
tional data. To this end, we propose HYPER,
a class of knowledge hypergraph founda-
tion models for inductive link prediction,
which can generalize to any knowledge hy-
pergraph. The fundamental idea behind our
approach is to learn properties of relations
that are transferable between different types
of relations of varying arity. Consider, for example, the two hyperedges (from Figure 2):

AtConference(Sasha,Montreal, 2015,EthicalAI,NeurIPS),

Research(Bengio,ClimateAI,Montreal,CIFAR),

which “intersect” with each other. The entity Montreal appears in the second position of the first
hyperedge and in the third position of the second hyperedge. Such (pairwise) interactions between
relations can be viewed as fundamental relations to learn from: any model learning from relations
between relations can transfer this knowledge to novel relation types that have similar interactions.

Research

AtConferenceTeaches

(1, 1) (3, 2)

(2, 3)

(3, 4)

(4, 3)

Grel

Figure 3: The relation graph
Grel corresponding to the
knowledge hypergraph Gtrain.

Furthermore, we can encode such relations between relations in a
separate relation graph, which can be used to learn from. We illus-
trate this on our running example in Figure 3, where the relations
appear as nodes; the interactions between relations as edges; and
finally, the positions of the interactions as edge weights. In our set-
ting, a directed edge from relation r1 to r2 with edge label (i, j)
indicates that “The i-th position of r1 and the j-th position of r2 in-
tersect in G”, which captures a fundamental interaction between r1
and r2. Critically, however, there is no upper bound on the number
of such possible interactions. While there are at most m × n inter-
actions between an m-ary relation and an n-ary relation, we cannot
impose any bound on the arity of the relations since then the model

would not generalize to all knowledge hypergraphs.

Contributions. Our main contributions can be summarized as follows:

• To the best of our knowledge, HYPER is the first foundation model that allows zero-shot
generalization to knowledge hypergraphs of arbitrary arity with novel nodes and novel
relations at test time.

• We evaluate HYPER on 3 existing benchmark datasets and additionally on 16 new bench-
mark datasets with varying proportions of test-time tuples involving unseen relations.
HYPER consistently outperforms existing hypergraph baselines trained end-to-end, par-
ticularly when the proportion of new relations is high.

• To assess the performance of KGFMs on hypergraphs, we reify the knowledge hypergraphs
into KGs and apply KGFMs on them. Remarkably, HYPER, trained on only 2 hypergraphs
and 3KGs, consistently outperforms the popular KGFM model ULTRA trained on 50 KGs.

• We conduct an empirical investigation over the positional interaction encoding scheme
within HYPER, demonstrating the critical role of encoding choices.
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2 RELATED WORK

Table 1: Methods’ ability to handle high-arity re-
lations (High-arity) and inductively generalize to
unseen entities (Ind. e) and relations (Ind. r).

Methods High-arity Ind. e Ind. r

HypE, BoxE ✓ ✗ ✗
NBFNet, A*Net ✗ ✓ ✗
G-MPNN, HCNet ✓ ✓ ✗
ULTRA, KG-ICL ✗ ✓ ✓

HYPER ✓ ✓ ✓

Link Prediction with Knowledge Graphs.
Early knowledge graph embedding methods
(Bordes et al., 2013; Sun et al., 2019; Trouil-
lon et al., 2016; Balazevic et al., 2019; Ab-
boud et al., 2020) are limited to the trans-
ductive setup: these methods do not general-
ize to unseen entities or to unseen relations.
Multi-relational graph neural networks (GNNs)
such as RGCN (Schlichtkrull et al., 2018) and
CompGCN (Vashishth et al., 2020) similarly
rely on stored entity embeddings, remaining in-
herently transductive. To overcome these limitations, Teru et al. (2020) introduced GraIL, a pio-
neering method enabling node-inductive link prediction, which is later shown to be a form of the
labeling trick (Zhang et al., 2021). Subsequently, architectures such as NBFNet (Zhu et al., 2021),
A*Net (Zhu et al., 2023), RED-GNN (Zhang & Yao, 2022), and AdaProp (Zhang et al., 2023) lever-
aged conditional message passing, significantly enhancing expressivity and performance (Huang
et al., 2023). However, these methods are not inductive on relations, as they assume a fixed rela-
tional vocabulary. KGFMs are specifically tailored for inductive predictions on both unseen nodes
and relations. InGram (Lee et al., 2023), RAILD (Gesese et al., 2022), and ULTRA (Galkin et al.,
2024) introduced new KGFM frameworks. Following these, TRIX (Zhang et al., 2024) introduced
recursive updating of entity and relation embeddings with provably improved expressiveness over
ULTRA. KG-ICL (Cui et al., 2024) employed in-context learning with unified tokenization for en-
tities and relations. Additionally, double-equivariant GNNs, like ISDEA (Gao et al., 2023) and
MTDEA (Zhou et al., 2023a), emphasized relational equivariance, enhancing robustness to unseen
relations. Huang et al. (2025a) proposed MOTIF as a general KGFM framework and formally stud-
ied the expressive power of KGFMs. All of these methods are confined to KGs with binary relations,
and they do not naturally apply to higher-arity relations, as shown in Table 1.

Link Prediction with Knowledge Hypergraphs. Knowledge hypergraphs generalize traditional
KGs to handle higher-arity relational data. Initial researches such as HypE (Fatemi et al., 2020)
and BoxE (Abboud et al., 2020) leveraged shallow embedding models adapted from KG embed-
ding frameworks. Later approaches extended graph neural networks to knowledge hypergraphs. G-
MPNN (Yadati, 2020) and RD-MPNNs (Zhou et al., 2023b) introduced relational message passing
mechanisms explicitly designed for hypergraph settings, incorporating positional entity information
critical for high-arity relations. Huang et al. (2025b) proposed HCNets as a conditional message-
passing approach tailored for inductive hypergraph link prediction and conducted an expressivity
analysis. While these methods can handle knowledge hypergraphs, they are not inductive on re-
lations: none of these methods can generalize to unseen relations (shown in Table 1). Our work
on HYPER builds on these foundations by combining the strengths of conditional message passing
on knowledge hypergraphs with the powerful inductive generalization techniques explored in re-
cent KGFMs (Galkin et al., 2024; Lee et al., 2023; Huang et al., 2025a) to effectively generalize to
knowledge hypergraphs within unseen nodes and relations.

Foundation Models on Hypergraphs. Existing foundation models on hypergraphs are tailored to
text-attributed hypergraphs. HyperBERT (Bazaga et al., 2024) integrates pretrained language mod-
els with hypergraph convolution for node classification, while HyperGene (Du et al., 2021) and
SPHH (Abubaker et al., 2023) propose self-supervised objectives tailored to local and global hyper-
graph structures. More recent works such as Hyper-FM (Feng et al., 2025) and IHP (Yang et al.,
2024) introduce multi-domain pretraining and instruction-guided adaptation, respectively, marking
the first steps toward generalizable hypergraph models. These methods rely heavily on text attributes
for generalization and are predominantly tailored to node classification tasks; they do not support
link prediction over knowledge hypergraphs with unseen relations at test time.

3 PRELIMINARIES

Knowledge Hypergraphs. A knowledge hypergraph G = (V,E,R) consists of a set of nodes
V , hyperedges E (i.e., facts) of the form e = r(u1, . . . , uk), where r ∈ R is a relation type,
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and ui ∈ V , 1 ≤ i ≤ k, are nodes. The arity of a relation r is given by k = ar(r), where
ar : R 7→ N>0. For an hyperedge e, ρ(e) denotes its relation, and e(i) denotes the node at the
i-th position of e. We refer to the knowledge hypergraph with all edges having arity of exactly
2 as a knowledge graph. The set of edge-position pairs associated with a node v is defined as:
E(v) = {(e, i) | e(i) = v, e ∈ E, 1 ≤ i ≤ ar(ρ(e))}. The positional neighborhood of a hyperedge
e with respect to a position i is: Ni(e) = {(e(j), j) | j ̸= i, 1 ≤ j ≤ ar(ρ(e))}.

Link Prediction on Hyperedges. Given a knowledge hypergraph G = (V,E,R) and a query
q(u1, . . . , ut−1, ?, ut+1 . . . , uk), the link prediction task involves scoring all possible hyperedges
formed by replacing the placeholder ‘?’ with each node v ∈ V . We denote a k-tuple of nodes by
u = (u1, . . . , uk) and the tuple excluding position t by ũ = (u1, . . . , ut−1, ut+1, . . . , uk). Thus, we
represent a query succinctly as q = (q, ũ, t). In the fully-inductive setting for link prediction (i.e.,
node and relation-inductive link prediction), the goal is to answer queries of the form q = (q, ũ, t)
on an inference hypergraph Ginf = (Vinf, Einf, Rinf), where both the entity set Vinf and the relation set
Rinf are entirely disjoint from those seen during training. The model is trained on a separate training
knowledge hypergraph Gtrain = (Vtrain, Etrain, Rtrain), with Vtrain ∩ Vinf = ∅ and Rtrain ∩Rinf = ∅, and
must learn transferable representations that generalize across both novel entities and unseen relation
types of arbitrary arity. At inference time, each hyperedge e = r(u1, . . . , uk) ∈ Einf corresponds
to a fact involving a relation r ∈ Rinf, and queries involve predicting a missing node at position t
within such a tuple, using the surrounding nodes ũ and relation q = ρ(e). The model must score
candidate completions q(u1, . . . , ut−1, v, ut+1, . . . , uk) for each v ∈ Vinf.

Bengio
ClimateAI

Montreal
CIFAR

Sasha 2015 EthicalAI
NeurIPS

Ian

e1 e2 e3

R-1 R-2 R-3 R-4 A-1
A-2

A-3 A-4 A-5T-1 T-2T-3

Figure 4: Reified KG corresponding to the knowledge
hypergraph Gtrain from Fig 1. R-i abbreviates Research-i,
similarly for A as AtConference, and T as Teaches.

Reification. To apply the mod-
els designed for KGs on knowl-
edge hypergraphs, we trans-
form an input knowledge hy-
pergraph G = (V,E,R) into
a KG via a reification pro-
cess, similar to the one pro-
posed in Fatemi et al. (2020)1.
Specifically, for each hy-
peredge r(u1, . . . , uk) ∈
E, we introduce a node
edge id /∈ V in the KG
to represent the hyperedge it-
self and add k binary edges
r-1

(
edge id, u1

)
, r-2

(
edge id, u2

)
, . . . , r-k

(
edge id, uk

)
, one for each position. Note

that each new edge encodes a position-specific relation such as Research-3 or AtConference-5.
For instance, Figure 4 shows the reified KG of our running example in Figure 1. This reification
procedure encodes the full higher-order structure of the original knowledge hypergraph into a KG.

Link Prediction over Reified Knowledge Hypergraphs. Given a high-arity query of the form
q(u1, . . . , ut−1, ?, ut+1, . . . , uk) over the original knowledge hypergraph, we perform link predic-
tion in the reified KG by encoding the query as a subgraph which is used to augment the testing
knowledge graph. Concretely, we add a new node edge id and binary triples qi(edge id, ui)
for all i ̸= t. The prediction task is then reduced to a standard tail prediction problem: ranking all
candidate entities v ∈ V for the fact qt(edge id, v). We evaluate the model performance using
standard ranking metrics over the original entity vocabulary. We use superscript (‡) to denote models
evaluated under this regime.

4 HYPER: A KNOWLEDGE HYPERGRAPH FOUNDATION MODEL

We now present HYPER, a general framework for learning foundation models over knowledge hy-
pergraphs. Given a knowledge hypergraph G = (V,E,R) and a query q = (q, ũ, t), HYPER
computes link prediction scores through the following steps:

1. Relation encoder: Relations are encoded in three steps:
1We also include alternative ways for reification in Appendix G.3.
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(1, 1) (3, 2)

(2, 3)

(3, 4)

(4, 3)

Compute xa,b = EncPI((a, b))

r1

r2r3

x1,1 x3,2

x2,3

x3,4

x4,3

Message Passing on Grel

Relation Encoder on Grel

r1

r2

r3

Entity Encoder on G

Figure 5: Overall framework of HYPER. HYPER first constructs a relation graph Grel based on the
observed positional interactions between the relations. EncPI then computes embeddings for each
position pair, which are refined via message passing over Grel. The resulting relation representations
are then used for message passing over the original knowledge hypergraph G (shown in color).

(a) Relation graph: Build a relation graph Grel where each node corresponds to a relation
r ∈ R, and edges capture observed positional interactions between relations.

(b) Encoding positional interactions: Use an encoder EncPI to embed each interacting posi-
tion pair (a, b) from Grel into fundamental relation representations.

(c) Encoding the relations: Perform conditional message passing over Grel using fundamental
relation representations to obtain relation embeddings for all r ∈ R.

2. Entity encoder: Use learned relation representations to conduct conditional message passing
over the original knowledge hypergraph G and obtain link probability via decoder Dec.

The overall framework is illustrated in Figure 5, and the detailed architecture is presented in Ap-
pendix G. We now describe each component.

Relation graph. Given a knowledge hypergraph G = (V,E,R), we construct the relation graph
Grel = (Vrel, Erel, Rrel). The set of nodes is given as Vrel = R, i.e., each node in Grel corresponds to a
relation type in the knowledge hypergraph G. The relation types Rrel are defined as all ordered pairs
(a, b) for {1 ≤ a, b ≤ kmax}, where kmax = max {ar(r) | r ∈ R} denotes the maximum arity
among the observed relations. The edge set Erel captures positional interactions between relation
types: for each pair of hyperedges e1, e2 ∈ E with relation types r1 = ρ(e1) and r2 = ρ(e2), if
there exists a shared entity v appearing in position i in e1 and position j in e2, we add a directed edge
(r1, r2) with relation type (i, j) to Erel. These positional interactions can be computed efficiently
via sparse matrix multiplication (see Appendix B) and are invariant over the renaming of relations.

Encoding positional interactions. Unlike knowledge graphs, where each fact involves two entities
and naturally leads to four types of fundamental relations (head-to-head, head-to-tail, tail-to-head,
and tail-to-tail) as introduced in Galkin et al. (2024), knowledge hypergraphs allow facts with ar-
bitrary arity. This introduces a key challenge: How to build a foundation model that can adapt to
unseen knowledge hypergraphs with varying and arbitrarily large arities?

The natural extension of the concept of fundamental relations from KGs to knowledge hypergraphs
results in mn types of positional interactions between an hyperedge of arity m and an hyperedge of
arity n. Each of such interaction is characterized by a pair (a, b), where a and b denote the entity
positions involved in the relation. As a consequence, a foundation model for knowledge hypergraphs
must be capable of encoding positional interactions in a way that generalizes across different arities.

A naive solution would be to associate a separate embedding to each (a, b) pair. However, such
an approach does not generalize to unseen arities, as it would require pre-training embeddings for
all possible (a, b) combinations. To address this, we propose a shared, compositional position in-
teraction encoding scheme. Specifically, given a positional interaction labeled (a, b), we define a
positional interaction encoder EncPI : N>0 × N>0 → Rd, which maps a pair of argument positions
to a dense vector representation of d dimensions. To be effective in inductive settings, we require
the encoder EncPI to satisfy the following requirements:

5
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1. Extrapolation. The encoder should generalize to unseen positions and combinations, allowing
the model to operate on arities and interaction patterns not present during training.

2. Injectivity. Distinct position pairs (a, b) and (a′, b′) should map to distinct embeddings to
preserve the identifiability of positional interactions:

∀a, b, a′, b′ ∈ N>0, (a, b) ̸= (a′, b′) =⇒ EncPI((a, b)) ̸= EncPI((a
′, b′)).

In practice, we implement EncPI as a two-layer multilayer perceptron (MLP) over concatenated
sinusoidal encodings of the input positions. Let pa,pb ∈ Rd denote the sinusoidal positional encod-
ings of positions a and b, respectively. Then, the embedding corresponding to the interaction (a, b) is
computed as xa,b = MLP([pa ∥pb]), where MLP denotes a shared two-layer feedforward network
with ReLU activations. This produces a dense embedding that captures the interaction between the
two positions. Theoretically, we show that our chosen EncPI satisfies these properties and is also
locally smooth. (See Appendix C for formal theorems and proofs.)
Theorem 4.1 (Informal). There exists a set of parameter for HYPER such that EncPI is injective,
has a bounded range, and is Lipschitz (and hence locally smooth).

Empirically, we find that this instantiation of EncPI also enables strong generalization across knowl-
edge hypergraphs with varying arities and relational structures. When applied to knowledge graphs,
our method recovers standard encoding patterns employed in many KGFMs (Galkin et al., 2024;
Lee et al., 2023; Zhang et al., 2024; Huang et al., 2025a). In particular, head-to-tail, head-to-head,
tail-to-tail, and tail-to-head interactions correspond to EncPI((1, 2)), EncPI((1, 1)), EncPI((2, 2)),
and EncPI((2, 1)), respectively.

Encoding the relations. HYPER uses Hypergraph Conditional Networks (HCNets) (Huang et al.,
2025b) to encode relations for its strong inductive performance, support for bidirectional message
passing, and easy extensibility to higher-order relational patterns (Huang et al., 2025a). HCNets
produce query-conditioned representations by aggregating messages from neighboring edges with
relation and position information. Here, we take EncPI((a, b)) as the computed messages for each
typed edges when message-passing over relation graph with positional encoding (a, b).

Entity encoder. Similarly to how we encode the relation, HYPER uses a variant of HCNet to
encode the entities. In the context of the entity encoder, we apply a separate HCNet over the original
knowledge hypergraph G = (V,E,R). Each node v ∈ V aggregates from its incident hyperedges
by first taking the relation embeddings h

(T )
r|q obtained from the relation encoder as the messages

for each typed hyperedges and then transformed by a layer-specific MLP. The resulting HYPER
instances will preserve equivariance over nodes and relations. (See Appendix C for proof.)

5 EXPERIMENTS

In this section, we aim to evaluate the generalization and effectiveness of HYPER across inductive
link prediction tasks on both knowledge hypergraphs and knowledge graphs. We focus on answering
the following questions:

Q1: How well does HYPER generalize to unseen entities and relation types?
Q2: How does HYPER handle varying proportions of unseen relations in the test set?
Q3: How does HYPER compare to KGFMs on reified knowledge hypergraphs?
Q4: What is the impact of different variants of pretraining mix on HYPER?
Q5: How does the encoding of positional information impact the model’s ability to generalize?
Q6: How well does HYPER perform on standard knowledge graphs (see Appendix E)?
Q7: What are computational complexity and empirical scalability of HYPER (see Appendix F)?

5.1 EXPERIMENTAL SETUPS

Models. We evaluate models using the datasets summarized in Table 13. As a supervised learning
baseline, we include G-MPNN (Yadati, 2020) and HCNet as a node-inductive method on knowledge

6
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Table 2: MRR results on node and relation inductive knowledge hypergraph datasets. Superscript ‡
means the model is applied over the reification of hypergraphs.

Method JF MFB WP WD

25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100

End-to-End Inference

G-MPNN 0.006 0.003 0.001 0.002 0.002 0.004 0.007 0.003 0.005 0.002 0.001 0.000 0.001 0.001 0.001 0.001
HCNet 0.011 0.009 0.069 0.028 0.033 0.026 0.016 0.082 0.104 0.050 0.019 0.003 0.086 0.043 0.015 0.007
HYPER 0.202 0.468 0.207 0.198 0.332 0.200 0.135 0.222 0.159 0.143 0.139 0.202 0.215 0.205 0.172 0.205

Zero-shot Inference

ULTRA‡(3KG) 0.103 0.437 0.168 0.144 0.255 0.235 0.154 0.277 0.039 0.077 0.073 0.078 0.117 0.155 0.116 0.161
ULTRA‡(4KG) 0.011 0.298 0.042 0.082 0.217 0.170 0.043 0.135 0.009 0.006 0.006 0.004 0.027 0.069 0.063 0.065
ULTRA‡(50KG) 0.001 0.096 0.010 0.001 0.225 0.083 0.001 0.190 0.006 0.009 0.009 0.004 0.008 0.001 0.001 0.001
ULTRA‡(4HG) 0.154 0.442 0.175 0.170 0.338 0.236 0.129 0.280 0.052 0.091 0.089 0.089 0.076 0.175 0.052 0.136
ULTRA‡(3KG+2HG) 0.209 0.446 0.187 0.168 0.343 0.236 0.128 0.283 0.045 0.086 0.080 0.090 0.183 0.182 0.127 0.137
HYPER(3KG) 0.148 0.297 0.112 0.130 0.248 0.191 0.039 0.276 0.143 0.147 0.186 0.221 0.167 0.158 0.123 0.146
HYPER(4HG) 0.187 0.377 0.188 0.181 0.349 0.244 0.139 0.278 0.075 0.068 0.086 0.168 0.087 0.158 0.057 0.165
HYPER(3KG+2HG) 0.216 0.455 0.213 0.173 0.363 0.250 0.140 0.299 0.132 0.152 0.192 0.222 0.223 0.200 0.154 0.182

Finetuned Inference

HYPER(3KG+2HG) 0.217 0.456 0.209 0.176 0.347 0.243 0.158 0.275 0.169 0.171 0.194 0.210 0.225 0.234 0.166 0.210

hypergraphs, which is representative of the performance methods relying on end-to-end training.
These models, by design, cannot generalize to unseen relations since they explicitly store the trained
relation embeddings, and thus have to assign a randomly initialized vector for the representation of
the unseen relations. For a fair comparison, we evaluate HYPER(end2end), HYPER models trained
directly on the corresponding train set for each dataset.

To also evaluate the pretraining paradigm for foundation models, we include
ULTRA‡(3KG/4KG/50KG) from Galkin et al. (2024) as baseline KGFM models2. They are
pretrained on increasingly large KG corpora and evaluated on reified hypergraphs for tail-only
link prediction, following Section 3. To assess the benefits of pretraining on different relational
structures, we experimented with two HYPER variants: HYPER(3KG), trained only on three
knowledge graph datasets (FB15k-237 (Toutanova & Chen, 2015), WN18RR (Dettmers et al.,
2018), and Codex Medium (Safavi & Koutra, 2020)), and HYPER(4HG), trained on four knowledge
hypergraph datasets (JF17K (Wen et al., 2016), Wikipeople (Guan et al., 2021), FB-AUTO (Fatemi
et al., 2020), and M-FB15K (Fatemi et al., 2020)). We further include HYPER(3KG + 2HG),
a HYPER model trained on a comprehensive mixture of three knowledge graph (FB15k-237,
WN18RR, Codex Medium) and two knowledge hypergraph datasets (JF17K, Wikipeople), aiming
to combine the advantages of both types of data, and fine-tuned this checkpoint over the training sets
for each downstream task. For a fair comparison, we additionally pretrain ULTRA over the same
pretraining mixture on reified hypergraphs and include ULTRA‡(4HG) and ULTRA‡(3KG+2HG).

Evaluations. We adopt filtered ranking protocol: for each query q(u1, · · · , uk) where k = ar(q)
and for each position t ≤ k, we replace the t-th position by all other entities such that the resulting
hyperedges does not appear in training, validation, or testing knowledge hypergraphs. We report
Mean Reciprocal Rank (MRR) and provide averaged results for three runs for the end-to-end and
fine-tuned experiments. We report the standard deviation along with the full tables in Tables 19
and 20 and Table 21. The codebase is provided in https://anonymous.4open.science/
r/HYPER. See computation resources used in Appendix D and further experimental details in
Appendix G.

5.2 NODE-RELATION INDUCTIVE LINK PREDICTION OVER KNOWLEDGE HYPERGRAPHS

Dataset construction and task settings. To evaluate the transferability and generalization capa-
bilities of HYPER, we follow the methodology proposed in InGram (Lee et al., 2023) to construct
new datasets with varying proportions of unseen relations. We derive these datasets from three
hypergraph datasets: JF17K (Wen et al., 2016) (JF), Wikipeople (Guan et al., 2021) (WP), and M-
FB15K (Fatemi et al., 2020) (MFB). We also include WD50K (WD) Galkin et al. (2020), originally
a hyper-relational KG, which we convert into a knowledge hypergraph by hashing the main relation
and predicates in canonical order. For each source dataset, we create four variants with different

2We also include additional baseline results for other reification method KGFM in Appendices G.2 and G.3.
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percentages of test tuples containing previously unseen relations: 25%, 50%, 75%, and 100%. For
instance, JF-25 includes 25% test tuples with unseen relations, while JF-100 contains only entirely
unseen relations. This setup3 allows us to systematically evaluate how models perform under in-
creasingly challenging inductive scenarios. We present all the details in Appendix A.

Table 3: MRR results on node-inductive datasets.
‡ means the model is applied after reification.

Method JF-IND WP-IND MFB-IND

End-to-End Inference

HGNN 0.102 0.072 0.121
HyperGCN 0.099 0.075 0.118
G-MPNN 0.219 0.177 0.124
RD-MPNN 0.402 0.304 0.122
HCNet 0.435 0.414 0.368
HYPER(end2end) 0.422 0.435 0.427

Zero-shot Inference

ULTRA‡(3KG) 0.321 0.305 0.277
ULTRA‡(4KG) 0.065 0.123 0.096
ULTRA‡(50KG) 0.007 0.029 0.026
ULTRA‡(4HG) 0.397 0.319 0.264
ULTRA‡(3KG+2HG) 0.410 0.341 0.294
HYPER(3KG) 0.263 0.259 0.184
HYPER(4HG) 0.403 0.375 0.497
HYPER(3KG + 2HG) 0.459 0.415 0.404

Finetuned Inference

HYPER(3KG + 2HG) 0.463 0.446 0.455

Overall performances of HYPER (Q1). We
report model performance across each dataset
in Table 2. Note that HYPER and its vari-
ants drastically outperform HCNet in node
and relation-inductive settings. HCNet re-
lies on learnable embeddings for each rela-
tion type and struggles with unseen relations,
leading to sharp performance drops under in-
ductive settings. In contrast, HYPER lever-
ages a pretrained relation encoder, enabling
strong generalization and robust performance
even with entirely unseen relations. Note that
fine-tuning HYPER(3KG+2HG) further boosts
results, often matching or surpassing HYPER
trained from end-to-end. This demonstrates the
strong transferability of HYPER’s representa-
tions and shows that lightweight finetuning on
small task-specific datasets can approach end-
to-end performance without full retraining.

Impact on the ratio of known relations (Q2).
We experiment with multiple relation-split set-
tings that vary the proportion of test triplets
involving unseen relations, ranging from 25%
to 100%. While node-inductive baselines such
HCNet already perform poorly under low rela-
tional shift (e.g., 25%), their performance degrades substantially as the proportion of unseen re-
lations increases (e.g., 100%), reflecting the difficulty of generalizing to novel relation types. In
contrast, HYPER maintains consistently strong performance across all splits, demonstrating its ro-
bustness and ability to generalize effectively under an increased proportion of unseen relations.

HYPER vs. ULTRA on reified knowledge hypergraph (Q3). Across all datasets, HYPER con-
sistently outperforms KGFMs like ULTRA‡ on reified hypergraphs. While KGFMs can in prin-
ciple generalize to binary relations, reified hypergraphs form atypical structures, e.g., tripartite
graphs with auxiliary edge nodes, which is not commonly seen in pretraining corpora. Notably,
ULTRA‡(50KG), trained on 50 knowledge graphs, performs much worse than the version trained
on just 3, and remains substantially behind HYPER(3KG + 2HG). This suggests that increasing the
number of training graphs does not close the gap introduced by the lack of explicit hypergraph
modeling. Moreover, ULTRA‡(4HG) and ULTRA‡(3KG+2HG) also underperform compared with
HYPER(4HG) and HYPER(3KG + 2HG), which are trained on the same pretraining mix containing
hypergraph datasets, respectively. While reification technically enables the application of KGFMs
to knowledge hypergraphs, it fails to capture the structure of entity-role interactions, resulting in
significantly weaker performance.

Impact of different pretraining datasets (Q4). The composition of pretraining data has a notice-
able impact on generalization. While HYPER(4HG), pretrained on hypergraph datasets, performs
strongly on JF and MFB, both of which contain a large proportion of higher-arity relations, it strug-
gles on WP, which primarily consists of binary edges. Conversely, WP benefits more from pretrain-
ing on binary relational graphs, as seen with HYPER(3KG). The best overall performance comes
from HYPER(3KG + 2HG), which combines both binary and hypergraph pretraining sources. This
suggests that pretraining on diverse relation structures and thus the underlying distribution improves
generalization across tasks with varying arities.

3These percentages are meaningful only in the end-to-end evaluation setting. In the zero-shot setting, all
relation types are unobserved.
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5.3 NODE INDUCTIVE LINK PREDICTION OVER KNOWLEDGE HYPERGRAPHS

Settings. To further assess the applicability of node-inductive link prediction tasks with knowl-
edge hypergraphs, we follow Yadati (2020) and Huang et al. (2025b), and experiment on three
existing datasets: JF-IND, WP-IND, and MFB-IND. We compare our models with several existing
approaches for inductive link prediction on knowledge hypergraphs. These include HGNN (Feng
et al., 2018) and HyperGCN (Yadati et al., 2019), which were originally designed for simple hyper-
graphs and adapted to knowledge hypergraphs by ignoring relations (Yadati, 2020).

We also compare with G-MPNN (Yadati, 2020) and RD-MPNN (Zhou et al., 2023b), which were
modified for inductive settings by replacing learned entity embeddings with a uniform vector, and
HCNet (Huang et al., 2025b). We also include the zero-shot performance of standard KGFM UL-
TRA on the reification of hypergraphs.

Results and discussion. Table 3 presents the performance of all models across the node-inductive
datasets. We continue to observe that HYPER significantly outperforms prior node-inductive base-
lines such as HCNet, G-MPNN, and RD-MPNN in the zero-shot setting. Among HYPER variants,
even without fine-tuning, pretrained HYPER models achieve strong results. Fine-tuned HYPER fur-
ther improves performance, achieving the best MRR on JF-IND and WP-IND, and competitive re-
sults on MFB-IND compared with HYPER trained end-to-end. Notably, HYPER consistently outper-
forms ULTRA, which struggles to generalize to the distinct structure of reified hypergraphs. These
results confirm HYPER’s robust generalization across a variety of datasets.

5.4 IMPACT OF POSITIONAL INTERACTION ENCODERS

Table 4: Averaged zero-shot per-
formance of HYPER(3KG + 2HG)
with different positional interac-
tion encoders.

Total Avg
Model (19 hypergraphs)

MRR Hits@3
All-one 0.236 0.262
Random 0.213 0.239

Magnitude 0.227 0.251
Sinusoidal 0.285 0.281

To evaluate the importance of design choices in the positional
interaction encoder EncPI (Q5), we compare HYPER to three
alternatives EncPI equipped with different positional encod-
ing schemes: (i) all-one encoding (pa = 1d), which col-
lapses all positions and violates injectivity; (ii) random encod-
ing (pa ∼ N (0, Id)), which lacks structure and hinders gener-
alization; and (iii) magnitude encoding (pa = a1d), which is
unbounded and thus unsuitable for MLPs. In contrast, HYPER
uses sinusoidal encoding, which is both injective and bounded,
enabling effective extrapolation and robust zero-shot perfor-
mance. As shown in Table 4, sinusoidal encoding yields the
best overall performance across 19 hypergraphs, significantly
outperforming other schemes in both MRR and Hits@3. This
highlights the critical property of injectivity and extrapolation
of EncPI in achieving robust zero-shot generalization.

5.5 CORRUPTION OVER ARGUMENT POSITION

Figure 6: Zero-shot per-
formance of HYPER(3KG +
2HG) over original and cor-
rupted datasets.

To validate the significance of ordered information in knowledge hy-
pergraphs (Q5), we conduct an ablation study to corrupt positional
information. Specifically, for each of 16 newly proposed datasets,
we take the most frequent relation type in each test graph and ran-
domly and inconsistently permuted the argument positions for 50%
of its hyperedges, making the semantic role of each argument posi-
tion ambiguous. For instance, a hyperedge r(a, b, c) might become
r(b, a, c). We evaluate our HYPER(3KG + 2HG) model in the zero-
shot setting on these corrupted datasets. Empirically, we observe
that when we permute those relations that explicitly stored ordered
information, such as cvg.musical game song relationship in JF-
50, the performance drops dramatically, as shown in Figure 6. This
is because each argument position carries a distinct semantic role
(e.g., musical, game, song), and HYPER relies on implicitly learn-
ing these roles to generalize. Corrupting this positional structure pre-
vents HYPER from inferring roles for unseen relations, leading to a
dramatic decline in performance.
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6 CONCLUSION

In this work, we introduced HYPER, the first foundation model for inductive link prediction over
knowledge hypergraphs with arbitrary arity, capable of generalizing to both unseen entities and
unseen relations. Through extensive experiments on 16 newly constructed and 3 existing induc-
tive benchmarks, we demonstrate that HYPER consistently outperforms state-of-the-art knowledge
hypergraph baselines and KGFMs applied to reified hypergraphs, demonstrating its strong general-
ization across varied domains and relational structures. One limitation of HYPER lies in its compu-
tational complexity of relation arity: the number of positional interactions grows quadratically with
the arity of each hyperedge. Future work may explore scalable approximations to mitigate the cost.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work proposes a foundation model for inductive reasoning over knowledge hypergraphs, which
may benefit applications in scientific discovery, query answering, and recommendation systems
by improving generalization across relational contexts. However, the same capabilities could also
be misused for generating or reinforcing biased or spurious inferences when applied to real-world
knowledge bases that contain noise, imbalance, or socially sensitive information. Future applications
should therefore include safeguards for interpretability and error auditing, especially in domains with
fairness or safety considerations. We acknowledge and adhere to the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We ensure the reproducibility of our results. A complete description of dataset construction pro-
cedures, including inductive splits with varying proportions of unseen relations, is provided in Ap-
pendix A. Details of the model architecture, training objectives, and optimization are presented
in Section 4 and Appendix G. We further describe efficient implementation details and compu-
tational resources in Appendix D. To facilitate verification, we release an anonymous codebase
with all scripts for data preprocessing, model training, and evaluation at https://anonymous.
4open.science/r/HYPER. A detailed method of relation graph constructions is included in
Appendix B. Together, these materials provide all the necessary information to reproduce the exper-
iments and results reported in this paper.
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A DATASET GENERATION DETAILS

A.1 GENERATING DATASETS FOR NODE AND RELATION-INDUCTIVE LINK PREDICTION

To evaluate our models in an inductive setting, we created multiple dataset variants with different
proportions of unseen relations. Our dataset generation process, following InGram (Lee et al., 2023),
is detailed in Algorithm 1. This process creates training and inference hypergraphs with controlled
percentages of unseen relations in the test set.

Algorithm 1 Generating Datasets for Node and Relation-inductive Link Prediction

Require: Source knowledge hypergraph G = (V,E,R), number of training entities ntrain, number
of inference entities ntest, relation percentage prel, tuple percentage ptri, seed value

Ensure: Training knowledge hypergraph Gtrain = (Vtrain, Etrain, Rtrain) and Inference knowledge
hypergraph Ginf = (Vinf, Einf, Rinf)

1: G← Giant connected component of G
2: Randomly split R into Rtrain and Rinf such that |Rtrain| : |Rinf| = (1− prel) : prel
3: Uniformly sample ntrain entities from V and form Vtrain by taking the sampled entities and their

neighbors
4: Etrain := {r(v1, v2, . . . , vn)|vi ∈ Vtrain, r ∈ Rtrain, r(v1, v2, . . . , vn) ∈ E}
5: Etrain ← Hyperedges in the giant connected component of Etrain
6: Vtrain ← Entities involved in Etrain
7: Rtrain ← Relations involved in Etrain
8: Let G′ be the subgraph of G where the entities in Vtrain are removed
9: In G′, uniformly sample ntest entities and form Vinf by taking the sampled entities and their

neighbors
10: Einf := X ∪ Y such that |X| : |Y | = (1 − ptri) : ptri where X := {r(v1, v2, . . . , vn)|vi ∈

Vinf, r ∈ Rtrain, r(v1, v2, . . . , vn) ∈ E} and Y := {r(v1, v2, . . . , vn)|vi ∈ Vinf, r ∈
Rinf, r(v1, v2, . . . , vn) ∈ E}

11: Einf ← Hyperedges in the giant connected component of Einf
12: Vinf ← Entities involved in Einf
13: Rinf ← Relations involved in Einf
14: Split Einf into auxiliary, validation, and test sets with a ratio of 3:1:1

The parameter ptri controls the percentage of test tuples containing unseen relations. For example,
when ptri = 0.25, approximately 25% of the tuples in the inference hypergraph contain relations not
seen during training. This allows us to systematically evaluate how models perform under increas-
ingly challenging inductive scenarios.

After generating the inference hypergraph, we split it into three disjoint sets: auxiliary (for training),
validation, and test sets with a ratio of 3:1:1. For a fair comparison, these sets are fixed and provided
to all models.

A.2 DATASET STATISTICS

Table 5 and Table 6 summarize the statistics of our constructed datasets and the hyperparameters
used to generate them, respectively. Additionally, Table 7 presents the arity distribution across these
datasets. Together, these tables illustrate that our benchmarks vary significantly in terms of arity,
density, and number of relation types, ensuring a diverse and comprehensive evaluation setting.

B SPARSE MATRIX MULTIPLICATION FOR COMPUTING POSITIONAL
INTERACTION

In this section, we describe the procedure to generalize sparse matrix multiplication to effi-
ciently construct knowledge hypergraphs from hyperedges of arbitrary arity. Unlike knowledge
graphs (Galkin et al., 2024), where only two positions (head and tail) exist per relation, resulting
in only 4 fundamental relations (head-to-head, head-to-tail, tail-to-head, tail-to-tail), knowledge hy-
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Table 5: Statistics of datasets for inductive hypergraph completion. Max arity is shown for training
graph and inference graph, respectively.

Dataset Train Inference Test Max Arity
|V | |R| |E| |V | |R| |E| |V | |R| |E|

JF-25 2,616 41 3,371 1,159 36 1,056 209 15 103 5/4
JF-50 2,859 53 3,524 1,102 37 1,292 157 5 109 5
JF-75 3,129 67 4,287 1,488 38 1,697 225 11 131 5
JF-100 2,123 48 2,449 1,696 35 2,159 52 5 25 5

WP-25 6,378 128 7,453 2,784 66 4,794 830 19 959 6/4
WP-50 7,586 155 9,536 3,608 87 4,390 531 29 413 7/6
WP-75 7,787 118 9,271 4,737 101 6,221 629 27 459 6
WP-100 7,787 118 9,271 4,891 63 7,516 275 15 155 6

WD-25 4,533 239 5,482 3,008 191 3,106 250 37 148 22/5
WD-50 3,796 162 4,147 2,303 188 2,353 145 30 91 19/6
WD-75 6,518 243 6,305 5,194 244 5,831 547 57 385 22/5
WD-100 6,798 237 7,271 3,576 105 3,951 385 29 282 19/4

MFB-25 1,266 11 8,182 1,929 12 2,802 146 7 87 3/5
MFB-50 1,415 11 8,409 1,528 13 2,426 472 10 486 3/5
MFB-75 2,225 15 5,271 1,363 16 4,008 675 11 803 3/4
MFB-100 2,013 19 11,658 2,406 5 4,514 808 5 904 3/5

Table 6: Hyperparameters used to create fully inductive knowledge hypergraph datasets.

HP JF-25 JF-50 JF-75 JF-100 WP-25 WP-50 WP-75 WP-100
ntrain 1000 1000 1200 1200 900 800 1000 1000
ntest 900 800 1200 1200 800 1000 1000 1000
prel 0.4 0.5 0.4 0.5 0.4 0.3 0.5 0.5
ptri 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0

HP WD-25 WD-50 WD-75 WD-100 MFB-25 MFB-50 MFB-75 MFB-100
ntrain 700 1000 10000 10000 100 100 80 120
ntest 1200 1000 8000 8000 95 85 80 100
prel 0.25 0.5 0.5 0.5 0.5 0.6 0.5 0.5
ptri 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0

pergraphs involve k positions per hyperedges, leading to k2 types of possible positional interactions
in total.

Given a knowledge hypergraph G = (V,E,R) with n = |V | nodes, m = |R| relations, and maxi-
mum arity k, we start by representing the knowledge hypergraph via sparse tensors: the edge index
E ∈ Nk×|E| and corresponding edge types r ∈ N|E|. Each column of E lists the k participating
nodes for a hyperedge, with each edge associated with its relation type.

To encode positional interactions between relations, we perform sparse matrix multiplication in the
following steps:

1. For each position a ∈ {1, · · · , k}, we construct sparse matrices Ea ∈ Rn×m where each
nonzero entry indicates the presence of an entity at position a for a given relation type.

2. For each pair of positions (a, b) ∈ {1, · · · , k} × {1, · · · , k}, we compute a sparse matrix
multiplication:

Aa2b = spmm(E⊤
a ,Eb) ∈ Rm×m.

Here, (Aa2b)i,j is nonzero if there exists an entity that simultaneously plays position a in
a hyperedge of relation i and position b in a hyperedge of relation j.
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This operation systematically captures all intersections between hyperedges that share at least one
common node, generalized across different positions.

C PROOF

We first define isomorphisms and invariants of knowledge hypergraphs, following Huang et al.
(2025b;a). The detailed architecture used in the experiments is shown in Appendix G.4.

C.1 ISOMORPHISMS AND LINK INVARIANTS OF KNOWLEDGE HYPERGRAPHS

Isomorphisms. An (node-relation) isomorphism from a knowledge hypergraph G = (V,E,R) to a
knowledge hypergraph G′ = (V ′, E′, R′) is a pair of bijections (π, ϕ), where π : V → V ′ and ϕ :
R → R′, such that every fact r(u1, · · · , uk) is in G if and only if the fact ϕ(r)(π(u1), · · · , π(uk))
is in G′. Two graphs are isomorphic if there is an isomorphism between them.

Invariants. For k ≥ 1, a k-ary relation invariant is a function ξ associating to each knowledge
hypergraph G = (V,E,R) a function ξ(G) with domain Rk such that for every pair of isomorphic
knowledge hypergraphs G and G′, every isomorphism (π, ϕ), and every tuple r̄ ∈ Rk of relations
in G, we have

ξ(G)(r̄) = ξ(G′)(ϕ(r̄)).

A (link) invariant is a function ω assigning to each knowledge hypergraph G = (V,E,R) a function
ω(G) with domain R × V k such that for every pair of isomorphic knowledge hypergraphs G and
G′, every isomorphism (π, ϕ), and every hyperedge r(u1, . . . , uk) in G, we have

ω(G)
(
r(u1, . . . , uk)

)
= ω(G′)

(
ϕ(r)(π(u1), . . . , π(uk))

)
.

For a query q = (q, ũ, t) in G, where q ∈ R is the relation type, ũ = (u1, . . . , ut−1, ut+1, . . . , uk)
are the observed arguments, and t is the masked position, we define its image under (π, ϕ) as

(π, ϕ) · q =
(
ϕ(q), (π(u1), . . . , π(ut−1), π(ut+1), . . . , π(uk)), t

)
.

That is, the relation symbol is mapped via ϕ and each entity argument via π, while the masked
position t (and thus the argument order) is preserved.

C.2 EQUIVARIANCE

We show that HYPER indeed computes a link invariant on knowledge hypergraphs.

Proposition C.1 (invariance). Let G = (V,E,R) and G′ = (V ′, E′, R′) be knowledge hyper-
graphs, and let (π, ϕ) be a (node–relation) isomorphism from G to G′. Then, the HYPER ar-
chitecture with T layer relation encoders and L layer entity encoders computes link invariant on
knowledge hypergraphs, i.e., for every query q = (q, ũ, t) in G and every candidate ui ∈ V ,

HYPER(G)
(
q(u1, . . . , uk)

)
= HYPER(G′)

(
ϕ(q)(π(u1), . . . , π(uk))

)
.

Proof. We show that each stage of HYPER is invariant under the action (π, ϕ).

Relation graph construction. By definition, Grel = (Vrel, Erel, Rrel) has Vrel = R and contains
a directed edge (r1, r2) with edge label (i, j) whenever there exist hyperedges e1, e2 ∈ E with
ρ(e1) = r1, ρ(e2) = r2 and a node x ∈ V such that x occurs at position i in e1 and at position j in
e2. Under an isomorphism map (π, ϕ), given G′

rel = (V ′
rel, E

′
rel, R

′
rel), ϕ is a bijection between R

and R′, and π is a bijection between V to V ′. Thus, the isomorphism map preserves membership
and positional indices inside hyperedges. It holds that

(r1, r2, (i, j)) ∈ Erel ⇐⇒ (ϕ(r1), ϕ(r2), (i, j)) ∈ E′
rel

In particular, the construction is invariant to renaming of relations and respects the same positional
labels (i, j). Thus, Grel and G′

rel are isomorphic via ϕ with the same edge labels (i, j).
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Positional-interaction encoder. By design, EncPI : N>0×N>0 → Rd maps a position pair (a, b)
to xa,b = MLP([pa||pb]), where pa,pb are the sinusoidal encodings of a and b. Since MLP is
shared across all position pairs, xa,b depends only on (a, b). Because edge labels in Grel and G′

rel
are the same pairs (a, b) under ϕ, we have a label-consistent edge feature assignment: for every
edge (r1, r2, (a, b)) in Grel and the corresponding (ϕ(r1), ϕ(r2), (a, b)) in G′

rel, the edge message
features coincide, i.e., xa,b = x′

a,b.

Relation encoder. Let h(t)
r|q denote the hidden state of the relation node r ∈ Vrel computed by the

HCNet relation encoder at the t-th layer, conditioned on query relation q. We prove by induction on
t that for any isomorphism (π, ϕ) between G and G′,

h
(t)
ϕ(r)|ϕ(q)(G

′
rel) = h

(t)
r|q(Grel) ∀r ∈ R,∀t ∈ N.

Base case: The initialization function INITrel assigns the same parameters to all relations, depending
only on whether r = q. Because the query relation q maps to ϕ(q) under the isomorphism, and all
other relations share the same initialization, we have

h
(0)
ϕ(r)|ϕ(q)(G

′
rel) = h

(0)
r|q(Grel).

Inductive step: Assume the inductive hypothesis holds for layer t. We remind that each update of
the relation encoder is defined as4

h
(t+1)
r|q = UPrel

(
h
(t)
r|q, AGGrel

(
{{MSGρ(e)

(
{(h(t)

r′|q, j) | (r
′, j)∈Nrel,i(e)}, q

)
| (e, i)∈Erel(r)}}

))
.

Under the isomorphism ϕ, the neighborhood of each relation node is preserved: for every (e, i) ∈
Erel(r) in Grel there exists a unique (e′, i) ∈ E′

rel(ϕ(r)) in G′
rel, andNrel,i(e) corresponds bijectively

to N ′
rel,i(e

′). Moreover, for each positional label (a, b), the corresponding fundamental relation em-
bedding xa,b is identical in both graphs since it depends only on (a, b). By the inductive hypothesis,
the neighboring states satisfy h

(t)
ϕ(r′)|ϕ(q)(G

′
rel) = h

(t)
r′|q(Grel) for all r′. Because MSGρ(e), AGGrel,

and UPrel are all shared, differentiable functions applied pointwise across nodes and edges, and AGGrel
is permutation-invariant, The resulting updates are preserved under the action of ϕ:

h
(t+1)
ϕ(r)|ϕ(q)(G

′
rel) = h

(t+1)
r|q (Grel).

Entity encoder. This encoder applies an HCNet over the original knowledge hypergraph G =
(V,E,R), where each node v ∈ V represents an entity and each hyperedge e = r(u1, . . . , uk) ∈ E
connects entities according to their argument positions in relation ρ(e) = r.
We prove by induction on ℓ that for any isomorphism (π, ϕ) between G and G′,

h
(ℓ)
π(v)|(π,ϕ)·q(G

′) = h
(ℓ)
v|q(G) ∀v ∈ V, ∀ℓ ∈ N.

Base case: The initialization INIT is shared and depends only on whether the entity participates in
the query q and at which position. Since both participation and positional roles are preserved under
(π, ϕ),

h
(0)
π(v)|(π,ϕ)·q(G

′) = h
(0)
v|q(G).

Inductive step: Assume the inductive hypothesis holds for layer ℓ. Under (π, ϕ), each inci-
dent pair (e, i) ∈ E(v) in G corresponds bijectively to (e′, i) ∈ E′(π(v)) in G′, where e′ =
ϕ(ρ(e))(π(u1), . . . , π(uk)) preserves both arity and argument order. The neighborhood mapping
Ni(e) between N ′

i (e
′) is therefore bijective. For every positional index j, the sinusoidal encoding

pj is fixed and identical across graphs. The message computation depends on (i) h(T )
ρ(e)|q , which

equals h
(T )
ϕ(ρ(e))|(π,ϕ)·q by relation-encoder equivariance, (ii) the neighboring states h

(ℓ)
u|q , which

4Note that h(t+1)

r|q = h
(t+1)

r|q since the position and entity information in query q has been dropped in relation
encoder, and thus it is enough to write ϕ(q) rather than (π, ϕ) · q.
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match h
(ℓ)
π(u)|(π,ϕ)·q by the inductive hypothesis, and (iii) the fixed positional encodings pj . Since

MSGρ(e), AGG, and UP are shared differentiable functions and AGG is permutation-invariant, the up-
dates are preserved under (π, ϕ):

h
(ℓ+1)
π(v)|(π,ϕ)·q(G

′) = h
(ℓ+1)
v|q (G).

Decoder. The unary decoder is a shared map Dec : Rd(L) → [0, 1] applied to h
(L)
v|q to score the

candidate v for the masked position t in q. We have h
(L)
π(v)|(π,ϕ)·q(G

′) = h
(L)
v|q (G), hence

Dec
(
h
(L)
π(v)|(π,ϕ)·q(G

′)
)
= Dec

(
h
(L)
v|q (G)

)
.

C.3 REQUIREMENTS OF POSITIONAL INTERACTION ENCODERS

In this section, we justify our choice of positional interaction encoder MLP([pa ∥pb]) by showing
that it satisfies the two key properties: extrapolation and injectivity. We further show that the en-
coder exhibits smooth dependence on positional indices.
In practice, we implement EncPI as a two-layer multilayer perceptron (MLP) applied to the concate-
nation of sinusoidal encodings of the two input positions. Let pa,pb ∈ Rd denote the sinusoidal
encodings of positions a, b ∈ N, defined componentwise by

(pa)2i = sin
( a

100002i/d

)
, (pa)2i+1 = cos

( a

100002i/d

)
, for i = 0, 1, . . . , d

2 − 1,

and analogously for pb. The concatenated positional pair is E(a, b) = [pa∥pb] ∈ [−1, 1]2d, and the
positional–interaction encoder outputs xa,b = MLP(E(a, b)).

Theorem C.2 (Properties of the positional–interaction encoder). Assume d is even and 108/d is
irrational (i.e., d /∈ {2, 4, 8}). Let pa,pb ∈ Rd be the sinusoidal positional encodings of positions
a, b ∈ N>0 and E(a, b) = [pa∥pb] ∈ [−1, 1]2d as above. Then there exists a choice of parameters
of MLP such that the positional interaction encoder EncPI : N2

>0 → Rm satisfies:

1. Injectivity. For all distinct (a, b), (a′, b′) ∈ N2
>0,

(a, b) ̸= (a′, b′) =⇒ EncPI(a, b) ̸= EncPI(a
′, b′).

2. Boundedness of the range. There exists a compact set K ⊂ Rm such that

EncPI(a, b) ∈ K for all (a, b) ∈ N2
>0.

3. Lipschitz continuity, smoothness. There exists a constant L > 0 such that for all
(a, b), (a′, b′) ∈ R2,∥∥EncPI(a, b)− EncPI(a

′, b′)
∥∥ ≤ L

(
|a− a′|+ |b− b′|

)
.

Proof. Injectivity. First we show that map a 7→ pa is injective. Let ωi := 10000−2i/d. Suppose
pa = pb. Then for each index i there exists ki ∈ Z such that

ωi(a− b) = 2πki.

Taking i′ = i+ 1, applying the same argument and dividing the two equalities gives

ωi

ωi+1
=

ki
ki+1

∈ Q.

But by construction ωi

ωi+1
= 10−8/d, which is irrational whenever d /∈ {2, 4, 8}. This is a contradic-

tion unless a = b. Hence a = b, and the map is injective.

Now we show that the concatenation E(a, b) = [pa∥pb] ∈ [−1, 1]2d itself is injective. Suppose
E((a, b)) = E((a′, b′)). By definition of concatenation, the first d dimension coordinates give
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pa = pa′ and the last d dimension give pb = pb′ . By the previous part, a = a′ and b = b′. Thus
(a, b) = (a′, b′), so E is injective.

Finally, we show that there exists a parameterization of MLP(x) = W2 σ(W1x + b1) + b2 that
is injective. Choose W1 ∈ Rn×2d and b1 ∈ Rn so that W1x + b1 > 0 coordinatewise for all
x ∈ [−1, 1]2d. Then σ is the identity on the entire domain, and

f(x) = W2(W1x+ b1) + b2 = (W2W1)x+ (W2b1 + b2)

is an affine map. With n ≥ 2d we can pick W1 to have full column rank 2d, and with m ≥ 2d we
can pick W2 so that W := W2W1 also has rank 2d. Hence x 7→Wx+c is injective on R2d, thus
on [−1, 1]2d. Therefore, the class contains injective functions.

Boundedness of the range. We need to show that the range of MLP(E([pa∥pb])) is compact.
Observe that MLP(E(pa∥pb)) ⊆MLP ([−1, 1]2d), since sinusoidal encodings are bounded within
[−1, 1] and the concatenation given by E only affects the dimensionality of the embedding. MLP
is a continuous function over a compact domain [−1, 1]2d, and as a result, its range is compact.
Consequently, even for unseen arity indices (a, b), the resulting positional representations remain
within the same bounded set as those observed during training.

Lipschitz continuity (smoothness). Set

Cpos :=

√√√√
2

d
2−1∑
i=0

ω2
i , LMLP := ∥W2∥2 ∥W1∥2, L = CposLMLP.

For any x, y ∈ R and ω > 0, the mean value theorem gives | sin(ωx) − sin(ωy)| ≤ ω|x − y| and
| cos(ωx)−cos(ωy)| ≤ ω|x−y| (as sin and cos are all 1-Lipschitz). Hence, with ωi = 10000−2i/d,
we have that

∥pa − pa′∥22 =

d
2−1∑
i=0

(
sin(ωia)− sin(ωia

′)
)2

+

d
2−1∑
i=0

(
cos(ωia)− cos(ωia

′)
)2

≤
(
2

d
2−1∑
i=0

ω2
i

)
|a− a′|2.

Thus ∥pa−pa′∥2 ≤ Cpos|a− a′|, and similarly ∥pb−pb′∥2 ≤ Cpos|b− b′|. By triangle inequality
on the concatenation,

∥E(a, b)− E(a′, b′)∥2 = ∥[pa − pa′∥pb − pb′ ]∥2
≤ ∥pa − pa′∥2 + ∥pb − pb′∥2
≤ Cpos

(
|a− a′|+ |b− b′|

)
.

MLP(x) = W2 σ(W1x + b1) + b2 is Lipschitz with constant Lip(MLP) ≤
∥W2∥2 Lip(σ) ∥W1∥2 = LMLP since ReLU is 1-Lipschitz (σ = ReLU, Lip(σ) = 1). There-
fore, by compositions of Lipschitz function,

∥EncPI(a, b)− EncPI(a
′, b′)∥ = ∥MLP(E(a, b))−MLP(E(a′, b′))∥

≤ LMLP ∥E(a, b)− E(a′, b′)∥2
≤ LMLP Cpos

(
|a− a′|+ |b− b′|

)
.

D COMPUTATIONAL RESOURCES

All the pretraining experiments is carried out on a single NVIDIA H100 80GB, and the rest of the
experiments are carried out using a NVIDIA A10 24GB. Pretraining of HYPER over a single H100
with parameter specified in Appendix G takes 4 days, while fine-tuning and end-to-end training
typically require less than 3 hours.
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HYPER is implemented primarily using PyTorch and PyTorch Geometric (Fey & Lenssen, 2019),
with its core hypergraph message passing implemented via a custom-built Triton kernel5. This
optimization approximately halves the training time and reduces memory consumption by a factor
of five on average. Instead of explicitly materializing all hyperedge messages, as is done in PyTorch
Geometric, we directly write neighboring features to the corresponding memory locations during
aggregation. While the naive materialization approach incurs O(k|E|) memory complexity, where
k denotes the maximum arity and |E| the number of hyperedges, our Triton-based approach achieves
O(|V |) memory complexity, depending only on the number of nodes, which enables efficient and
scalable training of HYPER models.

E ADDITIONAL EXPERIMENTS ON KNOWLEDGE GRAPHS

In addition to the knowledge hypergraph inductive settings, we also evaluate our models on inductive
knowledge graph link prediction tasks where both nodes and relations can be unseen during training
(Q6). This setting presents the most challenging scenario as it requires models to generalize to
entirely new knowledge domains with both unseen entities and relation types. We also include
inductive node-only knowledge graph link prediction to further strengthen our point.

Datasets. For inductive on both nodes and relations task, we includes 13 datasets in INGRAM (Lee
et al., 2023): FB-25, FB-50, FB-75, FB-100, WK-25, WK-50, WK-75, WK-100, NL-0, NL-25, NL-
50, NL-75, NL-100; and 10 datasets in MTDEA (Zhou et al., 2023a): MT1 tax, MT1 health, MT2
org, MT2 sci, MT3 art, MT3 infra, MT4 sci, MT4 health, Metafram, FBNELL. We also include
inductive link prediction on nodes only experiments, containing 12 datasets from GraIL (Teru et al.,
2020): WN-v1, WN-v2, WN-v3, WN-v4, FB-v1, FB-v2, FB-v3, FB-v4, NL-v1, NL-v2, NL-v3,
NL-v4; 4 datasets from INDIGO (Liu et al., 2021): HM 1k, HM 3k, HM 5k, HM Indigo; and 2
datasets from Nodepiece (Galkin et al., 2022): ILPC Small, ILPC Large.

Baseline. We included the zero-shot version of all the models and also include an existing knowl-
edge graph foundation model as baseline, ULTRA (Galkin et al., 2024), shown in Table 8, Table 9.
Notably, following standard convention, for every triplet r(u, v) in a knowledge graph, we also in-
clude its inverse triplet r−1(v, u), where r−1 denotes a newly introduced relation symbol represent-
ing the inverse of r for ULTRA. However, HYPER does not need this procedure as the entity encoder
employs a variant of HCNet (Huang et al., 2025b), which uses bi-directional message-passing and
automatically considers the message from the inverse direction.

Results and Discussion. We observe that HYPER achieves comparable performance to ULTRA in
zero-shot inductive link prediction on knowledge graphs. Across both node-only and node-and-
relation inductive benchmarks, HYPER performs on par with ULTRA, and often outperforms it on
datasets with higher relational diversity or structure. These results demonstrate that the architectural
inductive bias of HYPER, originally designed for knowledge hypergraphs, also transfers well to
standard knowledge graphs, without compromising generalization ability.

F COMPLEXITY AND SCALABILITY ANALYSIS OF HYPER

To answer Q7, we first examine the theoretical computational complexity of HYPER in Ap-
pendix F.1, then present its empirical scalability results when applying on FB15k-237 Appendix F.2.

F.1 THEORETICAL COMPUTATIONAL COMPLEXITY

In this section, we analyze the computational complexity of HYPER. Let G = (V,E,R) denote the
input knowledge hypergraph, where n = |V |, m = |E|, and |R| are the number of entities, hyper-
edges, and relation types, respectively. Let k be the maximum arity of R, d the hidden dimension,
and T the number of message-passing layers in the relation encoder, and denote L as the number of
message-passing layers in the entity encoder.

Relation Graph Construction The complexity of generating the relation graph in HYPER arises
from computing pairwise positional interactions between relation types across hyperedges of ar-

5https://github.com/triton-lang/triton
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bitrary arity. Unlike knowledge graphs, where each relation involves exactly two fixed positions
(head and tail), knowledge hypergraphs induce up to k2 positional interaction types for a maxi-
mum arity k. For each position a ∈ {1, . . . , k}, we construct sparse matrices Ea ∈ Rn×m that
index entities by their position and relation type. Then, for every pair (a, b), we perform a sparse
matrix multiplication: spmm(E⊤

a ,Eb). Each such multiplication has a worst-case complexity of
O(nnz(E⊤

a ) · nnz(Eb)), where nnz(·) denotes the number of nonzero entries. Since there are k2

position pairs, the total time complexity of constructing the relation graph becomes

O(k2 ·max
{a,b}
{nnz(E⊤

a ) · nnz(Eb)}).

In practice, this is significantly accelerated by sparse tensor and batching across position pairs. With-
out sparse matrix multiplication, the naive construction would require iterating over all hyperedge
pairs, resulting in O(k2|E|2) complexity, which is infeasible for large-scale datasets.

Additionally, for the positional interaction encoders, we associate a positional encoding vector
EncPI((a, b)) ∈ Rd. This construction requires O(k2d) time and space to compute and store.

Relation Encoder The relation encoder in HYPER performs T layers of message passing over the
relation graph Grel = (Vrel, Erel, Rrel), as constructed before.

There are at most k2 position pairs per pair of relation types, where k is the maximum arity, so the
total number of edges is bounded by

|Erel| = O(|R|2k2).

In each message passing layer, each relation node aggregates messages from up to |R|2k2 neigh-
bors, with each edge contributing a message via the corresponding positional interaction embedding
xa,b = EncPI((a, b)) ∈ Rd. Each node then applies an update with cost O(d2). Thus, the total
complexity of the relation encoder over T layers is

O
(
T (|R|2k2d+ |R|d2)

)
.

Entity Encoder After obtaining relation embeddings from the relation encoder, HYPER applies
L layers of conditional message passing over the original knowledge hypergraph G = (V,E,R)
using HCNet (Huang et al., 2025b). In each layer, every entity v ∈ V aggregates messages from
its incident hyperedges e ∈ E(v), where each hyperedge contributes a query-conditioned message,
taking O(L(k|E|d), that incorporates its relation embedding h

(T )
ρ(e)|q ∈ Rd, followed by a relation-

specific MLP, which takes O(L|R|d2). Each entity then updates its representation through a neural
update function with cost O(d2).
The total complexity of the entity encoder over L layers is thus

O(L(k|E|d+ |V |d2 + |R|d2)).

F.2 SCALABILITY ANALYSIS

To empirically assess the scalability of HYPER, we compare HYPER with ULTRA, a prominent
knowledge graph foundation model, and HCNet, a state-of-the-art node-inductive method on link
prediction with knowledge hypergraph. All experiments are conducted on the transductive knowl-
edge graph dataset FB15k-237 using a batch size of 64 to ensure a fair comparison among all three
methods. We summarize the model parameter size, training/inference times, and GPU memory
usage.

Compared with HCNets, HYPER’s training and inference times are approximately doubled since
HYPER employs two HCNet encoders, one for relations and one for entities. We argue that this over-
head represents a reasonable trade-off for the substantial performance improvements and stronger
inductive generalization demonstrated by HYPER compared with HCNets.

Compared with ULTRA, the main bottleneck of scalability is the complex modeling of knowledge
graphs as knowledge hypergraphs. These differences essentially reduce to the difference between
HCNet and NBFNets. For a detailed discussion, we refer the reader to Huang et al. (2025b).
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Figure 7: Two different reification KG corresponding to the knowledge hypergraph Gtrain from Fig 1.
On the left figure (†), i abbreviates hasEntityi. On the right figure (‡), R-i abbreviates Research-i,
similarly for A as AtConference, and T as Teaches.

G FURTHER EXPERIMENTAL DETAILS

In this section, we provide detailed experimental configurations and dataset statistics. In particular,
Table 13 summarizes the training corpora used for each model variant across knowledge graph
and knowledge hypergraph settings. Tables 14 and 15 present arity distributions and structural
statistics for the node-inductive datasets, while Table 16 reports the corresponding statistics for
pretraining datasets. For inductive link prediction involving unseen entities and relations, we provide
comprehensive dataset breakdowns in Tables 17 and 18.

We also include the complete performance tables together with standard deviation for the node-
inductive and node-relation inductive settings shown in Tables 19 to 21, respectively. Table 22 lists
all hyperparameter choices used for pretraining, fine-tuning, and end-to-end training of HYPER.
Finally, Table 23 specifies the dataset-specific training schedules for each experimental regime.

G.1 HYPERPARAMETER DETAILS FOR BASELINES

For G-MPNNs, we adopt the best-performing hyperparameters from the original codebase. Specif-
ically, we set the input dimension d = 64, hidden dimension h = 150, and dropout rate to 0.5.
We use a training batch size b = 128, evaluation batch size B = 4, and negative sampling ratio
nr = 10. The learning rate is set to 0.0005, and models are trained for up to 5000 epochs with
validation evaluated every 5 epochs. Aggregation is performed using the max.

For HCNet, we use a 6-layer encoder with an input dimension of 64 and a hidden dimension of 64 for
all layers. We adopt sum as the aggregation function and enable shortcut connections to facilitate
training. Optimization is performed using AdamW with a learning rate of 5 × 10−4. Training
is conducted with a batch size of 8, using the same number of epochs and batches per epoch as
HYPER, with validation performed every 100 steps. The model is trained with 256 adversarial
negatives sampled per positive example, and strict negative sampling is enforced to prevent overlap
with true triples.

G.2 ADDITIONAL BASELINES FOR KGFMS

To provide a more comprehensive evaluation of Knowledge Graph Foundation Models (KGFMs),
we expanded our analysis beyond ULTRA, which served as the representative KGFM in the main
paper. We additionally evaluated KG-ICL (Cui et al., 2024), a model that has demonstrated strong
performance on inductive knowledge graph completion tasks. For KG-ICL, we performed zero-
shot experiments across all 16 proposed datasets after reification with 3 variants of KG-ICL using
4 Layer, 5 Layer, and 6 Layer encoders, respectively. We highlight that KG-ICL learns over dif-
ferent pretraining mix than ULTRA (FB-v1, NL-v1, and Codex Small). The results, summarized
in Table 12, indicate that KG-ICL’s performance is substantially lower than that of HYPER, fur-
ther supporting the conclusion that existing KGFMs exhibit limited generalization on hypergraph
structures.
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G.3 IMPACT OF REIFICATION METHODS ON KGFMS

We proposed an alternative reification used in Section 3, where each hyperedge becomes an auxil-
iary node with outgoing edges hasEntity i to its arguments and one hasRelationType edge to the
relation node (left of Fig. 7), noted as (†)). After edge id node is generated for each edge, we
then generate binary edges of the form hasEntityi(edge id, ui) for each i ∈ [k] to capture the
positions of the entities in the relation. Finally, we add the original relation r as a node to the KG
and add an edge hasRelationType(edge id, r).

Intuitively, † adds a two-hop detour (edge id→ hasRelationType→ r), unlike ‡ which encodes
the relation and positional information together at the edge types itself. This generally decreases the
performance by over-simplifying the graph structure and disallows KGFM to use different represen-
tations for different relations, making the model less efficient. As a result, we opt not to use this in
reification in the main experiments.

Table 11 shows two main trends. (i) With KG-only pretraining (3KG/4KG/50KG), ULTRA‡ is
volatile with the relation explosion and we do not observe scaling behavior, while ULTRA† is gener-
ally more robust to the reified knowledge hypergraphs and shows a more consistent trend as number
of pretraining mix grows. (ii) When pretraining includes hypergraphs (4HG), (3KG + 2HG), expos-
ing role information at the edge type helps a lot: ULTRA‡ typically matches or exceeds ULTRA†

across splits.

Nevertheless, all of the reficiation schemes with ULTRA underperform compared with HYPER,
which avoids reification entirely by design and remains strongest by operating directly on hyper-
graph.

G.4 ARCHITECTURE CHOICES OF HYPER

Both the relation and entity encoders in HYPER follow the design based on HCNets (Huang et al.,
2025b), with a minor variant on the relation-specific message functions.

Positional Interactions. In practice, we implement EncPI as a two-layer multilayer perceptron
(MLP) over concatenated sinusoidal encodings of the input positions. Let pa,pb ∈ Rd denote the
sinusoidal positional encodings of positions a and b, respectively. Specifically, let pa,pb ∈ Rd

denote the sinusoidal positional encodings of positions a, b ∈ N, defined componentwise as

(pa)2i = sin
( a

100002i/d

)
, (pa)2i+1 = cos

( a

100002i/d

)
, for i = 0, 1, . . . , d

2 − 1,

and similarly for pb.

Then, the embedding corresponding to the interaction (a, b) is computed as xa,b = MLP([pa ∥pb]),
where MLP denotes a shared two-layer feedforward network with ReLU activations. This produces
a dense embedding that captures the interaction between the two positions. Empirically, we find that
this instantiation of EncPI enables strong generalization across knowledge hypergraphs with varying
arities and relational structures.

Relation Encoder. The relation encoder applies an HCNet over the constructed relation graph
(Vrel, Erel, Rrel). Here, each node r ∈ Vrel represents a relation type in G, and an edge captures
the induced interactions among relations. For each relation r ∈ Vrel, HCNet iteratively updates its
representation h

(t)
r|q as:

h
(0)
r|q = INITrel(r, q),

h
(t+1)
r|q = UPrel

(
h
(t)
r|q, AGGrel

(
{{MSGρ(e)

(
{(h(t)

r′|q, j) | (r
′, j) ∈ Nreli(e)}, q

)
| (e, i) ∈ Erel(r)}}

))
,

where Erel(r) is the set of edge-position pairs incident to r, and Nreli(e) is the positional neigh-
borhood of hyperedge e at position i. After T layers, we obtain the final relation encoding h

(T )
r|q .

Here, INITrel, UPrel, AGGrel, and MSGρ(e) are differentiable initialization, update, aggregation, and
fundamental relation-specific message functions, respectively. The initialization function INITrel is
designed to satisfy generalized target node distinguishability as formalized in Huang et al. (2025b).
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Empirically, we initialize the query node q ∈ Vrel with an all-one vector and all other relation nodes
with zero vectors.

In the experiments, we adopt the fundamental relation-specific message function MSGrfund using the
fundamental relation embedding ra,b. Specifically, given a set of neighbor features {(h(ℓ)

w|q, j) |
(w, j) ∈ Nreli(e)} for hyperedge e and center position i, the message is computed as:

MSGra,b

(
{(h(t)

w|q, j) | (w, j) ∈ Nreli(e)}
)
=

⊙
j ̸=i

(
α(t)h

(t)
e(j)|q + (1− α(t))pj

)⊙ xa,b,

where ⊙ is the elemental-wise multiplication, α(ℓ) is a learnable scalar, pj is the sinusoidal posi-
tional encoding at position j, and xa,b is the fundamental relation embedding computed as described
earlier.

Entity Encoder. In the context of the entity encoder, we apply a separate HCNet over the original
knowledge hypergraph G = (V,E,R). Each node v ∈ V aggregates information from its incident
hyperedges, incorporating the relation embeddings h(T )

r|q obtained from the relation encoder.

Given a query q = (q, ũ, t), where ũ = (u1, . . . , uk) denotes the entities in the hyperedge and t is
the target position, each node v ∈ V receives an initial representation defined as:

h
(0)
v|q =

∑
i̸=t

1v=ui · (pi + h
(T )
q|q ),

where pi ∈ Rd is the positional encoding at position i.

HYPER then iteratively updates the node representations h(ℓ)
v|q as:

h
(0)
v|q = INIT(v, q),

h
(ℓ+1)
v|q = UP

(
h
(ℓ)
v|q, AGG

(
{{MSGρ(e)

(
{(h(ℓ)

w|q, j) |(w, j) ∈ Ni(e)},h(T )
ρ(e)|q, q

)
|(e, i) ∈ E(v)}}

))
.

where INIT, UP, AGG, and MSGr are differentiable initialization, update, aggregation, and relation-
specific message functions, respectively, with INIT satisfying generalized targets node distinguisha-
bility (Huang et al., 2025b). After L layers of message passing, we obtain the final entity encoding
h
(L)
v|q . A final unary decoder Dec : Rd(L) → [0, 1] predicts the score for completing the missing

position t in the query q.

Empirically, we select the relation-specific message function MSGρ(e) to be

MSGr

(
{(h(ℓ)

w|q, j) | (w, j) ∈ Ni(e)}
)
=

⊙
j ̸=i

(
α(ℓ)h

(ℓ)
e(j)|q + (1− α(ℓ))pj

)⊙MLP(ℓ)(h
(T )
ρ(e)|q),

where additionally MLP(ℓ) is a 2-layer MLP with ReLU to transform the relation representation
most suitable for each specific layer during message passing.

Update. We use summation as the aggregation operator for both relation and entity nodes. Each
node updates its representation via a two-layer MLP applied to the concatenation of its current state
and the aggregated message:

h
(ℓ+1)
v|q = MLP(ℓ)

(
[h

(ℓ)
v|q ∥AGGREGATE(ℓ)

v|q]
)
,

where AGGREGATE(ℓ)
v|q denotes the sum of incoming messages to node v under query q at layer ℓ,

and ∥ represents vector concatenation.

Other. We also apply layer normalization and shortcut connections after aggregation and before
the ReLU activation in both encoders.
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G.5 TRAINING OBJECTIVE

Following prior work (Huang et al., 2025b), we train HYPER under the partial completeness as-
sumption (Galárraga et al., 2013), where each k-ary fact q(u1, . . . , uk) is used to generate training
samples by randomly masking one position 1 ≤ t ≤ k. Given a query q = (q, ũ, t), we model
the conditional probability of entity v ∈ V filling the missing position as p(v|q) = σ(Dec(h(L)

v|q )),

where Dec is a two-layer MLP and σ denotes the sigmoid activation. We optimize the following
self-adversarial negative sampling loss (Sun et al., 2019):

L(v|q) = − log p(v|q)−
n∑

i=1

wi,α log(1− p(v′i|q)),

where v′i are corrupted negative samples, n is the number of negatives per query, α being the adver-
sarial temperature, and wi,α are the importance weights defined by

wi,α = Softmax

(
log(1− p(v′i|q))

α

)
.

To mitigate overfitting, we exclude edges that directly connect query node pairs during training.
The best model checkpoint is selected based on validation performance. Following the implementa-
tion of ULTRA (Galkin et al., 2024), for pertaining over multiple knowledge graph and knowledge
hypergraphs, for each batch, we sample from one of the pretrained (hyper)graphs with probability
proportional to the number of edges it contains.
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Table 7: Arity distribution across node-relation inductive datasets.

Dataset Arity Training Graph Inference Graph Training % Inference %

JF-25

2 1585 266 47.02% 25.19%
3 1441 670 42.75% 63.45%
4 326 120 9.67% 11.36%
≥5 19 0 0.56% 0.00%

JF-50

2 1942 321 55.11% 24.85%
3 1297 692 36.80% 53.56%
4 285 279 8.09% 21.59%
≥5 0 0 0.00% 0.00%

JF-75

2 2641 824 61.60% 48.56%
3 848 846 19.78% 49.85%
4 779 27 18.17% 1.59%
≥5 19 0 0.44% 0.00%

JF-100

2 1349 1637 55.08% 75.82%
3 570 283 23.27% 13.11%
4 511 159 20.87% 7.36%
≥5 19 80 0.78% 3.71%

WD-25

2 4,331 2,799 79.00% 90.12%
3 612 162 11.16% 5.22%
4 463 144 8.45% 4.64%
≥5 76 1 1.39% 0.03%

WP-50

2 7709 4355 80.84% 99.20%
3 1106 28 11.60% 0.64%
4 667 3 6.99% 0.07%
≥5 54 4 0.57% 0.09%

WP-75

2 6471 6121 69.80% 98.39%
3 1725 82 18.61% 1.32%
4 1026 15 11.07% 0.24%
≥5 49 3 0.53% 0.05%

WP-100

2 6471 7413 69.80% 98.63%
3 1725 91 18.61% 1.21%
4 1026 6 11.07% 0.08%
≥5 49 6 0.53% 0.08%

WD-25

2 3,680 1,941 87.60% 93.81%
3 211 114 5.02% 5.51%
4 279 12 6.64% 0.58%
≥5 31 2 0.74% 0.10%

WD-50

2 3,238 2,127 78.08% 90.40%
3 417 86 10.06% 3.65%
4 438 136 10.56% 5.78%
≥5 54 4 1.30% 0.17%

WD-75

2 4,900 5,669 77.72% 97.22%
3 769 139 12.20% 2.38%
4 548 22 8.69% 0.38%
≥5 88 1 1.40% 0.02%

WD-100

2 5,858 3,631 80.57% 91.90%
3 906 186 12.46% 4.71%
4 397 134 5.46% 3.39%
≥5 110 0 1.51% 0.00%

MFB-25

2 137 1555 1.67% 55.50%
3 8045 831 98.33% 29.66%
4 0 0 0.00% 0.00%
≥5 0 416 0.00% 14.85%

MFB-50

2 149 1400 1.77% 57.71%
3 8260 756 98.23% 31.16%
4 0 0 0.00% 0.00%
≥5 0 270 0.00% 11.13%

MFB-75

2 2774 368 52.63% 9.18%
3 2497 3639 47.37% 90.79%
4 0 1 0.00% 0.02%
≥5 0 0 0.00% 0.00%

MFB-100

2 726 3234 6.23% 71.64%
3 10932 370 93.77% 8.20%
4 0 0 0.00% 0.00%
≥5 0 910 0.00% 20.16%
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Table 8: Zero-shot experiment results on node and relation inductive knowledge graph datasets

Method FB-25 FB-50 FB-75 FB-100 WK-25 WK-50 WK-75 WK-100

MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10

ULTRA(3KG) 0.388 0.640 0.338 0.543 0.403 0.604 0.449 0.642 0.316 0.532 0.166 0.324 0.365 0.537 0.164 0.286

HYPER(3KG) 0.372 0.614 0.313 0.513 0.373 0.568 0.412 0.598 0.276 0.410 0.145 0.281 0.334 0.460 0.171 0.271
HYPER(4HG) 0.277 0.538 0.225 0.427 0.287 0.503 0.336 0.567 0.215 0.422 0.117 0.245 0.280 0.491 0.125 0.247
HYPER(3KG + 2HG) 0.382 0.635 0.326 0.535 0.389 0.598 0.434 0.632 0.281 0.428 0.158 0.280 0.365 0.522 0.160 0.280

Method NL-25 NL-50 NL-75 NL-100 MT1-tax MT1-health MT2-org MT2-sci

MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10

ULTRA(3G) 0.395 0.569 0.407 0.570 0.368 0.547 0.471 0.651 0.224 0.305 0.298 0.374 0.095 0.159 0.258 0.354

HYPER(3KG) 0.321 0.550 0.350 0.520 0.320 0.483 0.415 0.627 0.234 0.306 0.361 0.431 0.088 0.142 0.256 0.339
HYPER(4HG) 0.214 0.431 0.226 0.480 0.252 0.455 0.333 0.618 0.200 0.274 0.266 0.358 0.063 0.116 0.195 0.320
HYPER(3KG + 2HG) 0.360 0.558 0.376 0.547 0.342 0.540 0.473 0.685 0.204 0.396 0.222 0.399 0.087 0.149 0.258 0.428

Method MT3-art MT3-infra MT4-sci MT4-health Metafam FBNELL NL-0 Average

MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10

ULTRA(3KG) 0.259 0.402 0.619 0.755 0.274 0.449 0.624 0.737 0.238 0.644 0.485 0.652 0.342 0.523 0.345 0.513

HYPER(3KG) 0.257 0.402 0.562 0.695 0.259 0.415 0.547 0.723 0.395 0.804 0.447 0.617 0.312 0.501 0.318 0.492
HYPER(4HG) 0.152 0.265 0.363 0.451 0.232 0.412 0.380 0.556 0.191 0.606 0.320 0.537 0.171 0.393 0.228 0.419
HYPER(3KG + 2HG) 0.270 0.425 0.573 0.716 0.270 0.441 0.560 0.724 0.457 0.875 0.450 0.639 0.334 0.526 0.336 0.520

Table 9: Zero-shot experiment results on node inductive knowledge graph datasets. The best result
for each dataset is in bold.

Method WN-v1 WN-v2 WN-v3 WN-v4 FB-v1 FB-v2

MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10

ULTRA(3KG) 0.648 0.768 0.663 0.765 0.376 0.476 0.611 0.705 0.498 0.656 0.512 0.700

HYPER(3KG) 0.703 0.799 0.681 0.788 0.400 0.522 0.644 0.721 0.450 0.622 0.474 0.668
HYPER(4HG) 0.530 0.720 0.533 0.691 0.287 0.392 0.514 0.652 0.263 0.476 0.308 0.527
HYPER(3KG + 2HG) 0.702 0.782 0.686 0.785 0.385 0.503 0.640 0.710 0.454 0.648 0.480 0.695

Method FB-v3 FB-v4 NL-v1 NL-v2 NL-v3 NL-v4

MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10

ULTRA(3KG) 0.491 0.654 0.486 0.677 0.785 0.913 0.526 0.707 0.515 0.702 0.479 0.712

HYPER(3KG) 0.460 0.627 0.460 0.653 0.619 0.868 0.514 0.719 0.510 0.692 0.468 0.697
HYPER(4HG) 0.276 0.482 0.280 0.504 0.516 0.863 0.345 0.639 0.340 0.610 0.269 0.582
HYPER(3KG + 2HG) 0.466 0.648 0.460 0.663 0.570 0.719 0.521 0.741 0.509 0.705 0.501 0.728

Method ILPC Small ILPC Large HM 1k HM 3k HM 5k HM Indigo

MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10

ULTRA(3KG) 0.302 0.443 0.290 0.424 0.059 0.092 0.037 0.077 0.034 0.071 0.440 0.648

HYPER(3KG) 0.291 0.438 0.293 0.412 0.046 0.092 0.036 0.073 0.033 0.069 0.437 0.644
HYPER(4HG) 0.169 0.347 0.183 0.327 0.027 0.075 0.024 0.064 0.024 0.058 0.298 0.484
HYPER(3KG + 2HG) 0.296 0.448 0.289 0.417 0.043 0.106 0.037 0.092 0.034 0.086 0.401 0.614

Table 10: Scalability comparison on FB15k-237 with batch size = 64.

Model # Parameters Training Time
(s/batch)

Inference Time
(s/batch) GPU Memory (GB)

ULTRA 168,705 1.19 0.066 12.87
HCNet 159,297 2.64 0.156 18.03
HYPER 225,409 4.51 0.272 25.30

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 11: Zero-shot MRR results on node and relation inductive knowledge hypergraph datasets.
Superscript ‡ means the model is applied over the reification shown in the main body, and † means
the model is applied with the alternative reification.

Method JF MFB WP WD

25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100

ULTRA‡(3KG) 0.103 0.437 0.168 0.144 0.255 0.235 0.154 0.277 0.039 0.077 0.073 0.078 0.117 0.155 0.116 0.161
ULTRA‡(4KG) 0.011 0.298 0.042 0.082 0.217 0.170 0.043 0.135 0.009 0.006 0.006 0.004 0.027 0.069 0.063 0.065
ULTRA‡(50KG) 0.001 0.096 0.010 0.001 0.225 0.083 0.001 0.190 0.006 0.009 0.009 0.004 0.008 0.001 0.001 0.001
ULTRA‡(4HG) 0.154 0.442 0.175 0.170 0.338 0.236 0.129 0.280 0.052 0.091 0.089 0.089 0.076 0.175 0.052 0.136
ULTRA‡(3KG+2HG) 0.209 0.446 0.187 0.168 0.343 0.236 0.128 0.283 0.045 0.086 0.080 0.090 0.183 0.182 0.127 0.137

ULTRA†(3KG) 0.119 0.304 0.109 0.091 0.209 0.153 0.062 0.222 0.040 0.070 0.067 0.071 0.171 0.201 0.149 0.176
ULTRA†(4KG) 0.099 0.325 0.102 0.132 0.343 0.215 0.111 0.274 0.047 0.091 0.089 0.086 0.094 0.141 0.054 0.075
ULTRA†(50KG) 0.147 0.407 0.126 0.111 0.310 0.218 0.100 0.262 0.045 0.071 0.045 0.065 0.062 0.124 0.104 0.150
ULTRA†(4HG) 0.093 0.293 0.102 0.113 0.226 0.143 0.065 0.236 0.043 0.069 0.065 0.068 0.147 0.159 0.092 0.089
ULTRA†(3KG+2HG) 0.114 0.340 0.121 0.120 0.272 0.197 0.109 0.240 0.026 0.070 0.052 0.066 0.128 0.167 0.117 0.138

HYPER(3KG) 0.148 0.297 0.112 0.130 0.248 0.191 0.039 0.276 0.143 0.147 0.186 0.221 0.167 0.158 0.123 0.146
HYPER(4HG) 0.187 0.377 0.188 0.181 0.349 0.244 0.139 0.278 0.075 0.068 0.086 0.168 0.087 0.158 0.057 0.165
HYPER(3KG+2HG) 0.216 0.455 0.213 0.173 0.363 0.250 0.140 0.299 0.132 0.152 0.192 0.222 0.223 0.200 0.154 0.182

Table 12: Average zero-shot inference MRR over 16 newly proposed dataset comparison across
KG-ICL, ULTRA, and HYPER variants.

Model Average MRR
KG-ICL(4 Layer) 0.139
KG-ICL(5 Layer) 0.048
KG-ICL(6 Layer) 0.143

ULTRA(3KG) 0.162
ULTRA(4KG) 0.078
ULTRA(50KG) 0.040
ULTRA(4HG) 0.168
ULTRA(3KG+2HG) 0.183

HYPER (3KG) 0.161
HYPER (4HG) 0.182
HYPER (3KG+2HG) 0.236

Table 13: Training datasets for model variants

Model Knowledge Hypergraph Knowledge Graph

JF17K FB-AUTO Wikipeople MFB15K FB15k-237 WN18RR CodEx Medium NELL995 Others(46G)

ULTRA(3KG) ✓ ✓ ✓
ULTRA(4KG) ✓ ✓ ✓ ✓
ULTRA(50KG) ✓ ✓ ✓ ✓ ✓
ULTRA(4HG) ✓ ✓ ✓ ✓
ULTRA(3KG + 2HG) ✓ ✓ ✓ ✓ ✓

HYPER(3KG) ✓ ✓ ✓
HYPER(4HG) ✓ ✓ ✓ ✓
HYPER(3KG + 2HG) ✓ ✓ ✓ ✓ ✓

HYPER(end2end) Trained directly on target dataset’s training graphHCNet
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Table 14: Arity distribution across node inductive datasets.

Dataset Arity Training Graph Inference Graph Training % Inference %

JF-IND

2 264 9 4.28% 2.93%
3 4586 216 74.36% 70.36%
4 1317 82 21.36% 26.71%
≥5 0 0 0.00% 0.00%

WP-IND

2 0 0 0.00% 0.00%
3 3375 476 81.54% 86.39%
4 764 75 18.46% 13.61%
≥5 0 0 0.00% 0.00%

MFB-IND

2 0 0 0.00% 0.00%
3 336733 7527 100.00% 100.00%
4 0 0 0.00% 0.00%
≥5 0 0 0.00% 0.00%

Table 15: Dataset statistics of inductive link prediction task with knowledge hypergraph.

Statistic JF-IND WP-IND MFB-IND
# seen vertices 4,685 4,463 3,283
# train hyperedges 6,167 4,139 336,733
# unseen vertices 100 100 500
# relations 31 32 12
# max arity 4 4 3

Table 16: Dataset statistics of pretrained knowledge hypergraphs and knowledge graphs with re-
spective arity.

Dataset FB-AUTO WikiPeople JF17K MFB15K FB15k237 WN18RR CoDEx-M

|V | 3,410 47,765 29,177 10,314 14541 40943 17050
|R| 8 707 327 71 237 11 51
# train 6,778 305,725 61,104 415,375 272115 86835 185584
# valid 2,255 38,223 15,275 39,348 17535 3034 10310
# test 2,180 38,281 24,915 38,797 20466 3134 10311
# max arity 5 9 6 5 2 2 2

# arity= 2 3,786 337,914 56,322 82,247 310,116 93,003 206,205
# arity= 3 0 25,820 34,550 400,027 0 0 0
# arity= 4 215 15,188 9,509 26 0 0 0
# arity≥ 5 7,212 3,307 2,267 11,220 0 0 0
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Table 17: Dataset statistics for inductive on both node and relation link prediction datasets. Triples
are the number of edges given at training, validation, or test graphs, respectively, whereas Valid and
Test denote triples to be predicted in the validation and test graphs.

Dataset Training Graph Validation Graph Test Graph

Entities Rels Triples Entities Rels Triples Valid Entities Rels Triples Test

FB-25 5190 163 91571 4097 216 17147 5716 4097 216 17147 5716
FB-50 5190 153 85375 4445 205 11636 3879 4445 205 11636 3879
FB-75 4659 134 62809 2792 186 9316 3106 2792 186 9316 3106
FB-100 4659 134 62809 2624 77 6987 2329 2624 77 6987 2329
WK-25 12659 47 41873 3228 74 3391 1130 3228 74 3391 1131
WK-50 12022 72 82481 9328 93 9672 3224 9328 93 9672 3225
WK-75 6853 52 28741 2722 65 3430 1143 2722 65 3430 1144
WK-100 9784 67 49875 12136 37 13487 4496 12136 37 13487 4496
NL-0 1814 134 7796 2026 112 2287 763 2026 112 2287 763
NL-25 4396 106 17578 2146 120 2230 743 2146 120 2230 744
NL-50 4396 106 17578 2335 119 2576 859 2335 119 2576 859
NL-75 2607 96 11058 1578 116 1818 606 1578 116 1818 607
NL-100 1258 55 7832 1709 53 2378 793 1709 53 2378 793
Metafam 1316 28 13821 1316 28 13821 590 656 28 7257 184
FBNELL 4636 100 10275 4636 100 10275 1055 4752 183 10685 597

Wiki MT1 tax 10000 10 17178 10000 10 17178 1908 10000 9 16526 1834
Wiki MT1 health 10000 7 14371 10000 7 14371 1596 10000 7 14110 1566
Wiki MT2 org 10000 10 23233 10000 10 23233 2581 10000 11 21976 2441
Wiki MT2 sci 10000 16 16471 10000 16 16471 1830 10000 16 14852 1650
Wiki MT3 art 10000 45 27262 10000 45 27262 3026 10000 45 28023 3113
Wiki MT3 infra 10000 24 21990 10000 24 21990 2443 10000 27 21646 2405
Wiki MT4 sci 10000 42 12576 10000 42 12576 1397 10000 42 12516 1388
Wiki MT4 health 10000 21 15539 10000 21 15539 1725 10000 20 15337 1703

Table 18: Dataset statistics for inductive-e link prediction datasets. Triples are the number of edges
given at training, validation, or test graphs, respectively, whereas Valid and Test denote triples to be
predicted in the validation and test graphs.

Dataset Rels Training Graph Validation Graph Test Graph

Entities Triples Entities Triples Valid Entities Triples Test

FB-v1 180 1594 4245 1594 4245 489 1093 1993 411
FB-v2 200 2608 9739 2608 9739 1166 1660 4145 947
FB-v3 215 3668 17986 3668 17986 2194 2501 7406 1731
FB-v4 219 4707 27203 4707 27203 3352 3051 11714 2840
WN-v1 9 2746 5410 2746 5410 630 922 1618 373
WN-v2 10 6954 15262 6954 15262 1838 2757 4011 852
WN-v3 11 12078 25901 12078 25901 3097 5084 6327 1143
WN-v4 9 3861 7940 3861 7940 934 7084 12334 2823
NL-v1 14 3103 4687 3103 4687 414 225 833 201
NL-v2 88 2564 8219 2564 8219 922 2086 4586 935
NL-v3 142 4647 16393 4647 16393 1851 3566 8048 1620
NL-v4 76 2092 7546 2092 7546 876 2795 7073 1447
ILPC Small 48 10230 78616 6653 20960 2908 6653 20960 2902
ILPC Large 65 46626 202446 29246 77044 10179 29246 77044 10184
HM 1k 11 36237 93364 36311 93364 1771 9899 18638 476
HM 3k 11 32118 71097 32250 71097 1201 19218 38285 1349
HM 5k 11 28601 57601 28744 57601 900 23792 48425 2124
HM Indigo 229 12721 121601 12797 121601 14121 14775 250195 14904
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Table 19: Experiment result on node and relation inductive knowledge hypergraph datasets for JF
and WP.

Method JF-25 JF-50 JF-75 JF-100

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

G-MPNN 0.006 0.004 0.004 0.007 0.003 0.000 0.000 0.003 0.001 0.000 0.000 0.000 0.002 0.000 0.000 0.000
HCNet 0.011 0.004 0.007 0.011 0.009 0.000 0.000 0.024 0.069 0.038 0.072 0.125 0.028 0.000 0.018 0.054

HYPER(end2end) 0.202
±.003

0.117
±.002

0.226
±.006

0.346
±.005

0.468
±.004

0.358
±.007

0.540
±.002

0.653
±.003

0.207
±.005

0.125
±.004

0.226
±.006

0.357
±.003

0.198
±.008

0.107
±.002

0.161
±.004

0.411
±.003

ULTRA‡(3KG)(0-shot) 0.103 0.039 0.095 0.240 0.437 0.301 0.581 0.699 0.168 0.100 0.160 0.288 0.144 0.089 0.143 0.196
ULTRA‡(4KG)(0-shot) 0.011 0.004 0.011 0.035 0.298 0.196 0.368 0.468 0.042 0.025 0.050 0.072 0.082 0.071 0.089 0.107
ULTRA‡(50KG)(0-shot) 0.001 0.000 0.000 0.000 0.096 0.089 0.102 0.105 0.010 0.006 0.013 0.016 0.001 0.000 0.000 0.000
ULTRA‡(4HG)(0-shot) 0.154 0.067 0.155 0.336 0.442 0.288 0.539 0.696 0.175 0.085 0.185 0.339 0.170 0.107 0.143 0.286
ULTRA‡(3KG+2HG)(0-shot) 0.209 0.113 0.216 0.413 0.446 0.293 0.547 0.707 0.187 0.097 0.197 0.342 0.168 0.107 0.143 0.286

HYPER(3KG)(0-shot) 0.148 0.071 0.152 0.318 0.297 0.212 0.336 0.460 0.112 0.041 0.132 0.254 0.130 0.018 0.107 0.375
HYPER(4HG)(0-shot) 0.187 0.095 0.219 0.360 0.377 0.239 0.476 0.608 0.188 0.110 0.204 0.370 0.181 0.089 0.161 0.464
HYPER(3KG + 2HG)(0-shot) 0.216 0.122 0.233 0.413 0.455 0.325 0.556 0.664 0.213 0.122 0.231 0.367 0.173 0.071 0.179 0.446

HYPER(3KG + 2HG)(finetuned) 0.217
±.001

0.131
±.002

0.226
±.004

0.389
±.006

0.456
±.003

0.331
±.005

0.554
±.002

0.672
±.001

0.209
±.004

0.119
±.006

0.238
±.003

0.361
±.007

0.176
±.005

0.089
±.003

0.161
±.008

0.393
±.002

Method WP-25 WP-50 WP-75 WP-100

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

G-MPNN 0.005 0.003 0.005 0.006 0.002 0.001 0.000 0.002 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.001
HCNet 0.104 0.048 0.114 0.230 0.050 0.025 0.059 0.087 0.019 0.010 0.020 0.032 0.003 0.000 0.000 0.003

HYPER(end2end) 0.159
±.003

0.071
±.004

0.172
±.005

0.358
±.006

0.143
±.002

0.082
±.003

0.157
±.004

0.260
±.007

0.139
±.003

0.072
±.001

0.129
±.005

0.294
±.006

0.202
±.002

0.106
±.003

0.190
±.004

0.418
±.007

ULTRA‡(3KG)(0-shot) 0.039 0.015 0.034 0.108 0.077 0.035 0.098 0.160 0.073 0.037 0.079 0.158 0.078 0.048 0.084 0.148
ULTRA‡(4KG)(0-shot) 0.009 0.000 0.002 0.041 0.006 0.000 0.002 0.022 0.006 0.001 0.001 0.024 0.004 0.000 0.000 0.023
ULTRA‡(50KG)(0-shot) 0.006 0.005 0.007 0.007 0.009 0.007 0.012 0.012 0.009 0.008 0.010 0.011 0.004 0.003 0.006 0.006
ULTRA‡(4HG)(0-shot) 0.052 0.023 0.070 0.103 0.091 0.044 0.121 0.166 0.089 0.048 0.102 0.168 0.089 0.055 0.103 0.158
ULTRA‡(3KG+2HG)(0-shot) 0.045 0.016 0.060 0.096 0.086 0.041 0.110 0.161 0.080 0.039 0.096 0.159 0.090 0.055 0.109 0.158

HYPER(3KG)(0-shot) 0.143 0.057 0.138 0.349 0.147 0.073 0.159 0.327 0.186 0.097 0.186 0.391 0.221 0.106 0.241 0.498
HYPER(4HG)(0-shot) 0.075 0.033 0.094 0.186 0.068 0.056 0.080 0.081 0.086 0.066 0.107 0.114 0.168 0.080 0.190 0.360
HYPER(3KG + 2HG)(0-shot) 0.132 0.058 0.151 0.296 0.152 0.086 0.178 0.295 0.192 0.107 0.201 0.384 0.222 0.132 0.209 0.453

HYPER(3KG + 2HG)(finetuned) 0.169
±.003

0.078
±.002

0.164
±.004

0.399
±.005

0.171
±.001

0.103
±.006

0.201
±.002

0.306
±.007

0.194
±.003

0.112
±.004

0.199
±.002

0.375
±.005

0.210
±.006

0.116
±.003

0.206
±.004

0.424
±.002
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Table 20: Experiment result on node and relation inductive knowledge hypergraph datasets for WD
and MFB.

Method WD-25 WD-50 WD-75 WD-100

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

G-MPNN 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.001 0.000 0.000 0.001
HCNet 0.086 0.050 0.096 0.136 0.043 0.027 0.044 0.060 0.015 0.006 0.023 0.030 0.007 0.004 0.005 0.007

HYPER(end2end) 0.215
±.002

0.132
±.006

0.225
±.005

0.394
±.004

0.205
±.007

0.153
±.003

0.219
±.006

0.317
±.002

0.172
±.003

0.105
±.004

0.194
±.003

0.298
±.007

0.205
±.002

0.139
±.008

0.226
±.004

0.342
±.005

ULTRA‡(3KG)(0-shot) 0.117 0.040 0.132 0.315 0.155 0.087 0.175 0.311 0.116 0.060 0.109 0.263 0.161 0.105 0.165 0.311
ULTRA‡(4KG)(0-shot) 0.027 0.013 0.033 0.063 0.069 0.060 0.077 0.093 0.063 0.040 0.069 0.128 0.065 0.040 0.070 0.137
ULTRA‡(50KG)(0-shot) 0.008 0.007 0.010 0.010 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.004 0.004
ULTRA‡(4HG)(0-shot) 0.076 0.096 0.185 0.348 0.175 0.109 0.191 0.311 0.052 0.084 0.162 0.303 0.136 0.128 0.212 0.344
ULTRA‡(3KG+2HG)(0-shot) 0.183 0.103 0.209 0.351 0.182 0.115 0.202 0.328 0.127 0.092 0.161 0.302 0.137 0.130 0.211 0.347

HYPER(3KG)(0-shot) 0.167 0.010 0.172 0.331 0.158 0.104 0.175 0.295 0.123 0.005 0.142 0.255 0.146 0.077 0.168 0.281
HYPER(4HG)(0-shot) 0.087 0.076 0.093 0.103 0.158 0.142 0.164 0.197 0.057 0.051 0.062 0.064 0.165 0.139 0.177 0.233
HYPER(3KG + 2HG)(0-shot) 0.223 0.156 0.225 0.404 0.200 0.148 0.208 0.317 0.154 0.093 0.168 0.275 0.182 0.133 0.177 0.286

HYPER(3KG + 2HG)(finetuned) 0.225
±.003

0.146
±.005

0.245
±.004

0.397
±.006

0.234
±.002

0.186
±.007

0.230
±.003

0.355
±.001

0.166
±.005

0.101
±.003

0.189
±.006

0.294
±.004

0.210
±.002

0.140
±.008

0.235
±.003

0.351
±.005

Method MFB-25 MFB-50 MFB-75 MFB-100

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

G-MPNN 0.002 0.000 0.000 0.004 0.004 0.001 0.003 0.007 0.007 0.003 0.004 0.010 0.003 0.000 0.002 0.005
HCNet 0.033 0.008 0.008 0.108 0.026 0.013 0.022 0.041 0.016 0.007 0.009 0.021 0.082 0.028 0.085 0.227

HYPER(end2end) 0.332
±.005

0.221
±.004

0.388
±.003

0.533
±.002

0.200
±.006

0.105
±.004

0.251
±.007

0.374
±.005

0.135
±.003

0.070
±.006

0.143
±.002

0.255
±.008

0.222
±.001

0.169
±.005

0.228
±.004

0.317
±.003

ULTRA‡(3KG)(0-shot) 0.255 0.258 0.408 0.525 0.235 0.148 0.269 0.384 0.154 0.084 0.166 0.274 0.277 0.201 0.315 0.412
ULTRA‡(4KG)(0-shot) 0.217 0.158 0.267 0.308 0.170 0.113 0.206 0.269 0.043 0.025 0.048 0.084 0.135 0.032 0.234 0.271
ULTRA‡(50KG)(0-shot) 0.225 0.196 0.254 0.263 0.083 0.074 0.094 0.097 0.001 0.000 0.000 0.000 0.190 0.156 0.221 0.247
ULTRA‡(4HG)(0-shot) 0.338 0.225 0.400 0.521 0.236 0.145 0.282 0.404 0.129 0.081 0.171 0.344 0.280 0.194 0.323 0.435
ULTRA‡(3KG+2HG)(0-shot) 0.343 0.233 0.413 0.538 0.236 0.137 0.286 0.408 0.128 0.076 0.183 0.352 0.283 0.200 0.325 0.437

HYPER(3KG)(0-shot) 0.248 0.167 0.283 0.396 0.191 0.123 0.216 0.296 0.039 0.016 0.029 0.073 0.276 0.198 0.311 0.416
HYPER(4HG)(0-shot) 0.349 0.258 0.400 0.546 0.244 0.169 0.286 0.382 0.139 0.082 0.140 0.244 0.278 0.195 0.316 0.441
HYPER(3KG + 2HG)(0-shot) 0.363 0.263 0.417 0.550 0.250 0.167 0.287 0.393 0.140 0.077 0.140 0.260 0.299 0.214 0.339 0.449

HYPER(3KG + 2HG)(finetuned) 0.347
±.004

0.229
±.006

0.408
±.003

0.533
±.002

0.243
±.005

0.163
±.006

0.286
±.007

0.391
±.004

0.158
±.002

0.088
±.005

0.161
±.003

0.302
±.006

0.275
±.002

0.197
±.008

0.290
±.003

0.452
±.004

Table 21: Experiment result on node-inductive knowledge hypergraph datasets.

Method JF-IND WP-IND MFB-IND

MRR H@1 H@3 MRR H@1 H@3 MRR H@1 H@3

HGNN 0.102 0.086 0.128 0.072 0.045 0.112 0.121 0.076 0.114
HyperGCN 0.099 0.088 0.133 0.075 0.049 0.111 0.118 0.074 0.117
G-MPNN 0.219 0.155 0.236 0.177 0.108 0.191 0.124 0.071 0.123
RD-MPNN 0.402 0.308 0.453 0.304 0.238 0.328 0.122 0.082 0.125
HCNet 0.435 0.357 0.495 0.414 0.352 0.451 0.368 0.223 0.417

HYPER(end2end) 0.422
±.004

0.320
±.006

0.483
±.007

0.435
±.005

0.367
±.004

0.471
±.006

0.427
±.003

0.290
±.005

0.499
±.004

ULTRA‡(3KG)(0-shot) 0.321 0.221 0.383 0.305 0.242 0.320 0.277 0.161 0.316
ULTRA‡(4KG)(0-shot) 0.065 0.004 0.079 0.123 0.102 0.114 0.096 0.068 0.112
ULTRA‡(50KG)(0-shot) 0.008 0.000 0.002 0.029 0.024 0.027 0.026 0.020 0.031
ULTRA‡(4HG)(0-shot) 0.397 0.274 0.466 0.319 0.330 0.467 0.264 0.141 0.299
ULTRA‡(3KG+2HG)(0-shot) 0.410 0.294 0.489 0.341 0.352 0.480 0.294 0.164 0.325

HYPER(3KG)(0-shot) 0.263 0.177 0.281 0.259 0.176 0.307 0.184 0.123 0.196
HYPER(4HG)(0-shot) 0.403 0.277 0.501 0.375 0.297 0.410 0.497 0.351 0.582
HYPER(3KG + 2HG)(0-shot) 0.459 0.365 0.515 0.415 0.338 0.454 0.404 0.267 0.480

HYPER(3KG + 2HG)(finetuned) 0.463
±.002

0.373
±.003

0.517
±.008

0.446
±.008

0.379
±.009

0.482
±.007

0.455
±.003

0.318
±.007

0.530
±.005
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Table 22: HYPER hyper-parameters for pretraining, fine-tuning, and end-to-end training.

Hyperparameter HYPER

Positional Interaction Encoder

# Layers 2
Hidden dimension 64

Dropout 0
Activation ReLU

Relation Encoder

# Layers T 6
Hidden dimension 64

Dropout 0
Activation ReLU

Norm LayerNorm

Entity Encoder

# Layers L 6
Hidden dimension 64

Dec 2-layer MLP
Dropout 0

Activation ReLU
Norm LayerNorm

Pre-training

Optimizer AdamW
Learning rate 0.0005
Training steps 30,000

Adversarial temperature 1
# Negatives 512
Batch size 32

Fine-tuning

Optimizer AdamW
Learning rate 0.0005

Adversarial temperature 1
# Negatives 256
Batch size 8

End-to-End

Optimizer AdamW
Learning rate 0.0005

Adversarial temperature 1
# Negatives 256
Batch size 8
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Table 23: Hyperparameters for fine-tuning and training end-to-end for HYPER.

Datasets Finetune End-to-End
Epoch Batch per Epoch Epoch Batch per Epoch

JF 25-100 3 full 10 full
WP 25-100 3 full 10 full
MFB 25-100 3 full 10 full
WD 25-100 3 full 10 full

JF-IND 1 full 20 full
WP-IND 1 full 20 full
MFB-IND 1 2000 4 10000

FB 25-100 3 full 10 full
WK 25-100 3 full 10 full
NL 0-100 3 full 10 full
MT1-MT4 3 full 10 full
Metafam, FBNELL 3 full 10 full

FB v1-v4 1 full 10 full
WN v1-v4 1 full 10 full
NL v1-v4 3 full 10 full
ILPC Small 3 full 10 full
ILPC Large 1 1000 10 1000
HM 1k-5k, Indigo 1 100 10 1000
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