
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

WHAT MATTERS IN TRANSFORMERS? NOT ALL AT-
TENTION IS NEEDED

Anonymous authors
Paper under double-blind review

ABSTRACT

While scaling Transformer-based large language models (LLMs) has demonstrated
promising performance across various tasks, it also introduces redundant archi-
tectures, posing efficiency challenges for real-world deployment. Despite some
recognition of redundancy in LLMs, the variability of redundancy across different
architectures in transformers, such as MLP and Attention layers, is under-explored.
In this work, we investigate redundancy across different modules within Trans-
formers, including Blocks, MLP, and Attention layers, using a similarity-based
metric. Surprisingly, despite the critical role of attention layers in distinguishing
transformers from other architectures, we found that a large portion of these layers
exhibit excessively high similarity and can be pruned without degrading perfor-
mance. For instance, Llama-2-70B achieved a 48.4% speedup with only a 2.4%
performance drop by pruning half of the attention layers. Furthermore, by tracing
model checkpoints throughout the training process, we observed that attention
layer redundancy is inherent and consistent across training stages. Additionally,
we further propose a method that jointly drops Attention and MLP layers, allowing
us to more aggressively drop additional layers. For instance, when dropping 31
layers (Attention + MLP), Llama-2-13B still retains 90% of the performance on the
MMLU task. Our work provides valuable insights for future network architecture
design. The code will be released upon acceptance.

1 INTRODUCTION

Transformer-based large language models (LLMs) have significantly advanced AI research, achieving
remarkable performance across various domains OpenAI (2024); Team (2024). However, scaling
these models also introduces redundant architectures, namely overarching, leading to inefficiencies
that complicate their real-world deployment Frantar et al. (2023); Sun et al. (2023), e.g., inflating
deployment costs and resource demands. For instance, while the deployment cost of Llama-2-70B
exceeds 128GB in FP16 precision—surpassing the capacity of a single A100 GPU—it can be reduced
in depth without significantly impacting performance Gromov et al. (2024).

Although several previous works have been proposed to promote LLM efficiency via removing
redundant parameters or architectures Frantar et al. (2023); Sun et al. (2023), these approaches often
employ universal techniques that overlook the unique characteristics of transformer architectures.
Specifically, transformer Vaswani (2017) architectures are composed of multiple stacked blocks,
each containing an MLP layer and an Attention layer, which serve distinct functions and exhibit
corresponding different levels of redundancy Wang et al. (2023); Shi et al. (2023) This motivates a
deeper investigation into the specific redundancies within Transformers, with the goal of identifying
and addressing the most critical modules.

In this work, we systematically explore the redundancy in three key Transformer components: Block,
MLP, and Attention. Using a similarity-based metric Gromov et al. (2024); Men et al. (2024) , we
evaluate the importance of each component and progressively drop those identified as redundant.
We first apply a “Block Drop” approach but observe that removing entire blocks leads to significant
performance degradation. This suggests a need for a more fine-grained strategy.

Upon further examination, we explore the separate pruning of MLP and Attention layers. Our
findings reveal that while dropping MLP layers negatively affects performance, a substantial portion
of Attention layers, i.e., the core of Transformer architectures which distinguish it from other

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

mainstream architectures (e.g., RWKV Peng et al. (2023) and Mamba Gu & Dao (2024)), can be
pruned without degrading the model’s performance. For instance, dropping 50% of the Attention
layers in Llama-2-70B Touvron et al. (2023) results in comparable performance to the full model,
indicating a high degree of redundancy in these layers.

Building on these insights, we propose a more flexible approach, “Joint Layer Drop”, which targets
both MLP layers and Attention layers. By combining the importance scores of these layers, we find
that jointly dropping low-importance Attention and MLP layers yields better performance under high
sparsity conditions compared to pruning only one type of layer.

Our work demonstrates that Attention layer redundancy is not only significant but also consistent
across different training stages, indicating that this redundancy is an inherent property of Trans-
former architectures. These findings open the door to more efficient Transformer designs, reducing
both memory (e.g., KV-Cache) and computational costs (e.g., inference speed), while maintaining
performance.

In summary, our key contributions are as follows:

• Through an in-depth analysis of redundancy in three key Transformer components—Block,
MLP, and Attention—we uncover a surprising level of redundancy within the Attention.

• We propose “Attention Drop”, a simple yet effective algorithm for efficiently removing
redundant Attention layers in a training-free manner. Additionally, we introduce "Joint
Layer Drop", which further improves the performance at high dropping ratios by jointly
targeting both Attention and MLP layers.

• Our extensive experiments demonstrate the effectiveness of dropping Attention, for instance,
removing 50% of the attention layers in Llama-2-70B results in only a 2.4% performance
reduction while achieving up to a 48.4% speedup.

• We further show that the attention layers remain consistently high redundancy throughout
the training process, indicating it as an inherent property and providing valuable insights for
future architecture design.

2 RELATED WORKS

Large Language Models Although Transformer-based Large Language Models (LLMs) have
demonstrated promising performance across various tasks, their deployment costs still remain a
significant challenge for practical usage Sun et al. (2023); Lin et al. (2024); Gromov et al. (2024).
Transformer Vaswani (2017) models consist of multiple blocks, which include Attention layers and
MLP layers. Attention layers compute the contextual information between input tokens with quadratic
complexity concerning the input sequence length Li et al. (2020). KV-Cache Pope et al. (2022)
mitigates the computational issue but results in excessive memory costs Zhang et al. (2023). MLP
layers Liu et al. (2021); Mai et al. (2022) transform each token independently, using an up-projection
followed by a down-projection, and contribute most of the model parameters. Recent works have
revealed that not all blocks or layers are equally important Men et al. (2024); Chen et al. (2024),
which urges us to reflect on the structured redundancy within LLMs and the potential design of more
compact architectures.

Model Compression LLMs can be compressed to promote their efficiency in memory and compu-
tation. Quantization Frantar et al. (2023); Lin et al. (2024) and Pruning Sun et al. (2023); Frantar &
Alistarh (2023) are the most widely used techniques to compress LLMs. Specifically, quantization
transforms the data type into low-bit but remains potentially redundant architecture and parameters.
Pruning can be categorized into unstructured pruning Kusupati et al. (2020); Sanh et al. (2020) and
structured pruning Zhuang et al. (2020); Kwon et al. (2020). While unstructured pruning maintains
better performance than structured pruning, it cannot be effectively applied to hardware, limiting
its practical usage. Our methods, Block Drop and Layer Drop, focus on removing structured mod-
ules rather than fine-grained parameters, creating hardware-friendly efficient architectures while
maintaining comparable performance. Additionally, Block Drop and Layer Drop are orthogonal to
quantization, and their integration with quantization significantly enhances efficiency.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3 METHODOLOGY

In this section, we present the methodology for identifying and removing redundant modules in
LLMs. We begin by introducing a similarity-based metric to assess redundancy across both Attention
and MLP layers. Based on the insights gained from this analysis, we develop two targeted techniques,
i.e., MLP Drop and Attention Drop, to efficiently eliminate redundant components while preserving
model performance.

3.1 PRELIMINARIES

Similarity-based Drop To assess the redundancy of modules in LLMs, we employ a similarity-
based metric that evaluates the importance of each module by measuring the similarity between its
input and output Gromov et al. (2024). The underlying hypothesis is that redundant modules produce
outputs that are similar to their inputs, implying minimal transformation. In contrast, important
modules are expected to significantly alter their inputs and thus should be preserved. The similarity
between the hidden states of the input X and output Y of a module is quantified using cosine
similarity. The importance score S of the module is computed as:

S = 1− Cosine(X,Y ). (1)

Modules with higher cosine similarity exhibit lower importance scores, indicating redundancy. We
identify and prune the modules with the lowest importance scores according to a predefined prunting
ratio. A complete evaluation of the metric’s effectiveness is provided in Appendix B.

𝑆𝐵
𝐿−1

𝑆𝐵
𝑙+2

𝑆𝐵
𝑙

LM Head

…
…

Embedding

0

1

2

𝑙

𝐿

𝐿-1

𝑙+1

𝑙+2

LM Head

…
…

Embedding

0

1

2

𝑙

𝐿

𝐿-1

𝑙+1

𝑙+2

Figure 1: Visualization of Block Drop.
where we use to denote the blocks with
high similarity scores. The dropped blocks
are blurred.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Layer Index

C4LIMACodeAlpacaMathInstructDa
ta

se
t

0.0 0.1 0.2 0.3

Figure 2: Importance scores of Blocks.

Block Drop Transformer models are composed of
stacked blocks, where each block shares a common ar-
chitecture and can be viewed as a subnetwork. To reduce
complexity, we first consider dropping entire blocks that
are deemed unimportant.

As shown in Figure 2, Transformer blocks operate se-
quentially, with each block’s output feeding into the next.
To evaluate redundancy, we compute the similarity be-
tween the input and output of each block. For the l-th
block, the importance score is calculated as:

Sl
B = 1− Cosine(X l

B ,Y
l
B), (2)

where X l
B and Y l

B denote the input and output of the
l-th block, respectively. Since the similarity scores are
computed locally, we can offload irrelevant modules to
save memory. By iteratively computing the importance
scores for each block from shallow to deep, we can
identify and drop blocks with the lowest scores, thus
saving memory and computational resources.

3.2 MOTIVATION

Block Drop is an aggressive technique that risks removing essential layers, as it overlooks the
internal fine-grained architectures within each block. Given a transformer block consists of both
an Attention layer and an MLP layer. These layers perform distinct functions, with the Attention
layer facilitating contextual information flow between tokens and the MLP layer transforming the
token representations. Given their distinct roles, we assess the redundancy of each layer separately
by measuring the importance scores of Attention and MLP layers individually. Specifically, we
leverage multiple calibration datasets to measure the importance scores, ranging from the pretraining
dataset (e.g., C4 Raffel et al. (2020)) to instruction fine-tuning datasets (e.g., CodeAlpaca-20k1,
MathInstruct Yue et al. (2024) and LIMA Zhou et al. (2024)). Figure 2 and 3 illustrate the varying
trend of importance scores for Attention layers compared to MLP layers across multiple datasets. This
observation motivates us to consider the varying levels of redundancy between MLP and Attention

1https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

layers and to develop more fine-grained dropping techniques accordingly, namely, MLP Drop and
Attention Drop.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Layer Index

C4LIMACodeAlpacaMathInstructDa
ta

se
t

0.0 0.1 0.2 0.3

(a) MLP

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Layer Index

C4LIMACodeAlpacaMathInstructDa
ta

se
t

0.0 0.1 0.2 0.3

(b) Attention

Figure 3: Importance scores for MLP and Attention layers, where we use various calibration datasets
for a comprehensive analysis.

3.3 LAYER DROP.

MLP Layer

Layer Norm 

Attention Layer

Layer Norm 

+

+

MLP Layer

Layer Norm 

Attention Layer

Layer Norm 

+

+

Attention Drop MLP Drop

MLP Layer

Layer Norm 

Attention Layer

Layer Norm 

+

+

𝑆𝑀
𝑙

𝑆𝐴
𝑙

Figure 4: Visualization of Layer Drop, where we visualize dropping either MLP or Attention Layers.
Given the residual connection, we take LayerNorm together with the corresponding layers. The
dropped layers with high similarity scores are blurred.

MLP Drop As illustrated in Figure 4, each MLP layer follows a LayerNorm operation and involves
a residual connection, ensuring that part of the input is preserved in the final output. Given the input
X l

M of the LayerNorm before MLP at the l-th Block, the output Y l
M can be formulated as:

Y l
M = X l

M + MLP(LayerNorm(X l
M )). (3)

Since the output Y l
M contains both the residual and the MLP transformation, evaluating similarity

based solely on the MLP’s output can be misleading. To address this, we consider the MLP layer and
its associated LayerNorm as a single unit and compute their importance score as follows:

Sl
M = 1− Cosine(X l

M ,Y l
M ). (4)

By treating these layers as a single entity, we ensure a more accurate measure of importance. MLP
Drop removes both the unimportant MLP and associated LayerNorm layers. Further validation of
this approach can be found in Appendix B.

Attention Drop Similarly, Attention layers also operate within a residual connection. The output
of the l-th Attention layer is computed as:

Y l
A = X l

A + Attention(LayerNorm(X l
A)), (5)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where X l
A is the inputs of the corresponding LayerNorm layers and Y l

A overall outputs that in-
volves residual connections. Like MLP Drop, we assess both the Attention layer and its associated
LayerNorm as a single unit. The importance score for the Attention layer is:

Sl
A = 1− Cosine(X l

A,Y
l
A). (6)

Layer Drop, for both MLP and Attention layers, is performed in a one-shot manner, calculating
importance scores once and removing redundant layers in a single step. This approach avoids the
resource-intensive and time-consuming iterative pruning process. The effectiveness of this simple
one-shot technique is evaluated in Appendix B.

Implementation and Loading the Pruned Model After removing redundant layers, the pruned
model can be easily loaded using existing libraries, such as Huggingface Transformers Wolf et al.
(2020), with only minor adjustments to the model configuration. Additional implementation details
are provided in Appendix A.

4 INVESTIGATION OF DROPPING DIFFERENT TARGET MODULES

In this section, we conduct a comprehensive investigation into the effects of dropping different target
modules. To quantify the trade-off between performance degradation and speedup, we introduce a
new metric, i.e., Speedup Degradation Ratio (SDR), defined as:

γ =
∆Avg.

∆Speedup
, (7)

where ∆Avg. represents the percentage change in average performance across the evaluated tasks,
and ∆Speedup denotes the corresponding percentage of speedup achieved by each method. Therefore,
γ measures the amount of performance degradation incurred for each 1% increase in speedup. A
lower γ value indicates that the model achieves speedup with minimal performance loss, making it
more efficient. In contrast, a higher γ value suggests that the performance loss is substantial relative
to the speedup gained, implying a less favorable trade-off.

Table 1 and Figure 5 summarize the results of dropping different target modules, such as Block, MLP,
and Attention layers. Specifically, Table 1 shows the performance impact of dropping a fixed number
of modules (e.g., 4 and 8 layers), while Figure 5 extends this analysis by evaluating a broader range
of dropping ratios (0% to 100%).

Block and MLP Drop: Significant Performance Degradation with Moderate Speedup Block
Drop and MLP Drop both lead to notable performance declines across both models, despite achieving
moderate speedups. For example, Dropping 4 blocks results in a 2.4% average performance decline
(from 68.2 to 65.8) for Llama-2-13B, with a speedup of 1.11×, corresponding to a γ of 0.22. However,
dropping 8 blocks causes a 7.5% performance drop (down to 60.7), with only a modest speedup of
1.24× and a higher γ of 0.31. Similarly, MLP Drop exhibits a comparable trend, with a small decline
at 4 layers (1.3%, γ = 0.32), but a much larger drop at 8 layers (6.3%, γ = 0.79). These results
suggest that while Block and MLP Drop provide moderate speedup, they do so at the cost of
significant performance degradation, especially at higher drop ratios.

Attention Drop: Minimal Performance Impact with High Efficiency Surprisingly, despite the
critical role of attention layers in Transformer architectures, dropping attention layers is highly
effective. Both Llama-2-13B and Mistral-7B maintain over 99% of their original performance even
after dropping 8 attention layers, as shown in Figure 5(c). For example, Attention Drop maintains
near-baseline performance even after dropping 8 layers (69.8 vs. 70.3), with a speedup of 1.23× and
a low γ of 0.02. Dropping 12 attention layers results in only a slight performance decline (67.3), with
a significant speedup of 1.40× and a γ of 0.08. The superior performance of Attention Drop persists
when compared to other compression techniques B. These results demonstrate that attention
layers are highly redundant, and their removal has minimal impact on model accuracy, making
Attention Drop a highly efficient pruning strategy.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Experimental Results of Dropping Different Modules, where we drop the fixed number
(e.g., 4 and 8) of modules on Llama-2-13B and Mistral-7B. Here, Block, MLP, and Attn are corre-
sponding modules. Rows with averaged performance lower than 95% of the original performance are
grayed.

Llama-2-13B
Method ARC-C BoolQ HellaSwag MMLU OBQA PIQA RTE WinoGrande Avg. (↑) SpeedUp (↑) γ (↓)

Baseline 59.9 80.7 82.2 55.1 45.6 80.5 65.0 77.0 68.2 1.00× –
Block-4 54.8 73.3 80.6 54.8 45.8 79.1 60.3 77.5 65.8 1.11× 0.22
Block-8 48.0 56.8 75.3 53.8 41.2 75.3 59.9 75.6 60.7 1.24× 0.31
MLP-4 54.9 76.1 80.4 54.8 45.4 79.5 66.4 77.3 66.9 1.04× 0.32
MLP-8 49.2 63.4 75.6 54.5 42.2 76.0 59.2 75.1 61.9 1.08× 0.79
Attn-4 58.8 80.4 82.0 54.7 46.2 80.5 67.9 77.2 68.5 1.05× -0.05
Attn-8 58.2 80.5 82.2 54.5 47.0 80.5 64.3 77.4 68.1 1.13× 0.01
Attn-16 56.4 79.2 81.9 48.2 47.4 79.5 59.9 76.2 66.1 1.29× 0.07
Attn-20 53.8 76.9 78.6 51.5 44.4 77.6 59.2 77.1 64.9 1.40× 0.08

Mistral-7B
Method ARC-C BoolQ HellaSwag MMLU OBQA PIQA RTE WinoGrande Avg. (↑) SpeedUp (↑) γ (↓)

Baseline 61.5 83.7 83.2 62.5 43.8 82.0 66.8 78.5 70.3 1.00× –
Block-4 53.1 80.4 77.5 61.6 40.0 77.6 70.0 76.6 67.1 1.14× 0.23
Block-8 40.0 71.6 63.9 60.0 30.6 69.3 63.9 69.7 58.6 1.32× 0.37
MLP-4 53.2 80.3 77.7 61.7 40.0 77.6 67.5 77.3 66.9 1.03× 1.13
MLP-8 36.7 71.8 33.6 53.3 30.6 68.0 66.8 66.6 53.4 1.06× 2.82
Attn-4 61.0 83.5 82.9 62.5 44.6 82.0 64.6 78.0 69.9 1.10× 0.04
Attn-8 60.2 82.7 82.3 62.2 44.2 81.3 66.8 78.8 69.8 1.23× 0.02
Attn-12 57.2 76.8 80.2 59.4 41.8 79.1 66.1 77.7 67.3 1.40× 0.08

0 5 10 15 20 25 30 35 40
Dropped Blocks

20

30

40

50

60

70

80

Ac
cu

ra
cy

(%
)

HellaSwag

0 5 10 15 20 25 30 35 40
Dropped Blocks

20

30

40

50

60

MMLU

0 5 10 15 20 25 30 35 40
Dropped Blocks

25

30

35

40

45

OBQA

0 5 10 15 20 25 30 35 40
Dropped Blocks

50

55

60

65

70

75

80

WinoGrande

Mistral-7B Llama-2-13B Random Guess

(a) Block Drop

0 5 10 15 20 25 30 35 40
Dropped MLP Layers

20

30

40

50

60

70

80

Ac
cu

ra
cy

(%
)

HellaSwag

0 5 10 15 20 25 30 35 40
Dropped MLP Layers

20

30

40

50

60

MMLU

0 5 10 15 20 25 30 35 40
Dropped MLP Layers

25

30

35

40

45

OBQA

0 5 10 15 20 25 30 35 40
Dropped MLP Layers

45

50

55

60

65

70

75

80

WinoGrande

(b) MLP Drop

0 5 10 15 20 25 30 35 40
Dropped Attention Layers

20

30

40

50

60

70

80

Ac
cu

ra
cy

(%
)

HellaSwag

0 5 10 15 20 25 30 35 40
Dropped Attention Layers

20

30

40

50

60

MMLU

0 5 10 15 20 25 30 35 40
Dropped Attention Layers

25

30

35

40

45

50
OBQA

0 5 10 15 20 25 30 35 40
Dropped Attention Layers

50

55

60

65

70

75

80

WinoGrande

(c) Attention Drop

Figure 5: Performance with respect to Dropping Ratios. The solid lines represent the impact of
dropping the n modules with the lowest importance scores in Mistral-7B and Llama-2-13B, and the
dotted lines represent the performances of the baseline and random guessing.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Experimental results on Llama-3,
where Llama-3-8B and Llama-3-70B are in-
cluded. Rows with averaged performance
lower than 95% of the original performance
are grayed.

Method HellaSwag MMLU OBQA WinoGrande Avg. (↑) SpeedUp (↑) γ (↓)

Llama-3-8B

Baseline 82.2 65.5 45.0 77.7 67.6 1.00× –

Attn-4 81.6 65.1 44.8 78.2 67.4 1.07× 0.03
Attn-8 81.1 65.1 45.0 78.4 67.4 1.16× 0.01
Attn-12 79.4 63.9 42.2 77.8 65.8 1.26× 0.07
Attn-16 71.2 38.2 39.4 72.8 55.4 1.38× 0.32
Attn-20 42.2 23.0 30.6 58.7 38.6 1.52× 0.56

Llama-3-70B

Baseline 88.0 78.7 48.4 85.4 75.1 1.00× –

Attn-4 87.9 78.7 49.0 85.2 75.2 1.04× -0.03
Attn-8 87.8 78.5 48.8 85.2 75.1 1.10× 0.00
Attn-16 87.8 78.7 48.6 84.9 75.0 1.17× 0.01
Attn-32 87.9 78.6 48.8 85.3 75.2 1.35× 0.00
Attn-40 85.2 77.1 48.0 82.8 73.3 1.43× 0.00
Attn-48 81.2 73.9 47.4 81.3 71.0 1.55× 0.07

Larger Models Show Consistent Robustness to
Attention Drop To verify the consistency of our
findings on larger models, we take Llama-2-70B into
consideration, since it also comes from the Llama
family and larger model size. Specifically, we drop
the modules with different dropping ratios ranging
from 5% to 60% on Table 3.

Similar to the findings in smaller models, Llama-2-
70B also showcases sensitivity to Block Drop and
Layer Drop, where dropping only 10% to 20% of
blocks or MLP layers leads to a significant perfor-
mance drop.

In contrast, Attention Drop performs much better
on Llama-2-70B. Specifically, when dropping 40
out of 80 attention layers, Llama-2-70B achieves a
speedup of 1.48 and a γ of 0.05. A similar trend is observed in Llama-3, as shown in Table 2. This
robustness indicates that larger models can also tolerate the removal of a significant proportion
of Attention layers without degrading performance.

The results clearly indicate that Attention Drop is the most efficient method for pruning, allowing for
significant speedup with minimal impact on performance. In the following sections, we will examine
the efficiency improvements achieved through Attention Drop and further investigate the layer-
wise importance of attention layers to gain deeper insights into model architecture. For additional
comparisons between Attention Drop and other compression methods, please refer to Appendix B.

Table 3: Block Drop and Layer Drop on Larger Models, where we drop a series of numbers
(from 4 to 48) of modules on Llama-2-70B. Rows with averaged performance lower than 95% of the
original performance are grayed.

Llama-2-70B

Method ARC-C BoolQ HellaSwag MMLU OBQA PIQA RTE WinoGrande Avg. (↑) SpeedUp (↑) γ (↓)

Baseline 67.4 83.8 87.1 68.5 48.6 82.5 69.3 83.7 73.9 1.00× –

Block-4 63.8 80.4 84.6 60.2 48.0 81.6 71.1 78.0 71.0 1.07× 0.41
Block-8 59.1 77.5 81.3 55.1 46.2 81.0 68.2 73.2 67.7 1.14× 0.44
Block-16 44.6 64.6 69.9 29.3 40.0 75.2 51.6 59.7 54.4 1.30× 0.65
Block-32 35.1 58.8 56.7 25.7 36.8 71.7 54.5 55.3 49.3 1.67× 0.37

MLP-4 65.4 84.0 86.1 68.7 46.6 82.9 68.2 83.4 73.2 1.04× 0.18
MLP-8 64.4 83.9 84.9 68.7 47.6 81.7 66.8 82.2 72.5 1.05× 0.28
MLP-16 57.5 53.6 81.6 69.1 46.0 79.2 58.8 81.7 65.9 1.08× 1.00
MLP-32 40.6 61.9 64.2 59.8 29.8 64.2 52.7 72.7 55.7 1.17× 1.07

Attn-4 67.2 84.0 87.0 68.6 48.8 82.5 69.3 83.3 73.8 1.06× 0.02
Attn-8 67.3 83.8 86.9 68.5 48.4 82.9 69.0 82.6 73.7 1.12× 0.02
Attn-16 67.8 83.9 87.2 68.5 49.0 83.0 68.2 82.8 73.8 1.21× 0.00
Attn-32 67.2 84.8 87.2 68.4 49.6 81.8 67.5 83.5 73.8 1.35× 0.00
Attn-40 63.7 82.8 84.4 66.2 46.8 80.1 66.8 81.3 71.5 1.48× 0.05
Attn-48 58.5 73.7 80.6 56.8 45.0 79.8 59.6 81.0 66.9 1.62× 0.11

5 EFFICIENCY OF ATTENTION DROP

In this section, we evaluate the efficiency of Attention Drop in terms of both memory usage and
inference speed. Specifically, we examine the reduction in memory overhead due to the key-value
(KV) cache and measure the speed-up during the entire generation phase. The results demonstrate
that Attention Drop provides substantial improvements in both efficiency metrics while maintaining
high performance.

KV-cache Memory Reduction Given the auto-regressive nature of attention, where outputs are
generated token by token, the KV-cache is used to store intermediate representations of input
sequences. This cache helps accelerate inference by preventing redundant computations but comes
with a significant memory cost, especially with longer sequence lengths or larger batch sizes. Our
proposed Attention Drop method efficiently removes unimportant attention layers, reducing the
corresponding KV-cache. Table 4 provides a comparison of 16-bit precision KV-cache memory
usage before and after Attention Drop for various models, where we use 8 Nvidia RTX A6000

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Ada GPUs for the 70B models and 4 Nvidia RTX A6000 Ada GPUs for other smaller models. As
shown, Attention Drop results in substantial memory savings across all tested models. For instance,
in Llama-2-13B, the KV-cache is reduced from 52GB to 26GB, a 50% reduction. This memory
reduction is even more pronounced in larger models like Llama-2-70B, where the KV-cache decreases
from 20GB to 10GB. Note the reported results are based on resource-constrained scenarios. In
resource-sufficient cases, where larger batch sizes and longer sequence lengths can be applied, the
memory usage savings from Attention Drop become even more significant. These reductions are
beneficial for both memory-constrained and memory-sufficient environments, allowing for more
efficient model deployment.

Table 4: Comparison of KV-cache sizes before and after Attention Drop across different models,
with a sequence length of 2048. Since only Llama-2-13B does not use grouped-query attention, the
KV-cache for each token is significantly larger compared to other models.

Model Batch Size wo/Attn Drop w/Attn Drop

Layers KV-cache Layers KV-cache

Mistral-7B 64 32 16GB 20 10GB
Llama-2-13B 32 40 52GB 20 26GB
Llama-2-70B 32 80 20GB 40 10GB
Llama-3-8B 64 32 16GB 20 10GB
Llama-3-70B 32 80 20GB 40 10GB

Speed Measurement We also evaluate the run-time speed improvements achieved through At-
tention Drop. The inference speed is measured throughout the entire generation process, starting
from the input prompt to the generation of the final token. To ensure that the results accurately
reflect the speed improvements, we follow two key principles in our setup: (1) all operations are
performed on a single Nvidia RTX A6000 Ada GPU, avoiding any communication overhead caused
by multi-GPU setups; and (2) we increase the batch sizes to maximize GPU utilization for each
model. Specifically, for Llama-2-70B, we employ 4-bit quantization due to its large model size,
while noting that Attention Drop is orthogonal to quantization shown in C. For Llama-2-13B and
Mistral-7B, we use 16-bit precision. In terms of sequence length, we use an input sequence of 2048
tokens and autoregressively generate an additional 2048 tokens. This setup allows us to capture the
full inference process, ensuring that both the prefill (initial processing of the input sequence) and the
generation (token-by-token inference) stages are included in the speed measurements.

The speed-up ratios achieved through Attention Drop are presented in Tables 1, 2, and 3. Our results
show that Attention Drop provides up to 40% speed-up while retaining more than 95% of the original
model’s performance. Additionally, as demonstrated in Table 1, the γ values for Attention Drop are
significantly lower than those for MLP Drop and Block Drop, especially at higher speed-up ratios.
This indicates that Attention Drop achieves a more efficient trade-off between speed and performance,
making it a superior method for model acceleration.

6 VISUALIZATION EXAMPLES OF LAYER IMPORTANCE

In this section, we visualize the importance scores and the corresponding dropping order of pretrained
models. We then trace back through historical checkpoints to explore the dynamics of importance
scores throughout the training process.

6.1 DEEPER MODULES WITH HIGHER REDUNDANCY

Based on Figure 2, 3 and 10, we observe that the deeper layers (excluding the last ones) often exhibit
excessively low importance across Block, MLP, and Attention modules.

To further analyze the dropped modules, we visualize the dropped layers or blocks with different
dropping ratios. Figure 6 visualizes the remaining and dropped layers/blocks as the number of
dropped modules increases. Llama-2-13B and Mistral-7B exhibit similar patterns in Layer Drop and
Block Drop: initially, both models tend to drop the deeper layers, followed by the shallower ones.
These findings are consistent with Xu et al. Men et al. (2024), which suggests that deeper layers tend
to be more redundant. Larger models (e.g., Llama-2-70B) also showcase a similar trend, which is
shown in Appendix C.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 8 16 24 31
Block Index

32

24

16

8

0

Dr
op

pe
d 

Nu
m

be
r

Mistral-7B

0 10 20 30 39
Block Index

40

30

20

10

0
Llama-2-13B

(a) Block Drop

0 8 16 24 31
MLP Index

32

24

16

8

0

Dr
op

pe
d 

Nu
m

be
r

Mistral-7B

0 10 20 30 39
MLP Index

40

30

20

10

0
Llama-2-13B

(b) MLP Drop

0 8 16 24 31
Attention Index

32

24

16

8

0

Dr
op

pe
d 

Nu
m

be
r

Mistral-7B

0 10 20 30 39
Attention Index

40

30

20

10

0
Llama-2-13B

(c) Attention Drop

Figure 6: Visualization of Dropping Order for Block Drop and Layer Drop. We visualize the
remaining layers and blocks under different dropped numbers, where yellow areas represent the
retained layers/blocks and red areas indicate the dropped portions.

6.2 CONSISTENT REDUNDANCY OF ATTENTION LAYERS THROUGHOUT TRAINING

Now that the deep layers exhibit high redundancy, to investigate how such a pattern is achieved, we
revisit the historical checkpoints to track the dynamic changing of layer-wise importance scores.

Specifically, we use checkpoints released by MAP-Neo-7B Zhang et al. (2024), since it released
continuous checkpoints during training stages. Figure 7 presents the importance scores of Blocks and
Layers at different training stages, where Attention layers demonstrate consistently lower importance
scores than MLP and Block at all training stages. While the importance scores for MLP layers and
Blocks gradually increase as training progresses, the importance scores of Attention layers change
much more slowly.

Given the consistently higher redundancy of attention layers throughout training, we believe that this
pattern arises from the inherent properties of attention layers.

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

Module Index
(a) Attention (b) MLP (c) Block

Trained Tokens

T
rain

in
g
 P

ro
cess

Figure 7: Visualization of Importance Scores in Checkpoints during the Pre-training Process of
MAP-Neo-7B, where lighter areas represent low importance scores (i.e., high similarity scores). We
present the entire Training Process (checkpoints for every 500B trained tokens). We independently
visualize the importance scores at the module index 0, since they are significantly higher.

7 JOINT LAYER DROP FURTHER ENHANCES THE PERFORMANCE

While a significant proportion of attention layers exhibit high redundancy, our findings also show that
some MLP layers have low importance. To further optimize model efficiency, we introduce Joint
Layer Drop, which combines both Attention Drop and MLP Drop strategies. This approach leverages
the redundancy in both attention and MLP layers to enhance the overall performance of the model.

Methodology: Combining Attention and MLP Drop The Joint Layer Drop method is imple-
mented by first calculating the importance scores for both attention layers (Sl

A) and MLP layers (Sl
M )

individually. These scores are computed based on a similarity-based metric that identifies redundant
layers, as previously discussed. Once the importance scores are obtained for each type of layer, we
concatenate the scores into a single array: S = [Sl

A,S
l
M ]. From this combined set of importance

scores, we drop the layers with the lowest values, regardless of whether they are attention or MLP
layers. This joint approach allows us to remove the most redundant components from both layer
types simultaneously, enhancing the model’s efficiency while maintaining performance.

Superior Performance with Joint Layer Drop As demonstrated in Figure 8, Joint Layer Drop
consistently achieves better performance than either Attention Drop or MLP Drop alone. The process
begins by exclusively dropping attention layers, which are typically more redundant than MLP layers.
This continues until the number of dropped attention layers exceeds 14 for Mistral-7B and 18 for
Llama-2-13B. As a result, in the initial stages of pruning, the performance of Joint Layer Drop
overlaps with that of Attention Drop.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

However, as the dropping ratio increases and the more redundant attention layers are pruned, MLP
layers start to become the next most redundant components. At this point, Joint Layer Drop begins
to remove MLP layers, leading to further reductions in redundant layers without significant perfor-
mance loss, e.g., after dropping 31 layers (Attention + MLP), Llama-2-13B still retains 90% of the
performance on the MMLU task.

0 5 10 15 20 25 30 35 40
The Number of Dropped Modules

20

30

40

50

60

70

80

Ac
cu

ra
cy

(%
)

HellaSwag

0 5 10 15 20 25 30 35 40
The Number of Dropped Modules

20

25

30

35

40

45

50

55

MMLU

0 5 10 15 20 25 30 35 40
The Number of Dropped Modules

25

30

35

40

45

50
OBQA

0 5 10 15 20 25 30 35 40
The Number of Dropped Modules

45

50

55

60

65

70

75

80
WinoGrande

Joint Attention MLP Block Random Guess

(a) Llama-2-13B

0 5 10 15 20 25 30
The Number of Dropped Modules

20

30

40

50

60

70

80

Ac
cu

ra
cy

(%
)

HellaSwag

0 5 10 15 20 25 30
The Number of Dropped Modules

20

30

40

50

60

MMLU

0 5 10 15 20 25 30
The Number of Dropped Modules

25

30

35

40

45

OBQA

0 5 10 15 20 25 30
The Number of Dropped Modules

45

50

55

60

65

70

75

80

WinoGrande

(b) Mistral-7B

Figure 8: Accuracy Curves of Dropping Different Target Modules, where we consider dropping
single types of modules and Joint dropping (Attn + MLP). In the line of Joint Drop, ⋆ represents the
step where the MLP is dropped, while the ■ represents the step where the Attention is dropped.

8 CONCLUSION AND DISCUSSIONS

Insights for Future Network Architecture Design Despite the success of scaling up LLMs, our
work provides valuable insights for scaling down models to achieve more efficient architectures. One
key insight is the high redundancy in attention layers, particularly in deeper layers, which suggests
that future works could reduce the number of attention layers without sacrificing performance, rather
than maintaining parity with MLP layers. Moreover, unlike MLP layers, attention layers exhibit
consistent redundancy as training progresses. This consistency may pose a bottleneck in training
large models. To address this, future research could explore replacing attention layers with alternative
mechanisms or develop new training techniques that capitalize on this redundancy to further enhance
language model capacity.

Limitations While our proposed dropping techniques improve efficiency in the models we evalu-
ated, there are limitations. A key area for future work is testing the applicability of these techniques
across a broader range of models, such as vision transformers and vision-language models. Fur-
thermore, our methods focus on post-training dropping without involving retraining, which could
potentially recover or even improve performance after pruning. Retraining these models could unlock
even greater efficiency in more compact architectures.

Conclusion In this work, we systematically revisited transformer architectures by investigating the
effects of dropping three types of structures: Blocks, MLP layers, and Attention layers. Our findings
reveal that attention layers display significant redundancy and can be removed in large proportions
without compromising performance. To build on this, we introduced Joint Layer Drop, a method that
further increases both dropping ratios and performance by targeting redundant layers across both MLP
and Attention layers. This study empirically demonstrates the potential for creating more compact
and efficient transformer models, providing valuable insights for future network design within the
NLP community. By exploring structured redundancy, we open up new avenues for designing more
efficient, scalable models that maintain high performance even under resource constraints.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Winogrande: An adversarial winograd schema challenge at scale. 2019.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about
physical commonsense in natural language, 2019.

Iñigo Casanueva, Tadas Temčinas, Daniela Gerz, Matthew Henderson, and Ivan Vulić. Efficient
intent detection with dual sentence encoders. arXiv preprint arXiv:2003.04807, 2020.

Xiaodong Chen, Yuxuan Hu, and Jing Zhang. Compressing large language models by streamlining
the unimportant layer. arXiv preprint arXiv:2403.19135, 2024.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna:
An open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//lmsys.org/blog/2023-03-30-vicuna/.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge,
2018.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers, 2023.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The pile: An 800gb
dataset of diverse text for language modeling, 2020.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 12 2023. URL https://zenodo.org/records/10256836.

Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Daniel A. Roberts. The
unreasonable ineffectiveness of the deeper layers, 2024.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding, 2021.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023.

Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault Castells, Shinkook Choi, Junho Shin, and
Hyoung-Kyu Song. Shortened llama: A simple depth pruning for large language models. ICLR
Workshop on Mathematical and Empirical Understanding of Foundation Models (ME-FoMo),
2024. URL https://openreview.net/forum?id=18VGxuOdpu.

Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek Jain, Sham Kakade,
and Ali Farhadi. Soft threshold weight reparameterization for learnable sparsity. In Proceedings of
the International Conference on Machine Learning, July 2020.

11

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://zenodo.org/records/10256836
https://openreview.net/forum?id=18VGxuOdpu


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Se Jung Kwon, Dongsoo Lee, Byeongwook Kim, Parichay Kapoor, Baeseong Park, and Gu-Yeon
Wei. Structured compression by weight encryption for unstructured pruning and quantization. In
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1906–1915,
2020. doi: 10.1109/CVPR42600.2020.00198.

Rui Li, Jianlin Su, Chenxi Duan, and Shunyi Zheng. Linear attention mechanism: An efficient
attention for semantic segmentation, 2020.

Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue, and Wenhu Chen. Long-context llms struggle with
long in-context learning. arXiv preprint arXiv:2404.02060, 2024.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
llm compression and acceleration. In MLSys, 2024.

Hanxiao Liu, Zihang Dai, David R. So, and Quoc V. Le. Pay attention to mlps, 2021.

Florian Mai, Arnaud Pannatier, Fabio Fehr, Haolin Chen, Francois Marelli, Francois Fleuret, and
James Henderson. HyperMixer: An MLP-based Green AI Alternative to Transformers. arXiv
preprint arXiv:2203.03691, 2022.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect,
2024.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering, 2018.

OpenAI. Gpt-4 technical report, 2024.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman, Huanqi
Cao, Xin Cheng, Michael Chung, Matteo Grella, Kranthi Kiran GV, Xuzheng He, Haowen Hou,
Jiaju Lin, Przemyslaw Kazienko, Jan Kocon, Jiaming Kong, Bartlomiej Koptyra, Hayden Lau,
Krishna Sri Ipsit Mantri, Ferdinand Mom, Atsushi Saito, Guangyu Song, Xiangru Tang, Bolun
Wang, Johan S. Wind, Stanislaw Wozniak, Ruichong Zhang, Zhenyuan Zhang, Qihang Zhao, Peng
Zhou, Qinghua Zhou, Jian Zhu, and Rui-Jie Zhu. Rwkv: Reinventing rnns for the transformer era,
2023.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Anselm
Levskaya, Jonathan Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling
transformer inference, 2022.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. arXiv e-prints, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Victor Sanh, Thomas Wolf, and Alexander M. Rush. Movement pruning: Adaptive sparsity by
fine-tuning, 2020. URL https://arxiv.org/abs/2005.07683.

Dachuan Shi, Chaofan Tao, Ying Jin, Zhendong Yang, Chun Yuan, and Jiaqi Wang. UPop: Unified
and progressive pruning for compressing vision-language transformers. In Proceedings of the 40th
International Conference on Machine Learning, volume 202, pp. 31292–31311. PMLR, 2023.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and effective pruning approach
for large language models. arXiv preprint arXiv:2306.11695, 2023.

Gemini Team. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context,
2024.

12

https://arxiv.org/abs/2005.07683


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models, 2023.

Ashish Vaswani. Attention is all you need. arXiv preprint arXiv:1706.03762, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. 2019.
In the Proceedings of ICLR.

Tiannan Wang, Wangchunshu Zhou, Yan Zeng, and Xinsong Zhang. EfficientVLM: Fast and
accurate vision-language models via knowledge distillation and modal-adaptive pruning. In
Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Findings of the Association
for Computational Linguistics: ACL 2023, pp. 13899–13913, Toronto, Canada, July 2023.
Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.873. URL
https://aclanthology.org/2023.findings-acl.873.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art natural language
processing. In Qun Liu and David Schlangen (eds.), Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing: System Demonstrations, pp. 38–45, Online,
October 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-demos.6.
URL https://aclanthology.org/2020.emnlp-demos.6.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
large language models. arXiv preprint arXiv:2309.12284, 2023.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen.
MAmmoTH: Building math generalist models through hybrid instruction tuning. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=yLClGs770I.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence?, 2019.

Ge Zhang, Scott Qu, Jiaheng Liu, Chenchen Zhang, Chenghua Lin, Chou Leuang Yu, Danny Pan,
Esther Cheng, Jie Liu, Qunshu Lin, Raven Yuan, Tuney Zheng, Wei Pang, Xinrun Du, Yiming
Liang, Yinghao Ma, Yizhi Li, Ziyang Ma, Bill Lin, Emmanouil Benetos, Huan Yang, Junting
Zhou, Kaijing Ma, Minghao Liu, Morry Niu, Noah Wang, Quehry Que, Ruibo Liu, Sine Liu,
Shawn Guo, Soren Gao, Wangchunshu Zhou, Xinyue Zhang, Yizhi Zhou, Yubo Wang, Yuelin Bai,
Yuhan Zhang, Yuxiang Zhang, Zenith Wang, Zhenzhu Yang, Zijian Zhao, Jiajun Zhang, Wanli
Ouyang, Wenhao Huang, and Wenhu Chen. Map-neo: Highly capable and transparent bilingual
large language model series, 2024.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, Zhangyang Wang, and Beidi Chen. H2o: Heavy-
hitter oracle for efficient generative inference of large language models, 2023.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia
Efrat, Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. Advances in Neural Information
Processing Systems, 36, 2024.

Tao Zhuang, Zhixuan Zhang, Yuheng Huang, Xiaoyi Zeng, Kai Shuang, and Xiang Li. Neuron-level
structured pruning using polarization regularizer. In H. Larochelle, M. Ranzato, R. Hadsell, M.F.
Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp.
9865–9877. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_
files/paper/2020/file/703957b6dd9e3a7980e040bee50ded65-Paper.pdf.

13

https://aclanthology.org/2023.findings-acl.873
https://aclanthology.org/2020.emnlp-demos.6
https://openreview.net/forum?id=yLClGs770I
https://openreview.net/forum?id=yLClGs770I
https://proceedings.neurips.cc/paper_files/paper/2020/file/703957b6dd9e3a7980e040bee50ded65-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/703957b6dd9e3a7980e040bee50ded65-Paper.pdf


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A IMPLEMENTATION DETAILS

Models We utilize Llama-2 Touvron et al. (2023) and Mistral Jiang et al. (2023) as the default
models, given their competitive performance and wide usage. We also evaluated the completely
open-source model MAP-Neo Zhang et al. (2024) to explore the redundancy variations in the modules
of the entire pre-training phase. Additionally, we experimented with the newly released Llama-3 to
verify the effectiveness of model dropping on the latest models.

Datasets For the calibration dataset, we used the validation set of C4 dataset Raffel et al. (2019),
with 256 samples and an input sequence length of 2,048, following the setup in Sun et al. (2023).
The setting is well-supported by Appendix B. To evaluate model performance, we report normalized
zero-shot or few-shot accuracy on the LM-harness benchmark, which includes multiple tasks: ARC-C
Clark et al. (2018), BoolQ Clark et al. (2019), HellaSwag Zellers et al. (2019), MMLU Hendrycks
et al. (2021), OBQA Mihaylov et al. (2018), PIQA Bisk et al. (2019), RTE Wang et al. (2019), and
WinoGrande ai2 (2019). Please refer to Table 5 for detailed information. The evaluation code is
based on EleutherAI LM Harness Gao et al. (2023).

Table 5: Experimental settings for evaluation tasks. “Norm” refers to the normalization performed
with respect to the length of the input.

Task Number of few-shot Metric
BoolQ 0 Accuracy
RTE 0 Accuracy
OBQA 0 Accuracy (Norm)
PIQA 0 Accuracy (Norm)
MMLU 5 Accuracy
WinoGrande 5 Accuracy
GSM8K 5 Exact Match
HellaSwag 10 Accuracy (Norm)
ARC-C 25 Accuracy (Norm)

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B ABLATION STUDIES

One-Shot v.s. Iterative One-shot and iterative approaches are the two most common methods for
model compression. In the one-shot approach, importance scores are computed once, and the model
is pruned in a single step. In contrast, the iterative method computes importance scores and prunes the
model incrementally over multiple iterations. In Figure 9, we empirically compare Iterative Dropping
and One-Shot Dropping, where in Iterative Dropping, layers are removed one by one in each iteration.

HellaSwag MMLU OBQA Winogrande AVG.
30

40

50

60

70

80

Ac
cu

ra
cy

(%
)

82.7

62.2

43.6

77.7

66.5

82.9

62.5

44.6

78.0

67.0

Drop 4 Attention Layers
Iterative
One-shot

HellaSwag MMLU OBQA Winogrande AVG.

79.1

52.4

40.0

76.7

62.1

82.3

62.2

44.2

78.8

66.9

Drop 8 Attention Layers
Iterative
One-shot

Figure 9: Ablation Study on Dropping Strategies, i.e., Iterative and One-Shot, where One-Shot
Dropping achieves comparable performance with Iterative Dropping.

As shown in Figure 9, Iterative Dropping achieves performance that is merely comparable to One-
Shot Dropping, without offering any significant enhancement. Given the simplicity and efficiency,
One-Shot Dropping emerges as the superior choice.

Table 6: Ablation Study on the Residual Connection, where we report the average performance on
MMLU, WinoGrande, HellaSwag, and OpenbookQA. n denotes the number of dropped modules.
The notation "w/ res" indicates the involvement of the residual connection, while "w/o" indicates
dropping without considering it.

Attn Drop MLP Drop

n w/o res w/ res w/o res w/ res

4 39.4 65.0 31.2 64.5
8 37.7 65.3 31.1 61.9
12 36.8 65.4 31.1 55.6
16 32.2 63.4 30.8 49.9
20 32.0 62.9 30.9 42.1

Residual Connection The involvement of the residual connection ensures a more accurate estima-
tion by accounting for the overall inputs and outputs. To explore its impact on performance, we also
consider dropping modules without involving the residual connection. In this case, the importance
scores are measured solely by the inputs and outputs of the Attention or MLP layers. As shown in
Table 6, the involvement of the residual connection is essential for Layer Drop.

Calibration Datasets Figure 3 demonstrates the robustness of the importance scores across
different datasets. In Figure 10, we further verify that the importance scores remain relatively stable
across various modules of Mistral-7B as the sample size increases. This stability indicates that both
Block Drop and Layer Drop maintain consistency regardless of the number of samples. Consequently,
we confirm that using 256 samples is sufficient for computing similarity, which serves as the standard
adopted for all our experiments.

Dropping Metrics We selected the Reverse Order and Relative Magnitude metrics proposed by
ShortGPT Men et al. (2024) and applied them to Attention Drop. Additionally, we considered the
random dropping of attention layers. Our experiments were conducted using the Mistral-7B model,
and the reported performance is averaged across five different random seeds. Notably, in Table 7, our
metric, Cosine Similarity, consistently outperformed the others.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Layer Index

4
16
64

256
1024Sa

m
pl

es

0.0 0.1 0.2 0.3

(a) Block

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Layer Index

4
16
64

256
1024Sa

m
pl

es

0.0 0.1 0.2 0.3

(b) MLP

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Layer Index

4
16
64

256
1024Sa

m
pl

es

0.0 0.1 0.2 0.3

(c) Attention

Figure 10: The impact of sample quantity on the importance scores of Block, MLP and Attention.
Table 7: Ablation study of Attention Drop across different metrics.

Metric Attn-4 Attn-8 Attn-12

Random 61.5 49.6 39.4
Reverse Order 66.9 66.9 61.5
Relative Magnitude 67.0 66.8 62.3
Cosine Similarity 67.0 66.9 64.8

Comparison with other Compression Techniques We first compare our method with published
sparse models pruned by Shortened LLaMA Kim et al. (2024) in Table 8. Specifically, we prune the
original Vicuna-13B-v1.3 model Chiang et al. (2023) using our proposed Joint Drop technique to
maintain the same parameter budget. While Shortened LLaMA involves post-compression retraining,
training-free Joint Drop performs better on average performance. We also compare our approach
with the mainstream pruning method Wanda Sun et al. (2023) in Table 9. Under the same parameter
budget, our methods outperform Wanda with unstructured sparsity. Additionally, Wanda contributes
to fine-grained sparsity, which is not hardware-friendly and has limited practical usage.

Table 8: Comparison with Shortened LLaMA Kim et al. (2024), where Joint Layer Drop achieves
significantly higher speedup.

Method HellaSwag MMLU OBQA Winogrande Avg. (↑) SpeedUp (↑)

Joint Layer Drop 76.0 49.6 42.4 74.9 60.7 1.45
Shortened LLaMA-PPL 75.3 47.7 44.2 74.0 60.3 1.23
Shortened LLaMA-Taylor 76.8 47.0 42.4 76.3 60.6 1.22

Table 9: Comparison with Wanda Sun et al. (2023) under the same parameter budget. Taking
performance into account, we apply unstructured sparsity for Wanda, while our proposed Attention
Drop outperforms it in both performance and efficiency.

Method HellaSwag MMLU OBQA Winogrande Avg. (↑) SpeedUp (↑)

Wanda 82.3 54.8 45.2 77.6 65.0 1.00×
Attn-4 82.0 54.7 46.2 77.2 65.0 1.05×
Wanda 82.4 54.7 45.8 77.6 65.1 1.00×
Attn-8 82.2 54.5 47.0 77.4 65.3 1.13×
Wanda 82.4 54.8 46.2 77.4 65.2 1.00×
Attn-12 82.7 54.4 48.0 76.6 65.4 1.20×

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C ADDITIONAL EXPERIMENTAL RESULTS

Dropping Order on Larger Models We present the dropping order of Block Drop and Layer
Drop for the 70B Llama models in Figure 11. Similar to smaller models, larger models also tend
to drop deeper layers first. While the dropping order of Blocks differs between Llama-2-70B and
Llama-3-70B, we believe this is attributed to different training techniques, e.g., different numbers of
training tokens.

0 10 20 30 40 50 60 70 79
Block Index

80

70

60

50

40

30

20

10

0

Dr
op

pe
d 

Nu
m

be
r

Llama-2-70B

0 10 20 30 40 50 60 70 79
Block Index

80

70

60

50

40

30

20

10

0
Llama-3-70B

(a) Block

0 10 20 30 40 50 60 70 79
MLP Index

80

70

60

50

40

30

20

10

0

Dr
op

pe
d 

Nu
m

be
r

Llama-2-70B

0 10 20 30 40 50 60 70 79
MLP Index

80

70

60

50

40

30

20

10

0
Llama-3-70B

(b) MLP

0 10 20 30 40 50 60 70 79
Attention Index

80

70

60

50

40

30

20

10

0

Dr
op

pe
d 

Nu
m

be
r

Llama-2-70B

0 10 20 30 40 50 60 70 79
Attention Index

80

70

60

50

40

30

20

10

0
Llama-3-70B

(c) Attention

Figure 11: Visualization of Dropping Order for Block Drop and Layer Drop on Larger Models,
i.e., Llama-2-70B and Llama-3-70B.

0 5 10 15 20 25 30
Dropped Attention Layers

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

Gsm8k
Mistral-7B-Base
Llama-2-7B-Base
Mistral-7B-Math
Llama-2-7B-Math

Figure 12: Accuracy Curves on GSM8k.

Performance on Knowledge Intensive Tasks To evaluate Attention Drop on more complex
technical tasks, we evaluated Llama-2-7B and and Mistral-7B, and two corresponding instruction
fine-tuned models, MetaMath-7B-V1.0 and MetaMath-Mistral-7B Yu et al. (2023). The results
in Figure 12 indicate that, except for Llama-2-7B-Math, which is MetaMath-7B-V1.0, all the
models do not experience significant performance degradation when dropping fewer than 8 Attention
layers. We speculate that this is because Llama-2-7B-Math is initialized with Llama-2-7B and
undergoes instruction fine-tuning to improve its mathematical ability. Llama-2-7B-Base exhibits
poor performance in mathematics, and the ability obtained solely through fine-tuning appears to

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

be superficial. Therefore, when dropping Attention layers, Llama-2-7B-Math’s ability rapidly
deteriorates.

Attention Drop is Orthogonal to Quantization Given that quantization simplifies data types
and enhances efficiency in memory usage and inference speed, we integrate module dropping with
quantization to verify whether the quantized models can maintain the performance achieved by
Attention Drop. Specifically, we use the mainstream AWQ algorithm Lin et al. (2024) for 4-bit
quantization, following its default settings, which involve using 128 samples from the Pile dataset
Gao et al. (2020) as the calibration dataset.

As shown in Table 10, the integration of quantization still maintains the performance of Attention
Drop, i.e., only less than 1% difference in average performance.

Table 10: Integration of Module Dropping and Quantization. “w/Quant” denotes quantized
models.

Method ARC-C HellaSwag OBQA WinoGrande Avg.

Llama-2-13B

Baseline 59.9 82.2 45.6 77.0 66.2
w/Quant 59.5 81.7 45.8 77.1 66.0

Attn-4 58.8 82.0 46.2 77.2 66.1
w/Quant 58.0 81.7 46.0 76.2 65.5
Attn-8 58.2 82.2 47.0 77.4 66.2
w/Quant 57.7 81.9 47.0 77.0 65.9

Mistral-7B

Baseline 61.5 83.2 43.8 78.5 66.8
w/Quant 61.2 82.5 42.8 78.0 66.1

Attn-4 61.0 82.9 44.6 78.0 66.6
w/Quant 61.0 82.8 43.6 77.6 66.3
Attn-8 60.2 82.3 44.2 78.8 66.4
w/Quant 60.1 82.0 43.8 77.5 65.9

Table 11: Performance on Long In-Context Task.

Method Context Token Length Avg.
2k 4k 7k 9k 14k

Baseline 26 70 75 76 81 65.6

Attn-2 33 68 71 78 77 65.4
Attn-4 28 63 68 75 73 61.4
Attn-6 24 63 65 72 69 58.6
Attn-8 15 50 53 58 64 48.0

MLP-2 29 64 71 70 78 62.4
MLP-4 21 57 64 65 66 54.6
MLP-6 9 41 48 47 48 38.6
MLP-8 11 42 43 48 51 39.0

Attention Drop on Long In-Context Task We evaluate the performance of Attention Drop on
the long in-context benchmark. Following LongICLBench Li et al. (2024), we present the results on
BANKING77 Casanueva et al. (2020), with the only distinction being that we sample 100 examples
from the test set. BANKING77 is a banking-domain intent detection dataset comprising 77 classes.
We evaluate from 1-shot/label to 5-shot/label, resulting in contextual lengths of 2k, 4k, 7k, 9k, 14k .
We employ the togethercomputer/LLaMA-2-7B-32K2 for Layer Drop, which enlarges the context
window of Llama-2 to 32k using position interpolation. From the results in Table 11, we observe that
Attention Drop maintains performance and outperforms MLP Drop.

2https://huggingface.co/togethercomputer/LLaMA-2-7B-32K

18


	Introduction
	Related Works
	Methodology
	Preliminaries
	Motivation
	Layer Drop. 

	Investigation of Dropping Different Target Modules
	Efficiency of Attention Drop
	Visualization Examples of Layer Importance
	Deeper Modules with Higher Redundancy
	Consistent Redundancy of Attention Layers Throughout Training

	Joint Layer Drop Further Enhances the Performance 
	Conclusion and Discussions
	Implementation Details
	Ablation Studies
	Additional Experimental Results

