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Abstract

Addressing reward design complexities in deep
reinforcement learning is facilitated by knowl-
edge transfer across different domains. To this
end, we define reward translation to describe
the cross-domain reward transfer problem. How-
ever, current methods struggle with non-pairable
and non-time-alignable incompatible MDPs. This
paper presents an adaptable reward translation
framework neural reward translation featuring
semi-alignable MDPs, which allows efficient re-
ward translation under relaxed constraints while
handling the intricacies of incompatible MDPs.
Given the inherent difficulty of directly mapping
semi-alignable MDPs and transferring rewards,
we introduce an indirect mapping method through
reward machines, created using limited human
input or LLM-based automated learning. Graph-
matching techniques establish links between re-
ward machines from distinct environments, thus
enabling cross-domain reward translation within
semi-alignable MDP settings. This broadens the
applicability of DRL across multiple domains.
Experiments substantiate our approach’s effec-
tiveness in tasks under environments with semi-
alignable MDPs.

1. Introduction
Deep reinforcement learning (DRL) has made notable
strides in areas such as gaming (Mnih et al., 2015; Lam-
ple and Chaplot, 2017), robotic control (Kober et al., 2013),
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autonomous driving (Zhu et al., 2018), and precision agricul-
ture management (Li et al., 2021). However, it is recognized
that the effectiveness of current DRL methods hinges on
the quality of the provided reward signals. Dense rewards
require significant engineering effort in practical applica-
tions (Fickinger et al., 2021), and non-Markovian reward
signals are often produced by humans (MacGlashan et al.,
2017), potentially hindering the training process. In light
of these challenges, it is important to consider how hu-
mans excel at drawing on their own experiences to learn
and apply skills across various domains. Specifically, hu-
mans demonstrate a unique ability to recognize latent struc-
tural similarities between tasks in related but distinct areas,
which enables them to abstract skills from differences. They
adeptly learn from third-party observations that lack explicit
correspondence to internal self-representations (Stadie et al.,
2017; Liu et al., 2018; Sermanet et al., 2018) —perform-
ing tasks like finding a path on a map and navigating to a
destination in real life—or imitating experts with different
embodiments (Gupta et al., 2017; Rizzolatti and Craighero,
2004; Liu et al., 2019) in unfamiliar environments (Liu et al.,
2019). Endowing RL agents with this ability and transfer re-
wards across different domains could greatly enhance their
learning efficiency and reduce the efforts in reward design.

Existing efforts for transferring rewards across various do-
mains primarily focus on cross-domain imitation learning,
including three main types of domain discrepancies: dy-
namics (Liu et al., 2019), embodiment (Gupta et al., 2017;
Hudson et al., 2022), and viewpoint mismatch (Jiang et al.,
2020; Stadie et al., 2017). These approaches require paired
and time-aligned demonstrations, often hard to handle more
than one descriptor at once. Subsequent advances, such
as DAIL (Kim et al., 2020) and other works using Cycle-
GAN (Raychaudhuri et al., 2021) and Gromov-Wasserstein
distance (Fickinger et al., 2021), relax some constraints,
allowing algorithms to automatically learn observation and
action mappings from unpaired and unaligned demonstra-
tions. However, they still struggle with incompatible MDPs
which are non-pairable and non-time-alignable tasks.

In this paper, we introduce the concept of reward translation,
describing cross-domain reward transfer in reinforcement
learning as a process akin to translation between differ-
ent languages. We further introduce semi-alignable MDPs,
which describe incompatible MDPs sharing an abstract
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Figure 1. The distinction between alignable and semi-alignable MDPs involves injective mappings. In NChain environments and
the HalfCheetah-v3, agents aim for point F. Alignable MDPs exhibit state and action space injections, seen in the NChain examples
(Environment Y to X ). Semi-alignable MDPs, as in NChain-HalfCheetah pairings (Environment Y to Z), lack these injections but share
a common goal, enabling mappings between abstract “goal” and “skill” spaces.

alignment, as illustrated in Figure 1. By further abstracting
tasks to focus on skills and sub-tasks, semi-alignable MDPs
permit high-level mapping across domains, more similar to
human learning processes. Our goal is to establish a frame-
work capable of learning these high-level mappings within
generalized semi-alignable MDPs and reusing rewards to
enhance training efficiency in new domains. To achieve this,
we must abstract tasks to obtain alignable skill and abstract
spaces. Reward machines (RMs) provide a bridge to dis-
cover task structures with non-Markovian reward functions
through the use of high-level events and abstract check-
points (Icarte et al., 2022). We propose the neural reward
translation (NRT) framework to tackle the reward transfer
problem within semi-alignable MDPs. NRT leverages RMs
to distill abstract alignments and transfer reward signals
between domains.

The primary contributions of this paper are as follows:

1) The introduction of semi-alignable Markov decision pro-
cesses (MDPs), providing a crucial theoretical foundation
for facilitating reward translation in cross-domain reinforce-
ment learning and extending beyond alignable MDPs.

2) The development of a novel framework called neural
reward translation (NRT), designed to address the reward
translation problem within semi-alignable MDPs by build-
ing upon the foundation provided by reward machines.
Moreover, we incorporate an innovative reward machine
generator that utilizes large language models for the auto-
matic generation of reward machines.

3) The proposal of several semi-alignable environments 1,
showcasing the effectiveness of the Neural Reward Trans-
lation approach in handling reward translation tasks where

1An early-stage version of the code is available at:
https://github.com/hyyh28/reward translation. Note that the code-
base is still under development and may lack full documentation
or polish.

environments operate under semi-aligned MDPs.

2. Related Works
Domain transfer in RL. Various works have conducted
transfer learning in the reinforcement learning area (Taylor
and Stone, 2009; Zhu et al., 2023). To deal with trans-
fer learning between different domains, primitive meth-
ods always try to use the hand-craft features along with
a distance metric between the imitation agent and the ex-
pert. For example, Ammar and Taylor (2011) established a
shared state space between MDP in different domains and
learns a map between states, while Ammar et al. (2015) ap-
plies unsupervised manifold alignment to learn linear maps
between states possessing similar local geometric proper-
ties. Existing efforts for domain transferring primarily fo-
cus on cross-domain imitation learning, relying on three
key domain descriptors: dynamics (Liu et al., 2019), em-
bodiment (Gupta et al., 2017; Hudson et al., 2022), and
viewpoint mismatch (Jiang et al., 2020; Stadie et al., 2017).
Generally, these approaches acquire states corresponding to
proxy tasks and paired, time-aligned demonstrations to learn
a state map or state encoder using deep learning methods.
DAIL (Kim et al., 2020) proposes a comprehensive frame-
work encompassing all three types and employs GAMA
to autonomously learn alignment between MDPs from dis-
tinct domains. Moreover, xDIO (Raychaudhuri et al., 2021)
uses CycleGAN for alignment with state-only demonstra-
tions, and GWIL (Fickinger et al., 2021) employs Gromov-
Wasserstein distance to eliminate proxy task need. These
domain transfer approaches assume alignable MDPs, which
are often scarce in real-world applications. In contrast, this
paper aims to distill abstract alignment from semi-alignable
expert demonstrations and transfer it to the imitation agent
through an additional reward signal, circumventing the need
for alignable MDPs and contributing to a more general do-
main transfer in reinforcement learning.
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Reward Machine. Reward machines (RM) were initially
introduced as a class of finite state machines by (Icarte et al.,
2018). These machines were designed to unveil the struc-
ture of non-Markovian reward functions in tasks represented
by high-level events (i.e., propositional variables). Icarte
et al. (2018) combined Q-learning with reward machines,
proposing QRM, the first reinforcement learning method
within RM. Subsequently, Icarte et al. (2022) introduced
counterfactual experiences for reward machines (CRM), a
modified version of QRM capable of learning a single Q-
function that considers RM states as inputs, thus enhancing
compatibility with deep neural networks. Icarte et al. (2022)
proposed hierarchical reinforcement learning for reward ma-
chines (HRM) to accelerate policy learning, albeit possibly
converging to sub-optimal solutions. Icarte et al. (2023)
formulated a discrete optimization problem for experience-
based learning of reward machines in partially observable
environments. Reward machines have been applied to solve
problems in robotics (Camacho et al., 2021; DeFazio and
Zhang, 2021; Shah et al., 2020), multi-agent reinforcement
learning (Neary et al., 2021), lifelong reinforcement learn-
ing (Zheng et al., 2022), self-paced reinforcement learn-
ing (Koprulu and Topcu, 2023) and offline reinforcement
learning (Sun and Wu, 2023). Unlike these studies, our
paper seeks to employ reward machines to uncover task
structures in reinforcement learning and facilitate reward
signal transfer between tasks from different domains.

Reinforcement learning abstraction. Our work is also
related to reinforcement learning abstraction, which aims to
improve the efficiency and scalability of reinforcement learn-
ing algorithms when dealing with complex tasks by creat-
ing abstract representations of environments or tasks (Abel,
2022). Various types of abstractions have been explored,
including state (Zhang et al., 2020; Abel et al., 2019; Ka-
malaruban et al., 2020; Cortese et al., 2021), action (Şimşek
et al., 2005; Machado et al., 2017), and temporal transi-
tion (Abel et al., 2020; Biza and Platt, 2019; Ma et al., 2021;
Yang et al., 2021). Reward machines can also be considered
as a reinforcement learning abstraction method. However,
while these works mainly focus on creating abstract repre-
sentations for a single environment or task to reduce the
complexity of the state and action spaces, thus making the
task easier to learn, our paper aims to use abstraction to
achieve high-level knowledge transfer between different
reinforcement learning environments.

3. Preliminaries
Before a comprehensive introduction of the neural reward
translation (NRT) framework, it is pertinent to present an
overview of the problem context concerning reward transla-
tion, outline the principles of semi-alignable MDPs as well
as the introduction about reward machine, as this underpins

the theoretical foundation.

3.1. Reward Translation

In this study, reward translation refers to cross-domain
reward transfer in reinforcement learning. Formally, it
involves translating rewards from a source domain X to
a target domain Y . Conventional cross-domain methods
assume alignable MDPs, employing a formulation where
state-action alignment between source and target domains
is predefined:

ry(sy, ay) = rx(T −1(sy, ay)), (1)

where s denotes the state, a represents the executed action,
and T −1 is an inverse transformation function mapping el-
ements in Y back to their counterparts in X . This direct
mapping approach relies strictly on original state-action
pairs, rendering it ineffective for non-alignable MDPs lack-
ing pairability and time-alignability. To address this limi-
tation, we propose a soft version reward translation, which
enables reward transfer based on embedded state-action
representations:

ry(e(sy, ay)) = rx(T −1(e(sy, ay))), (2)

where e is an embedding function that projects state-action
pairs from different domains into a shared latent space. Fig-
ure 1 compares these translation approaches, illustrating
how high-level abstractions, ”Goal” and ”Skill,” serve as
embeddings for state and action, facilitating reward transla-
tion in MDPs without strict pairability and time-alignability.
A detailed discussion of ”Goal” and ”Skill” follows in the
next subsection.

3.2. Semi-Alignable MDPs

To delineate the soft reward translation problem formulated
in Equation. (2), we present the notion of semi-alignable
MDPs (Illustrated in Figure 1) to portray incompatible
MDPs with concealed maps. In this paper, we elegantly
introduce the notions of ”goal” and ”skill,” symbolized as
b and w. These concepts encapsulate the essence of high-
level states and actions, which can be succinctly conveyed
through the equation (b, w) = e(s, a). To offer a tangi-
ble interpretation, a ”goal” may be likened to a series of
checkpoints in games, representing coarse-grained states.
In contrast, ”skill” captures the nuances of incremental dif-
ferences between each step’s ”goals.” The infinite horizon
Markov decision process (MDP) M can be augmented to
be described as a tuple

〈
S,A,B,W, Pr,PrB , r

〉
, where S

signifies the state space, A represents the action space, Pr
indicates the transition function based on state and action,
while PrB denotes the deterministic transition function on
“goal” and r refers to the reward function. The infinite
horizon Markov decision process (MDP) M can be aug-
mented to be described as a tuple

〈
S,A,B,W, Pr,PrB , r

〉
,
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where S signifies the state space, A represents the action
space, B denotes the set of abstract states or ”goals”, W
represents the set of possible transitions between abstract
states, Pr indicates the transition function based on state
and action, PrB denotes the deterministic transition func-
tion on abstract states, and r refers to the reward function.
Let B = {bi}ni=0 and W = {wi}ni=0 denote the extended
“goal” space and “skill” space, respectively. The augmented
MDP for the environment within domain x can be defined as
MT

x = (Sx, Ax, Bx,Wx,Prx,PrBx , r
T
x ). Additionally, we

introduce an intelligible albeit less rigorous definition of
semi-alignable MDPs. For the extended MT

x and MT
y ,

if there exist injections between (wi
x ∈ Wx, bix ∈ Bx)

and (wi
y ∈Wy, biy ∈ By), they are deemed semi-alignable

MDPs. While the precise definition of semi-alignable MDPs
is an extension of the MDP alignability theory and the MDP
reduction definition proposed by (Kim et al., 2020).

Definition 3.1. An MDP semi-reduction from MT
x to

MT
y , denoted as MT

x ⪰ MT
y can be represented by a tuple

r = (ϕ, ψ), ϕ : Bx → By, ψ :Wx →Wy.

For all (bx, wx, by, wy) ∈ Bx×Wx×By×Wy we have

1). w-optimality:{
OMy (ϕ(bx), ψ(wx)) = 1 ⇒ OMx(bx, wx) = 1,
OMy (by, wy) = 1 ⇒ ϕ−1(by) ̸= ∅, ψ−1(wy) ̸= ∅,

where OM (b, w) = 1 implies that (b, w) exists in M and is
produced by the optimal policy;

2). b-dynamic: if OMy (by, wy) = 1, we have

PrBy (by, wy)=ϕ
(
PrBx (bx, wx)

)
, bx∈ϕ−1(by), wx∈ϕ−1(wy).

By distilling ”goals” and ”skills” for optimal policies Mx

and My, a graph of goal-skill trajectories emerges. Fig-
ure 3.2 displays this with HalfCheetah-v3 and NChain in-
stances. When MDP semi-reduction is present, homomor-
phic trajectories reveal underlying structural similarities
between Mx and My . We then define semi-alignable:

Definition 3.2. Two MDPs Mx and My are semi-alignable
if and only if Mx ⪰ My or My ⪰ Mx, where Mx and
My are any two MDPs in domain X and domain Y , while
Mx ⪰My conveys that there exists a tuple (ϕ, ψ) enabling
semi-reduction from Mx to My .

Efficiency in achieving the target within (2) improves after
applying the semi-reduction definition. However, accessing
abstract ”goal” and ”skill” directly is challenging, making
semi-reduction establishment difficult. Therefore, we utilize
the reward machine (RM) to indirectly link these two spaces.

A B C D E F

(a) HalfCheetah-v3 task. The target of the robot is to reach F.

(b) Reward machine for HalfCheetah-v3 task. f0 ∈ F de-
notes the terminal state.

Figure 2. Example of reward machine for HalfCheetah-v3. The
reward machine is designed by (Icarte et al., 2022).

3.3. Reward Machine

The formulation of reward machines, which are designed to
unveil the organization of non-Markovian reward functions
related to tasks characterized by high-level events. Reward
machines is typically defined as (Icarte et al., 2018):

Definition 3.3. (Reward Machine). Given a set of propo-
sitional symbols P , a set of (environment) states S, and
an action domain x, a finite state reward machine (RM)
is defined as a tuple RPSA = ⟨U, u0, F,P, δu, δr⟩, where:
U ⊆ S represents a finite collection of states, u0 ∈ U
denotes the initial state, F defines a restricted subset of
terminal states (F ∩ U = ∅), P signifies the set of proposi-
tional symbols, δu characterizes the state-transition function
δu : U → [U × P → U ], and δr embodies the state-reward
function δr : U → [U × P × U → R].

It should be emphasized that employing a reward machine
in reinforcement learning necessitates the extension of the
fundamental MDP.

Definition 3.4. (MDP with Reward Machine). An MDP
integrated with a Reward Machine is represented as a
tuple TRPSA

= ⟨S,A,Pr, γ, P, L, U, u0, δu, δr⟩, where
S,A,Pr, γ pertain to the state space, action space, transi-
tion function, and discount factor in the original MDP, while
P,U, u0, δu, δr are determined by the RM. Additionally, L 2

symbolizes a labelling function L : S ×A× S → 2P .

In each step, the agent executes action a in the MDP, tran-
sitioning from state s to s′, while the RM changes to state
u′ = δu(u, L(s

′)), rewarding r̂(s, a, s′, u, u′). Figure 2 il-
lustrates an RM example for HalfCheetah, where the robot
aims to reach target F within a set number of steps. Unlike
RL environmental states (s), RMs possess states (u) and
transitions depending on P , denoting the robot’s relative

2L is a labeling function that assigns to each transition (s, a, s′)
a set of atomic propositions P , indicating which events are consid-
ered to have occurred during that transition.
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Figure 3. An overview of the Neural Reward Translation (NRT) framework: 1) Reward machine generation uses a generator to construct
RMs based on task and environment descriptions through expert design. 2) Reward translation aligns source and target RMs using graph
matching, facilitating reward transfer. 3) Target task training leverages transferred rewards for efficient learning.

position to the target. The path has six checkpoints; cross-
ing one causes the RM state to advance. RMs decompose
RL problems, providing coarse-grained disassembly to in-
form generalized cross-domain knowledge, crucial due to
significant differences among diverse tasks in fine-grained
states, actions, and transitions because such coarse-grained
disassembly will provide a channel to indirectly access to
the “goal” and “skill” within semi-alignable MDPs. Ulti-
mately, the reward machine state space U materializes as an
injective mapping originating from the agent state space S.
We can now propose the following theorem to establish a
rigorous connection between “goal” and “skill” with RMs:

Theorem 3.5. Given a reward machine Rx
PSA for an en-

vironment x, it is posited that a ”goal” space Bx and a
”skill” space Wx exist. Furthermore, injective mappings
Θx : Ux → Bx and Γx : Px → Wx are also postulated to
exist. Under these stipulations, the ensuing relationships
emerge:

1) For any “goal” bix ∈ Bx, there exists a unique reward
machine state uix ∈ U or f ix ∈ Fx such that Θx(u

i
x) = bix

or Θx(u
i
x) = f ix;

2) For any “skill” wi
x ∈W x

i , there exists a unique proposi-
tional symbol pix ∈ Px such that Γx(p

i
x) = wi

x.

A comprehensive proof is in Appendix A.1. This theorem
enables recasting the reward translation problem into the
more tractable reward machine transfer problem. Each re-
ward machine, represented as a finite state machine by a
graph, transforms the task into a graph matching problem
for transfer between two reward machines.

4. Reward Translation via Reward Machine
In this section, we introduce the primary framework, Neural
Reward Translation (NRT), devised to address the proposed
reward translation problem between reward machines. The
NRT framework comprises three core components: 1) re-
ward machine generation component; 2) reward translation
component; and 3) target task training component. The
Reward Machine (RM) generation component constructs
RMs based on task and environment descriptions, leverag-
ing expert knowledge and an RM Generator. This study
also integrates a Large Language Model (LLM) for auto-
mated RM construction. The reward translation component
employs standard graph matching algorithms to align gener-
ated RMs from the source task to the target task to transfer
reward. During target task training, the agent learns within
the target environment, leveraging transferred rewards from
the source task to enhance learning efficiency.

Reward Machine Generation. The primary role of this
component is to construct reward machines by incorporating
domain knowledge. Typically, experts manually design re-
ward machines based on environment and target information
(Icarte et al., 2018). In this work, we also propose a method
to construct reward machines using large language models
(LLMs). However, since this is not the core focus of our
study, we provide only a brief discussion.

The LLM is supplied with environment, observation, ac-
tion, and target descriptions, detailing the task and domain
alongside the definition of a reward machine. To facilitate
few-shot learning in new tasks, examples of reward machine
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generation are also included. Due to the complexity of
learning reward machines, the LLM must consider various
aspects such as the design of propositional symbols, the
injection between the agent’s observations and RM states,
and the RM transitions. We utilize a chain of thought (COT)
approach when designing the training prompt for the LLM.
Generally, our prompt sequentially poses three questions
to the LLM, enabling the development of an RM structure
for a given environment: i) Design the set of propositional
symbols P for ⟨ENV⟩ environment; ii) Design the get event
function for ⟨ENV⟩ environment; iii) Design the reward
machine for ⟨ENV⟩ environment.

Firstly, to design the set of propositional symbols P , the
LLM needs to identify key events within the task description
and utilize them as a portion of the propositional symbols.
Next, in order to design the get event function, the LLM
must establish a mapping between events that are accessi-
ble in the environment code and the propositional symbols.
Subsequently, Python code is generate by LLM, enabling
the agent to access reward machine events and states. Fi-
nally, to construct the reward machine, the LLM reviews the
propositional symbols and extracts general states u ∈ U as
well as terminal states f ∈ F . The LLM formulates reward
machine transitions, including sparse rewards exclusively
present upon task completion. Detailed prompts can be
found in Appendix A.3.

However, the generated or expert designed reward machine
only contains sparse rewards; therefore, NRT introduces
a denser reward for the source task’s reward machine. At
each stage, the agent operates within the environment and
executes action a, transitioning from state s to s′ in the MDP.
The RM progresses from state u to u′ = δu(u, L(s

′)), and
the agent acquires a reward comprised of the original reward
and the reward from the RM:

r̂(s, a, s′, u, u′) = r(s, a, s′)+δr(u, u
′), u′ = δu(u, L(s

′)).
(3)

δr is depicted using a potential-based reward shaping frame-
work to maintain policy consistency:

δu(u, u
′) = γRϕ(u

′)− ϕ(u), (4)

where γR represents the discount parameter. Moreover, to
compute the potential value of the corresponding reward
machine state, NRT incorporates the expert of optimal value
function of the agent in source task g as follows:

ϕ(u) = Esi∼S

[
V ∗ (si, ui ∣∣ui = u

)]
. (5)

Consequently, RMs for both source and target tasks are gen-
erated, while the obtained reward machine for the source
task possesses a dense reward derived from its learned opti-
mal value function. The subsequent challenge involves the
transfer of dense rewards from the source task to target task.

Reward Translation. The focus of this component is to
achieve effective reward translation between source and
target tasks within distinct domains under semi-alignable
Markov Decision Processes (MDPs). Initially, during the
reward machine generation component, the Neural Reward
Translation (NRT) method constructs reward machines for
both source and target tasks. And the reward machine for
the source task incorporates a dense reward obtained from
its learned optimal value function.

Subsequently, this component transfers the dense reward
originating from the source task’s reward machine to the
target task’s reward machine. As the reward machines are
aligned via graph matching, NRT defines two types of re-
lationships between the reward machines and seeks to ac-
complish reward translation based on these relationships.
Definitions for isomorphic and homomorphic reward ma-
chines are presented accordingly (In the following of this
paper, we use g and h to represent the map between reward
machine states).

Definition 4.1. (Isomorphic reward machine). Let Rx
PSA

and Ry
PSA denote two reward machines. Rx

PSA is a iso-
morphic reward machine to Ry

PSA if and only if there exist
bijections h : Px → Py and g : Ux → Uy such that piy =

h(pix), p
i
x = h−1(piy) and uiy = g(uix), u

i
x = g−1(uiy).

Considering the priorly introduced bijections bi = Θ(ui)
and pi ∈ P : wi = Γ(pi) in Theorem. 3.5, Theorem 4.2 is
utilized to characterize the correlation among semi-alignable
MDPs with isomorphic reward machines.

Theorem 4.2. If Mx and My are two MDPs satisfying
Mx ⪰My and My ⪰Mx, then their tasks possess isomor-
phic reward machines Rx

PSA and Ry
PSA.

The comprehensive proof can be found in Appendix A.1.
For MDPsMx andMy , should isomorphic reward machines
exist for their tasks, a reinforcement learning agent’s reward
function in My can be represented as:

r̂
δxr
y (sy, ay, sy

′, uy, uy
′) = ry(sy, ay, sy

′) + δyr (uy, uy
′),
(6)

and if My employs the transferred δxr , the reward function
will be indicated by:

r̂
δxr
y (sy, ay, sy

′, uy, uy
′) = ry(sy, ay, sy

′)+δxr (g(uy), g(uy
′)).

(7)
Given that both δxr and δyr employ potential-based reward
shaping, we can deduce the following equation by examin-
ing the following potential-based reward shaping properties:

T−1∑
i=0

r̂
δyr
y (xiy) =

T−1∑
i=0

r̂
δxr
y (xiy), (8)

where T represents the task duration, and xiy donates
⟨siy, aiy, si+1

y , uiy, u
i+1
y ⟩. The above relations also hold for
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transferring state reward functions from My to Mx. How-
ever, isomorphic reward machines impose restrictive condi-
tions demanding a bijection between semi-alignable MDPs’
reward machines. Therefore, homomorphic reward ma-
chines are introduced as a more flexible formulation.
Definition 4.3. (Homomorphic reward machine). Let
Rx

PSA and Ry
PSA denote two reward machines. Rx

PSA

is a homomorphic reward machine to Ry
PSA if and only if

there exist injections h : Px → Py and g : U§ → U† such
that piy = h(pix) and uiy = g(uix).

Additionally, considering the bijections bi = Θ(ui) and
pi ∈ P : wi = Γ(pi) introduced in Theorem 3.5, Theo-
rem 4.4 is utilized to characterize the correlation among
semi-alignable MDPs with homomorphic reward machines.
Theorem 4.4. If Mx and My are two MDPs satisfying
either My ⪰ Mx or Mx ⪰ My, then their tasks possess
homomorphic reward machines Rx

PSA and Ry
PSA.

The comprehensive proof can be found in Appendix A.1.
For MDPs Mx and My, if Mx ⪰ My, the reinforcement
learning agent’s reward function in My is denoted as in
Equation (6). When My employs the transferred state re-
ward functions from the reward machine of Mx, the re-
ward function remains consistent with Equation (7) while
maintaining the characteristics described in Equation (8).
Nevertheless, transferring rewards from My to Mx necessi-
tates the development of a piecewise function as depicted in
Equation (9), due to the absence of a bijection.

r̂
δyr
x (sx, ax, sx

′, ux, ux
′) = rx(sx, ax, sx

′)+{
δyr (uy, uy

′), if ux = g(uy) and ux′ = g(uy
′),

δxr (ux, ux
′), otherwise.

(9)

As a result, a reward translation channel is established be-
tween semi-alignable MDPs. To transfer the reward func-
tion, corresponding reward machines are first constructed,
and subsequently, the state reward function for the original
task is computed using Equation 5.

(a) Original task: Text-Sign (b) Target task: Miniworld-
Sign

Figure 4. The Sign task for the 3D Visual Navigation environment.

Target Task Training. The primary goal of this component
is to instruct the target task by utilizing the transferred re-

ward received from the source task within a distinct domain.
In the stage, the agent operating in the target task has access
to the transferred reward function. The agent acquires an ob-
servation sy ′ from the target task environment at every step
of training. This observation is subsequently fed into the
reward machine, which yields the corresponding reward ma-
chine state uy ′. Given the observation and reward machine
state (sy, ay, sy ′, uy, uy ′), the agent acquires the transferred
reward r̂δ

x
r

y (sy, ay, sy
′, uy, uy

′) from the transferred reward
function. Subsequently, the agent can employ diverse rein-
forcement learning algorithms to train its policy, aiming to
maximize the aggregate transferred reward:

J(θ) = Eτy∼pθ

[∑T−1
i=0 r̂

δxr
y (siy, a

i
y, s

i+1
y , uiy, u

i+1
y )

]
,

(10)
where J(θ) denotes the objective function dependent on the
policy parameters θ, and T represents the time horizon.

5. Experiments
This section presents experiments addressing two primary re-
search questions: 1) Can the NRT framework effectively ex-
tract abstract alignments from semi-alignable MDPs across
reinforcement learning domains? 2) Does transferred re-
ward, based on abstract alignment, enhance efficiency and
performance in target task training? To investigate these
questions, we evaluate the NRT framework in two sparse re-
ward settings: 3D Visual Navigation and MuJoCo, verifying
both isomorphic and homomorphic reward machines. We
use the state-of-the-art Proximal Policy Optimization (PPO)
algorithm as the baseline and conduct an ablation study with
three variants: PPO-RM, PPO-NRT(Reward), and PPO-
NRT(RM+Reward). PPO-RM augments the agent’s obser-
vation with the reward machine state but does not trans-
fer rewards. PPO-NRT(Reward) transfers rewards without
incorporating the reward machine state in the observation.
PPO-NRT(RM+Reward) integrates both reward transfer and
reward machine state information. Due to space constraints,
detailed experimental descriptions are in Appendix A.4.

5.1. 3D Visual Navigation

In the 3D visual navigation environment, we selected the
Sign task in the Miniworld (Chevalier-Boisvert et al., 2023)
as the target task, with the Text-Sign task serving as the orig-
inal task. Figures. 4 depict the original and target tasks, re-
spectively. In the Miniworld-Sign environment, the agent re-
ceive a sparse reward only if it reaches all the targets includ-
ing the red key, the blue box and the red box. Figure. 5(a)
illustrates the reward transfer between the isomorphic re-
ward machines in the Text-Sign and Miniworld-Sign tasks.
From Figure. 5(b), our results show that in the Miniworld-
Sign environment, where rewards are sparse, both PPO and
PPO-RM—despite using original or extended observations

7
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Reward Machine For Text-Sign

Reward Machine For Miniworld-Sign

Transfer

(a) Text-Sign to Miniworld-Sign

(b) Learning curve for Miniworld-Sign

Figure 5. Experiment for the 3D Visual Navigation environment.
(a) The isomorphic reward machines and the cross domain reward
transfer process for Text-Sign and Miniworld-Sign; (b) The learn-
ing curve for Miniworld-Sign environment.

with reward machine information—struggle to overcome
the sparse reward issue. In contrast, PPO-NRT(Reward)
and PPO-NRT(RM+Reward), which leverage transferred
rewards, significantly alleviate the problem and achieve
superior performance. These findings highlight the effec-
tiveness of the NRT framework in extracting alignments
from semi-alignable MDPs and improving training through
the transfer of rewards within isomorphic reward machines.

5.2. Mujoco Experiment

We conducted experiments using Mujoco environments, se-
lecting HalfCheetah, Hopper, and Ant as target tasks, with
a simplified NChain game as the source task. Due to space
constraints, we present only MuJoCo-Ant results in the main
text, while the full results are included in the Appendix. A.4.
Figure 12 in the Appendix illustrates the experimental en-
vironments. All target tasks follow the standard OpenAI
Gym settings (Brockman et al., 2016) but employ sparse
rewards, where the agent receives r = 1000 only upon
reaching predefined goals. The source task involves navigat-
ing a linear state sequence to reach point F, earning a sparse
reward. Figure 6 presents the original and target tasks in
MuJoCo-Ant training. Figure 7(b) depicts the generated
reward machine and the cross-domain reward transfer pro-
cess from NChain to MuJoCo, applicable to all three target

Start Target

A B C FD E

NChain

G

(a) Original task: NChain

A B C D E F

Ant-v3

(b) Target task: Mujoco-Ant

Figure 6. The Ant task in Mujcoco environments.

(a) Learning curve for Mujoco-Ant

Reward Machine For NChain

Reward Machine For Mujoco

Transfer

(b) NChain to Mujoco

Figure 7. Experiment for the Mujoco-Ant environment. (a)The ho-
momorphic reward machine and the cross-domain reward transfer
process of NChain to Mujoco. (b) The learning curve for Ant task.

tasks. The reward machines for the source and target tasks
exhibit homomorphism, enabling the source task’s reward
signals to guide learning in the target environments. As
shown in Figure 7(a), our results indicate that in extremely
sparse reward settings, augmenting observations with re-
ward machine information alone is insufficient. However,
leveraging transferred rewards substantially mitigates the
sparsity issue, significantly improving learning efficiency.
Notably, in Ant-v3 tasks, PPO-NRT(Reward) achieves the
best performance.

8
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6. Conclusion
In conclusion, this paper introduced the concept of semi-
alignable MDPs alongside the Neural Reward Translation
(NRT) framework to facilitate reward translation in rein-
forcement learning to reduce reward design complexities.
NRT employs reward machines to address reward transla-
tion challenges within semi-alignable MDPs and features
an innovative large language model-based generator for
the automatic generation of reward machines. Our method
significantly enhances training efficiency across various en-
vironments. Although challenges persist in constructing
appropriate reward machines and deciphering relationships
in complex tasks, future research endeavors will continue to
explore the vast potential of semi-alignable MDPs and work
towards broadening NRT’s applicability in a diverse range
of situations and domains.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Appendix
A.1. Proof

Theorem.3.5 Given a reward machine Rx
PSA for an environment x, it is posited that a ”goal” space Bx and a ”skill” space

Wx exist. Furthermore, injective mappings Θx : Ux → Bx and Γx : Px →Wx are also postulated to exist. Under these
stipulations, the ensuing relationships emerge:

1) For any “goal” bix ∈ Bx, there exists a unique reward machine state uix ∈ Ux or f ix ∈ Fx such that Θx(u
i
x) = bix or

Θx(u
i
x) = f ix;

2) For any “skill” wi
x ∈W x, there exists a unique propositional symbol pix ∈ Px such that Γx(p

i
x) = wi

x.

Proof. To prove the theorem, we need to show that the reward machine state space Ux is a valid ”goal” space Bx. Given the
definitions of ”goal” bix, ”skill” wi

x, and reward machine, we observe that goals and skills are embedded in state-action pairs
as: (bix, w

i
x) = ex(s

i
x, a

i
x),

with wi
x being the difference between bix and bi−1

x . Since the labeling function Lx : Sx ×Ax × Sx → 2Px represents the
transition of ux, we have:

uix = Lx(s
i
x, a

i
x, s

i+1
x ),

si+1
x = Tr(six, a

i
x),

so we can get:
uix = Lx(s

i
x, a

i
x).

By viewing reward machine state ux as ”goal” bx and the reward state difference as defined ”skills”, the labeling function
Lx becomes an embedding ex for environment x. Hence, we demonstrate that reward machine state space Ux is a valid
”goal” space Bx.

Theorem. 4.2 If two MDPs Mx and My, Mx ⪰ My and My ⪰ Mx, then their tasks have isomorphic reward machine
Rx

PSA and Ry
PSA.

Proof. Theorem 4.2 can be proven by showing both necessity and sufficiency.

1. Proof of necessity: If Mx ⪰My and My ⪰Mx, then their tasks have isomorphic reward machines.

Let there exist semi-reductions rx→y = (ϕx→y, ψx→y) from Mx to My and ry→x = (ϕx→y, ψy→x) from My to Mx.
According to Definition 3.1, these semi-reductions satisfy the πw-optimality and y-dynamic conditions for all beliefs and
world-states.

We now construct bijections h : Px → Py and g : Ux → Uy as follows:

h(pix) = Γ−1
y (ϕx→y(w

i
x)) = Γ−1

y (wi
y) = piy,

g(uix) = Θ−1
y (ψx→y(b

i
x)) = Θ−1

y (biy) = uiy.

Since ϕx→y and ψx→y are functions, so are their inverses. Besides, and Γ and Θ are bijections. According to the transitivity
of bijections. These bijections also satisfy the conditions of the isomorphic reward machines in Theorem 4.1, as both
semi-reductions preserve the πw-optimality and y-dynamic properties.

2. Proof of sufficiency: If the tasks have isomorphic reward machines, then Mx ⪰My and My ⪰Mx.

Given the isomorphic reward machines Rx
PSA and Ry

PSA with established bijections h : Px → Py and g : Ux → Uy, we
will prove that Mx ⪰My and My ⪰Mx.

Define mapping functions ϕx→y(w
i
x) = Γy(h(p

i
x)) and ψx→y(b

i
x) = Θy(g(u

i
x)). Since the task structures are isomorphic,

these mappings can be used to construct the semi-reduction (ϕx→y, ψx→y) from Mx to My that satisfies the πw-optimality
and y-dynamic conditions in Definition 3.1, thus showing that Mx ⪰My .
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Similarly, use the inverse of given bijections for the semi-reduction ry→x = (ϕy→x, ψy→x). That is, set ϕy→x(w
i
y) =

Γx(h
−1(piy)) = Γx(p

i
x) = wi

x and ψy→x(b
i
y) = Θx(g

−1(uiy)) = Θx(u
i
x) = bix. Since h and g are bijections, their inverses

exist and are also bijections. By using these mappings, we can construct a semi-reduction from My to Mx that satisfies the
conditions in Definition 3.1, showing that My ⪰Mx.

Having proven both necessity and sufficiency, we conclude the proof of Theorem 4.2.

Theorem. 4.4 If two MDPs Mx and My, My ⪰ Mx or Mx ⪰ My, then their tasks have homomorphic reward machine
Rx

PSA and Ry
PSA.

Proof. To prove Theorem 4.4, we need to show both necessity and sufficiency:

1. Proof of necessity: If My ⪰Mx or Mx ⪰My , then their tasks have homomorphic reward machines.

Assume Mx ⪰My . Let there exist a semi-reduction rx→y = (ϕx→y, ψx→y) from Mx to My . According to Definition 3.1,
these semi-reductions satisfy the πw-optimality and B-dynamic conditions for all beliefs and world-states.

We now construct injection h : Px → Py and g : Ux → Uy as follows:

h(pix) = Γ−1
y (ϕx→y(w

i
x)) = Γ−1

y (wi
y) = piy,

g(uix) = Θ−1
y (ψx→y(b

i
x)) = Θ−1

y (biy) = uiy.

Since ϕx→y and ψx→y are functions, so are their inverses. Besides, and Γ and Θ are bijections. According to the transitivity
of bijections. These bijections also satisfy the conditions the homomorphic reward machines in Theorem 4.3 because
semi-reductions preserve the πw-optimality and B-dynamic properties.

2. Proof of sufficiency: If the tasks have homomorphic reward machines, then My ⪰Mx or Mx ⪰My .

Given the homomorphic reward machines Rx
PSA and Ry

PSA that satisfy the established injections h : Px → Py and
g : Ux → Uy , we will prove that either My ⪰Mx or Mx ⪰My .

Assume without loss of generality that |Py| ≤ |Px| and |U†| ≤ |U§|. Then we can define mapping functions ϕx→y(w
i
x) =

Γy(h(p
i
x)) = Γy(p

i
y) = wi

y for every element in the domain of h. Similarly, define ψx→y(b
i
x) = Θy(g(u

i
x)) = Θy(u

i
y) =

biy for all elements in the domain of g

These mappings can be used to construct a semi-reduction (ϕx→y, ψx→y) from Mx to My that satisfies the πw-optimality
and B-dynamic conditions in Definition 3.1. Thus, Mx ⪰My .

Having proven both necessity and sufficiency, we conclude that if two MDPs Mx and My, My ⪰Mx or Mx ⪰My, then
their tasks have homomorphic reward machine Rx

PSA and Ry
PSA. This completes the proof of Theorem 4.4.
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A.2. Experiments

A.2.1. FRAMEWORK

In this section, we present a comprehensive methodology for generating reward machines using a large language model
(LLM), in our case, GPT-4, informed by domain-specific knowledge such as task manuals. As illustrated in Figure 8, we
employ a few-shot learning strategy to familiarize the language model with reward machine design principles. This process
involves defining the sets of propositional symbols P and reward machine states U , creating an event extraction function that
integrates the reward machine with the environment, and developing the transition function δu as well as the state reward
function δr.

Next, we equip the LLM with domain knowledge, which comprises both reward machine definitions and environmental
descriptions sourced from the task manual. The LLM then answers user-generated queries using its acquired knowledge to
assist in the creation of the reward machine. Due to the complex nature of reward machine development, we implement a
chain of thought framework to bolster the LLM’s reasoning capabilities.

A.2.2. HAND-DEFINED RM FOR NCHAIN GAME

0 # initial state

[5] # terminal state

(0, 0,′ !a!c′,ConstantRewardFunction(−0.67))

(0, 1,′ a′,ConstantRewardFunction(−0.02))

(0, 3,′ c′,ConstantRewardFunction(−1.29))

(1, 1,′ !b!g′,ConstantRewardFunction(−0.75))

(1, 2,′ b′,ConstantRewardFunction(0.01))

(1, 0,′ g′,ConstantRewardFunction(−1.4))

(2, 2,′ !a!grab′,ConstantRewardFunction(−0.83))

(2, 5,′ grab′,ConstantRewardFunction(−7.48))

(2, 1,′ a′,ConstantRewardFunction(−1.58))

(3, 3,′ !d!g′,ConstantRewardFunction(−0.61))

(3, 4,′ d′,ConstantRewardFunction(−1.03))

(3, 0,′ g′,ConstantRewardFunction(0.01))

(4, 4,′ !c′,ConstantRewardFunction(−0.56))

(4, 3,′ c′,ConstantRewardFunction(−0.14))

A.2.3. EXAMPLE OF LEARNING RM BY LLM

Reward Machine Description:

You are familiar with automata theory. A reward machine is defined as following:

Given a set of propositional symbols P , a set of (environment) states S, and a set of actions A, a reward machine (RM) is a
tuple RPSA =< U, u0, F, δu, δr >, where U is a finite set of states, u0 ∈ U is an initial state, F is a finite set of terminal
states (where U ∩ F = ∅, terminal states are not existed in U ), δu is the state-transition function, U × 2P → U ∪ F , δr is
the reward-transition function, U → [U × U → R]

A reward machine RPSA starts in state u0, and at each subsequent time is in some state ut ∈ U ∪ F . At every step t,
the machine receives as input a truth assignment σt, which is a set that contains exactly those propositions in P that are
currently true in the environment. For example, in an open door and get the key game, σt = {e} if the agent opens the door
e, while σt = {k} if the agent gets the key k. Then the machine moves to the next state ut+1 = δu(ut, σt) according to the
state-transition function, and outputs a reward function rt = δr(ut) according to the state-reward function. This process
repeats until the machine reaches a terminal state. Note that reward machines can model never-ending tasks by defining
F = ∅.
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A.3. Learning RM by LLM

Language ModelQuestion

Thought

Thought

......

COT

Answer

User

Few shot
Examples

RM Description Env Description

Figure 8. An overview of the framework to learn reward machine by large language model through domain knowledge.

# HalfCheetah

Environment Description: HalfCheetah is part of the Mujoco environments. This environment is based on the work by P.
Wawrzyński in ”A Cat-Like Robot Real-Time Learning to Run”. The HalfCheetah is a 2-dimensional robot consisting of
9 body parts and 8 joints connecting them (including two paws). The goal is to apply a torque on the joints to make the
cheetah run forward (right) as fast as possible, with a positive reward allocated based on the distance moved forward and a
negative reward allocated for moving backward. The torso and head of the cheetah are fixed, and the torque can only be
applied to the other 6 joints over the front and back thighs (connecting to the torso), shins (connecting to the thighs), and feet
(connecting to the shins). The robot needs to go through 5 checkpoints c(x position=2), e(x position=4), f(x position=6),
g(x position=8), and a(x position=10). The agent gets a reward of 1000 when it reaches a and the control penalization (CP)
otherwise. Agent can get its current location by calling self.info[’x position’].

Question: Design the set of propositional symbols P for HalfCheetah environment.

Think: To design the set of propositional symbols P , first I need to find the key events in the environment. The robot need
to go through 6 checkpoints c(x position=2), e(x position=4), f(x position=6), g(x position=8), and a(x position=10). I
can use them as the propositional symbols, if the agent reach some checkpoint, it will reach a new reward machine state.
Besides, I need to consider situations when agent don’t reach the checkpoints.

Answer: The set of propositional symbols can be a set including checkpoints in HalfCheetah-v3 and situations not reaching
the next checkpoints . P = {c, !c, e, !e, f, !f, g, !g, a, !a}

Question: Design the get event function for the HalfCheetah with reward machine.

Think: Here events is depended on the propositional symbols, so the events including reach the checkpoints, and call
self.info[’x position’] can get the agent’s current x position. Compare it with checkpoints’ x position, we can get the events.

Answer:

def get_events(self):
events = ’’
if self.info[’x_position’] < -10:

events += ’b’
if self.info[’x_position’] > 10:

events += ’a’
if self.info[’x_position’] < -2:

events += ’d’
if self.info[’x_position’] > 2:

15



Reward Translation via Reward Machine in Semi-Alignable MDPs

events += ’c’
if self.info[’x_position’] > 4:

events += ’e’
if self.info[’x_position’] > 6:

events += ’f’
if self.info[’x_position’] > 8:

events += ’g’
return events

Question: Design the reward machine for the HalfCheetah environment.

Think: To design the reward machine. I need to verify the reward machine states first. As P = {c, !c, e, !e, f, !f, g, !g, a, !a}.
The reward machine including 5 states. As the agent reach checkpoint a, the game is finished. So these is one terminal state.
Thus the reward machine state is {0, 1, 2, 3, 4, 5} based on P . Besides, as the agent gets a reward of 1000 when it reaches a
and the control penalization (CP) otherwise. The δr can be designed based on it.

Answer:

0 # initial state

[5] # terminal state

(0, 0,′ !c′,RewardControl())

(0, 1,′ c′,RewardControl())

(1, 1,′ !e′,RewardControl())

(1, 2,′ e′,RewardControl())

(2, 2,′ !f ′,RewardControl())

(2, 3,′ f ′,RewardControl())

(3, 3,′ !g′,RewardControl())

(3, 4,′ g′,RewardControl())

(4, 4,′ !a′,RewardControl())

(4, 5,′ a′,ConstantRewardFunction(1000))
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A.4. Additional Experiment

In order to present our experimental results more clearly and completely, we provide all the results of our experiments in
this section of the appendix. In addition to the two sets of experiments given in the main text, we also provide a set of toy
examples to show the migration between nchain tasks of different scales. In addition, we provide the results of the reward
translation task under three different Mujoco tasks, including the Hopper-V3, HalfCheetah-V3 and Ant-V3.

A.4.1. NCHAIN EXPERIMENT

In the NChain game, an agent navigates through a linear sequence of states (where N denotes the number of states), aiming
to reach the flag’s location and grab it. The agent receives a reward:

(r = 1− Used Steps
Max Steps

). (11)

The agent will receive the reward only upon grabbing the flag. At each state, the agent has three possible actions:

{move forward,move backward, grab the flag}.

In this experiment, the NRT Framework attempts to transfer rewards from NChain(n=5) to NChain(n=9) (illustrated in
Figure 9(a)). This experimental setup intends to verify the NRT model’s capacity for accurately extracting abstract alignments
from semi-alignable MDPs; despite differing in observation space size, NChian(n=5) and NChain(n=9) share an isomorphic
reward machine based on correspondingly aligned checkpoints, which can be treated as propositional symbols. Figure 9(a)

D C A
Start

B

D C A
Start

B

(a) Nchain(n=5) to NChain(n=9) (b) Learning curve for the NChain(n=9)

Figure 9. Experiment for NChain game. (a) the environment setting and the isomorphic reward machine for NChain game, and the reward
transition function is learned from NChain(n=5); (b) The learning curve for NChain game.

also demonstrates the shared isomorphic reward machine, with reward transitions learned from the source task NChain(n=5).
This reward machine effectively guides the agent in completing the NChain(n=9) tasks, providing a clear preference for
the correct path to reach the target. For this experiment, we utilized the DQN as a baseline, and the training results are
illustrated in Figure 9(b). Our findings indicate that the NRT Framework can successfully extract abstract alignments from
semi-alignable MDPs, while the transferred rewards from the isomorphic reward machine facilitate and promote training.

A.4.2. 3D VISUAL NAVIGATION

In the 3D visual navigation environment, we selected the Sign task in the Miniworld (Chevalier-Boisvert et al., 2023) as the
target task, with the Text-Sign task serving as the original task. Figures. 4 depict the original and target tasks, respectively.
In the Miniworld-Sign environment, the agent receive a sparse reward only if it reaches all the targets including the red key,
the blue box and the red box. The sparse reward is formulated as:

r = 1000× Max Steps − Used Steps
Max Steps

. (12)

At each step, the agent’s observation is restricted to the information perceived in the direction of its movement, and it must
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select from a limited action space consisting of four actions:

{turn left, turn right,move forward,move back}.

Due to the partial observability and sparse reward problem, solving Miniworld-Sign with conventional reinforcement
learning methods proves challenging. By contrast, the Text-Sign task is simpler, as the agent can observe the entire map
and directly choose actions to move up, down, left, or right, making task completion significantly easier. The goal of the
experiment is to transfer knowledge from the trained agent in the Text-Sign environment to the Miniworld-Sign environment
within isomorphic reward machines.

We also implemented a naive reward approach on the Sign task (shown in Figure 11, where each time the agent take one thing,
it will get a reward +10), where the agent receives supplementary rewards when making progress toward the goal. The results
show that while naive reward shaping does improve performance compared to sparse rewards, there remains a substantial
performance gap when compared to our NRT method with transferred reward machines. This comparison highlights that
while simple reward shaping can help, the structured knowledge transfer facilitated by NRT provides more substantial
benefits for learning efficiency. The transferred reward structure itself inherently contains this shaping information but in a
more principled way that captures the logical dependencies between subtasks, which explains the superior performance of
our approach.

(a) Sign-with-Trap Environment Diagram (b) Learning curve for Sign-With-Trap

Reward Machine For Text-Sign

Reward Machine For Sign-With-Trap

Transfer

(c) Transferred reward machine from Text-Sign to Sign-with-Trap Environ-
ment

Figure 10. Experiment for Sign-with-Trap. (a) Sign-with-Trap Environment Diagram; (b) Transferred reward machine from Text-Sign to
Sign-with-Trap Environment; (c) Learning curve for Sign-With-Trap

Furthermore, we have expanded our evaluation by modifying the Text-Sign task to incorporate more complex disjunctions.
In this enhanced environment, we added a ”trap” mechanism where the agent receives a -10 reward and terminates the
episode if it falls into the trap at any point. From a reward machine perspective, this modification adds a branch from each
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Figure 11. Learning curve for Miniworld-Sign-Add Naive Reward Basline

state (U0, U1, U2, U3) to a terminal failure state, creating multiple disjunctive paths through the task. The environment
diagram and transferred reward machine is shown in Figure 10(a) and Figure 10(c) in the additional experiment. The results
(shown in Figure 10(b)) demonstrate that NRT continues to show significant performance improvements when transferring
the reward machine and corresponding rewards from the original Text-Sign task, even with these more complex logical
structures.

A.4.3. MUJOCO

In the Mujoco experiment, we selected HalfCheetah, Hopper, and Ant as the target tasks, with a simple NChain game serving
as the source task. Figure. 12 depicts the environment used in this experiment. All target tasks employ the same settings as

A B C D E F A B C D E F A B C D E F

Hopper-v3 HalfCheetah-v3 Ant-v3

Start Target

A B C FD E

NChain

G

Figure 12. The environment for Mujoco environments. The source task is an NChain game where the agent need to reach the point F and
get a reward. And Hopper-v3, HalfCheetah-v3 and Ant-v3 are the source tasks while their target point is F.

(a) NChain → Hopper (b) NChain → HalfCheetah (c) NChain → Ant

Figure 13. The learning curves for mujoco experiment. To intuitively precept the learning process of the agent, we use the original reward
provided by OpenAI-Gym which consists forward reward and control reward to show the learning curve.
their respective OpenAI-Gym versions (Brockman et al., 2016); however, we adjusted the rewards to be sparse, receiving
r = 1000 only upon achieving specific goals. The agent in the source task navigates through a linear sequence of states to
reach point F, earning a sparse reward equivalent to Equation. 12. At each state, the agent has four possible actions: move
left, move right, move up, and move down. The generated reward machine and the cross-domain reward transfer process
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Figure 14. Learning curve for Mujoco-Ant on SAC method

from NChain to Mujoco are depicted in Figure. 7(b). The source task’s reward machine and target tasks’ reward machines
are homomorphic reward machines. Our analysis suggests that the reward signal from the source task also provides guidance
for the target tasks, similar to the NChain game experiment. Besides, compare the generated reward machine based on LLM
and the hand-designed reward machine shown in Figure. 2(b), the reward machine generated by LLM maintains a same
structure of the hand-designed reward machine, which shows the effectiveness of the reward machine generator based on
LLM. The learning results are shown in Figure. 13. We still chose PPO as the baseline. PPO-RM, PPO-NRT(Reward), and
PPO-NRT(RM+Reward) to perform an ablation study to exclude potential influences due to reward machine utilization. Our
results demonstrate that in extremely sparse reward tasks, merely extending observation with reward machine information
proves insufficient; in contrast, using transferred rewards significantly alleviates the sparse reward issue, enhancing learning
performance. In Hopper-v3 and Ant-v3 tasks, PPO-NRT(Reward) achieves the best results, while in HalfCheetah-v3 tasks,
PPO-NRT(Reward+RM) and PPO-NRT(Reward) attains similar performance.

To further show the versatility of NRT, we have expanded our experiments to include SAC (Soft Actor-Critic) as an additional
baseline for the Mujoco tasks. The result is shown in Figure 14.
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