
Under review as submission to TMLR

Can We Count on LLMs? The Fixed-Effect Fallacy and
Claims of GPT-4 Capabilities

Anonymous authors
Paper under double-blind review

Abstract

In this paper we explore evaluation of LLM capabilities. We present measurements of GPT-4
performance on several deterministic tasks; each task involves a basic calculation and takes
as input parameter some element drawn from a large well-defined population (e.g., count
elements in a list, multiply two k-digit numbers, etc). We examine several conditions per-task
and perform enough trials so that statistically significant differences can be detected. This
allows us to investigate the sensitivity of task-accuracy both to query phrasing and input
parameter population. We find that seemingly trivial modifications in the task-prompt or
input population can yield differences far larger than can be explained by sampling effects.
For example, performance on a simple list-counting task varies with query-phrasing and
list-length, but also with list composition (i.e., the thing-to-be-counted) and object frequency
e.g., success when an element accounts for 50% of a list is different from when it accounts
for 70% etc).
We conclude that efforts to quantify LLM capabilities easily succumb to the language-as-
fixed-effect fallacy, where experimental observations are improperly generalized beyond what
the data supports. A consequence appears to be that intuitions that have been formed based
on interactions with humans form a very unreliable guide as to which input modifications
should “make no difference” to LLM performance.

1 Introduction

Rapid improvements in the performance of large language models (LLMs) have spurred great interest in
evaluating their capabilities. In addition to answering general knowledge questions and summarizing text,
GPT-4 has demonstrated the capability to compose poetry, solve chess puzzles and Geometry problems,
and perform basic coding tasks. Capabilities that seem beyond the simple next-token-prediction they were
trained on, causes some to suggest this as evidence of emergent behaviors from LLMs, or even that we may
be witnessing the early signs of Artificial General Intelligence (AGI) (Bubeck et al., 2023). Others are not
convinced, and suggest that LLMs simply parrot pastiches of text snippets from their training sets (Bender
et al., 2021).

The documentation of surprising capabilities has been accompanied by many accounts of failures. Halluci-
nations (where LLMs offer plausible but entirely invented detail) have proved hard to eliminate. Arkoudas
points out that GPT-4 struggles with some basic tasks that humans find easy or trivial; e.g., they aren’t
reliable even on tasks such as counting, multiplication, etc (Arkoudas, 2023). McCoy et al suggest that many
of the remarkable capabilities are simply artifacts of the training set and autoregressive task that GPT-4 was
trained to solve (McCoy et al., 2023).

An accumulation of observed successes and failures at particular tasks unfortunately does little to settle
questions about LLM reliability or capabilities. In this paper we present results on a series of deterministic
tasks; each of the tasks involves a basic calculation and takes as input parameter some element drawn from
a large well-defined population (e.g., count elements in a list, multiply two k-digit numbers, etc). Since,
by construction, the correct answer is easy to determine, we can measure performance without costly and

1



Under review as submission to TMLR

subjective hand-labelling or assessments. By randomly sampling the input parameter populations we can
measure performance on large numbers of that are semantically and logically equivalent. Since the parameter
spaces can be arbitrarily large the concern about verbatim contamination of training data is greatly reduced.
This allows us to investigate the sensitivity of task-accuracy both to query phrasing and input parameter
population; we do this at sufficient scale to detect statistically significant differences. We investigate both
re-wordings of the prompt and changes to the input population. For example, our population might be
length-21 lists of floating point numbers, and the task might be to find the median, but modifications might
be to try reworded versions of the prompt, or try lists with a different number of significant decimal places
given.

Our contributions are as follows. We present measurements of GPT-4 performance on several deterministic
tasks. We examine several conditions per-task and perform enough trials (500 per condition unless otherwise
stated) so that statistically significant differences can be detected. For all tasks and all conditions this entails
about 37k responses from GPT-4; all prompts, responses and associated metadata are openly available to
those who wish to check or build upon our findings.1 We measure performance on tasks such as counting,
sorting, multiplication, etc, and find that accuracy, while better-than-random, is often very poor. We find that
seemingly trivial modifications both in the prompt-phrasing and parameter population can yield differences
far larger than can be explained by sampling effects. For example, performance on a simple list-counting
task varies with query-phrasing and list-length, but also with list composition (i.e., the thing-to-be-counted)
and object frequency (e.g., success when an element accounts for ≈ 50% of a list is different from when it
accounts for ≈ 70% etc).

We conclude that efforts to quantify LLM capabilities easily succumb to the language-as-fixed-effect fallacy
(Clark, 1973; Coleman, 1964; Yarkoni, 2019), where experimental observations on language-tasks are improperly
generalized beyond what the data supports. A consequence appears to be that intuitions that have been
formed based on interactions with humans form a very unreliable guide as to which modifications should
“make no difference” to LLM performance. For example, the abstractions that we take for granted for humans
(e.g., of separating the task of counting from the thing-to-be-counted) do not appear to be replicated by
LLMs.

Sensitivity of LLM performance to query phrasing has spawned efforts to improve accuracy by using few-shot,
Chain-of-Thought and scratchpad techniques. However, efforts to quantify this sensitivity are nascent. Sclar
et al examine the effect of phrasing on accuracy for multiple choice tasks using the LLaMA-2-13B model
(Sclar et al., 2023). Sun et al examine zero-shot robustness for the MMLU (Hendrycks et al., 2020) and
BIG-bench (Ghazal et al., 2013) datasets using several models having between 3B and 13B parameters. There
are important points of difference between ours and previous work. First, we explore accuracy on atomic
tasks such as counting and multiplication rather than on datasets of multiple-choice questions that may have
been seen in training (e.g., there is evidence that GPT4 has seen the BIG-bench canary GUID (Bubeck et al.,
2023)). Second, we use parameterized tasks and explore sensitivity to input parameters as well as prompt
phrasing (e.g., showing that counting accuracy depends on the thing-to-be-counted). Finally, we evaluate
using GPT-4; this has between one and two orders of magnitude more parameters than those used in (Sclar
et al., 2023; Sun et al., 2023). This allows us to have confidence that the problems do not seem significantly
alleviated by model scale.

We wish to be clear that our goal is not to determine whether LLMs can or cannot count, sort, or multiply,
etc. First, we have other ways of performing these tasks. Second, it is possible that prompt engineering, the
use of Chain-of-Thought reasoning, or the invocation of plug-ins might improve performance. However, our
goal is not to improve the accuracy with which we perform these tasks. Rather, it is to draw attention to an
unaddressed difficulty in establishing accuracy; that is, evaluation of LLM capabilities seems particularly
susceptible to a major pitfall that exists when we go from particular experimental observations to general
claims. That is, sensitivity to seemingly trivial modifications means that observed accuracy numbers cannot be
assumed to generalize (even to entirely equivalent versions of a task). While we’ve demonstrated the problem
on basic arithmetic tasks it seems unlikely to be confined to that domain. For example, LLM performance at
certain tasks might be improved by invoking a plug-in, writing code or using Chain-Of-Thought, but deciding

1Withheld for anonymized submission

2



Under review as submission to TMLR

when and how to do so is itself a task with success rate subject to the sensitivities we highlight. That is,
invoking plugins doesn’t solve even the basic counting task if the decisions on when and which plugin to
invoke is itself brittle and sensitive to prompt phrasing.

So, can LLMs count (or multiply, or sort etc)? Our evidence suggests that variation as we sample possible
phrasings is too high to allow a Yes-or-No answer, and that accuracy estimates must be regarded as particular
to the phrasing used. This also means that reporting observed performance or accuracy numbers on other
deterministic tasks (such as standardized tests (Katz et al., 2023; Takagi et al., 2023; Nori et al., 2023),
textbook problems, etc) is not sufficient to establish general capabilities.

2 Background: The Language-as-Fixed-Effect Fallacy

The Language-as-Fixed-Effect Fallacy, as described by Clark (Clark, 1973), is the phenomenon where a claim
supported by statistical evidence does not generalize beyond the specifics of the experimental setup. He
illustrates with a language-task thought-experiment originally proposed by Coleman (Coleman, 1964). Let N
be the set of all English nouns, V the set of all verbs, and let T (.) be a test statistic representing how well
humans perform at some task involving words (e.g., how well they can spell them, how quickly they can type
them, etc). Suppose that experimenter A wishes to test the hypothesis that people perform the task better
on nouns than on verbs:

HA = T (N) > T (V ).

Suppose experimenter B wishes to test the opposite:

HB = T (N) < T (V ).

Let’s stipulate, by contrast, that they are both wrong, and that T (N) = T (V ).

As a test of HA the first experimenter selects subsets NA ⊂ N and VA ⊂ V each with some fixed number
of randomly selected nouns and verbs. With this choice she recruits participants and on finding that
T (NA) > T (VA), by a statistically significant amount, she rejects the null hypothesis (that there’s no
difference) and concludes she has firm evidence in favor of HA. Similarly, the second experimenter selects at
random different subsets NB ⊂ N and VB ⊂ V with fixed numbers of nouns and verbs. With this fixed
choice he recruits participants and finds T (NB) < T (VB), by a statistically significant amount, and concludes
this is firm evidence for HB .

The problem is that while both A and B intend to generalize to the whole population N and V they have
tested only on particular subsets. There is good evidence to believe that, with any collection of participants,
we could verify both T (NA) > T (VA) and T (NB) < T (VB), but neither of these is enough to support either
HA or HB. In the language of statistical testing our experimenters have treated random effects as fixed
(Clark, 1973).

Fixed effects are those that are considered constant across the relevant population, while random effects are
those that vary (for an account of various other definitions see (Gelman, 2005)). In the experiments above
there are two populations involved: the populations of noun-verb collections, and the population of human
participants. When she generalized from NA, VA to N , V our first experimenter implicitly assumed that any
other subsets NC ⊂ N and VC ⊂ V would also give the result that she observed (i.e., T (NC) > T (VC)). If
this were true she’d be justified in thinking that her observed difference was powerful evidence for HA. If this
is not true then her experiment supports only the narrow uninteresting claim T (NA) > T (VA). Effectively,
she assumed that what she observed wasn’t particular to NA, VA but general to N , V .

In a colloquial sense fixed effects are ones where the particular choice doesn’t affect the generality we wish
to claim. We expect, for example, that what an experimenter had for breakfast or what color socks she
was wearing has no effect on the outcome; these are not details that have to be faithfully reproduced to
ensure replication of the original experiment. In this telling the fixed-effect fallacy is simply assuming that
certain details don’t matter when in fact they do. Unfortunately, there’s no simple way to determine that a
certain variable has no influence on an experimental result; experiments necessarily involve many judgements
about which details matter and which do not, and many of those judgements are subjective. One of our

3



Under review as submission to TMLR

findings is that intuitions about which modifications might make a difference can be very flawed; that human
performance remains constant under a certain modification is no guarantee at all that LLM performance also
will.

3 The Fixed-Effect Fallacy and LLM Task Performance

We wish to evaluate whether, and how well, an LLM can perform a particular task that has a single
deterministic correct answer (e.g., counting, deciding to invoke a plug-in, or Retrieval-Augmented Generation
etc). For the counting task one approach might be to produce a list of objects and prompt the LLM to count
the occurrences of a particular item. To make the experimental setup concrete we might specify a list length
and dictionary of possible elements. For example:

rLen = 20
listOfItems = [‘mango’,‘peach’]
r = random.choices(listOfItems, k = rLen)

is a Python snippet that will return a length-20 list with the elements of listOfItems chosen at random
with replacement. When there are only two elements, as shown, there’s a population of 220 such lists; call
this population R. We might prompt the LLM with:

prompt = ‘‘How many times does ‘mango’ appear in this list: ’’ + str(r)

where r ∈ R. By repeating this query with many different elements of R we might try to build a picture of
the LLM’s performance at the task.

In this setup choice of list from R is being treated as the only random effect; i.e., the only source of variation
Gelman & Hill (2006). We are testing how well the LLM does over many different members of R but are
assuming that other factors we might vary make no difference. However, there are many other populations
of lists that we might try, and there are many other wordings of the prompt that could be used. If we use
observed success with the above prompt to conclude that our LLM can count elements of a length-20 list
with a particular success rate we are implicitly assuming that these other possible choices would make no
difference. For example, an alternative to the prompt above might be:

prompt = ‘‘Here is a list: ’’ + str(r) + ‘‘. How many times does ‘mango’ appear on it?’’

This would appear to be an equivalent evaluation of the task, or a modification that should make no difference.
Unfortunately, this is not the case.

As we show in Section 4.2 these assumptions most definitely do not hold. Wording of the prompt and choice of
the particular items to be counted can make a substantial difference to the answer (see Table 1). For example,
the hypothesis that tests using the two prompts given above (with everything else held constant) produce
results drawn from the same distribution, is robustly rejected by a χ2 test. Thus, if we report that our LLM
can count with a particular success rate we are committing the same fixed-effect error as experimenters A
and B above.

When we encounter a particular experimental result (e.g., q = 0.86 (86.0%) on the N = 10 counting task in
Table 1) we generally understand that this involves some margin of error. For example, rather than q, we
expect a repeat of the experiment to produce an estimate q ± δq. A very familiar case exploits the fact that
95% of the values of a normal distribution lie within 1.96 standard deviations of the mean, so we can write
δq = 1.96 ·

√
q · (1 − q)/N and be confident that 95% of trials will fall in this interval Taylor & Thompson

(1982).

However, it is important to keep track of the baked-in assumptions: this estimate assumes that variance
from sampling the list population (i.e., sampling R) is the only source of randomness. If significant other
sources of randomness exist, then we know only that δq is greater than (and possibly much greater than)
1.96 ·

√
q · (1 − q)/N. That is, we have only a lower bound on our margin-of-error. We can’t rule out, for

example, that the 95% confidence interval is ±30%. The results of Section 4 show that other sources of

4



Under review as submission to TMLR

randomness that are too large to ignore do exist for several of the tasks we consider (and in some cases appear
far greater than the variance due to sampling).

4 Tasks

4.1 Experimental setup

In order to test LLM performance we choose tasks that have deterministic answers, and where it is relatively
easy to decide if the LLM gives the correct answer. This obviates the need for subjective assessments,
heuristics, hand-labelling or error-prone parsing of the response, and allows us to scale-up testing. The
tasks we examine are: counting, finding the maximum, median and sorted version of a list of numbers, long
multiplication, and basic composite tasks combining the above tasks. The difficulty with counting and long
multiplication has been observed by others Arkoudas (2023).

Unless otherwise specified all of the conditions were evaluated on 500 independent runs. Thus, for example, if
a table entry reports a success rate of 89.0% on a task, and sampling were the only source of randomness, then
a reasonable estimate of the 95% confidence interval would be 1.96 ·

√
0.89 × 0.11/500 ≈ 2.74%. However, an

important finding, below, is that there are significant other sources of randomness, and the conventional way
of estimating margins-of-error cannot be applied. All of the trials are performed using the OpenAI GPT-4
API. The results of all queries are available in the GitHub repository.

For all of the tasks we give an example prompt together with the correct answer and GPT-4’s answer.
Dues to space constraints we show only examples where the GPT-4 response is incorrect. This is not
reflective of its accuracy: in each case we give a table showing how accuracy evolves with problem size.
However, in giving examples where the answers are incorrect we illustrate that they are often very significantly
better-than-random.

4.2 Count

First we examine the capability of GPT-4 to perform basic counting tasks. We choose a length-N list with
two possible elements and ask GPT-4 to count the number of occurrences of the first element. An example
query is (let’s call this wording #1):

Prompt: How many times does ‘mango’ appear in this list: [mango, peach, peach, peach, mango,
mango, mango, peach, peach, peach, mango, mango, mango].
Correct Answer: 7
GPT-4 Answer: ‘Mango’ appears 6 times in this list.

We evaluate for five different target lengths; the results are shown in the first column of Table 1. In choosing
modifications of this task we choose two different variations of the input list by replacing the word-pair
‘mango/peach’ with ‘airedale/aspidistra’ (results in column 2) and the random strings ‘xhsfgre/jnosdfi’ (results
in column 3). We also examine one simple rewording of the prompt (let’s call this wording #2):

Prompt: Here is a list: [mango, peach, peach, peach, mango, mango, mango, peach, peach, peach,
mango, mango, mango]. How many times does ‘mango’ appear on it?
Correct Answer: 7
GPT-4 Answer: ‘Mango’ appears 6 times in this list.

This gives us a total of four conditions, all of which involve the same basic counting task. We evaluate each
condition with list lengths N = 10, 15, 20, 30 and 40, and we perform 500 trials per condition. The results are
shown in Table 1. Thus, the five rows and first four columns represent a total of 5 × 4 × 500 = 10, 000 queries
to GPT-4.

We use a χ2 test to determine if the responses to different ways of phrasing the task are drawn from the
same distribution. For example, we can take the null hypothesis to be that some row of the first and fourth

5



Under review as submission to TMLR

rLen

Wording #1
Wts=[0.5,0.5]
mango/peach

Wording #1
Wts=[0.5,0.5]

airedale/
aspidistra

Wording #1
Wts=[0.7,0.3]
mango/peach

Wording #2
Wts=[0.5,0.5]
mango/peach

Comp. Cols(1,2)
(χ2, p)

Comp. Cols(1,3)
(χ2, p)

Comp. Cols(1,4)
(χ2, p)

10 89.0% 91.2% 70.2% 96.6% (1.12, 2.9e-01) (53.26, 2.92e-13) (20.49, 6.e-06)
15 61.2% 53.6% 31.8% 88.6% (5.6, 1.8e-02) (85.68, 2.11e-20) (98.38, 3.45e-23)
20 48.2% 29.6% 30.8% 76.2% (35.61, 2.41e-09) (30.95, 2.65e-08) (82.18, 1.24e-19)
30 12.4% 7.4% 19.0% 43.6% (6.46, 1.10e-02) (7.74, 5.41e-03) (119.17, 9.60e-28)
40 12.6% 7.6% 17.6% 21.0% (6.34, 1.18e-02) (4.49, 3.40e-02) (12.03, 5.25e-04)
20 35.0% 26.8% 26.8% 57.4% (7.49, 6.19e-03) (7.49, 6.19e-03) (49.57, 1.91e-12)

Table 1: Percent correct for counting the occurrences of a length-N list with two items chosen uniformly-at-
random. Performance decays rapidly with list length. On the right-hand side of the table we present χ2 tests
comparing the results of the first condition with each of the others. This test evaluates the null hypothesis
that the answers in the various conditions are drawn from the same distribution. Boldface entries are cases
where p < 0.05 and we reject the null hypothesis. The null hypothesis is robustly rejected for almost all
lengths and conditions. E.g., when comparing columns 1 and 4 (i.e., simply switching between wording #1
and wording #2 with the ‘mango/peach’ word-pair). This demonstrates that simple modifications of the task
(that might easily be assumed to make no difference) in fact are sources of variance beyond what can be
explained by sampling effects.

columns of Table 1 represent answers drawn from the same distribution. E.g, for N = 10 there were 445/500
and 483/500 correct trials respectively. Using a standard χ2 test to compare these two distributions of
correct/incorrect answers yields (χ2 = 21.6, df = 1, p = 3.34e − 6). The p-value can be taken as an estimate
of the probability of these results being observed if columns 1 and 4 of row 1 were produced by the same
process; generally when p < 0.05 we say that the null hypothesis is rejected. Similarly for all the other rows,
the hypothesis (that results of the task with different wording are drawn from the same distribution) is
rejected. The degrees-of-freedom is df = 1 for all of our tests since we are always doing pairwise comparisons
on tasks on a binary outcome (Taylor & Thompson, 1982).

The results of our χ2 tests are given in the right-hand side of Table 1. The null hypothesis is robustly rejected
for all lengths when comparing columns 1 and 4 (i.e., simply switching between wording #1 and wording
#2 with the ‘mango/peach’ word-pair). The null hypothesis is rejected for several lengths when comparing
columns 1 and columns 2, 3 (i.e., simply switching the word-pair while using wording #1). This demonstrates
that simple modifications of the task (that might easily be assumed to make no difference) in fact are sources
of variance beyond what can be explained by sampling effects.

We note also that the GPT answers are biased toward under-counting. For example in the ‘mango/peach’
case the mean of the correct answers for the five lengths tested (i.e., N = 10, 15, 20, 30 and 40) were:
(5.57, 7.96, 10.57, 15.46, 20.6) and the GPT-4 answers were (5.45, 7.57, 10.04, 14.09, 18.5). Thus, across 500
trials, the mean GPT-4 answers were always lower. Among the 500 trials the ratio of over-counts:under-counts
was (55 : 0, 192 : 2, 248 : 11, 428 : 10, 451 : 11).

4.3 Maximum, Median and Sort

Here we ask GPT-4 to perform elementary tasks on lists of numbers: return the maximum, median and
sorted version of the list. We evaluate three different conditions. First we ask for the maximum (or median
or sorted version) of a list of rLen numbers drawn uniformly-at-random from the interval (100.0, 20000.00)
and rounded to two decimals places. An example of the prompt for the median-finding task is:

Prompt: What is the median value in this list: [7176.36, 5222.86, 1089.62, 19927.36, 5655.72, 18355.58,
18978.7, 7028.49, 14190.57, 14243.69, 11251.69]. Please write ’Answer=’
Correct Answer: 11251.69
GPT-4 Answer: 7176.36

6



Under review as submission to TMLR

Second, we repeat with integers drawn uniformly-at-random from (10, 99) (i.e., all list-members are 2-digit
numbers). Finally, we use a list of N name-value pairs, where a randomly-chosen name is associated with a
number drawn uniformly-at-random from the interval (100.0, 20, 000.00) and rounded to two decimals places.
An example of the latter query is:

Prompt: Please sort this list in ascending order: [John: $12158.21, Mary: $1416.51, Peter: $7507.58,
Vivek: $10941.54, Xian: $10530.84, Alex: $1641.14, Maria: $1025.49, Frank: $260.85, Luis: $7464.35,
Manuel: $1782.86, Kristen: $10085.24].
Correct Answer: [Frank: $260.85, Maria: $1025.49, Mary: $1416.51, Alex: $1641.14, Manuel:
$1782.86, Luis: $7464.35,Peter: $7507.58, Kristen: $10085.24, Xian: $10530.84, Vivek: $10941.54, John:
$12158.21]
GPT-4 Answer: [Frank: $260.85, Maria: $1025.49, Mary: $1416.51, Alex: $1641.14, Manuel:
$1782.86, Peter: $7507.58, Luis: $7464.35, Kristen: $10085.24, Xian: $10530.84, Vivek: $10941.54, John:
$12158.21]

The results of the maximum, median and sorting tasks are given in Tables 2, 3 and 4 respectively. The three
different list conditions are explored in columns 1-3 of these tables. As in Section 4.2, we use a χ2 test to
explore whether these different variations on the task produce answers that appear drawn from the same
distribution. The right-hand portion of Tables 2, 3 and 4 gives the results; we do χ2 tests to compare columns
2 and 3 with column 1.

Table 2 shows the results of the maximum-finding task. Performance in all conditions is good, though not
perfect (e.g, results are almost always > 90.0%). The χ2 tests show that the hypothesis that performance on
the name-value version of the list is consistent with performance on the value-only list is rejected for lengths
> 11. The hypothesis that performance on the integer version of the list is consistent with performance on
the 2-decimal floats list is rejected for all lengths.

Table 3 shows the results of the median-finding task. Performance in all conditions is poor (e.g, results
are < 90.0%). The χ2 tests show that the hypothesis that performance when the numbers are drawn from
(10.0, 20000.0) is consistent with performance when numbers are drawn from (10, 99) is rejected for all lengths.
The hypothesis that that name-value version of the list is consistent with performance on the value-only list
is also rejected for all lengths. Note that the p-values in both cases are ≪ 0.05, so the probability that the
same process accounts for both conditions is very low.

Table 4 shows the results of the sorting task. Performance in condition 2 is good, but is very poor in condition
3 (e.g, results in column 3 are < 55.0%). The χ2 tests show that the hypothesis that performance when
the numbers are drawn from (10.0, 20000.0) is consistent with performance when numbers are drawn from
(10, 99) is rejected for all lengths. The hypothesis that that name-value version of the list is consistent with
performance on the value-only list is also rejected for all lengths. Again, the p-values indicate robust rejection
of these hypotheses.

4.4 Long Multiply

Here we evaluate performance at long multiplication, where we prompt the LLM to calculate the product of
a k1-digit by a k2-digit number. An example for 4 × 4 is:

Prompt: What is the product of 6438 and 9038? Please write ‘Answer =’
Correct Answer: 58186644
GPT-4 Answer: Answer = 58169844.

Table 5 shows the performance multiplying a k1-digit by a k2-digit number for k1, k2 ∈ {2, 3, 4, 5}. Apart
from the 2 × 2 case the results are largely poor. Observe that perfect performance on the 2 × 2 task drops to
negligibly correct answers for 4 × 4.

Since there is sometimes a significant difference between the k1 × k2 result with the k2 × k1 result we perform
a χ2 test on several of the off-diagonal elements. The results are shown in Table 6. Note that results for

7



Under review as submission to TMLR

rLen
float in

(100.0, 20000.0)
int in
(10, 99)

Name-value
float in

(100.0, 20000.0)
Compare Cols(1,2)

(χ2, p)
Compare Cols(1,3)

(χ2, p)
11 97.79% 100.0% 97.2% (9.23, 2.38e-03) (0.16, 6.93e-01)
15 96.4% 100.0% 92.2% (16.35, 5.27e-05) (7.44, 6.37e-03)
21 94.4% 100.0% 86.6% (26.79, 2.27e-07) (16.8, 4.16e-05)

Table 2: Comparison of the find-maximum task. The prompt simply asks GPT-4 to find the maximum of a
list of numbers. Column 1: numbers uniform on (100.0, 20000.0) to 2 decimals, Column 2: numbers uniform
on (10, 99) as integers, Column 3: name-value pairs with values uniform on (100.0, 20000.0) to 2 decimals.
The right-hand side of the table shows χ2 tests comparing Column 1 to each of the others. Boldface entries
are cases where p < 0.05 and we reject the null hypothesis (that results in the given columns are produced by
the same process). The null hypothesis is rejected except for length-11 when comparing columns #1 and #3:
thus simply switching the list from numbers to name-value pairs introduces variance beyond what can be
explained by sampling effects.

rLen
float in

(100.0, 20000.0)
int in
(10, 99)

Name-value
float in

(100.0, 20000.0)
Compare Cols(1,2)

(χ2, p)
Compare Cols(1,3)

(χ2, p)
11 68.4% 85.0% 89.6% (37.62, 8.57e-10) (66.46, 3.58e-16)
15 52.8% 74.0% 89.6% (47.51, 5.47e-12) (163.32, 2.13e-37)
21 35.87% 62.73% 65.6% (65.82, 4.94e-16) (87.12, 1.02e-20)

Table 3: Comparison of the find-median task. The prompt simply asks GPT-4 to find the median of a list of
numbers. Column 1: numbers uniform on (100.0, 20000.0) to 2 decimals, Column 2: numbers uniform on
(10, 99) as integers, Column 3: name-value pairs with values uniform on (100.0, 20000.0) to 2 decimals. The
right-hand side of the table shows χ2 tests comparing Column 1 to each of the others. Boldface entries are
cases where p < 0.05 and we reject the null hypothesis (that results in the given columns are produced by the
same process). The null hypothesis for all lengths and conditions: thus simply changing the range on the
numbers, or switching to name-value pairs introduces variance beyond what can be explained by sampling
effects.

8



Under review as submission to TMLR

rLen
float in

(100.0, 20000.0)
int in
(10, 99)

Name-value
float in

(100.0, 20000.0)
Compare Cols(1,2)

(χ2, p)
Compare Cols(1,3)

(χ2, p)
11 94.93% 99.77% 52.0% (18.39, 1.80e-05) (231.64, 2.62e-52)
15 94.75% 100.0% 36.0% (24.48, 7.50e-07) (375.91, 9.69e-84)
21 88.32% 99.8% 15.0% (56.26, 6.34e-14) (528.43, 6.2e-117)

Table 4: Comparison of the list-sorting task. The prompt simply asks GPT-4 to sort a list of numbers in
ascending order. Column 1: numbers uniform on (100.0, 20000.0) to 2 decimals, Column 2: numbers uniform
on (10, 99) as integers, Column 3: name-value pairs with values uniform on (100.0, 20000.0) to 2 decimals.
The right-hand side of the table shows goodness-of-fit χ2 tests comparing Column 1 to each of the others.
Boldface entries are cases where p < 0.05 and we reject the null hypothesis (that results in the given columns
are produced by the same process). The hypothesis that Column 2 or 3 is produced by the same process
as Column 1 is rejected for all lengths: thus simply changing the range on the numbers, or switching to
name-value pairs introduces variance beyond what can be explained by sampling effects.

the 4 × 2 and 2 × 4 are significantly different, as are those for 5 × 2 and 2 × 5. Thus, even the hypothesis
that performance on the k1 × k2 multiplication will be equivalent to the k2 × k1 is rejected for at least some
lengths.

Both Dziri et al (Dziri et al., 2023) and Arkoudas (Arkoudas, 2023) look at the example of long multiplication.
Dziri et al note that while the answers for 4 × 4 are almost always incorrect, the first and last two digits of
the GPT-4 answers are almost always correct. They describe this as a matching of “surface probabilities.”
That is, the first two digits of a product are determined by the leading digits of the multiplicands irrespective
of length. Thus, this portion of the answer can always be determined without paying attention to the rest.
Similarly for the last few digits.

Q
Q
QQ

k1
k2 2 3 4 5

2 100% 90.6% 69% 40.6%
3 91.6% 55.2% 15.0% 6.2%
4 80.0% 19.4% 3.2% 1.0%
5 48.4% 8.2% 2.0% 0.0%

Table 5: Percent correct for multiplying a k1-digit by k2-digit number.

k1 × k2 k2 × k1 (χ2, p)
3 × 2 2 × 3 (0.308, 0.578)
4 × 2 2 × 4 (14.863, 1.15 e-4)
4 × 3 3 × 4 (3.398, 0.065)
5 × 2 2 × 5 (6.158 , 0.0130)
5 × 3 3 × 5 (1.496, 0.221)

Table 6: χ2 goodness-of-fit test comparing the results of a k1 × k2 with a k2 × k1 multiplication (i.e., the
off-diagonal elements of Table 5).

5 Related Work

It is well understood that the form of a prompt can greatly affect the results from a LLM as a “few-shot
learner” (Brown et al., 2020), thus giving rise to the newly minted discipline of prompt engineering. For
example, (Yu et al., 2023) show that small differences in prompting for legal reasoning tasks has a significant
impact on the accuracy of responses. Our results confirm these observations for a set of simple deterministic
tasks but with high statistical significance.

9



Under review as submission to TMLR

On the output side, Bender et al. (Bender et al., 2021) note the dangers inherent in ascribing intent and
meaning to utterances generated by LLMs. In particular, we (as humans) make many assumptions about
communications with other humans that can easily lead us to fall prey to the fixed-effect fallacy when working
with LLMs, potentially ascribing a more general capability to the LLM than actually exists. We show that
even for simple tasks there are major sources of variance that are not easy to account for when working with
LLMs.

Our experiments with deterministic algorithms are related to work that examines the capability of LLMs to
perform deductive reasoning (Arkoudas, 2023). In these problems, as with most of the problems we consider,
the LLM must attend to most every token in the input and not “hallucinate” new values that would lead
to short-cut solutions to related but different problems than the one given. In contrast to our experiments,
Arkoudas engages in a conversation with the LLM about each of the deductive problems he poses, where
the LLM often proceeds to contradict itself upon getting a wrong answer. Indeed, the ad-hoc reporting of
conversations with an LLM is fairly widespread (Bubeck et al., 2023) but does not rise to the level of a
controlled experiment where one can make statistically significant statements. Of course, for many complex
tasks it may be difficult to perform the deeper analysis we performed here for simpler tasks.

Others have observed that LLM performance degrades when the input to the LLM grows in size (within
the limits of the LLM’s context window), as we have shown here. Interestingly, Liu et al (Liu et al., 2023)
find that information that is at the beginning or end of the context window has more influence on LLM
performance, even for simple queries that ask the LLM a question whose answer is somewhere in the input.
That is, the position of information is another source of variance, as we saw in the simple prompt rewording
of Table 1, where the major change was to swap the position of the input list and query (wordings 1 and 2).

Wu et al demonstrate considerable performance sensitivity for a series of tasks (Wu et al., 2023). In exploring
counter-factual tasks they conclude that LLMs “rely on narrow, non-transferable procedures for task-solving.”
Dziri et al explore failures of LLMs on seemingly trivial tasks (Dziri et al., 2023). They are especially
interested in compositional tasks. They suggest that transformers often fail since they exploit linearized
patch matching rather than any multi-step reasoning, and that errors propagate in a fashion that compounds.
Schaeffer et al suggest that the often-discussed emergent properties of LLMs are an artifact of the metrics
chosen rather than any fundamental improvement (Schaeffer et al., 2023): “For a fixed task and a fixed
model family, the researcher can choose a metric to create an emergent ability or choose a metric to ablate
an emergent ability.”

Chain-of-Thought (CoT) is a prompting strategy that asks the LLM to output intermediate reasoning steps
before giving the final answer. Research has found that it often improves LLM performance on complex tasks
(Wei et al., 2022). It is worth further research to understand whether CoT-style prompts are more resilient to
the variations shown in our study.

While the sensitivity of performance to prompt-phrasing has spawned the field of ‘prompt engineering’ efforts
to quantify this sensitivity are nascent. Sclar et al examine the effect of phrasing on accuracy for multiple
choice tasks using the LLaMA-2-13B model (Sclar et al., 2023). Sun et al examine zero-shot robustness on
two large standardized datasets (Sun et al., 2023). Our work extends that direction by showing sensitivity not
merely to phrasing, but also input parameter, and using GPT-4 (i.e., a far larger model than used in (Sclar
et al., 2023; Sun et al., 2023)). In focusing on tasks with arbitrarily large parameter spaces (e.g., counting
objects in lists) we avoid many of the concerns that some variant of a task has been seen in training.

Standardized exams are often used to demonstrate LLM’s capabilities. For example, studies has shown
GPT-4 achieving the passing criteria of the Japanese Medical Licensing Examination (JMLE) (Takagi et al.,
2023), the Uniform Bar Examination (UBE) (Katz et al., 2023), and the US Medical Licensing Examination
(USMLE) (Nori et al., 2023). Knowing that even basic tasks are sensitive to trivial variations, it is legitimate
to question whether the variations between a new version of an exam and its previous versions primarily
focus on factors sensitive for humans, but neglect others that can be sensitive only for LLMs.

Yarkoni (Yarkoni, 2019) argues that the problem of improper generalization goes far beyond the language
issue. He suggests that confusing fixed effects for random ones is the source of many of the replication failures
in the social sciences.

10



Under review as submission to TMLR

6 Discussion

We’ve shown in Section 4, the risk that measured performance with a specific prompt fails to generalize
to equivalent versions of the task. This work complements others that have documented the brittleness of
GPT-4’s performance (see related work in Section 5). However, as far as we know, ours is the first to explore
tasks with several different conditions and sufficient statistical power to rule out sampling noise as the sole
source of observed variation. This allows us to state with some confidence that minor modifications have
potentially enormous effects on measured capabilities. This problem is entirely orthogonal to the frequently
mentioned difficulty with hallucinations.

Every measurement experiment comes with decisions about which factors might affect the output, and which
should make no difference. Many of these decisions are implicit, and informed by our intuition and experience
of the world. Since LLMs emulate many human capabilities it is tempting to use intuitions about humans to
guide decisions about which factors should make no difference to LLM measurements. A key finding of this
paper is that this assumption leads to errors that can be significant enough to invalidate claims. Bender
observes that we’ve made “machines that can mindlessly generate text, but we haven’t learned how to stop
imagining the mind behind it.” We suggest that the dangers of anthropomorphizing LLMs includes not just
over-interpreting their capabilities, but also imagining that their robustness to variation resembles that of
humans.

An interesting direction for future work is whether we can derive new margin-of-error bounds. Our problem is
that the presence of unexplained variance means that estimating δq = 1.96 ·

√
q · (1 − q)/N misses an additive

component of unknown magnitude. If rewordings of a particular task can be generated automatically then
estimating their variance would allow new (albeit higher) estimates of margin-of-error.

Since we warn of the risks of improper generalizations we should note the limitations of our findings. Obviously,
we’ve explored a limited set of tasks, and a limited set of modifications of those tasks. The tasks in this
paper are chosen deliberately with several criteria. First, they are deterministic tasks with easily-determined
answers; this is clearly a very restricted portion of the problems to which LLMs might be applied. Second,
the tasks we choose may be particularly difficult for transformer architectures. That is, the attention
mechanism (Vaswani et al., 2017) decides which portions of the context window are most important in
predicting the next token; however, for tasks like counting, sorting, etc., all words in the target list are
important. Third, our prompts ask the questions in a concise and direct manner, without an attempt to
guide the LLM to give a Chain-of-Thought response.

7 Conclusion

We have demonstrated that GPT-4 performance on simple tasks shows sensitivity to trivial modifications and
that this error can be enough to invalidate claims of capabilities. Despite the limited scope of our experiments,
we believe our findings point to a largely-ignored source of error that potentially affects evaluation of LLM
capabilities on all tasks. That is, on every task we’ve considered we’ve found that trivial modifications
introduce variance that invalidates the usual margin-of-error estimates. Our evidence doesn’t rule out the
possibility that the problem might be larger, or smaller, or negligible on some other tasks. However, deciding
that this source of error can be ignored for a given capability comes with a burden-of-proof, and is something
that should be demonstrated empirically, rather than just assumed.

8 Broader impact statment

This paper presents work whose goal is to advance the field of Machine Learning. There are many potential
societal consequences of our work, none which we feel must be specifically highlighted here.

References
Arkoudas, K. GPT-4 Can’t Reason. arXiv preprint arXiv:2308.03762, 2023.

11



Under review as submission to TMLR

Bender, E. M., Gebru, T., McMillan-Major, A., and Shmitchell, S. On the dangers of stochastic parrots: Can
language models be too big? In Proceedings of the 2021 ACM conference on fairness, accountability, and
transparency, pp. 610–623, 2021.

Brown, T. B. et al. Language models are few-shot learners. In Larochelle, H., Ranzato, M., Hadsell, R.,
Balcan, M., and Lin, H. (eds.), Advances in Neural Information Processing Systems 33, 2020.

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J., Horvitz, E., Kamar, E., Lee, P., Lee, Y. T., Li, Y.,
Lundberg, S., et al. Sparks of artificial general intelligence: Early experiments with GPT-4. arXiv preprint
arXiv:2303.12712, 2023.

Clark, H. H. The language-as-fixed-effect fallacy: A critique of language statistics in psychological research.
Journal of verbal learning and verbal behavior, 12(4):335–359, 1973.

Coleman, E. B. Generalizing to a language population. Psychological Reports, 14(1):219–226, 1964.

Dziri, N. et al. Faith and fate: Limits of transformers on compositionality. arXiv preprint arXiv:2305.18654,
2023.

Gelman, A. Analysis of variance—why it is more important than ever. Ann. Statist., 33(1):1–53, 2005.

Gelman, A. and Hill, J. Data analysis using regression and multilevel/hierarchical models. Cambridge
University Press, 2006.

Ghazal, A., Rabl, T., Hu, M., Raab, F., Poess, M., Crolotte, A., and Jacobsen, H.-A. Bigbench: Towards
an industry standard benchmark for big data analytics. In Proceedings of the 2013 ACM SIGMOD
international conference on Management of data, pp. 1197–1208, 2013.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M., Song, D., and Steinhardt, J. Measuring massive
multitask language understanding. arXiv preprint arXiv:2009.03300, 2020.

Katz, D. M., Bommarito, M. J., Gao, S., and Arredondo, P. GPT-4 passes the bar exam. Available at SSRN
4389233, 2023.

Liu, N. F., Lin, K., Hewitt, J., Paranjape, A., Bevilacqua, M., Petroni, F., and Liang, P. Lost in the middle:
How language models use long contexts. arXiv preprint arXiv:2307.03172, 2023.

McCoy, R. T., Yao, S., Friedman, D., Hardy, M., and Griffiths, T. L. Embers of autoregression: Understanding
large language models through the problem they are trained to solve. arXiv preprint arXiv:2309.13638,
2023.

Nori, H., King, N., McKinney, S. M., Carignan, D., and Horvitz, E. Capabilities of GPT-4 on medical
challenge problems. arXiv preprint arXiv:2303.13375, 2023.

Schaeffer, R., Miranda, B., and Koyejo, S. Are emergent abilities of large language models a mirage?, 2023.

Sclar, M., Choi, Y., Tsvetkov, Y., and Suhr, A. Quantifying language models’ sensitivity to spurious
features in prompt design or: How i learned to start worrying about prompt formatting. arXiv preprint
arXiv:2310.11324, 2023.

Sun, J., Shaib, C., and Wallace, B. C. Evaluating the zero-shot robustness of instruction-tuned language
models. arXiv preprint arXiv:2306.11270, 2023.

Takagi, S., Watari, T., Erabi, A., Sakaguchi, K., et al. Performance of GPT-3.5 and GPT-4 on the japanese
medical licensing examination: comparison study. JMIR Medical Education, 9(1):e48002, 2023.

Taylor, J. R. and Thompson, W. An introduction to error analysis: the study of uncertainties in physical
measurements, volume 2. Springer, 1982.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I.
Attention is all you need. Advances in neural information processing systems, 30, 2017.

12



Under review as submission to TMLR

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q. V., Zhou, D., et al. Chain-of-thought
prompting elicits reasoning in large language models. Advances in Neural Information Processing Systems,
35:24824–24837, 2022.

Wu, Z., Qiu, L., Ross, A., Akyürek, E., Chen, B., Wang, B., Kim, N., Andreas, J., and Kim, Y. Reasoning or
reciting? exploring the capabilities and limitations of language models through counterfactual tasks, 2023.

Yarkoni, T. The generalizability crisis. 2019.

Yu, F., Quartey, L., and Schilder, F. Exploring the effectiveness of prompt engineering for legal reasoning tasks.
In Rogers, A., Boyd-Graber, J. L., and Okazaki, N. (eds.), Findings of the Association for Computational
Linguistics: ACL 2023, pp. 13582–13596, 2023.

13


