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Abstract

The physical world dynamics are generally gov-
erned by underlying partial differential equations
(PDEs) with unknown analytical forms in science
and engineering problems. Neural network based
data-driven approaches have been heavily stud-
ied in simulating and solving PDE problems in
recent years, but it is still challenging to move
forward from understanding to controlling the un-
known PDE dynamics. PDE boundary control
instantiates a simplified but important problem by
only focusing on PDE boundary conditions as the
control input and output. However, current model-
free PDE controllers cannot ensure the boundary
output satisfies some given user-specified safety
constraint. To this end, we propose a safety filter-
ing framework to guarantee the boundary output
stays within the safe set for current model-free
controllers. Specifically, we first introduce a neu-
ral boundary control barrier function (BCBF) to
ensure the feasibility of the trajectory-wise con-
straint satisfaction of boundary output. Based on
the neural operator modeling the transfer function
from boundary control input to output trajecto-
ries, we show that the change in the BCBF de-
pends linearly on the change in input boundary,
so quadratic programming-based safety filtering
can be done for pre-trained model-free controllers.
Extensive experiments under challenging hyper-
bolic, parabolic and Navier-Stokes PDE dynamics
environments validate the plug-and-play effective-
ness of the proposed method by achieving better
general performance and boundary constraint sat-
isfaction compared to the vanilla and constrained
model-free controller baselines.
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1. Introduction

Partial differential equations (PDEs) characterize the most
fundamental laws of the continuous dynamical systems
in the physical world (Evans, 1998; Perko, 1996). Non-
analytical PDE dynamics are often involved in complicated
science and engineering problems of computational fluid
dynamics (Kochkov et al., 2021), computational mechanics
(Samaniego et al., 2020), robotics (Heiden et al., 2021), etc.
Recently, neural networks have largely boosted the study
of numerical PDE solvers using data-driven methods, simu-
lating and characterizing the dynamics (Raissi et al., 2019;
Brunton & Kutz, 2024; Kovachki et al., 2023). However, the
PDE control problem remains challenging without any prior
knowledge about underlying PDE equations, serving as a
huge gap from understanding science to solving engineering
problems (Yu & Wang, 2024).

Recent pioneer works (Bhan et al., 2024; Zhang et al.,
2024a) provide various formulations of PDE control prob-
lems and multiple benchmark settings, either in-domain
control (Zhang et al., 2024b) or boundary control (Bhan
et al., 2023). Since it is easier to control the PDE boundary
in the real world, following (Bhan et al., 2024), we focus
on the PDE boundary control setting where the control sig-
nal essentially serves as the boundary condition and the
unknown PDE dynamics itself remains unchanged. Model-
based PDE boundary control has been studied for years, and
backstepping-based methods have been applied to different
PDE dynamics (Krstic & Smyshlyaev, 2008b). Neverthe-
less, the model-based methods cannot work well under the
unknown PDE dynamics, suffering from significant model
mismatch. Model-free reinforcement learning (RL) con-
trollers (Schulman et al., 2017; Haarnoja et al., 2018) have
shown impressive results in the benchmark (Bhan et al.,
2024) compared to the model-based control methods (Pyta
etal., 2015).

Besides, constraint satisfaction is of great importance for the
PDE boundary control problems, but current safe PDE con-
trol methods are typically backstepping-based and require
knowledge about the PDE dynamics (Krstic & Bement,
2006; Li & Krstic, 2020; Koga & Kirstic, 2023; Wang &
Krstic, 2023). The constraint considered in this paper is
called boundary feasibility, which characterizes whether the
boundary output falls into and stays within the safe set at
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Figure 1: Overview of our safety filtering method for PDE bound-
ary control with neural BCBF. Solid line arrows denote the safety
filtering, while dashed ones denote the model training.

the end of the finite-time trajectory, and can be understood
as the constraint of finite-time convergence. Under ordinary
differential equations (ODEs) setting, neural network pa-
rameterized control Lyapunov/barrier functions (CLF/CBFs)
have been adopted to ensure the convergence and safety of
learning-based controllers (Boffi et al., 2021; Dawson et al.,
2023; Chang et al., 2019; Mazouz et al., 2022), based on
the Markov property of the dynamics at each step , i.e., the
change of state only depends on the current state and control
input. However, the Markov assumption does not generally
hold for PDE boundary control due to infinite-dimensional
unobserved states along the spatial axis. It is also chal-
lenging to bypass the unknown PDE dynamics to to find
the boundary control input at each step for trajectory-wise
convergence over boundary output constraint.

To this end, we introduce a new framework to achieve bound-
ary feasibility within a given safe set for the PDE boundary
control problem, as shown in Figure 1. More specifically, we
propose neural boundary control barrier functions (BCBFs)
over the boundary output to enable the incorporation of
the time variable with a finite-time convergence guarantee.
Then, we adopt a neural operator to directly learn the map-
ping from boundary input to output as a transfer function.
Combining well-trained neural BCBF and neural operator,
we show a linear dependence between boundary feasibil-
ity condition and the derivative of boundary control input,
making the safety filtering possible by projecting the ac-
tions from the nominal RL controller to the safe boundary
control input set using quadratic programming (QP). We
conduct experiments on multiple PDE benchmarks and show
our plug-and-play filtering superiority over vanilla and con-
strained RL controllers regarding general performance and
constraint satisfaction. To the best of our knowledge, we are
the first to study safe boundary control with unknown PDE
dynamics. More related work is discussed in Appendix A.
We summarize our contributions below.

* We propose a new PDE safe control framework with a
neural boundary control barrier function to guarantee
the boundary feasibility of the boundary output within a
given safe set.

* We model the control input and output mapping through
a neural operator as a transfer function and prove that

it can be used for safety filtering by solving quadratic
programming.

* We show that the add-on performance after safety filter-
ing is better than both vanilla and constrained RL con-
trollers in boundary feasibility rate and time steps on
multiple PDE environments.

2. Problem Formulation

Following the PDE boundary control setting (Bhan et al.,
2024), we consider the state u(z,t) : ¥ xT — S C R from
the continuous function space C'(X x T;R) governed by
underlying closed-loop partial differential equation (PDE)
dynamics u € S defined on normalized n-dimensional spa-

tial domain X = [0,1] := [0,1]” C R™ and temporal
domain 7 = [0,T] C R as follows,
2
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where D is the PDE system dynamics and U (¢) is the control
signal as the boundary condition. Without loss of generality,
we focus on the Dirichlet boundary control input as U (t) :=
u(1,t) with constant initial condition u(z,0) = U(0) €
S. Instead of optimizing boundary input U(¢) to track or
stabilize full-state observation trajectory u(z, t) (Bhan et al.,
2024), we aim to find U (t) that guarantees the boundary
feasibility of boundary output Y (¢) := (0, ¢) within the
given user-specified safe set Sg C S over T, i.e., Ity €
T,Vt > tg,Y (t) € Sp. Note that the boundary states can
be generalized to any spatially marginalized state-related
trajectories. More formally, we define boundary feasibility
as follows in PDE dynamics.

Definition 2.1 (Boundary Feasibility for Finite-time Con-
straint Satisfaction). With state u(z, t) subjected to closed-
loop PDE dynamics in Equation (1) with the boundary con-
trol input U (¢), the boundary control output Y (¢) is defined
to be feasible over 7 within the given user-specified safe
set Sy € S if the following holds,

dtg € T,Vtg <t < T,Y(t) = U(O,t) € So, 2)
where u(1,t) = U(t), u(z,0) = U(0).

With boundary input and output trajectory pairs
{[U(t), Yi(t)],k = 1,2,...,K} from the unknown
PDE dynamics,we formulate the problem for this paper as
follows.

Problem 1. Given K collected boundary input and out-
put trajectory pairs {[Uk,m, Ye.m], & = 1,2,..., K,m =
1,2,..., M} with M-point temporal discretization, under
consistent initial condition wuy(z,0) = Ug(0) from un-
known but time-invariant PDE dynamics in Equation (1),
we aim to find boundary control input U (z) that guarantees
boundary feasibility of boundary output Y (¢) with user-
specified safe set Sy in Definition 2.1.
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3. Methodology

3.1. Neural Barrier Function for PDE Boundary
Control

Boundary feasibility aims to find control input U (¢) for the
constraint satisfaction of the marginalized output boundary
Y (t) := u(0,t) from the underlying PDE dynamics with
spatially-continuous unobservable state u(z,t), which is
challenging for conventional state-dependent-only CBFs.
Hence, inspired by (Garg & Panagou, 2021b), we pro-
pose the neural boundary control barrier function (neural
BCBF), explicitly incorporating time ¢ into neural network
parameterized function ¢(¢,Y") : 7 x S — R for the time-
dependent zero-sublevel set Sy, := {Y'(t) | ¢(¢,Y () <
0}. Note that the conventional CBF ¢(Y) can be viewed as
a specially case of BCBF ¢(t,Y") where ¢ remains constant.
Another challenge is that the boundary feasibility in Equa-
tion (2) for PDE boundary control is defined on finite time
domain 7 = [0, T, which requires a higher convergence
rate to the safe set than the original asymptotic CBF (Ames
et al., 2014) like fixed-time stability in (Polyakov, 2011;
Garg & Panagou, 2021a). The following theorem shows
the feasibility of boundary control output Y (¢) within the
user-specified safe set Sy under control signal U (¢).

Theorem 3.1 (Boundary Feasibility with Boundary Control
Barrier Function). For the state u(x,t) from the closed-
loop PDE dynamics with boundary control input U (t) =
u(1,t),u(x,0) = Uy, the boundary feasibility of boundary
output Y (t) = u(0,t) over T = [0, T'] within user-specified
safe set Sy is guaranteed with neural BCBF ¢(t,Y") if the
following holds ¥t € T

(Spt = {Y | $(t,Y) <0} C So) /\ 3)
(aY(b : % + at(b + ad)(ta Y) + Ca,T(b(Oa UO) S O) 3

where Co 1 1=
convergence.

—at—7 > 0 is a constant for finite-time

The full proof can be found in Appendix B.2. Note that if
#(0,Up) < 0, the forward invariance (Ames et al., 2019)
can be obtained via T' — oco. With the M-point tempo-
ral discretization of collected boundary input and output
trajectory {[Ug m, Yem).k = 1,...,K,m = 1,..., M},
Ss,t € Sp in Equation (3) induces the loss below following
(Dawson et al., 2022)

K
ﬁS = Z Z [Qb(tmv Yk,m)]+ + Z

k=1 Yi..mESo k=1

> [=é(tm, Yem)l1, with []4 := max{0,-}. (4)

Yi,m &So

=

However, it is challenging to find 4Y (¢)/4¢ involved in Equa-
tion (3) over the discrete time samples since the bound-

ary output Y'(t) = wu(0,t) is governed by the unknown
closed-loop PDE dynamics with the boundary condition
U(t) = u(1,t). Besides, it is also non-trivial to find the
boundary feasibility condition over boundary control input
U (t) for safety filtering due to non-Markov property. There-
fore, we adopt the neural operator to learn the boundary
input-output mapping as a neural transfer function to further
mitigate the non-Markov issue in PDE boundary control
problems with unknown PDE dynamics.

3.2. Learning Neural Operator for Input-output
Boundary Mapping

Different from current applications of neural operators in
learning PDE solutions by temporal mapping (Li et al.,
2020a;b; 2022), we propose to adopt neural operator Gy :
{U:T =8} —{Y: T — S} tomodel the spatial bound-
ary mapping from input to output of the unknown closed-
loop PDE dynamics in Equation (1), i.e., Y (t) = u(1,t) =
Go(U)(t) = Go(u(0,1))(t). Following (Kovachki et al.,
2023) under the setting of same Lebesgue-measurable do-
main 7 for hidden layers, the neural operator is defined as
Gy = QoI 10---0Tyo P,including pointwise lifting
mapping P : {U : T — S} — {vg : T — R0}, iterative
kernel integration layers Z; : {v; : T — R%} — {u4; :
T — R%a },0=0,...,L — 1, and the pointwise projec-
tion mapping Q : {vy : T — R¥r} — {Y : T — S}.
Specifically, the [-th kernel integration layer follows the fol-
lowing form with commonly-used integral kernel operator
(Li et al., 2020a;b; 2022),

vi1(t) = L(v)(t) = orp (Wio(t)+

/ WOt syor(s)ds + b))l = 0.1,... . L—1, (5)
:

where 0741 : R%u+1 — R%u+1 is the activation func-
tion, W, € R%141 %% g the local linear operator, kO e
C(T x T;R%+1%%1) is the kernel function for integra-
tion, and b; € C(T;R%:+1) is the bias function. Be-
sides, since lifting and projection operators P, Q are point-
wise local maps as special Nemitskiy operators (Dudley
et al., 2011; Kovachki et al., 2023), i.e. there exist equiv-
alent functions P : S — R%o0,Q : R%z — S such
that P(U)(t) = P(U(t)), Qvr)(t) = Q(vL(t)),Vt € T.
Therefore, combining Equation (5), we explicitly show the
boundary mapping from control input U (¢) to output Y (t)
below, making them possible to be directly connected as

Y (t) = Go(U)(1),
Y(t) = Go(U)(t) = QuL(t)), (©6)
vi1(t) = Zy(v;)(¢) in Equation (5), v (t) = P(U(¢)),

where P,Q,W;, k" b1 = 0,1,...,L — 1 parameter-
ized with neural networks 6 and compose the neural op-
erator Y(t) = Go(U)(t). Given boundary input and
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output M-step temporally discretized K trajectory pairs
{[Uk7m7yk’m},k = 1,2,...,K,m = 1,2,...,M}, Gg
and neural BCBF ¢ can be optimized together based on
empirical-risk minimization using the following loss func-
tion, min97¢ )\gﬁg 4+ AsLs + AprLBF, Where

K M
Lo =" [Yim — Go(Ur)(tm)|, Ls in Equation (4),
k=1m=1
K M
_ dgo(Uk)(t)
Lpr = ; mz::l Oy, . @ g li=t,, +0¢, O+
Oé(b(tm, Yk,m) + Ca,T¢(O7 Uk:,o)]-‘rv (7)

and []4 := max{0,-},,A\g, As, Apr are weight hyperpa-
rameters for Lg, Ls, LpF, respectively. The loss for neural
operator learning Lg is based on Equation (6), and the
boundary feasibility (BF) loss of LpF is based on Equa-
tion (3) with the replacement of 4Y (t)/at with @9 (U)(t)/at,
which will be detailed in the next section.

3.3. Safety Filtering with Quadratic Programming

Once the boundary input-output mapping is modeled by
neural operator Gy, the boundary output Y(¢) is directly
related to boundary input U(t) from trajectory to trajec-
tory, bypassing the non-Markov property and the unknown
closed-loop dynamics in Equation (1). We first find the
derivative of boundary output Y (¢) w.r.t ¢ based on neural
operator Y (t) = Go(U)(t). Applying chain rule to Equa-
tion (6), the following derivatives hold,

dY (t Tdvur(t d t d
l=L-1 Ovot)_—VP 7()
AR | b t lt )

where the derivative of kernel integration layer J; : {3t :
T = R}y {207 5 R™ima} 1 =0,1,...,L—1
can be found through the derivative of Equation (5) in a
recursive form below,

dora (t) .71(@

pr = )(t) = Diag(o7,;)

duy(t) oW (t, s) db(t)
(VV[ gt Jr/T e vi(s)ds + 7 > 9)

By combining Equation (8) and Equation (9), we have
the theorem in Appendix B.3 to show how the bound-
ary control input U(t) can be chosen to guarantee the
boundary feasibility of boundary output Y (¢) modeled by
neural operator Gg. With the affine property of U(t) in
M = Ag(t)U + pg(t), we formulate the following
quadratlc programming with neural BCBF ¢ and neural

Table 1: Comparison of vanilla models w/o and w/ safety filtering
under multiple environments.

Reward (mean+std)  Feasible Rate  Average Feasible Steps

1D hyperbolic equation (starting at ~-300) (100 episodes) (/50 control steps)

PPO in (Bhan et al., 2024) 157.9+37.5 0.63 7.6
PPO with filtering 165.0+£43.7 0.71 9.8
SAC in (Bhan et al., 2024) 106.2+98.7 0.78 12.4
SAC with filtering 103.4496.4 0.85 13.9

1D parabolic equation Reward (mean+std)  Feasible Rate  Average Feasible Steps

(starting at ~0) (100 episodes) ( 1000 control steps)
PPO in (Bhan et al., 2024) 164.5420.7 0.60 155.0
PPO with filtering 168.2+£23.5 0.81 507.0
SAC in (Bhan et al., 2024) 156.5£6.2 0.72 118.4
SAC with filtering 157.5£6.8 0.87 449.8

Reward (mean+std)  Feasible Rate  Average Feasible Steps

2D Navier-Stokes equation (starting at ~-100) (100 episodes) (200 control steps)

PPO in (Bhan et al., 2024) -5.37+0.01 0.86 2.0
PPO with filtering -5.72£0.17 0.99 32.0
SAC in (Bhan et al., 2024) -18.05+1.13 0.80 175
SAC with filtering -18.36+1.25 0.85 213

operator Gy as a safety filter for Unomimﬂ(t)7 vteT,

Usate (t) = arg min |U — Unomina (2)]|

UcR
st 0vo(t,Y) (MO + po () + 0r6(1,Y) +ag(t, V)
+ CQ,TQS((), Unominal(o)) S O; (11)

where Co 7 = —zr— and Ag(t), ue(t) can be found in

(10)

Equation (31). Based on Usafe(t) at each step ¢, we update
the potential boundary control input Ugyge (t) as Usyge (t) =
fo safe (T)dT + Upomina (0), so that the predicted boundary
output Y;mdm( ) = Go(Usare) (t) can be found by the neural
operator Gy. Therefore, the next QP update can be solved
for Usafe at the next time by Equation (10). More details of
discrete-time implementation can be found in Appendix D.1.

4. Experiment

Following (Bhan et al., 2024), we conduct the safety filter-
ing on the RL controllers of PPO and SAC on hyperbolic,
parabolic and Navier-Stokes PDEs. From all three PDE
environments in Table 1, vanilla PPO and SAC with safety
filtering outperform vanilla PPO and SAC in feasible rate
and average feasible steps, demonstrating the effectiveness
of safety filtering for boundary constraint satisfiability. Be-
sides, the rewards in parabolic and hyperbolic equations can
also be improved through filtering due to the alignment of
boundary constraints and the stabilization goal. In the 2D
Navier-Stokes PDE, due to the inconsistency between the
specific high-speed point boundary for constraint and the
full 2D plane for reward, boundary feasibility is enhanced
by safety filtering while rewards are compromised. The
detailed full version can be found in Appendices C and D.

5. Conclusion

We introduce a novel safe PDE boundary control framework
using safety filtering based on neural operator modeling. Ex-
periments on three challenging PDE control environments
validate the effectiveness of the proposed method.
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A. Related Work

Control for PDE Dynamics. PDE control problems can be in-domain control (Botteghi & Fasel, 2024; Zhang et al.,
2024b) or boundary control (Krstic & Smyshlyaev, 2008b; Smyshlyaev & Krstic, 2010), where the latter is more commonly-
seen setting in the real world. As it has been studied for over a decade, backstepping has become a dominant approach
for boundary control with known PDE dynamics (Krstic & Smyshlyaev, 2008a; Smyshlyaev & Krstic, 2004). Recently,
learning-based controllers have gotten rid of the requirement of analytical forms of unstable PDE dynamics and become a
promising solution to the PDE control problems (Botteghi & Fasel, 2024; Zhang et al., 2024b; Krstic et al., 2024; Qi et al.,
2023; Mowlavi & Nabi, 2023; Wei et al., 2024a; Soroco et al., 2025). Regarding the safety of constraint satisfaction in the
PDE dynamics, current backstepping-based safe PDE control methods (Krstic & Bement, 2006; Li & Krstic, 2020; Koga
& Krstic, 2023; Wang & Krstic, 2023) still assume the non-stable PDE dynamics is known. Recently, (Hu et al., 2025)
introduce safe diffusion models for PDE Control based on conformal prediction to quantify uncertainty. Instead, we focus on
boundary safety constraint satisfiability in the PDE boundary control signal without any prior knowledge of PDE dynamics.

Safe Control with Neural Certificate For the control of the ODE dynamical system, there is rich literature regarding
learning-based controllers with safety guarantees or certificates (Boffi et al., 2021; Dawson et al., 2023; Xiao et al., 2023;
Lindemann et al., 2021; Chang et al., 2019; Mazouz et al., 2022). Neural networks have been used to parameterize the CBFs
under complex dynamics with bounded control inputs (Liu et al., 2022a; So et al., 2023; Zinage et al., 2023; Dawson et al.,
2022; Dai et al., 2022), which result in forward invariance of the user-specified safe set to guarantee the safety with neural
certificate for learning-based controllers (Choi et al., 2021; Wei et al., 2022; Agrawal & Panagou, 2021; Xiao et al., 2022;
Hsu et al., 2023), i.e. once the states enter the safe set, they will never go out. However, forward invariance may not hold
in the PDE boundary control setting with commonly-seen highly oscillating trajectories. For example, highly-oscillating
trajectories may go out of the safe set during the early oscillation and break the forward invariance defined by conventional
ODE CBFs (Liu & Tomizuka, 2014; Ames et al., 2014), but they could still converge to the constraint satisfaction by the end
of time. Therefore, we focus on boundary feasibility, a new notion introduced in this paper. Approach-wise, the CBF-QP for
ODE dynamics (Liu & Tomizuka, 2014; Lindemann & Dimarogonas, 2018; Xiao et al., 2021; Garg & Panagou, 2021b)
does not apply. That is because PDE boundary control does not have Markov property at each control step, due to the
infinite-dimensional unobserved non-boundary states. We adopt a neural operator to model the trajectory-to-trajectory
mapping and control the change of input boundary through a novel QP formulation.

Neural Operator Learning for PDEs. Neural operator learning has become a powerful tool for solving PDEs by learning
mappings between function spaces rather than pointwise approximations (Kovachki et al., 2023; Brunton & Kutz, 2024).
Recent research has demonstrated the utility of neural operators in multiple science and engineering fields like fluid
dynamics, weather forecasting, and robotics (Kochkov et al., 2021; Pathak et al., 2022; Heiden et al., 2021; Raissi et al.,
2019). There exist multiple architectures for neural operators based on different mathematical properties of data. (Lu et al.,
2021) introduces DeepONet with a branch and a trunk network, and NOMAD (Seidman et al., 2022) adopts nonlinear
decoder map to learn submanifolds in function spaces, while Green’s function-inspired neural operators (Li et al., 2020a;b;c;
2022; 2024b) adopt linear integral kernel representation with various kernel implementations. Learning-based methods
(Ma et al., 2023; Li et al., 2024a) are proposed for differentiable simulation of PDE dynamics, but neural control of PDE
dynamics is less explored. Recent work (Manda et al., 2024b) introduces operator learning for mapping from environmental
parameters to the corresponding CBF under HJ-PDE (Bansal & Tomlin, 2021; Manda et al., 2024a), which does not directly
study the PDE control problem. For the PDE boundary control problem, current works (Bhan et al., 2023; Krstic et al.,
2024) only adopt neural operators to learn the integral kernel in backstepping, which does not release the full potential of
neural operator for characterizing and controlling unknown dynamics. The proposed work is the first to leverage neural
operators to learn the direct mapping from control input to boundary output as a transfer function.

B. Proofs

B.1. Preliminary

Definition B.1 (Boundary Feasibility for Finite-time Constraint Satisfaction). (restated from Definition 2.1) With state
u(z, t) subjected to closed-loop PDE dynamics in Equation (1) with the boundary control input U (¢), the boundary control
output Y (¢) is defined to be feasible over 7 within the given user-specified safe set Sy € S if the following holds,

At € T, Vg <t <T,Y(t) := u(0,t) € Sy, where u(1,t) = U(t),u(z,0) = U(0). (12)

9
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Definition B.2 (Neural operator for input-output boundary mapping). Neural operator from Section 3.2 Gy : {U : T —
S} = {Y : T — S} can be formalized as

Y(t) =Go(U)(t) = Q(vr(t)),vo(t) = P(U(t)), where each layer v;(¢) is (13)
Ul+1(t) = Il(vl)(t) =041 (lel(t) + / H(l)(t, s)vl(s)ds + b (t)) J=0,1,...,L—1 (14)
T

where 041 : R%1+1 — R%141 is the activation function, W, € R%1+1 %% i the local linear operator, P € Rvoxdim(S) apd

Q € RIM(S)xvr are lifting and projection matrix, () € C(T x T;R%+1*%1) is the kernel function for integration, and
b € C(T; Rd“l+1) is the bias function. And P, Q, W;, (), b;,1 =0,1,..., L — 1 are parameterized with neural networks
6.

B.2. Proof of Theorem 3.1

Theorem B.3 (Boundary Feasibility with Boundary Control Barrier Function). For the state u(x,t) from the closed-loop
PDE dynamics with boundary control input U(t) = u(1,t),u(xz,0) = Uy, the boundary feasibility of boundary output
Y (t) = u(0,t) over T = [0, T within user-specified safe set Sy is guaranteed with neural BCBF ¢(t,Y') if the following
holds ¥t € T

(Sps = 1V | 6(1.Y) < 0} € S0) \ (ayqs DY 016+ 00(t.Y) + Card(0.Up) < o) (1)

where Co, 7 1= —— > 0 is a constant for finite-time convergence. Similarly, the boundary feasibility with neural BCBF
oY) holds if Equation (3) holds by letting Oy ¢ = Vy ¢, Orp = 0.

Proof. To show the boundary feasibility of the boundary output of Y (¢) within user-specified safe set Sy, by Definition B.1,
we need to show
3ty € [0, T, 5.t.5t € [to, T], Y (t) € So. (16)
With the sublevel set Sy ; being the subset of Sp, i.e., Syt :={Y | ¢(¢,Y) < 0} C Sy, it is sufficient to prove
Tt € [0,T], s.t.Vt € [to, T, (¢, Y () <O0. 17)

Now denote ¢ (t) := ¢(t, Y (t)), by initial constant boundary condition Y (0) = »(0,0) = u(1,0) = Uy, we have the
following equivalent inequalities hold,

Oy - % + 816+ ag(t,Y) + Ca,rd(0,Y(0)) <0 (18)
= PEXO) 4 a0(1,v) + Cur(0,Y () < 0 19)
= %(tt) +ar(t) + Carp(0) <0 (20)
= e“dlfi—it) + e arp(t) + e Co,7(0) < 0,V € [0,T] 21)
at Ca,1%(0) Jat
o MO+ ) (22)
dt
So we have the function e®*1)(t) + C‘*%w(o)e“t be non-increasing over ¢ € [0,T]. By T' > 0, we have
Ca,r(0 Co,71(0

[eatw@) + 77;/)( )eath:T < [eatw(ﬂ + ,::)éw( )eat“t:O (23)

aT
= YD) + = (0) < $(0) + —7—%(0) 24)
— e Ty(T) <0 (25)
<~ Y(T)<0 (26)
— ¢(T,Y(T)) <0 27
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So at least at tg = T, ¢(to,Y (to)) < 0, which proves Equation (17) holds and the original theorem has been proved.
Furthermore, let us look at the boundary feasible steps. Since e“*1)(t) + C“#w(o)eat = e ((t) + C“wa(o)) is non-
increasing, with the strictly increasing and positive ¢, it is easy to find function 1 () + CL‘%MO) being non-increasing, i.e.
1(t) is non-increasing. Therefore, if Uy < 0, ¢(¢, Y (t)) < ¢(0,Y(0)) = Up < 0,Vt € [0,T]. If Uy > 0, since MLP-ReLU
parameterized neural BCBF ¢ and boundary control output Y are continuous, by mean value theorem, we have

$(0,Y(0)) > 0,¢(T,Y(T)) < 0= 3ty € [0,T], d(to, Y (t)) = 0. (28)

Since ¥(t) = ¢(t, Y ()) is non-increasing, we have
Jto € [0, T, s.t.Vt € [to, T), (£, Y'(£)) < 0, (29)
which concludes the proof. O

B.3. Proof of Theorem on Boundary Feasibility with Neural Operator

Theorem B.4 (Boundary Feasibility with Neural Operator). Assuming the neural operator Gy as an exact map from
boundary input U (t) to output Y (t) for an unknown closed-loop PDE dynamics without model mismatch, the boundary
control input U (t) is guaranteed to induce boundary feasibility of output Y (t) over T = [0, T'] within the sublevel set of
neural BCBF ¢ if U(t) satisfies

dGe(U)(t)

Oy 0(t. 0o (U) =

+ 0:0(t,Go(U)) + ad(t,Go(U)) + Co,7¢(0,U(0)) <0,YVt € T (30)

where Co 7 = —ap—, and ddo (dltj)(t) can be found below with H?() =1,

L—1 L-1 %
% =vQ' ll;lo (Diag(oh, _)Wr-1-1) VPT%Y) + VQ " Diag(c?}) ; [Jl;[l Wi—;
(L—1—4) , _
Diag(a’ij)] </T %B—t(t’S)deﬂl(s)dS + W)) =Ag()U(t) + po(t) 31)

Proof. The proof of Equation (30) is based on Theorem B.4 and Equation (31) can be derived by recursively applying
Equation (9) to Equation (8). To show the boundary feasibility over sublevel set of ¢ hold, we first want to show Equation (31)
holds. According to Definition B.2, we first rewrite the neural operator as

Y(t) = Go(U)(t) = Q(vr(t)),vo(t) = P(U(t)), where each layer v;(¢) is
mmwzzwmw:mﬂ(mWw+/%@w@m@m+m@)J:mLqu—l 32)
T
where P,Q, W, k® b1 = 0,1,...,L — 1 are neural networks, kernel function (), activation function o; and bias

function b; are first-order differential. Since the operator shares the same input function domain and output function domain
over t € RT, applying chain rule to Equation (32), we can find the derivative with respect to ¢ for each layer as,

dy (t) Tdvup(t) wo(t) +dU(t) o duga(t)

& V@ TR VP TR for each derivative l=L-1,...,0, (33)
dopga(t)  dy . , duy(t) ok (t, s) dby(t)
% jl(%)(t) = Diag(o,,1) | Wi p7ans -~ Tvl(s)ds T (34

11
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Now put Equation (34) into Equation (33) recursively, we have

G _ g dvct) )

dt dt
dvr,_1(t) OrE=1(t, 5)

. , dbyr,_1(t
) | G Ding(or,) < /T atvL_l(s)dHLd;“) (36)
dvr,_o(t)
dt
orE—2) dbr— Ok~
( /T Al P Ld;(t)) + VQ T Diag(o} ) /T O (syas

dby_1(t)
+ T) 37

=...(recursively apply Equation (34))

=VQ " Diag(oh )Wy _1

=VQ " Diag(c} )Wy_1Diag(c),_ )W _o + VQ " Diag(c} )Wy _, - Diag(o}_,)-

. . dug(t . .
=VQ " Diag(cp )W ... Dlag(a’l)Wo%() + VQ " Diag(c} )Wy, _Diag(c},_,)--- Wy

(0)
pisg(o}) ([ 25 un(syds + P40 4o+ VQ Ding(o Wi - Do 1)
T

(L—2) (L=1)
/ M’UL—Q(S)CZS + dra(t) + VQTDiag(a}d)(/ MUL—l(S)dS
T ot dt T ot

dbr (1),
dt

L—-1 TdU(t) L—-1

=vQ" H (Diag(c},_))Wr_1-1) VP = VQ "Diag(o7,) Z [H Wy _;Diag(o,_;)]-
1=0 i=0 \ j=1

aH(L_l_i)(t7S) dbLflfi(t)
([0, o Bt

(38)

Note that the final expression in Equation (39) is actually linear with respect to U (t) and the weight and bias terms only
depend on the parameters of the neural operator 6 and the values at time ¢. Denote the linear weight and bias as Ag(t), e ()

L—-1

Ap(t) :=VQ" ] (Diag(o,_)Wr_1-1) VP, pg(t) := VQ ' Diag(c?,)- (40)
=0

=L o, OrL=1=0)(¢ 5) dby_1_i(t)

; [1;[1 Wy ;Diag(o,_;)] - </T T%ﬂ—i(s)ds + dt) ; 41)

then we have - P
dt( - (dt)( ) = No()U(t) + po (1)

Since Y (t) = G(U)(t), Equation (30) is equivalent to

Oy % +09 + ad(t,Y) + Ca,r9(0,U(0)) < 0.
Similar to the proof of Theorem B.3, we have
Tty € [0, T, s.t.Vt € [to, T), (¢, Y (t)) <0, (42)
which concludes the proof of boundary feasibility over the sublevel set of ¢. O

Remark B.5. We remark that if the sublevel set of neural BCBF ¢ is a subset of user-specified safe set Sy, and there is
no model mismatch between neural operator Y (t) = Go(U)(¢) and unknown closed-loop PDE dynamics, Theorem B.4
is equivalent to Theorem 3.1. Then the boundary control input U (¢) satisfying Equation (30) is guaranteed to induce the
boundary feasibility of boundary output Y (¢) within the user-specified safe set S.

12
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Table 2: Comparison of constrained RL models w/o and w/ safety filtering for 1D hyperbolic PDE.

. Reward (mean+std) Feasible Rate under Y constraints Average Feasible Steps
Constrained RL Models (starting at ~-300) (100 episodes) (/50 control steps)
CPO (Achiam et al., 2017) 168.7+28.8 0.88 (Y<1) 0.52(Y<0) 112(<1l) 42(¥<0)
CPO with filtering 168.8£28.6 0.89 (¥Y<1) 0.56 (Y<0) 148 (Y<1) 4.7(Y<0)
SAC-Lag (Ha et al., 2020) 110.9+92.1 0.84 (Y<0) 0.50 (Y<-0.5) 20.8 (Y<0) 3.1(¥Y<-0.5)
SAC-Lag with filtering 107.6£90.3 0.90 (Y<0) 0.67 (Y<-0.5) 189 (¥Y<0) 29 (¥<-0.5)

C. Experiment

In this section, we aim to answer the following two questions: How does the proposed plug-and-play safety filtering perform
based on the vanilla and constrained RL controllers in unknown PDE dynamics? How do different types of barrier functions,
convergence criteria, and neural operator modeling influence the performance of the proposed safety filtering? We answer
the first question in Appendix C.2 and the second one in Appendix C.3, following the setup of model training and evaluation
metrics. Appendix D gives more details and results.

C.1. Experimental Setup

Environments and model-free controllers. We adopt the challenging PDE boundary control environments and the
model-free reinforcement learning (RL) models from (Bhan et al., 2024) to conduct our experiment. More specifically, the
three environments include the unstable 1D hyperbolic (transport) equation, 1D parabolic (reaction-diffusion) equation and
2D nonlinear Navier-Stokes equation, where the last one is for tracking task and others are for stabilization task. Since our
setting in Problem 1 does not have prior to the PDE equations, we choose the vanilla PPO (Schulman et al., 2017) and
SAC (Haarnoja et al., 2018), and constrained RL models CPO (Achiam et al., 2017) and SAC-Lag (Ha et al., 2020) as the
baselines in each environment for fair comparisons. The boundary control inputs are consistent with (Bhan et al., 2024). For
1D environments, the boundary output for the hyperbolic PDE is Y (¢) = u(0, t) and the boundary output for the parabolic
PDE Y (t) = u(0.5,¢). For the 2D environment, the boundary output is Y (¢) = «(0.5,0.95, ¢), which has the maximum
speed over 2D plane. The boundary feasibility constraints are detailed in Appendix D.1. With the PDE controllers in (Bhan
et al., 2024), we collect 50k pairs of boundary input U (¢) and output Y (¢) trajectory with safety labels based on safety
constraints. The resolution of collected trajectories is consistent with the control frequency of each environment.

Model training and evaluation metrics. With the collected dataset from vanilla RL models, we adopt the Fourier neural
operator (FNO) (Li et al., 2020a) as the default neural operator model and train it with Markov neural operator (MNO)
(Li et al., 2022) using the default hyper-parameters. For the neural BCBF training, following (Zhang et al., 2023; Hu
et al., 2024), we use a 4-layer feedforward neural network with ReLU activations to parameterize BCBFs and incorporate
Equation (4) and Equation (7) with default o = 10~° into the regular model training pipeline (Zhao et al., 2020; Dawson
et al., 2022) to train time-dependent BCBF ¢(¢,Y") as default. With the well-trained neural operator and neural BCBF, we
solve the QP of Equation (10) though CPLEX (IBM) For the evaluation of safety filtering for RL controllers, we keep the
original RL rewards from (Bhan et al., 2024) as a metric to show if the performance is compromised by the enhancement
of safety constraints. Besides, we introduce two new metrics regarding boundary feasibility, Feasible Rate and Average
Feasible Steps. Feasible Rate is the ratio of trajectories that boundary feasibility in Definition 2.1 is achieved, i.e., the
boundary output falls into the safe set and will not go out of it by the end of a single trajectory with finite steps. Average
Feasible Steps is the mean steps among boundary feasible trajectories in which the boundary output is consistently kept in
the safe set until the end of the trajectory, characterizing how long the boundary feasibility is achieved and maintained.

C.2. Results Comparison

Comparison of vanilla models with safety filtering. From all three PDE environments in Table 1, vanilla PPO and
SAC with safety filtering outperform vanilla PPO and SAC in feasible rate and average feasible steps, demonstrating the
effectiveness of safety filtering for boundary constraint satisfiability. Besides, the rewards in parabolic and hyperbolic
equations can also be improved through filtering due to the alignment of boundary constraints and the stabilization goal. The
reward of the filtered SAC model in the hyperbolic equation is compromised because the constraint Y < 0 conflicts with the
stabilization task of Y — 0. In the 2D Navier-Stokes PDE, due to the inconsistency between the specific high-speed point
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Table 3: Comparison of time-independent and time-dependent safety filtering in hyperbolic equations.

Reward (mean+std) Feasible Rate = Average Feasible Steps

Different safety filtering (starting at ~-300) (100 episodes) ( 50 control steps)

PPO with filtering of ¢(Y) 162.3+44.5 0.63 8.3
PPO with filtering of ¢(¢,Y") 165.0£43.7 0.71 9.8
SAC with filtering of ¢(Y") 103.3+98.4 0.57 15.7
SAC with filtering of ¢(t,Y) 103.4+96.4 0.85 13.9

Table 4: Filtering with BCBF ¢(¢, V') under different neural operators for 1D hyperbolic equation.

Reward (mean+std) Feasible Rate  Average Feasible Steps

Different neural operators (starting at ~-300) (100 episodes) (50 control steps)

PPO w. MNO (Li et al., 2022) 163.8+47.2 0.78 9.0
PPO w. FNO (Li et al., 2020a) 165.0+43.7 0.71 9.8
SAC w. MNO (Li et al., 2022) 103.3+96.4 0.84 14.7
SAC w. FNO (Li et al., 2020a) 103.4+96.4 0.85 13.9

boundary for constraint and the full 2D plane for reward, boundary feasibility is enhanced by safety filtering while rewards
are compromised.

Safety filtering performance based on constrained RL models. To further show the plug-and-play efficacy of our safety
filtering method, we present the filtering performance over the constrained RL models in Table 2 using the pre-trained BCBF,
which is trained over data collected from vanilla RL models. We can see that compared to CPO (Achiam et al., 2017), the
filtered controller tends to improve the boundary feasibility, especially for the stronger constraint Y < 0. Safety filtering
over SAC-Lag (Ha et al., 2020) will give higher feasibility rates over the boundary, while the average feasible steps slightly
decrease because feasible steps along trajectories become more concentrated and less divergent after filtering. Besides,
despite the potential conflict between boundary constraint and stabilization, the reward will not be hurt significantly via
safety filtering.

C.3. Ablation Study

Comparison of safety filtering using ¢(Y) vs. ¢(¢,Y"). With different boundary control barrier functions in Table 3, with
the PPO model, safety filtering with ¢(t,Y") outperforms filtering with ¢(Y") in reward and boundary feasibility metrics,
showing that time-dependent BCBF can distinguish the feasibility of the PDE boundary state more effectively by explicitly
taking time as an input compared to the time-independent one. Based on the vanilla SAC model, reward and feasible
rate with ¢(¢,Y") filtering is higher but the average feasible step is lower than ¢(Y) filtering, because time-independent
BCBF ¢(Y) tends to have divergent performance with more non-feasible trajectories and more feasible steps for feasible
trajectories.

Boundary mapping with different neural operators. Here we compare two neural operators, FNO (Li et al., 2020a)
and MNO (Li et al., 2022), for learning the boundary mapping from control input U (¢) to output Y (¢) for 1D hyperbolic
equation in Table 4. With the same time-dependent BCBF ¢(¢, V), the safety filtering with FNO presents higher rewards
under both PPO and SAC base models, showing that FNO is more suitable for learning low-resolution trajectories with 50
sampled points. Besides, MNO shows a better feasible rate and average feasible steps performance, especially with SAC as
the base model, since the MNO model has a larger model complexity.

Qualitative visualization. In this section, we visualize and compare multiple trajectories under the 1D hyperbolic equation
using the PPO controller without and with safety filtering of ¢(¢,Y"), as shown in Figure 2. We can see that for each

trajectory, the state value u(x,t) after filtering is lower than that before filtering. More specifically, as time goes by, the
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PPO controller before and aftering filtering for hyperbolic equation

After filtering Before filtering -=== Usafe(t) -=== Unominal(t)

Time

— Ysare(l) — Ynominai(t) Safety constraint

Time ! Time

Figure 2: Visualization of three state trajectories u(x, t) (left, mid, right) for hyperbolic equation under PPO controller with and without
safety filtering. Boundary control inputs U (¢) are in dashed lines, and boundary outputs Y (¢) are in solid lines. The boundary constraint
Y (t) < 1isin green.

filtered control input U (¢)s,fe in blue dashed lines deviates more away from nominal control input U (¢)sominal in red dashed
lines, causing the filtered boundary output Y (). in blue solid lines to satisfy the constraint Y (¢) < 1 compared to the
nominal boundary output Y (¢)nominal in red solid lines.

D. More Experiment Details and Results
D.1. Additional Experiment Setting

Data preparation. For 1D environments, the boundary input is U(t) = w(1,t) while the boundary output for the
hyperbolic PDE is Y (¢t) = u(0, ¢) and the boundary output for the parabolic PDE Y (t) = (0.5, t) since u(0,t) = 0. For
the 2D environment, the boundary input is the x-axis consistent boundary condition, i.e., u(z, 1,t) = U(x),v(z, 1,t) =
0,Vz € [0, 1]. The boundary output is Y (¢) = u(0.5,0.95,t), v(x,0.95,¢) = 0,Vz € [0, 1], which has the maximum speed
except for control input and can be viewed as an indicator for tracking performance. Note that we focus on the boundary
output, which only depends on time in high-dimensional cases. The temporal resolution of collected trajectories is consistent
with the control frequency of each environment in (Bhan et al., 2024), i.e., 50 steps in Ss for hyperbolic PDE, 1000 steps in
1s for parabolic PDE and 200 steps in 0.2s for Navier-Stokes PDE. We train the RL models PPO and SAC following the
default hyper-parameters and unstable PDE settings in (Bhan et al., 2024) for hyperbolic and parabolic equations, while
directly adopting the pre-trained models under default Navier-Stokes equation. For the data collection in the 1D hyperbolic
equation, we evaluate the backstepping-based model (Krstic & Smyshlyaev, 2008a), PPO and SAC models with random
initial conditions Uy € [1, 10] and collect 50k pairs of input and output u(1,t), u(0, ) trajectories for each model. Similarly,
for the 1D parabolic equation, we evaluate the backstepping-based model (Smyshlyaev & Krstic, 2004), PPO and SAC
models with random initial conditions Uy € [1, 10] and collect 50k pairs of input and output u(1,t),u(0.5,t) trajectories
for each model. For the Navier-Stokes equation, we evaluate the model-based optimization method (Pyta et al., 2015), PPO
and SAC models with random initial conditions ug € [—0.1,0.1] and default tracking ground truth and collect 10k pairs
of input and output «(0.05, 1,t), (0.5, 0.95, t) trajectories for each model. After the data pairs are collected, we annotate
the safety label with pre-defined safe constraints based on the original performance of each policy. We specify one-sided
safe sets So = {Y : AY < b} for stabilization tasks and two-sided safe sets Sy = {Y : |Y — Y| < b} for tracking tasks.
Specifically, for the hyperbolic equation, Y < 1 for PPO and Y < 0 for SAC; for the parabolic equation, ¥ < 0.6 for
PPO and Y > —0.26 for SAC; for the Navier-Stokes equation, |Y — Ygt| < 0.145 for PPO and SAC models. Then we
randomly split 90% as a training dataset and leave others as a test set. The safe reinforcement learning baselines are based
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Algorithm 1 Safety Filtering Procedure for Discrete-time Implementation

Input: Initial and nominal control input U(‘)‘f’]\n}[i“al, neural operator G, neural BCBF ¢
Output: Filtered safe control input U,
Initialize AU, = AU U — Ugonined, Ve G(Upegn)
form=1:M do

Find AU through QP in Equation (10) based on Aynominal Yl'fr;ffm, G, ¢, Upominal

Update U - 37, AU + gorind

Update Y537 + G(U})
end for

saf

return U

R A A S o T

on cumulative costs with empirical performance towards the safety constraints of the output boundary (Achiam et al., 2017;
Ha et al., 2020; Liu et al., 2022b; 2024).

Model training. To train the neural operator models, we adopt the public package (NeuralOperators.jl), using the
default gelu-activation model of FNO with channels of (2, 64, 64, 64, 64,64, 128, 1) and 16 modes, MNO with channels of
(2,64, 64,64,64,64,1) and 16 modes. All the models are trained for 100 epochs with learning rate 10~3, /-2 regularization
weight is 1074, ADAM optimizer and ¢-2 loss. The resolutions and scales of hyperbolic, parabolic, and Navier-Stokes
trajectories are 50, 1000, and 200 for 5s, 1s, and 0.2s, respectively. We keep the same setting for different environments and
remark that we do not fully exploit the potential for the best performance of neural operators since it is not the main focus of
this work. For the neural BCBF training, we directly use the finite difference of Y (¢) collected from real PDE dynamics
instead of the gradient of the neural operator to avoid noise. Following the implementation of (Dawson et al., 2022; Zhang
et al., 2023; Hu et al., 2024), we adopt 4-layer MLPs with ReL.U with layer dimensions of (16,64,16,1) to model neural
BCBFs. The time ¢ is concatenated with Y'(¢) as input for time-dependent neural BCBF ¢(¢,Y") while only Y (¢) is input for
time-independent neural BCBF ¢(¢,Y"). To construct the safe set loss in Equation (4), we adopt all the sampled steps along
trajectories with unsafe labels while only choosing the latest” safe sampled steps where boundary feasibility is satisfied in
Definition 2.1, i.e. once Y (¢) is with safe label, it will never become unsafe in finite time 7. For the boundary feasibility loss
in Equation (7), due to too much data close to 0, we adopt a random drop of close-to-0 data to balance the output boundary
data distribution. Specifically, for the hyperbolic equation, we keep 20% data within [-0.1,0.1] while keeping 20% data
within [-0.01,0.01] for the parabolic equation. Following (Liu et al., 2022a), we adopt a regularization loss to avoid the
shrinking of the sublevel set during training with a default weight of 1. We train all models with ADAM for 20 epochs with
an initial learning rate of 0.01. The learning rate decay rate is 0.2 after each 4 epochs.

Discrete-time Implementation. Note that we let Usafe = Unominal for the unfiltered time steps during the QP iteration. The
discrete-time implementation of the safety filtering procedure is shown in Algorithm 1. To accommodate the advection-
dominated problems like the 1D hyperbolic problem or Navier Stokes, where the propagation speed from input to output
boundary is not infinite, we predict the whole input and potentially delayed output trajectory through the neural operator
at each step during the safety filtering. We adopt the predicted Y (¢) from the neural operator after each filtering step,
and the filtering threshold is detailed as a workaround for the model mismatch below, along with a discussion on how
approximation errors affect safety filtering. We remark that iterative filtering with the prediction of Y (¢) at each step aims
to avoid large approximation errors in Equation (31) in the discrete-time setting compared to one-time filtering for the
whole trajectory. Besides, as the computation of QP is not yet real-time, it is not yet ready to interact with the real PDE
dynamics. we adopt the predicted Y (¢) from the neural operator after each filtering step instead of real PDE dynamics.
To handle the model mismatch issue between neural operator modeling and real underlying PDE dynamics, the filtering
threshold 7 > 0 is introduced as a workaround and we leave the study of model mismatch of PDE dynamics as future work.
Specifically, the safety filter is disabled when 17 = 0. The larger 7 is, the more boundary feasibility within the safe set will be
achieved, showing a trade-off between stabilization and constraint satisfaction. The final control trajectory is found through
Equation (43) with threshold n = 2 as default, mitigating the discrepancy between the PDE environment and the neural
operator.
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Table 5: Comparison time-independent and time-dependent safety filtering in different equations.

Reward (mean+std) Feasible Rate = Average Feasible Steps

ID parabolic equation (starting at ~0) (100 episodes) (1000 control steps)

PPO with filtering of ¢(Y") 162.9+19.6 0.46 5194
PPO with filtering of ¢(¢,Y) 168.2+23.5 0.81 507.0
SAC with filtering of ¢(Y") 157.94+6.9 0.92 543.2
PPO with filtering of ¢(¢,Y") 157.5+6.8 0.87 449.8

Reward (mean+std) Feasible Rate ~ Average Feasible Steps

2D Navier-Stokes equation (starting at ~-100) (100 episodes) (200 control steps)

PPO with filtering of ¢(Y") -5.37£0.01 0.86 22
PPO with filtering of ¢(¢,Y") -5.72£0.17 0.99 32.0
SAC with filtering of ¢(Y") -18.05+1.14 0.79 17.8
SAC with filtering of ¢(¢,Y") -18.36+1.25 0.85 21.3

' . . . o ‘
Usafe(t) = / U(T)dT + Unomina](o), U(T) _ {Usate(T)vlf ||Usafe(7') Unomlnal(T)” <mn, (43)
0

Uhnominal(T), otherwise.

We remark that iterative filtering with the prediction of Y (¢) at each step aims to avoid large approximation errors in
Equation (31) in the discrete-time setting compared to one-time filtering for the whole trajectory.

D.2. Additional Results

Influence of filtering threshold. Since the boundary output Y (¢) is predicted from the neural operator in Algorithm 1,
the model mismatch significantly influences the performance of safety filtering, where we handle it through a filtering
threshold 7 in Equation (43). We investigate it to show the trade-off between general performance and boundary feasibility.
From Figure 3, it can be seen that as the threshold goes up, the reward first slightly increases and then drops significantly,
showing that the strong safety filtering may hurt the stability of the PPO controller due to the model mismatch between
direct boundary mapping with the neural operator and underlying PDE dynamics. Besides, with a larger filtering threshold
7, the average feasible steps become larger as the safety filtering becomes stronger, especially for time-dependent BCBF
¢(t,Y), guaranteeing constraint satisfaction over boundary output. With small 7, the average feasible steps may be less
than the one without filtering because of more feasible trajectories with last-step feasibility. Safety filtering aligns with the
stabilization to increase the reward, but the noise from the model mismatch between the neural operator and real dynamics
will make the performance collapse if the safety filtering is too strong. For the boundary feasibility, we can see that the
average feasible steps keep going up as the threshold increases, showing that the finite-time convergence is enhanced for
the feasible trajectories. However, when the threshold becomes too large, e.g. 7 = 10, the feasible rate also decreases
significantly because the system is no longer stable, as the reward indicates.

Comparison of asymptotic and finite-time boundary feasibility. In Table 6, we show the comparison of safety filtering
with BCBF ¢(t,Y") for 1D hyperbolic equation for asymptotic and finite-time boundary feasibility. Asymptotic boundary
feasibility is with the neural BCBF trained and tested with C, 7 = limp_, ea¥+1 = 0 while finite-time boundary
feasibility is with C,, 7 = 0.02 using T" = 50. It can be seen that BCBF with finite-time feasibility has a better feasible rate,
especially the SAC model, as asymptotic feasibility is weaker than finite-time feasibility and takes longer steps to converge.
However, for the general reward performance, since asymptotic feasibility causes weaker filtering effects, the reward tends
to be closer to the vanilla reward without filtering compared to finite-time feasibility, which is validated in Table 6.

More comparison with different operators. In this section, we show the comparison of two neural operators, FNO (Li
et al., 2020a) and MNO (Li et al., 2022) for the safety filter performance with ¢(Y") in learning the boundary mapping from
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Figure 3: The reward and feasible rate under different filtering threshold 1 in Equation (43) with BCBF ¢(Y") (left) and ¢ (¢, Y") (right) for
PPO model in hyperbolic equation. Note that n = 0 indicates the vanilla PPO model without safety filtering.

Table 6: Results of filtering with BCBF ¢(t, Y") for 1D hyperbolic equation for asymptotic Co,7 = limr—cc —z7—; = 0 and finite-time
Cor = =0.02atT = 50,a = 107>,

JR T
el —1

Reward (mean+std) Feasible Rate = Average Feasible Steps

Different neural operators (starting at ~-300) (100 episodes) ( 50 control steps)

PPO for asymptotic feasibility 163.8+40.6 0.70 8.1
PPO for finite-time feasibility 165.0£43.7 0.71 9.8
SAC for asymptotic feasibility 104.6£98.6 0.56 14.7
SAC for finite-time feasibility 103.44+96 .4 0.85 13.9

control input U (¢) to output Y (¢) for 1D hyperbolic equation. Note that MNO models have larger model complexity than
FNO models. Different from Table 4, in Table 7, we can see that with weaker BCBF ¢(Y"), MNO performs no worse than
FNO in feasible rate and reward, showing that larger model complexity will compensate the performance of BCBF in the
safety filter framework.

More visualization of hyperbolic and Navier-Stokes equations. Here, we visualize the trajectories under 1D hyperbolic
equation using a SAC controller without and with safety filtering of ¢(¢,Y"), as shown in Figure 4. Similar to 2, for each
trajectory, the state value u(x, t) after filtering is lower than that before filtering, i.e., the blue area is lower than the red area.
For the output boundary, the filtered one Y (¢)s,¢ in blue solid lines goes towards the constraint Y (¢) < 0 compared to the
nominal boundary output Y (¢)somina in red solid lines, because of the output boundary. The difference is not very large in
the last two figures because the threshold is relatively small to keep the stability of the output. As the visualization shows in
Figure 5, it can be seen that the mid-upper high-speed tracking performance is improved compared to the baseline without
filtering due to the constraint satisfaction. However, since the output boundary is just one point in the high-speed part, the
general performance after filtering is not improved significantly, which is consistent with the findings in Table 1.
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Table 7: Results of filtering with BCBF ¢(Y") under different neural operator modeling for first-order transport equation. The boundary
feasibility constraint is Y < 1 for PPO and Y < 0 for SAC models.

Reward (mean+std) Feasible Rate = Average Feasible Steps

Filtering with different BCBFs (starting at ~-300) (100 episodes) (50 control steps)

PPO w. MNO 162.9+45.2 0.68 8.7
PPO w. FNO 162.3£44.5 0.63 8.3
SAC w. MNO 103.2£98.3 0.59 15.4
SAC w. FNO 103.3£98.4 0.57 15.7

Table 8: Comparison of before QP and after QP filtering with different thresholds using ¢(Y") and ¢(¢, Y) for PPO model under hyperbolic
equation.

Filtering with ¢(Y") Reward (mean+std) Feasible Rate Average Feasible Steps
Before QP (baseline) 157.90+37.46 0.63 7.56
After QP with threshold 0.5 158.454+37.82 0.65 7.49
After QP with threshold 2 162.26+44.53 0.63 8.49
After QP with threshold 5 114.40+83.25 0.67 11.01
After QP with threshold 10 27.28+57.62 0.57 11.30

Filtering with ¢(¢,Y") Reward (mean+std) Feasible Rate  Average Feasible Steps
Before QP (baseline) 157.90+37.46 0.63 7.56
After QP with threshold 0.5 158.60+37.76 0.68 7.19
After QP with threshold 2 165.04+£43.73 0.71 9.80
After QP with threshold 5 127.18+82.67 0.73 12.60
After QP with threshold 10 28.61+64.03 0.57 13.74
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Figure 5: Visualization of tracking performance with PPO and SAC models before and after filtering with ¢(¢, Y") at the end time step of
the trajectory for Navier-Stokes equation.
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Figure 4: Visualization of state u(z, t) of hyperbolic equation under SAC controller with (in blue) and without (in red) filtering. Boundary
control inputs U (¢) are in dashed lines and boundary output Y (¢) are in solid lines. The boundary constraint Y (¢) < 0 is in green.

E. Conclusion and Limitation

In this work, we introduce a novel safe PDE boundary control framework using safety filtering with neural certification.
A neural operator and a boundary control barrier function are learned from collected PDE boundary input and output
trajectories within a given safe set. We show that the change in the BCBF depends linearly on the change in the input
boundary. Hence, safety filtering can be done by solving a quadratic programming problem to ensure the boundary feasibility.
Experiments on three challenging PDE control environments validate the effectiveness of the proposed method in terms of
both general performance and constraint satisfaction.

Since the proposed method is based on neural operator modeling instead of real PDE dynamics, it does not directly solve the
problem of model mismatch which may hurt the safety filtering performance in the implementation. We mark this important
point as future work. Also, for PDE dynamics with higher-dimensional states, future work is needed to investigate how
BCBF can deal with spatially dependent boundaries under complicated boundary constraint settings and safe sets. Another
limitation lies in that we do not adopt online safety filtering under the real PDE dynamics, which can be further explored
by replacing the offline filtered control input trajectory with the real-time safety filtering at each step in Algorithm 1 in
the real-world applications. It is also interesting to omit the iterative filtering by prediction using the one-time filtering for
the whole trajectory based on Equation (30), which has the challenge of the nonlinear dependence of the neural operator
derivative at the initial time. More work can also be explored using neural network verification (Wei et al., 2024b; Yang
et al., 2024) to ensure the safety and robustness under input perturbation (Cheng et al., 2024; Liu et al., 2023).

20



