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ABSTRACT

Mixture-of-Experts (MoE) training faces a dilemma between expert specializa-
tion and balanced computation. We recast this problem through the lens of social
choice theory, attributing training difficulties to Arrow’s Impossibility Theorem.
Inspired by this, we propose Regulated Mixture-of-Experts (RMoE), comprising
a phased curriculum for load-balancing and stateful fusion for expert weighting.
Experiments on GLUE and DomainBed show RMoE significantly outperforms
standard MoE and dynamic routing baselines. Furthermore, RMoE demonstrates
strong scalability on large-scale reasoning tasks with Qwen3 and Mixtral architec-
tures. Our code is available at https://anonymous.4open.science/r/R-MoE-E3DC.

1 INTRODUCTION

The Mixture-of-Experts (MoE) architecture has emerged as a dominant paradigm for efficiently
scaling the capacity of large models (Shazeer et al., 2017; Lepikhin et al., 2020). By replacing dense
feed-forward network (FFN) layers with a set of smaller ”expert” sub-networks, MoE models can
possess trillions of parameters while keeping the computational cost per input constant. Despite
its appealing, training MoE often leads to ”routing collapse,” where the router disproportionately
sends most tokens to a few ”winning” experts, leaving others under-trained and wasting model
capacity (Shazeer et al., 2017; Lepikhin et al., 2020). The standard solution is to add an auxiliary
load-balancing loss to the primary task objective, encouraging a more uniform distribution of tokens
across experts (Fedus et al., 2022). This, however, leads to the difficult trade-off between the primary
task and loading balancing objectives (Wang et al., 2024).

In this paper, we view MoE routing from a novel perspective through the lens of social choice
theory (Sen, 1977; 1986). Social choice theory, a foundational framework in economics and political
science (Little, 1952; De Condorcet et al., 2014), addresses dilemmas in group decision-making
where agents must select from alternatives while balancing efficiency (maximizing overall utility)
and fairness (ensuring equitable representation) (Rawls, 2017; Sen, 2017; Moulin, 1991; Gibbard,
1973; Satterthwaite, 1975). We reframe MoE routing as a problem of achieving agreement in a
multi-agent system where each token (i.e., agent) needs to select a “committee” (i.e., expert) ( §2).
. Under this perspective, the primary task loss and auxiliary load balancing loss are considered
as efficiency and fairness, respectively, and we argue that the difficult trade-off in training MoE
between efficiency and fairness is attributed to the Arrow’s impossibility theorem (Black, 1969;
Kelly, 2014). Taking inspirations from prior studies in social choice theory (Dreze, 1985; Pitis &
Zhang, 2020; Caragiannis et al., 2023), we then propose a novel framework, RMoE, to alleviate
the difficult training in MoE (§3). Specifically, RMoE consists of two strategies, which are called
Phased Curriculum and Stateful Fusion. In phased curriculum strategy, inspired by the Second-
Best Theory (Dreze, 1985; Ben-Yashar & Milchtaich, 2007), we optimize the efficiency at the early
of training and then gradually bias to the fairness through a time-varying dynamic interpolation
coefficient. In Stateful Fusion strategy, we incorporate the prior knowledge into the decision function
such that two adjacent tokens in a training instance may have dependent expert distributions because
of their dependency in semantics.

We demonstrate the effectiveness of our unified framework through extensive experiments (§4).
Our model achieves state-of-the-art results on several GLUE benchmark (Wang et al., 2018) tasks
and significantly improves the performance of Vision Transformer (ViT (Dosovitskiy et al., 2020))
MoE models on challenging domain generalization benchmarks like PACS (Li et al., 2017), VLCS
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(Albuquerque et al., 2019), OfficeHome (Venkateswara et al., 2017), and DomainNet (Peng et al.,
2019). These results confirm that regulating the training process provides a more effective path to
training MoE models.

Our contributions are:

1. A Novel Perspective on MoE Training: We introduce a connection between MoE routing
and committee selection from social choice theory. This provides a new perspective to
understand the challenges in MoE training.

2. A New Approach on MoE Training: Under the social choice perspective, we propose
a new approach RMoE to training MoE, consisting of Phased Curriculum and Stateful
Fusion, which leads to better performance than strong baselines.

2 RELATED WORK

Load Balancing in MoE. MoE training focuses on balancing expert utilization to prevent rout-
ing collapse. The standard approach, as in Switch Transformer (Fedus et al., 2022), uses a static
auxiliary loss penalizing imbalance, but its fixed weight causes gradient interference: ∇θgL =
∇θgLtask + α∇θgLaux, where components often conflict. Recent methods like DynMoE (Guo
et al., 2025b) enable adaptive gating for dynamic expert activation, altering the computational graph.
Loss-Free Balancing (Wang et al., 2024) eliminates the auxiliary loss by adding dynamic biases to
router logits for reactive equilibrium without interference. Early efforts relied on static penalties
(Jacobs et al., 1991; Jordan & Jacobs, 1994; Auda & Kamel, 1997; Eigen et al., 2013), evolving to
adaptive mechanisms paralleling social reforms for fairness. Our curriculum schedules balancing
intensity, prioritizing early differentiation and later stability under the hypothesis that training stages
need varying regulation.

Expert Fusion and Routing Mechanisms. Standard MoE couples expert selection and weight-
ing from instantaneous router scores. Recent works decouple them (Jiang et al., 2024). Soft MoE
(Puigcerver et al., 2023) uses differentiable soft assignments, with experts processing weighted av-
erages of tokens, avoiding sparse issues but shifting to dense mixing. MomentumSMoE (Teo &
Nguyen, 2024) applies momentum to stabilize token representations across layers, smoothing up-
date trajectories. Our stateful fusion is orthogonal: it applies momentum to fusion weights within a
layer for stable expert outputs, motivated by our stability framework, unlike stabilizing inter-layer
information flow.

Social Choice Applications in AI. Computational social choice combines theory with algorithms
for aggregating preferences in multi-agent systems like voting and allocation (Brandt et al., 2016;
Endriss, 2011). It addresses hardness with approximations and aligns AI with human values, viewing
MoE routing as aggregating token preferences where imbalance mimics manipulation (Chevaleyre
et al., 2007). Arrow’s theorem extensions highlight limits, inspiring randomized or restricted solu-
tions (Kelly, 2014). This frames MoE as sequential dilemmas with path dependencies; our RMoE
uses phased fairness for stable decisions despite impossibilities (Pitis & Zhang, 2020; Caragiannis
et al., 2023).

3 MOE ROUTING AS A SOCIAL CHOICE PROBLEM

To analyze the inherent training difficulty in Mixture-of-Experts (MoE) models, we first cast the
expert routing task in MoE as a social choice task. Generally, social choice is to aggregate the
diverse preferences, interests, or opinions of individual agents within a group into a single collective
decision, rule, or ranking. It is able to address how such collective choices can be made in a way
that is fair, rational, and aligned with the group’s overall needs, and thus it plays an important role
in many areas such as social governance, public policy and institutional design.

Formally, a notable solution (Fedus et al., 2022) to “routing collapse” in MoE training optimizes the
following loss function:

Ltask + αLaux (1)
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where Ltask is the primary task loss which measures the capability of the MoE model fitting the data,
Laux controls the load-balance of experts such that more experts are picked in routing, and α is a
hyper-parameter to trade off both Ltask and Laux.

Social Choice Perspective We rethink the expert routing task from the perspective of social choice
by mapping the components of the expert routing task into those in a social choice problem (Black,
1969; Kelly, 2014) as follows:

• Agent: An input token at each time step t can be considered as an agent.

• Candidate: The set of N experts, {E1, . . . , EN} can be considered as a set of candidates,
from which an agent is chosen.

• Decision Function: The router’s policy, πg , also known as the gating system, maps an
agent’s state (the token representation) to possible groups via a probability distribution
over all candidates (or experts).

Mapping and Migration: From Social Choice to MoE Dynamics The migration process begins
with a precise mapping (Black, 1948; Kelly, 2014; Sen, 1977): each token in MoE acts as an agent
expressing preferences over experts (candidates), while the router functions as the social welfare
function that aggregates these preferences into a collective choice. This analogy reframes routing
collapse as a failure of fair aggregation, where an over-reliance on a few experts mirrors dictato-
rial outcomes in voting systems. Arrow’s Impossibility Theorem underpins this challenge (Little,
1952; Geanakoplos, 2005; Reny, 2001): it asserts that, for three or more alternatives, no aggregation
function can simultaneously satisfy (1) Pareto efficiency (unanimity), (2) independence of irrelevant
alternatives, and (3) non-dictatorship. In MoE terms, optimizing Ltask (efficiency) while enforcing
Laux (fairness) inevitably violates these axioms, resulting in inherent trade-offs (Barbera, 2001;
Gaertner, 2009; Sen, 1986). A brief proof outline: Assume a decisive set exists; demonstrate that it
must contract to a single dictator (details in Appendix). Extending this to sequential processes, path
dependence exacerbates instabilities, such as early biases locking the system into suboptimal equi-
libria—much like how historical flaws in voting systems perpetuate inequality (Lipsey & Lancaster,
1956; Ng, 2017).

Based on the perspective of social choice, the total loss in Eq. (1) can be formally characterized as
a classic conflict between two competing social welfare objectives: efficiency (utilitarianism) and
fairness (egalitarianism) (Sen, 1977; 1986). The primary task loss, Ltask, represents a utilitarian
goal: to maximize the collective good (i.e., model performance) across all tokens. A purely utilitar-
ian router would select the expert committee that minimizes Ltask, even if it assigns 99% of tokens
to a single expert. This mirrors the “greed” or “temptation” to defect from a cooperative norm for
individual gain, a key element of social dilemmas.

Conversely, the auxiliary load-balancing loss, Laux, imposes an egalitarian constraint. It demands
that computational resources be distributed fairly among all experts, preventing any from being
under-trained. This corresponds to the “fear” of a tragedy of the commons, where unconstrained,
self-interested optimization by individual agents leads to a collective system failure (i.e., routing
collapse).

A social choice problem is extremely difficult due to the inherent contradiction between the utilitar-
ianism and egalitarianism (Kelly, 2014; Sen, 2020). This is supported by the well-known Arrow’s
Impossibility Theorem in social choice theory, i.e., it is impossible to meat all ideal standards of
fairness and efficiency at the same time when there are more than three agents. The reason can be
explained as follows: in our scenario, each token corresponds to an agent and thus there are numer-
ous agents (much larger than three) during training. According to Arrows’ Impossibility Theorem,
there are no optimal parameters such that both Ltask and Laux can be minimal simultaneously. This
may provide an essential reason why it is notoriously challenging to minimize the loss in Eq. (1) for
MoE training.

Potential Solutions There are several strategies to alleviate the challenging optimization in a so-
cial choice problem, where multiple objectives are conflicting. For example, the Second-Best The-
ory (Ben-Yashar & Milchtaich, 2007) is adopted and its key idea is that it seeks to optimize towards
partial objectives instead of all objectives. In addition, other studies incorporate additional prior

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Expert  1 Expert  2 Expert  n

Output Output Output Output

Multi-expert

Output



Stateful Fusion

Router

Cross-

Token 

Momentum

Cross-

Token 

Momentum

Cross-

Token 

Momentum

Expert  1 Expert  2 Expert  n

Output Output Output Output

Multi-expert

Output

Classical MoE RMoE



Simple Fusion

Router

Tokens

Communitee

Candidate

Decision 

Function

Agents

Social Choice Perspective

Cross-

Token 

Momentum

Figure 1: Comparison of Classical MoE and RMoE architectures under a social choice perspective,
where tokens (agents) select experts (candidates) via a gating mechanism.

knowledge as an explicit or implicit constraint on the social choice problem (Pitis & Zhang, 2020;
Caragiannis et al., 2023). In the next section, following both strategies we develop a novel approach
to optimize the MoE routing problem.

4 A FRAMEWORK FOR REGULATED MOE TRAINING

Building on the perspective of MoE training as a social choice problem, we introduce Regulated
MoE (RMoE), a framework designed to guide the training trajectory towards stable and performant
equilibria. Generally, RMoE addresses the social choice problem for training MoE by using two
mechanisms: Phased Curriculum and Stateful Fusion, which will be presented in the next two sub-
sections.

4.1 PHASED CURRICULUM: A CONTINUATION METHOD FOR STABILITY

Our first component, the Phased Curriculum, addresses the static nature of the load-balancing hy-
perparameter α. From the perspective of our sequential social choice framework, the MoE training
objective represents a classic social dilemma, characterized by a conflict between two competing
social welfare objectives: utilitarianism (efficiency) and egalitarianism (fairness) (Sen, 1977; 1986).
The primary task loss, Ltask, embodies a utilitarian goal: to maximize the collective good (i.e.,
model performance). In contrast, the auxiliary load-balancing loss, Laux, imposes an egalitarian
constraint, demanding that computational resources be distributed fairly to prevent any expert from
being under-trained. The hyperparameter α thus acts as the explicit control for navigating the Pareto
frontier between these conflicting objectives.

This multi-objective optimization problem with conflicting objectives is notoriously non-convex and
difficult to solve directly, often leading to unstable training dynamics and suboptimal local minima.
To address this, inspired by the second-first theory (Dreze, 1985; Ben-Yashar & Milchtaich, 2007)
and curriculum learning (Bengio et al., 2009), we optimize the efficiency at the early of training and
then gradually bias to the fairness via a phased training schedule for α. This approach can be viewed
as a form of continuation method (Allgower & Georg, 2003), a general strategy for solving complex
optimization problems by starting with an easier, ”smoother” version of the objective function and
gradually deforming it into the target problem. The total loss thus becomes time-dependent:

Ltotal,t = Ltask + αt · Laux (2)

where αt is a monotonically increasing function of the training step t. This schedule strategically
manages the social dilemma over the entire training sequence, structuring it into two distinct phases:

1. Diversification Phase (Early Training, αt → 0): In the initial stages, the optimization is
dominated by the utilitarian objective, Ltask. This corresponds to an exploration phase,
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where the router is free to discover which experts are best suited for different types of
tokens without the strong constraint of egalitarian load balancing. This freedom is crucial
for preventing premature routing collapse and allows a diverse and specialized committee
of experts to emerge.

2. Stabilization Phase (Late Training, αt > 0): As training progresses and a diverse set of
specialized experts has been established, αt increases. This corresponds to an exploitation
phase. The influence of the egalitarian regularizer, Laux, grows, creating ”valleys” in the
loss landscape that correspond to balanced, stable expert loads. This phase explicitly pe-
nalizes unstable states and guides the system toward a robust equilibrium that effectively
utilizes the full capacity of the model.

In our implementation, we use a simple linear schedule where αt increases from a small starting
value αstart to a final value αend over a predefined number of training steps, Ttotal:

αt = αstart + (αend − αstart) ·min

(
t

Ttotal
, 1.0

)
(3)

4.2 STATEFUL FUSION: TEMPORAL SMOOTHING FOR SEQUENTIAL DEPENDENCIES

Our second mechanism, Stateful Fusion, aims to introduce prior knowledge into the decision func-
tion to facilitate the optimization of the social choice problem (Pitis & Zhang, 2020; Caragiannis
et al., 2023). Standard MoE models treat each token’s routing decision as an isolated decision, given
that there exist strong contextual relationships between two adjacent tokens in a sequence. This
observation may be a primary source of instability, as it makes the router highly susceptible to the
noise inherent in mini-batch sampling. As a result, we treat this observation as the prior knowledge
and employ it to augment the definition of the decision function.

At the high level, stateful fusion explicitly models the contextual relationships between two adja-
cent tokens by incorporating momentum into the expert fusion process. In our context, we treat
the sequence of instantaneous router scores as a noisy signal and apply temporal smoothing to act
as a low-pass filter, inducing a beneficial path dependence where past decisions influence future
ones. We achieve this by decoupling expert selection from expert fusion. While selection remains
instantaneous, the fusion weights are derived from a smoothed history of the router’s scores. We
implement this temporal smoothing using an exponential moving average (EMA). If we model the
instantaneous router scores st as a noisy signal st = µs(x) + ϵt, we can maintain an EMA of these
scores:

mt = β ·mt−1 + (1− β) · st (4)
Here, st represents the instantaneous router scores at step t, mt is the smoothed score history, and
β ∈ (0, 1) is the momentum coefficient. The variance of the smoothed signal mt is given by
Var[mt] =

1−β
1+βσ

2
s , where σ2

s is the variance of the original scores. This reduction in variance leads
to more stable fusion weights and, consequently, more stable gradients for both the experts and the
router.

The complete RMoE layer operates as follows:

1. Selection (Instantaneous): Compute raw scores st = Wg · xt and select the top-k experts.

Indices = top k(st) (5)

2. Fusion (Stabilized): Update the score history mt using the momentum-based rule in Eq. 4.
The fusion weights are computed as:

wi = softmax(log(1 +mt))i (6)

The final output y is then computed using these stabilized fusion weights:

y =
∑

i∈Indices

wi · Ei(x) (7)

This functional decoupling ensures that while the choice of which experts to use is highly responsive,
their contribution to the final output is stabilized over time. The overall procedure is summarized in
Algorithm B.
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5 EXPERIMENTS

We evaluate our proposed RMoE framework on a diverse set of tasks, spanning natural language un-
derstanding and image processing, to demonstrate its effectiveness and generality.The performance
of traditional MoE models is highly dependent on the selection of the total number of experts (K)
and the number of activated experts per token (k), DynMoE (Guo et al., 2025b) have achieved dy-
namic determination of these key hyperparameters, our RMoE framework is implemented on this
dynamic approach.

5.1 EXPERIMENTAL SETUP

We conduct experiments on a single NVIDIA H800 GPU, following the same experiments settings
as DynMoE. Language Tasks: We use the General Language Understanding Evaluation (GLUE)
benchmark (Wang et al., 2018). We build our model on a BERT-base architecture, replacing the FFN
layers with MoE layers. We compare against a standard Switch Transformer-style MoE baseline and
the recently proposed DynMoE. Our experimental setup for language tasks is primarily based on the
methodologies presented in MoEfication (Zhang et al., 2021) and EMoE (Qiu et al., 2023). We
utilize BERT-large-cased (Devlin et al., 2019) as the base model and apply our MoE modifications.
The models are then fine-tuned on a subset of the GLUE benchmark, including the COLA (Warstadt
et al., 2019), MRPC (Dolan & Brockett, 2005), QNLI (Wang et al., 2018), MNLI (Xu et al., 2020),
and RTE (Bentivogli et al., 2009) dataset. Vision Tasks: To test our method’s applicability to
computer vision under domain shift, we use the DomainBed benchmark (Gulrajani & Lopez-Paz,
2020) as in GMoE (Li et al., 2022). Specifically, we experiment on the PACS (Li et al., 2017), VLCS
(Albuquerque et al., 2019), OfficeHome (Venkateswara et al., 2017), and DomainNet (Peng et al.,
2019) datasets. We integrate our RMoE layers into a pre-trained Vision Transformer (Dosovitskiy
et al., 2020) ViT-S/16 backbone.

5.2 MAIN RESULTS

GLUE Benchmark Figure 2 presents the results of our RMoE framework on five tasks from
the GLUE benchmark. Our method consistently outperforms both the standard MoE baseline and
the advanced DynMoE across all tasks. For a detailed breakdown of performance with different
hyperparameter settings and an analysis of robustness, please see Appendix C.

Notably, the most substantial improvements are observed on the more challenging datasets: COLA
and RTE. On COLA, RMoE achieves a 1.52 point improvement over DynMoE, and on RTE, a 2.04
point improvement. The learnable momemtum method could be by the in distribution knowledge of
the training set and testing set, which is leveriged by the flexbility of RMoE and .

Domain Generalization To demonstrate the cross-modality effectiveness of our approach, we
applied RMoE to a ViT-Small model and evaluated its performance on four domain generalization
benchmarks. As shown in Table 1, our method improves the average accuracy across all held-out
domains compared to both a standard GMoE baseline and the DynMoE approach.

Table 1: Accuracy on domain generalization benchmarks (PACS, VLCS, OfficeHome, DomainNet).
Results for baselines are taken from the literature.

Model PACS VLCS OfficeHome DomainNet Average
GMoE (Li et al., 2022) 88.1 80.2 74.2 48.7 72.8
GMoE (tuned in (Qiu et al., 2023)) 87.7 79.6 73.1 - -

DynMoE (Gshard Loss) 88.4 79.4 73.6 47.4 72.2
DynMoE (Diverse Loss) 87.6 80.3 73.5 48.2 72.4

RMoE (Ours) 89.8 81.5 74.5 49.1 73.7

Generalizing to unseen domains is a significant challenge. RMoE achieves the highest average
accuracy, improving by 1.3 percentage points over the DynMoE baseline. We hypothesize that our
regulated training framework provides a more effective optimization path. The curriculum prevents
early routing collapse onto domain-specific features, and the smoothed fusion weights likely reduce
gradient variance from batch-to-batch domain fluctuations.
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Figure 2: Performance on the GLUE test set. RMoE shows consistent improvements over strong
baselines. Best results are bolded. We attribute this to phased curriculum and stateful fusion, the
diversification phase allows experts to develop fine-grained specializations for complex linguistic
phenomena, while the stabilization phase and stateful fusion ensure these diverse capabilities are
robustly integrated.

Scalability on Large Language Models We verify scalability across both general language un-
derstanding and complex mathematical reasoning. First, using Qwen1.5-MoE-A2.7B (Bai et al.,
2023) on SuperGLUE (Wang et al., 2019), RMoE outperforms the baseline across all tasks (Table
2), with notable gains on BoolQ (+16.58) and COPA (+15.00).

Table 2: Performance comparison on SuperGLUE tasks using the Qwen1.5-MoE-A2.7B architec-
ture. RMoE demonstrates significant scalability, achieving substantial gains on complex reasoning
tasks.

Task Qwen1.5-MoE Baseline RMoE (Ours)
BoolQ 61.62 78.20
CB 69.64 73.21
MultiRC 56.42 57.59
COPA 63.00 78.00
WiC 68.50 73.35
WSC 58.65 63.46

To evaluate performance on complex reasoning, we fine-tuned Mixtral 8x7B(Jiang et al., 2024) and
Qwen3-30B-A3B(Yang et al., 2025) models using the AI-MO/NuminaMath-CoT(LI et al., 2024)
dataset. We evaluated mathematical reasoning on the MATH-500 and AIME’24(Muennighoff et al.,
2025) benchmarks. As shown in Table 3, RMoE boosts Mixtral 8x7B accuracy from 14.8% to
16.6% on MATH-500(Lightman et al., 2023). On the challenging AIME’24 benchmark, applying
RMoE to Qwen3-30B-A3B achieves 83.3%, significantly surpassing the vanilla baseline (80.4%)
and strong competitors including DeepSeek-R1-Distill-Qwen-32B(Guo et al., 2025a) and QwQ-
32B(Team, 2025). These results confirm that RMoE effectively manages the routing landscape in
large-scale models, translating better training stability into superior reasoning capabilities.

5.3 ANALYSIS

Ablation Studies To understand the individual contributions of our two proposed components,
we conducted an ablation study on the GLUE datasets. Table 4 shows that both Phased Curriculum
and Stateful Fusion contribute to the final performance, with the combination yielding synergistic
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Table 3: Mathematical reasoning performance. Models were fine-tuned on AI-MO/NuminaMath-
CoT. RMoE improves performance on MATH-500 and AIME’24, outperforming strong baselines
reported in the Qwen3 technical report (Yang et al., 2025).

Model Benchmark Score
Mixtral 8x7B (Baseline) MATH-500 14.8
Mixtral 8x7B + RMoE MATH-500 16.6
DeepSeek-R1-Distill-Qwen-32B AIME’24 72.6
Qwen3-14B AIME’24 79.3
QwQ-32B AIME’24 79.5
Qwen3-30B-A3B (Baseline) AIME’24 80.4
Qwen3-30B-A3B + RMoE AIME’24 83.3

effects. Furthermore, we demonstrate in Appendix C that RMoE’s performance is highly robust
across different hyperparameter settings.

Table 4: Ablation study on GLUE datasets. Both Phased Curriculum (PC) and Stateful Fusion (SF)
contribute to the final performance.

Model Configuration COLA MRPC QNLI MNLI RTE
MoE Baseline 64.30 89.94 92.49 86.61 74.07
+ Phased Curriculum (PC) 65.85 90.13 92.91 86.70 74.84
+ Stateful Fusion (SF) 66.16 91.28 92.65 86.96 74.56
RMoE (PC + SF) 67.29 91.22 92.93 86.73 75.09

Quantifying the Social Choice Dilemma To empirically validate our social choice perspec-
tive—specifically the trade-off between efficiency (task performance) and fairness (load balanc-
ing)—we conducted a paradox experiment on the GSM8K(Cobbe et al., 2021) dataset using
Qwen1.5-MoE-A2.7B. We compared three settings:Pure Efficiency (α = 0): Optimizing only
for task loss;Random Routing: Randomly assigning tokens to experts, which ensures perfect fair-
ness;RMoE: Our proposed method.We measured the Task Loss, Variance of expert routing counts,
and the Gini Index (where lower indicates better fairness).

Table 5: Paradox Experiment on GSM8K. RMoE navigates the Pareto frontier between efficiency
(Loss) and fairness (Gini/Variance), avoiding the dictatorship of Pure efficiency and the high loss of
Random routing.

Method Loss Variance Gini Index

Pure Efficiency (α = 0) 0.1588 3.397× 10−5 0.0994
Random Routing 7.4132 3.619× 10−8 0.0032
RMoE (Ours) 0.4326 1.497× 10−5 0.0661

The results in Table 5 clearly map to Arrow’s Impossibility Theorem. Pure efficiency achieves low
loss but high Gini (0.0994), representing a dictatorial outcome where routing collapses to a few
experts. Random routing achieves near-perfect fairness (Gini 0.0032) but suffers from catastrophic
task loss. RMoE successfully identifies a stable equilibrium, achieving a significantly lower Gini
(0.0661) than the pure efficiency baseline while maintaining a competitive loss. This quantitatively
proves that RMoE bypasses the impossibility of static voting by introducing dynamic regulation.

Expert Selection Smoothness Analysis To demonstrate that our Stateful Fusion mechanism pro-
duces more intelligent and semantically-aware expert selection patterns, we conduct a quantitative
analysis comparing expert assignment consistency between our RMoE model and the standard MoE
baseline. We evaluate five key metrics: semantic cluster similarity, training curve smoothness, expert
distribution similarity, expert selection consistency, and expert usage diversity. Detailed calculation
methods are provided in Appendix E.

Table 6 presents the results of our smoothness analysis. Our RMoE model demonstrates signifi-
cant improvements in semantic awareness and training stability while maintaining balanced expert
utilization.

The most notable findings include a 6.12% improvement in semantic cluster similarity and a 16.30%
improvement in training curve smoothness. The enhanced semantic cluster similarity indicates that
semantically analogous tokens are more prone to being assigned to similar expert combinations,
proving our approach transcends mere smoothing to realize semantically-aware routing. Reductions
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Table 6: Expert Selection Smoothness Analysis. Our RMoE model shows a 6.12% improvement in
semantic cluster similarity and 16.30% improvement in training curve smoothness, demonstrating
that Stateful Fusion enables more intelligent, semantically-aware expert selection rather than simple
smoothing. Arrows indicate if higher (↑) or lower (↓) values are better.

Metric RMoE Standard MoE Improvement (%)
Semantic Cluster Similarity ↑ 0.5196 ± 0.0859 0.4896 ± 0.0809 +6.12
Training Curve Smoothness ↑ 0.002219 ± 0.002649 0.002651 ± 0.002607 +16.30
Expert Distribution Similarity ↓ 0.2140 ± 0.2071 0.2818 ± 0.2208 -24.06
Expert Selection Consistency ↓ 0.1919 ± 0.1688 0.2515 ± 0.1784 -23.71
Expert Usage Diversity ↑ 0.6198 ± 0.1798 0.6225 ± 0.1792 -0.44

in expert distribution similarity and expert selection consistency are advantageous, as they signify
our method eschews the simplistic strategy of assigning adjacent tokens to identical experts based
solely on positional proximity, instead enabling more sophisticated, content-aware expert selection
patterns. The minimal -0.44% change in expert usage diversity confirms that our Stateful Fusion
mechanism preserves balanced expert utilization while enhancing the quality of expert assignments.
These results offer quantitative evidence that our Stateful Fusion mechanism effectively addresses
the conditional independence assumption by introducing temporal dependencies, which facilitate
more intelligent expert selection.

Expert Specialization Analysis We analyzed the cosine similarity between expert weight matri-
ces to assess expert specialization. Figure D-1 presents similarity heatmaps comparing our RMoE
approach with the DynMoE baseline on the COLA task. In our RMoE framework, the expert simi-
larity matrix shows more pronounced diversity (lower off-diagonal similarities), indicating that our
Phased Curriculum successfully encourages experts to develop distinct specializations. The lower
similarity values observed in RMoE indicate that experts have developed more distinct capabilities,
reducing the likelihood that tokens will be dissatisfied with their assigned committee. This diversi-
fication is consistent across other settings, as shown in Appendix D.

Training Dynamics We provide detailed MRPC and COLA training logs in Figure F-2 in Ap-
pendix F (Figure F-2). These results demonstrate that RMoE achieves lower final loss and reduced
routing variance compared to baselines. This confirms that the Stateful Fusion mechanism stabilizes
the optimization trajectory.

6 CONCLUSION

In this work, we introduced Regulated MoE (RMoE), a framework for improving the training of
Mixture-of-Experts models. We presented a new viewpoint by framing MoE routing as a prob-
lem of achieving committee stability. Our proposed mechanisms, a Phased Curriculum for load
balancing and a Stateful Fusion mechanism for expert weighting, are a principled approach to pro-
moting this stability. The curriculum guides the model through distinct phases of diversification and
stabilization, while stateful fusion decouples expert selection from their final weighting, reducing
variance. Our extensive experiments on language and vision benchmarks demonstrate that RMoE
consistently outperforms strong baselines. By providing a more principled way to regulate the com-
plex training process of MoEs, our work offers a promising path toward building more powerful and
reliable large-scale models.

Limitations and Future Work While RMoE demonstrates significant promise, we acknowledge
several limitations. First, our approach introduces new hyperparameters (αstart, αend, β, Ttotal).
While our experiments show robustness, the need for tuning remains. Second, validating RMoE’s
effectiveness at the massive scale of models with thousands of experts is a critical next step. Third,
the Stateful Fusion mechanism introduces a memory overhead. For future work, we plan to explore
more sophisticated scheduling functions for the curriculum and adaptive methods for the momentum
parameter β. Most importantly, scaling our validation to trillion-parameter models is essential.
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7 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal experi-
mentation was involved. All datasets used, including COLA, MRPC, QNLI, and RTE, were sourced
in compliance with relevant usage guidelines, ensuring no violation of privacy. We have taken care
to avoid any biases or discriminatory outcomes in our research process. No personally identifiable
information was used, and no experiments were conducted that could raise privacy or security con-
cerns. We are committed to maintaining transparency and integrity throughout the research process.

8 REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this article are reproducible. All
codes and datasets are publicly available in an anonymous repository for easy replication and veri-
fication. This article provides a detailed account of the experimental setup, including training steps,
model configuration, and hardware details. We also provide a complete description of the contribu-
tions of this article to help others replicate our experiments.

Furthermore, the datasets used in this paper, COLA, MRPC, QNLI, and RTE, are publicly available
to ensure the consistency and repeatability of the evaluation results.

We believe these measures will enable other researchers to reproduce our work and further advance
the field.
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A LLM USAGE

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
grammar checking, and enhancing the overall flow of the text.
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It is important to note that the LLM was not involved in the ideation, research methodology, or
experimental design. All research concepts, ideas, and analyses were developed and conducted by
the authors. The contributions of the LLM were solely focused on improving the linguistic quality
of the paper, with no involvement in the scientific content or data analysis.

The authors take full responsibility for the content of the manuscript, including any text generated
or polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines
and does not contribute to plagiarism or scientific misconduct.

B RMOE PROCEDURE

The forward pass for an RMoE layer, detailed in Algorithm 1, is designed to regulate the expert
selection process through the lens of social choice theory. The procedure begins by treating each
token as an ”agent” whose preferences for ”candidates” (the experts) are captured by instantaneous
router scores. A key distinction is the decoupling of expert selection from weighting. While experts
are chosen instantaneously via a ‘top-k‘ operation, the fusion weights used to combine their outputs
are derived from a temporally smoothed state. This state is maintained by an Exponential Moving
Average (EMA) that aggregates preferences across the batch, ensuring the final weighting reflects a
stable group consensus. This process implements our Stateful Fusion mechanism. Concurrently, the
Phased Curriculum is realized by applying a time-dependent weight, αt, to the load-balancing loss,
dynamically shifting the balance from task efficiency toward routing fairness as training progresses.

Algorithm 1 RMoE Layer Forward Pass with Unified EMA

Input: Token representation matrix X ∈ RB×D (B is batch size), training step t
Parameters: Expert network weights {Ei}Ni=1, Router weights Wg ∈ RD×N

State: Exponential Moving Average (EMA) of scores mt−1 ∈ RN

1: // — Routing and Expert Selection —
2: St ← XWg // Calculate instantaneous routing scores, results in St ∈ RB×N

3: I ← top k(St) // Select top-k experts for each token; Social choice: Defines Decision Function
πg(t) mapping tokens (agents) to experts (candidates)

4: // — Unified Stateful Fusion Weight Calculation —
5: ssum

t ←
∑B

j=1 St[j, :] // Sum scores across the batch dimension, results in ssum
t ∈ RN ; Social

choice: Aggregates agent preferences
6: mt ← β ·mt−1 + (1− β) · ssum

t // Update EMA state, results in mt ∈ RN ; Social choice:
Reflects temporal consensus among agents

7: ϵ← 10−6 // Set a small constant for consistent computation
8: mϵ

t ← mt + ϵ // Adjust EMA scores with a consistency factor
9: w ← softmax(log(1 +mϵ

t)) // Compute global fusion weights, results in w ∈ RN ; Social
choice: Regulates collective decision weighting

10: // — Weighted Computation of Expert Outputs —
11: Y ← 0B×D // Initialize the output matrix
12: for each token xj in the batch (where j = 1, . . . , B) do
13: yj ←

∑
i∈Ij

wi · Ei(xj) // Aggregate outputs of selected experts using global weights wi;
Social choice: Implements a fair allocation of candidate contributions

14: Y [j, :]← yj
15: end for
16: // — Curriculum-based Auxiliary Loss —
17: αt ← schedule(t) // Get the loss scaling factor based on training step t; Social choice: Adjusts

the balance between efficiency and fairness
18: Laux ← αt · LoadBalanceLoss(St) // Calculate the load balancing loss; Social choice:

Enforces egalitarian distribution of expert selection
Output: Matrix Y , Auxiliary loss Laux
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Table C-1: Detailed COLA Task Performance (Matthews Correlation) across different hyperparam-
eters.

Momentum (β) αmin αmax Seed M. Corr.

0.9 0.001 0.01 1 0.6729
0.99 0.001 0.01 2 0.6456
0.9 0.001 0.01 2 0.6410
0.99 0.001 0.001 0 0.6382
0.99 0.001 0.01 1 0.6356
0.9 0.0001 0.001 1 0.6331
0.9 0.0001 0.01 2 0.6308
0.99 0.0001 0.001 0 0.6285
0.9 0.001 0.001 0 0.6284
0.99 0.0001 0.01 0 0.6233
0.9 0.001 0.001 2 0.6232
0.9 0.0001 0.001 2 0.6194
0.9 0.001 0.01 2 0.6185
0.99 0.001 0.001 2 0.6162
0.99 0.0001 0.01 0 0.6142
0.9 0.0001 0.01 1 0.6137
0.9 0.0001 0.01 1 0.6132
0.99 0.0001 0.001 2 0.6018
0.99 0.0001 0.01 1 0.5778

C DETAILED PERFORMANCE

This section presents a comprehensive analysis of the RMoE framework’s performance across var-
ious hyperparameter configurations on the GLUE benchmark tasks. The results, summarized in
Tables A1–A5, demonstrate the robustness of RMoE across different settings of the momentum
coefficient β, the initial and final load-balancing weights αmin and αmax, and random seeds. By
evaluating multiple configurations, we assess the sensitivity of RMoE to hyperparameter choices
and confirm its consistent outperformance over baselines like DynMoE and standard MoE models.
The following subsections provide detailed insights into the performance on the COLA and MRPC
tasks, highlighting the impact of the Phased Curriculum and Stateful Fusion mechanisms.

C.1 COLA TASK PERFORMANCE

Table C-1 reports the Matthews Correlation Coefficient (MCC) for the COLA task across various
hyperparameter settings. The results showcase RMoE’s ability to achieve high performance with
MCC values ranging from 0.5778 to 0.6729. Notably, the highest MCC (0.6729) is achieved with
β = 0.9, αmin = 0.001, αmax = 0.01, and seed 1, indicating that a moderate momentum and a cur-
riculum that gradually increases the load-balancing weight contribute to optimal performance. The
variability across seeds and hyperparameters suggests that RMoE is robust, with most configurations
outperforming the baseline MoE (MCC = 0.6430, as reported in Table 4). The Phased Curriculum’s
diversification phase likely enables experts to capture complex linguistic patterns in COLA, while
the Stateful Fusion mechanism ensures consistent routing.

C.2 MRPC TASK PERFORMANCE

Table C-2 details the accuracy and F1 scores for the MRPC task across different hyperparame-
ter configurations. RMoE achieves accuracy values ranging from 0.8431 to 0.9122 and F1 scores
from 0.8836 to 0.9244, consistently surpassing the baseline MoE (accuracy = 0.8994, F1 = 0.9116,
as shown in Table 4). The best performance (accuracy = 0.9122, F1 = 0.9244) is obtained with
β = 0.99, αmin = 0.001, αmax = 0.001, and seed 0, suggesting that a high momentum value and
a fixed load-balancing weight can be effective for certain tasks. The results indicate that the Stateful
Fusion mechanism stabilizes expert assignments, leading to improved F1 scores, particularly for
MRPC’s paraphrase identification task, which benefits from consistent routing of semantically simi-
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Table C-2: Detailed MRPC Task Performance (Accuracy and F1 Score) across different hyperpa-
rameters.

Momentum (β) αmin αmax Seed Accuracy F1 Score

0.99 0.001 0.001 0 0.9122 0.9244
0.9 0.0001 0.001 2 0.9097 0.9239
0.9 0.0001 0.01 0 0.9073 0.9190
0.99 0.0001 0.001 2 0.8948 0.9188
0.99 0.001 0.01 2 0.8848 0.9191
0.99 0.001 0.01 0 0.8848 0.9165
0.9 0.001 0.01 0 0.8848 0.9183
0.99 0.0001 0.01 0 0.8824 0.9158
0.99 0.0001 0.001 0 0.8824 0.9167
0.9 0.001 0.01 0 0.8750 0.9110
0.9 0.001 0.001 0 0.8750 0.9116
0.9 0.0001 0.001 0 0.8725 0.9091
0.9 0.0001 0.01 0 0.8725 0.9100
0.9 0.001 0.001 1 0.8725 0.9107
0.99 0.0001 0.01 2 0.8701 0.9078
0.9 0.0001 0.001 2 0.8676 0.9066
0.99 0.001 0.001 0 0.8676 0.9085
0.9 0.001 0.01 2 0.8627 0.9057
0.99 0.001 0.01 0 0.8603 0.9019
0.9 0.001 0.001 2 0.8603 0.9026
0.99 0.0001 0.01 2 0.8578 0.9014
0.9 0.0001 0.01 0 0.8529 0.9007
0.99 0.001 0.001 1 0.8480 0.8938
0.99 0.0001 0.001 0 0.8431 0.8836

lar tokens. The Phased Curriculum’s ability to balance exploration and exploitation further enhances
performance by preventing routing collapse, even with lower α values.

C.3 RTE TASK PERFORMANCE

Table C-3 presents the accuracy for the RTE task across different hyperparameter settings. RMoE
achieves accuracy values ranging from 0.7148 to 0.7509, with the highest (0.7509) observed at
β = 0.99, αmin = 0.0001, αmax = 0.01, and seed 0. This suggests that a high momentum and a
moderate increase in load-balancing weight enhance performance on RTE’s entailment classification
task. The Phased Curriculum likely supports early task optimization, while Stateful Fusion improves
expert utilization, contributing to the observed robustness across configurations.

C.4 QNLI TASK PERFORMANCE

Table C-4 shows the accuracy for the QNLI task across hyperparameter settings, with values ranging
from 0.9134 to 0.9293. The highest accuracy (0.9293) is achieved with β = 0.9, αmin = 0.001,
αmax = 0.01, and seed 1, indicating that moderate momentum and a dynamic load-balancing
curriculum benefit QNLI’s question-answering task. The Phased Curriculum supports early spe-
cialization, while Stateful Fusion enhances expert coordination, leading to consistent performance
improvements over the baseline.

C.5 MNLI TASK PERFORMANCE

Table C-5 provides the accuracy for the MNLI task, ranging from 0.8623 to 0.8673. The highest
accuracy (0.8673) occurs with β = 0.9, αmin = 0.001, αmax = 0.01, and seed 0, suggesting that
moderate momentum and a dynamic curriculum enhance MNLI’s natural language inference task.
The Phased Curriculum facilitates initial task focus, while Stateful Fusion improves expert diversity,
contributing to the observed performance gains.
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Table C-3: Detailed RTE Task Performance (Accuracy) across different hyperparameters.

Momentum (β) αmin αmax Seed Accuracy

0.99 0.0001 0.01 0 0.7509
0.99 0.001 0.01 2 0.7473
0.9 0.001 0.001 2 0.7473
0.99 0.0001 0.01 2 0.7437
0.99 0.0001 0.001 2 0.7401
0.99 0.0001 0.001 0 0.7401
0.9 0.001 0.01 2 0.7401
0.99 0.0001 0.01 1 0.7365
0.9 0.0001 0.01 2 0.7365
0.9 0.001 0.001 2 0.7365
0.9 0.0001 0.001 2 0.7329
0.99 0.001 0.01 1 0.7329
0.99 0.001 0.001 0 0.7292
0.99 0.001 0.01 2 0.7256
0.9 0.0001 0.001 0 0.7184
0.99 0.001 0.001 1 0.7184
0.9 0.0001 0.01 1 0.7184
0.99 0.0001 0.001 0 0.7148
0.9 0.001 0.01 0 0.7148

Table C-4: Detailed QNLI Task Performance (Accuracy) across different hyperparameters.

Momentum (β) αmin αmax Seed Accuracy

0.9 0.001 0.01 1 0.9293
0.9 0.0001 0.01 1 0.9282
0.99 0.0001 0.001 0 0.9279
0.9 0.0001 0.001 1 0.9264
0.99 0.0001 0.001 1 0.9264
0.9 0.001 0.001 2 0.9264
0.99 0.001 0.01 1 0.9262
0.99 0.001 0.001 1 0.9262
0.99 0.0001 0.01 0 0.9253
0.99 0.001 0.001 1 0.9249
0.9 0.0001 0.01 0 0.9246
0.9 0.001 0.01 1 0.9233
0.99 0.001 0.01 2 0.9218
0.9 0.001 0.001 1 0.9211
0.9 0.0001 0.001 2 0.9206
0.9 0.0001 0.001 2 0.9162
0.9 0.001 0.001 2 0.9134

D ADDITIONAL EXPERT SIMILARITY ANALYSIS

To further validate that RMoE promotes expert specialization, we provide extended visualizations
for the COLA task. A core tenet of our stability framework is that a diverse and non-redundant com-
mittee of experts is essential for stable routing. As shown in Figure D-1, RMoE consistently yields
lower cosine similarity between experts compared to the DynMoE baseline across different ran-
dom seeds and layers. This analysis provides strong empirical evidence that our regulated training
process is effective at encouraging experts to learn distinct, complementary functions.
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Table C-5: Detailed MNLI Task Performance (Accuracy) across different hyperparameters.

Momentum (β) αmin αmax Seed Accuracy

0.9 0.001 0.01 0 0.8673
0.99 0.001 0.01 2 0.8671
0.9 0.0001 0.01 1 0.8669
0.9 0.0001 0.001 1 0.8668
0.9 0.001 0.001 0 0.8665
0.9 0.0001 0.01 2 0.8661
0.99 0.0001 0.001 2 0.8644
0.9 0.001 0.01 1 0.8633
0.99 0.0001 0.01 0 0.8632
0.99 0.001 0.001 0 0.8623

(a) RMoE (FC1, s=0) (b) DynMoE (FC1, s=0) (c) RMoE (FC2, s=0) (d) DynMoE (FC2, s=0)

(e) RMoE (FC1, s=1) (f) DynMoE (FC1, s=1) (g) RMoE (FC2, s=1) (h) DynMoE (FC2, s=1)

(i) RMoE (FC1, s=2) (j) DynMoE (FC1, s=2) (k) RMoE (FC2, s=2) (l) DynMoE (FC2, s=2)

Figure D-1: Heatmaps comparing expert similarity for RMoE and DynMoE on the COLA task
across multiple random seeds (0, 1, and 2) for both FC1 and FC2 layers. Lower similarity values
(bright yellow) indicate better expert diversification. RMoE consistently fosters greater expert di-
versity.

E DETAILED CALCULATION METHODS FOR SMOOTHNESS METRICS

This section provides detailed explanations of the calculation methods for all smoothness metrics
used in our analysis. These metrics are designed to quantify different aspects of expert selection
behavior and training stability.

18
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Semantic Cluster Similarity: This metric measures the consistency of expert assignments within
semantically similar token clusters. The calculation process involves:

1. Token Clustering: We cluster tokens based on their positional context using K-means
clustering (k=4) as a proxy for semantic similarity.

2. Expert Distribution: For each cluster, we count the usage frequency of each expert and
normalize to create a probability distribution.

3. Similarity Calculation: We compute the cosine similarity between each cluster’s expert
distribution and a uniform distribution, measuring how balanced the expert assignments are
within semantically similar groups.

The formula is: Similarity = d·u
|d|·|u| , where d is the cluster’s expert distribution and u is the uniform

distribution.

Training Curve Smoothness: This metric quantifies the smoothness of training loss curves using
Savitzky-Golay filtering:

1. Curve Smoothing: We apply a Savitzky-Golay filter with polynomial order 2 and window
length 5 to smooth the training loss curve.

2. Smoothness Calculation: We compute the mean absolute difference between the original
curve and the smoothed curve, measuring the degree of noise in the training process.

The formula is: Smoothness = 1
T

∑T
t=1 |Lt − L̂t|, where Lt is the original loss at step t and L̂t is

the smoothed loss.

Expert Distribution Similarity: This metric evaluates the cosine similarity between expert as-
signment distributions of adjacent tokens:

1. Vectorization: Each token’s expert selection is converted to a one-hot vector representing
the top-1 expert.

2. Sliding Window: We use a sliding window of size 5 to compare adjacent token vectors.
3. Similarity Calculation: We compute the average cosine similarity between adjacent vec-

tors within each window.

Expert Selection Consistency: This metric calculates the proportion of adjacent tokens assigned
to the same expert:

1. Pair Counting: We count all adjacent token pairs in the sequence.
2. Same Expert Counting: We count pairs where both tokens are assigned to the same top-1

expert.
3. Consistency Calculation: We compute the ratio of same-expert pairs to total adjacent

pairs.

Expert Usage Diversity: This metric measures the diversity of experts used within each sample:

1. Unique Expert Counting: We count the number of unique experts used in each sample.
2. Diversity Calculation: We compute the ratio of unique experts to total available experts

(8 in our case).

These metrics collectively provide a comprehensive view of how our RMoE framework improves
expert selection quality and training stability compared to standard MoE approaches.

F TRAINING DYNAMICS VISUALIZATION

Figure F-2 illustrates the training dynamics on the MRPC and COLA tasks. RMoE shows more
stable convergence and better performance metrics compared to the baseline.
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Figure F-2: Training dynamics on MRPC and COLA. (a) Loss, (b) Matthews correlation, (c) F1
Score, and (d) Accuracy. RMoE shows more stable convergence and better performance.
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