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Abstract

The rapid advancement of next-token-prediction models has led to widespread
adoption across modalities, enabling the creation of realistic synthetic media. In the
audio domain, while autoregressive speech models have propelled conversational
interactions forward, the potential for misuse, such as impersonation in phishing
schemes or crafting misleading speech recordings, has also increased. Security
measures such as watermarking have thus become essential to ensuring the au-
thenticity of digital media. Traditional statistical watermarking methods used for
autoregressive language models face challenges when applied to autoregressive
audio models, due to the inevitable “retokenization mismatch” - the discrepancy
between original and retokenized discrete audio token sequences. To address
this, we introduce ALIGNED-IS, a novel, distortion-free watermark, specifically
crafted for audio generation models. This technique utilizes a clustering approach
that treats tokens within the same cluster equivalently, effectively countering the
retokenization mismatch issue. Our comprehensive testing on prevalent audio
generation platforms demonstrates that ALIGNED-IS not only preserves the quality
of generated audio but also significantly improves the watermark detectability com-
pared to the state-of-the-art distortion-free watermarking adaptations, establishing
a new benchmark in secure audio technology applications. We release the code in
https://github.com/g-milis/AlignedIS.

1 Introduction

Autoregressive audio generation models (Lakhotia et al., 2021; Rubenstein et al., 2023; Borsos et al.,
2022; Zhang et al., 2023; Nguyen et al., 2025; Zhan et al., 2024; Ge et al., 2023; Lu et al., 2024), such
as those enabling sophisticated voice synthesis, have significantly advanced in mimicking human-like
speech. As these models become integral to various applications, from virtual assistants to real-time
translation, their potential misuse also escalates. Malicious uses include impersonating individuals
in phishing attacks, fabricating audio for misinformation, and automating scam calls with natural-
sounding voices. Additionally, the spread of synthetic audio can undermine the authenticity of digital
communication and pose challenges in legal contexts where recording verification is crucial. To
address these concerns, implementing robust and detectable watermarks in synthetic audio becomes
essential, ensuring traceability and accountability in the use of generative models while safeguarding
against their unauthorized exploitation.

Statistical watermarking techniques are a promising method to identify machine-generated content
from autoregressive language models (Kirchenbauer et al., 2023; Liu & Bu, 2024; Chen et al., 2025a).
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However, due to retokenization mismatch (Wu et al., 2025), directly applying them to audio generation
models leads to poor detectability. Unlike autoregressive language models, where text tokenization
is deterministic and reversible, autoregressive audio models incorporate an additional encoder and
decoder that map from audio to discrete tokens and back. In the process of audio generation, an audio
prompt is encoded into a sequence of tokens. Subsequently, this sequence undergoes next-token
prediction to generate an output sequence, which is then decoded back into audio form. Watermark
detection requires re-encoding the generated audio into its tokenized form. However, this retokenized
token sequence does not exactly match the original in-generation sequence, a phenomenon we refer
to as retokenization mismatch.

To tackle this challenge, we introduce ALIGNED-IS, a novel, robust, and distortion-free watermark
specifically designed for audio generation models. We observe that mismatch arises from different
discretization of similar continuous features, which should be close in the encoder and decoder’s
feature spaces. Leveraging this insight, we developed a clustering-based watermarking framework
that considers tokens within the same cluster as equivalent. We summarize our contributions as
follows:

• We develop ALIGNED-IS, the first distortion-free watermark for autoregressive audio
generation models. We identify the retokenization mismatch phenomenon and we propose a
novel clustering-based distortion-free watermarking algorithms to address this challenge.

• Through comprehensive experiments, we validate the distortion-freeness, detectability, and
robustness of ALIGNED-IS on popular open-source audio generation models. Our results
show a significantly improvement in detectability compared to directly applying existing
distortion-free watermarks to audio generation models.

2 Related Work

Audio generation models. With the success of large language models, researchers have devel-
oped multimodal foundation models that extend transformers to handle continuous signals through
modality-specific encoders and decoders (Vaswani et al., 2017). Lakhotia et al. (2021) first re-
framed pure audio generation as a language-modeling task (Lakhotia et al., 2021), which gave rise
to AudioLM (Borsos et al., 2022) and later AudioPaLM’s integration of text generation capabilities
(Rubenstein et al., 2023). Building on this, SpeechGPT (Zhang et al., 2023) and SpiritLM (Nguyen
et al., 2025) discretize HuBERT features (Hsu et al., 2021) into semantic units that a fine-tuned
LLaMA (Touvron et al., 2023) consumes as an expanded vocabulary of text and audio tokens.
The same discretization strategy supports fine-grained tasks such as voice cloning from text and a
discretized voice prompt (Chen et al., 2024b). Other models-including SEED-LLaMA (Ge et al.,
2023), Unified-IO 2 (Lu et al., 2024), and AnyGPT (Zhan et al., 2024)-represent audio and images
with discrete token sequences alongside text. In contrast, CoDi-2 (Tang et al., 2024), VITA (Fu
et al., 2024), and NExT-GPT (Wu et al., 2024) employ a transformer decoder that directly processes
continuous feature vectors together with text token embeddings, treating multimodal outputs as
regression while still using next-token prediction for text.

Post hoc audio watermarking. Embedding watermarks into host audio dates back decades (Lie &
Chang, 2006), leveraging human insensitivity to mid-frequency bands. More recently, deep-learning
methods use autoencoder architectures to invisibly encode payloads into a frequency transform of the
signal (Liu et al., 2024a; Chen et al., 2023). The work of San Roman et al. (2024) further introduces
temporally localized watermarking with time-dependent detection, and error-correcting codes have
been employed to boost robustness (Wu et al., 2023a). However, these approaches degrade output
quality and offer no formal statistical guarantee for reliable watermark detection. Furthermore, they
are fragile to waveform perturbations, and require an additional processing step to embed them.

Distortion-free watermark. Aaronson (2022) introduced a pioneering distortion-free watermarking
approach that utilizes Gumbel-Softmax to alter token distributions. Christ et al. (2023) and Kuditipudi
et al. (2023) applied inverse-sampling and Gumbel-Softmax, respectively, to modify the token
distributions in watermarked content, employing watermark keys based on either token positioning
or predetermined key lists. However, the technique from Christ et al. (2023) exhibits limited
resilience when altered and lacks empirical evidence of its detectability. In contrast, Kuditipudi et al.
(2023)’s method demands extensive resampling from the secret key distribution for detection, proving
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Figure 1: Left: Illustration of the retokenization mismatch problem during audio watermark detection.
Right: Performance comparison of audio watermark detection on raw versus retokenized audio
sequences. We evaluate KGW watermark (Kirchenbauer et al., 2023) DiPmark (Wu et al., 2023b),
and γ-reweight (Hu et al., 2023), reporting the true positive rate at a fixed 1% false positive rate.

inefficient for extensive texts. Hu et al. (2023) proposed inverse-sampling and reweight strategies
for watermarking, though their detection method is not model-agnostic and requires access to the
language model API and specific prompts. Wu et al. (2023b) refined the reweight technique and
introduced a model-agnostic detection mechanism. Dathathri et al. (2024) proposed SynthID, which
enables distortion-freeness of LM watermarking with multiple generations.

3 Preliminary

Notations. We follow the notations used in (Hu et al., 2023). The vocabulary (or token) set is
denoted by V and its cardinality by N = |V |. We define the set V , which includes all possible token
sequences including those of zero length and the set A, which includes all possible audios. Within an
autoregressive audio generation model, a token sequence is generated based on a specific prompt. At
any given step, the probability of producing the next token xn+1 ∈ V , given the preceding sequence
x1, . . . , xn, is denoted by PM (xn+1 | x1, x2, . . . , xn). For simplicity and clarity, we adopt a more
concise notation: PM (xn+1:n+m | x1:n), where xn+1:n+m = (xn+1, . . . , xn+m). It is important
to note that the prompt is intentionally excluded from this notation. In audio generation models,
we denote the audio-token encoder by E(·) : A → V and the token-audio decoder, or vocoder, by
D(·) : V → A.

3.1 Statistical Watermarks

In watermarking applications, the service provider employs a set of i.i.d. watermark codes {θi ∈
Θ, i ∈ N}, defined over the code space Θ. Each code θi is typically derived from a secret key
key ∈ K and the n-gram preceding context, denoted xt−n:t−1.

In the watermark generator, a reweight strategy is used to embed a statistical signal into the generated
content. Let P denote the set of all probability distributions over the token set V . The reweight
strategy is a function PW : P × Θ → P . For the token distribution at the (n + 1)-th generation
step, PM (xn+1 | x1:n) ∈ P , the watermarked distribution is defined by PW (PM (xn+1 | x1:n), θi).
For brevity, this is represented as PW (xn+1 | x1:n, θi). A distortion-free watermark ensures that
the averaged distribution PW (xn+1 | x1:n, θi) with respect to θi is equal to the original distribution
PM (xn+1 | x1:n).

Definition 3.1 (Distortion-free watermark). Given the watermark code set Θ, a distribution PΘ on
Θ, original LM distribution PM , and the watermarked distribution PW (·|θ ∈ Θ) A distortion-free
watermark should satisfy ∀x ∈ V ,

Eθ∼PΘ [PW (x | x1:n, θ)] = PM (x | x1:n).

Current popular distortion-free strategies include Gumbel-softmax (Aaronson, 2022), inverse-
sampling (Christ et al., 2023; Hu et al., 2023; Kuditipudi et al., 2023) and reweight-based strategy (Wu
et al., 2023b; Dathathri et al., 2024; Feng et al., 2025; Chen et al., 2025a).
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During watermark detection, the user only has access to the watermark key, the reweight strategy, and
the generated audio. The detector employs a hypothesis testing approach to ascertain the presence of
the watermark signal. The null hypothesis H0 is defined as “The content is generated without the
presence of watermarks". The detector adopts a score function based on the watermark key and the
reweight strategy, which exhibits statistical bias between the watermarked and unwatermarked token
sequences.

3.2 Autoregressive audio generation models

Autoregressive audio models typically begin by encoding raw waveforms into self-supervised feature
representations, such as those produced by wav2vec (Baevski et al., 2020) or HuBERT (Hsu et al.,
2021). These continuous features are then quantized into discrete semantic units. In contrast to text-
where tokens generally correspond to reversible character or subword units (Sennrich et al., 2016)-an
audio waveform is segmented into overlapping frames and processed by a feature extractor. To
discretize the feature space, a clustering algorithm (e.g., k-means) partitions it into Nu clusters, with
each frame assigned to the nearest cluster centroid. The resulting sequence of centroid indices serves
as “audio tokens” for the language model. During inference, these discrete tokens are transformed
back into a waveform using a neural vocoder (Kong et al., 2020). In multimodal text–audio LLMs,
the overall vocabulary size is N = Nu +Nt, where Nt denotes the number of text tokens (Zhang
et al., 2023; Nguyen et al., 2025).

Retokenization mismatch. Let x denote the token sequence output by the audio generation model,
where the final audio is obtained by decoding through the token-audio decoder D(x), referred to as
vocoder. For watermark detection, the generated audio is passed through the audio-token encoder
E(D(x)), and a hypothesis test is conducted on E(D(x)) to identify the presence of a watermark
signal. Nonetheless, E(D(x)) often differs from the original x, which weakens the statistical
evidence captured by the detection scores. This discrepancy can be viewed as an unavoidable token-
level perturbation occurring during the detection process. As shown in Figure 1, there is a large gap
between the detectability of the raw token sequence x and the retokenized sequence E(D(x)).

4 Methodology

To address the retokenization mismatch issue in autoregressive audio generation models, we developed
ALIGNED-IS, a clustering-based watermarking framework. In ALIGNED-IS, audio tokens are initially
segmented into clusters. Subsequently, we introduce a novel, distortion-free reweight strategy, aligned
inverse sampling, tailored specifically for these clustered tokens. During watermark generation, this
reweight strategy alters the output distribution according to the clusters. For watermark detection,
the detector verifies whether the current token corresponds to the expected cluster, as determined by
the reweight strategy and the embedded watermark code. Since mismatched tokens are likely within
the same cluster, the detector can still accurately capture the correct statistical signal, even in the
presence of retokenization mismatches.

In this section, we first present the clustering method for tackling retokenization mismatch and a
distortion-free reweighting strategy, aligned inverse sampling, which is specifically devised for the
clustered tokens. Then, we introduce our general watermark algorithm and detection statistic.

4.1 Audio token clustering

During clustering, the objective is to split all audio tokens into distinct clusters based on their
similarity. It is crucial to note that the clustering algorithm is executed only once for each audio
generation model, its results are stored, and can be accessed during watermark generation and
detection. Consequently, this approach does not increase the computational cost during sampling. To
achieve this, we collect the audio token embeddings {e1, ..., em} based on the token-audio encoder E
and use k-means algorithm to generate the corresponding clusters {c1, ..., ch}. We employ k-means
since the discretization process uses the Euclidean norm of audio feature vectors to discretize them, by
selecting the nearest token embedding vector. While acessing the embedding vectors in open-source
models is trivial, a closed source model provider can still implement our watermarking method and
expose its detection API.
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Table 1: The effect of clustering on retokenization mismatch across datasets for SpiritLM.
Dataset Mismatch Rate Before Mismatch Rate After Reduction (%)

MMW Book Report 0.3749 0.2117 43.55%
MMW Story 0.3652 0.2174 40.47%
MMW Fake News 0.4295 0.2300 46.44%
Dolly CW 0.3634 0.2134 41.30%
Longform QA 0.3757 0.2109 43.85%
Finance QA 0.3587 0.2133 40.54%

With our segmentation strategy, mismatched tokens are more likely to be in the same cluster because
they are supposed to share similar embeddings in the encoder E. The watermark generator and detec-
tor can utilize the cluster information to avoid the detectability reduction caused by the retokenization
mismatch. The inverse sampling watermark is a distortion-free method that can be applied directly to
clustering scenarios.

To quantify the effectiveness of our clustering method in mitigating retokenization mismatch, we
report the token mismatch rates before and after applying clustering on SpiritLM across multiple
datasets in Table 1. The mismatch rate is computed by comparing the original response tokens
with those obtained after a decode-then-encode retokenization process. As shown in the table, our
clustering method significantly reduces the mismatch rate, demonstrating its effectiveness in aligning
tokens during watermarking generation and detection.

We have also evaluated other popular clustering methods, e.g., (Gaussian mixture models, spectral
clustering) and found that they produce similar results. We did not explore methods beyond clustering,
as it is the most natural and direct approach to address the retokenization mismatch. Empirically,
clustering has proven effective in significantly reducing such mismatches.

4.2 Aligned inverse sampling

Inverse Sampling. Let c1, . . . , ch represent the identified clusters, and let Pr(c1), . . . ,Pr(ch)
denote the sum of the token probabilities within them, such that Pr(ci) =

∑
x∈ci

PM (x). It is natural
to map these probabilities onto the interval [0,1] and employ inverse sampling to pseudo-randomly
select a number r(θ) ∈ [0, 1] seeded by the watermark code θ. The subsequent token is then sampled
from cluster ci if r falls within the interval [

∑i−1
j=0 Pr(cj),

∑i
j=0 Pr(cj)], with Pr(c0) := 0. During

detection, cluster information and the pseudo-random number r(θ) can be reconstructed using the
watermark code θ, allowing us to compute a statistical score by comparing the cluster against r(θ).

However, since token probabilities are unknown during watermark detection, we cannot ascer-
tain the cluster probabilities Pr(c1), . . . ,Pr(ch). This discrepancy leads to an alignment issue
between r(θ) and the identified cluster ci, as it becomes uncertain whether r(θ) is within the interval
[
∑i−1

j=0 Pr(cj),
∑i

j=0 Pr(cj)]. To address this, Christ et al. (2023); Kuditipudi et al. (2023) proposed
a position-based statistical score for watermark detection. The underlying principle is that if r(θ) is
close to 1, then the index of the selected cluster during watermark generation is likely close to h (the
end of the clusters). However, the detection methods proposed in Kuditipudi et al. (2023) cannot
provide a theoretical guarantee of the false positive rate. Besides, this position-based score has shown
low detectability, as evidenced in Kuditipudi et al. (2023) and our experimental findings. To address
the flaws of inverse sampling, we introduce aligned inverse sampling, which substantially improves
detection efficiency while providing a provable guarantee on the false-positive rate.

Aligned Inverse Sampling. Consider the scenario where Pr(c1) = · · · = Pr(ch) =
1
h . In this case,

the pseudo-random number r and the identified cluster ci are aligned. Specifically, if r(θ) ∈
[
i−1
h , i

h

]
,

the detector can confidently assert that ci was generated through inverse sampling with r(θ). A
natural enhancement to inverse sampling involves rearranging the cluster probabilities within the
interval [0,1] to emulate this aligned scenario.

Details on this method are in Algorithm 3.

Theorem 4.1. Aligned inverse sampling is a distortion-free watermark.
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Algorithm 1 ALIGNED-IS generator.

1: Input: secret key key, prompt x−m:0, generate length t ∈ N, token-audio decoder D.
2: Initialize watermark code history hist.
3: for i = 1, . . . , t do
4: Calculate the token distribution for generating the i-th token PM (· | x−m:i−1).
5: Generate a watermark code θi = (key,xi−n,i−1).
6: if θi ∈ hist then
7: Sample the next token xi using original distribution PM (·|x−m:i−1)
8: else
9: Generate the pseudo-random number r(θi).

10: Calculate watermarked distribution PW (·|x−m:i−1) via aligned inverse sampling.
11: Sample the next token xi using distribution PW (·|x−m:i−1).
12: return audio waveform D(x1:t).

Algorithm 2 ALIGNED-IS detector.

1: Input: audio waveform a, audio-token encoder E, secret key key, score function s, threshold z.
2: calculate token sequence x1:t = E(a)
3: Initialize the score function: S = 0.
4: for i = 2, ..., t do
5: Generate the watermark code ki = (key,xi−n,i−1).
6: Generate the pseudo-random number r(θi).
7: Update the score function via S = S + s(r(θi), xi).
8: return S > z.

Proof. The proof is straightforward. As aligned inverse sampling does not modify the cluster
probability, by the property of inverse sampling, we have PM (x) = Eθ[PW (x|θ)].

With the aforementioned probability assignments, we can define a statistical score for the detector
based on the pseudo-random number r and the current token x.
Definition 4.2. Given the pseudo-random number r and the current token x, the detection score
s(r, x) is defined as

s(r, x) :=

{
1 if r ∈

[
i−1
h , i

h

]
, where x ∈ ci,

0 otherwise. (1)

Note, when Pr(ci) <
1
h , aligned inverse sampling may sample tokens from clusters other than ci even

if the pseudo-random number r falls within
[
i−1
h , i

h

]
. This can reduce detection accuracy. However,

empirical results indicate that the overall detectability of aligned inverse sampling still surpasses that
of the regular inverse sampling reweight strategy.

4.3 ALIGNED-IS

With the aligned inverse sampling reweight strategy, we can construct our watermarking algorithm
ALIGNED-IS. ALIGNED-IS consists of a watermark generator and a watermark detector. In the
watermark generator, the watermarked token at step t is generated using a secret key key and the
prior n-gram content xt−n,t−1 as the watermark code θt. The pseudo-random number rt(θt) is then
generated based on θt. Following the inverse sampling reweight strategy, the cluster ci(θt) is selected
based on rt(θt). The next token xt is sampled by randomly selecting a token within ci(θt) according
to the token probability of the original language model PM (·|x1:t−1). Following Hu et al. (2023),
we use a watermark code history hist to ensure the distortion-freeness for multiple generation. If the
current watermark code is in hist, we will sample from the original model’s distribution instead of
the watermarked distribution. The algorithm is detailed in Alg. 1.

During detection, access to the generated audio and the watermark key key is required. The token
sequence x1:t is first recovered using the encoder E of the audio generation model. Then, for
each i = 1, . . . , t, the watermark code θi is generated based on the watermark key and the n-gram
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Table 2: Detectability comparison of watermarking methods on MMW Book Report, MMW Story,
and MMW Fake News with SpiritLM. We report true positive rate at 1% and 0.1% false positive rate
and the median p-value.

MMW Book Report MMW Story MMW Fake News

Method TPR@FPR Median p-value TPR@FPR Median p-value TPR@FPR Median p-value
1% 0.1% 1% 0.1% 1% 0.1%

KGW(δ=1.0) 0.75 0.40 0.002 0.66 0.42 0.004 0.63 0.38 0.003
KGW(δ=1.5) 0.93 0.76 1.1e-05 0.96 0.90 1.2e-05 0.87 0.71 1.3e-04
KGW(δ=2.0) 0.97 0.94 2.8e-07 0.97 0.89 5.1e-07 0.92 0.86 2.5e-06
Unigram(δ=1.0) 0.09 0.00 0.241 0.06 0.02 0.241 0.08 0.01 0.198
Unigram(δ=1.5) 0.27 0.12 0.043 0.28 0.11 0.042 0.37 0.20 0.040
Unigram(δ=2.0) 0.56 0.29 0.006 0.55 0.30 0.005 0.53 0.28 0.007

γ-reweight 0.68 0.41 0.003 0.53 0.30 0.006 0.68 0.43 0.002
DiPmark(α=0.3) 0.55 0.27 0.009 0.35 0.21 0.029 0.44 0.26 0.017
DiPmark(α=0.4) 0.63 0.41 0.002 0.57 0.33 0.004 0.61 0.34 0.003
ITS 0.77 0.64 2.0e-04 0.82 0.70 2.0e-04 0.83 0.74 2.0e-04

ALIGNED-IS 0.88 0.77 8.0e-05 0.92 0.80 4.6e-05 0.97 0.82 4.9e-05

Table 3: Detectability comparison of watermarking methods on Dolly CW, Longform QA, and
Librispeech with SpiritLM. We report true positive rate at 1% and 0.1% false positive rate and the
median p-value.

Dolly CW Longform QA Librispeech

Method TPR@FPR Median p-value TPR@FPR Median p-value TPR@FPR Median p-value
1% 0.1% 1% 0.1% 1% 0.1%

KGW(δ=1.0) 0.69 0.44 0.003 0.75 0.44 0.001 0.69 0.42 0.002
KGW(δ=1.5) 0.93 0.83 2.4e-05 0.95 0.84 1.8e-05 0.97 0.86 1.3e-05
KGW(δ=2.0) 0.98 0.90 6.0e-07 0.99 0.92 3.4e-07 0.99 0.97 9.7e-08
Unigram(δ=1.0) 0.10 0.02 0.268 0.15 0.06 0.164 0.06 0.01 0.268
Unigram(δ=1.5) 0.32 0.16 0.057 0.40 0.17 0.021 0.25 0.07 0.060
Unigram(δ=2.0) 0.43 0.23 0.016 0.56 0.32 0.006 0.48 0.23 0.012

γ-reweight 0.63 0.43 0.002 0.56 0.35 0.005 0.71 0.46 0.001
DiPmark(α=0.3) 0.45 0.19 0.019 0.50 0.25 0.010 0.60 0.31 0.006
DiPmark(α=0.4) 0.58 0.34 0.005 0.53 0.29 0.009 0.69 0.45 0.002
ITS 0.79 0.62 4.0e-04 0.86 0.73 2.0e-04 0.90 0.83 2.0e-04

ALIGNED-IS 0.92 0.80 2.3e-05 0.96 0.82 1.6e-05 0.95 0.84 6.7e-06

content. Subsequently, the pseudo-random number ri(θi) is recovered based on θi. Next, we
calculate the statistical score s(ri(θi), xi) following Definition 4.2. The final statistic is given by
S(x1:t) =

∑t
i=1 s(ri(θi), xi).

Under the null hypothesis, S(x1:t) follows a binomial distribution with a success rate of 1
h . Thus,

we have the following tail bound derived from the Hoeffding’s inequality: Pr(S(x1:t) ≥ k) ≤
exp(−2t( 1h − k

t )
2). By setting a threshold on the false positive rate (e.g. FPR=1%), we can calculate

a threshold z by solving exp(−2t( 1h − z
t )

2) = 0.01. If the score S(x1:t) is greater than z, we reject
the null hypothesis and claim that the sentence is watermarked. The detection algorithm is in Alg. 2.

5 Experiments

Baselines. We evaluate the performance of our methods against various statistical watermarking
baselines, including two biased watermarking approaches, KGW (Kirchenbauer et al., 2023) and
Unigram (Zhao et al., 2023), as well as three unbiased watermarking algorithms, γ-reweight (Hu
et al., 2023), DiPmark (Wu et al., 2023b), and ITS-edit (Kuditipudi et al., 2023). We also compare
our in-generation method with state-of-the-art post hoc watermarking methods in Appendix C.

Models and Datasets. We evaluate our watermarking approach ALIGNED-ISon raw audios gener-
ated by text-speech aligned conversational models. This allows us for flexibility to prompt speech
generation with both text and speech prompts. We use the models SpiritLM (Nguyen et al., 2025)
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Table 4: Detectability comparison of watermarking methods on Dolly CW, Longform QA, and
Finance QA with SpeechGPT. We report true positive rate at 1% and 0.1% false positive rate and the
median p-value.

Dolly CW Longform QA Finance QA

Method TPR@FPR Median p-value TPR@FPR Median p-value TPR@FPR Median p-value
1% 0.1% 1% 0.1% 1% 0.1%

KGW(δ=1.0) 0.32 0.14 0.048 0.40 0.19 0.023 0.36 0.21 0.024
KGW(δ=1.5) 0.56 0.36 0.005 0.72 0.48 0.001 0.68 0.52 8.2e-04
KGW(δ=2.0) 0.73 0.51 7.4e-04 0.84 0.69 4.2e-05 0.80 0.70 7.5e-05
Unigram(δ=1.0) 0.17 0.06 0.122 0.25 0.10 0.054 0.21 0.07 0.061
Unigram(δ=1.5) 0.40 0.21 0.023 0.55 0.26 0.006 0.64 0.37 0.003
Unigram(δ=2.0) 0.57 0.38 0.004 0.71 0.54 6.1e-04 0.72 0.59 3.0e-04

γ-reweight 0.37 0.15 0.047 0.46 0.24 0.015 0.56 0.32 0.007
DiPmark(α=0.3) 0.23 0.11 0.089 0.37 0.12 0.027 0.33 0.17 0.032
DiPmark(α=0.4) 0.29 0.12 0.049 0.46 0.24 0.014 0.54 0.25 0.008

ALIGNED-IS 0.82 0.69 5.6e-05 0.95 0.90 1.8e-0 0.94 0.89 1.7e-07

Table 5: Robustness comparison of watermarking methods for Longform QA with SpiritLM under
signal processing attacks. We report TPR at 1% FPR. ‘Dist.’ refers distorted watermarks and ‘Dist.
free’ refers distortion-free watermarks.

Watermark No
attack

Echo
(0.05sec)

Gauss. noise
(30dB)

Lowpass
(40%)

Smooth
(6 samp.)

Speed
(0.9)

Speed
(1.1)

Dist.

KGW(δ=1.0) 0.75 0.64 0.77 0.77 0.80 0.13 0.11
KGW(δ=1.5) 0.95 0.95 0.97 0.96 0.96 0.24 0.27
KGW(δ=2.0) 0.99 0.97 0.99 0.99 0.99 0.35 0.35
Unigram(δ=1.0) 0.15 0.15 0.03 0.16 0.11 0.01 0.02
Unigram(δ=1.5) 0.40 0.41 0.13 0.39 0.30 0.07 0.05
Unigram(δ=2.0) 0.56 0.57 0.30 0.56 0.47 0.13 0.08

Dist.
free

γ-reweight 0.56 0.56 0.44 0.58 0.56 0.17 0.09
DiP(α=0.3) 0.50 0.50 0.35 0.48 0.49 0.09 0.10
DiP(α=0.4) 0.53 0.52 0.39 0.54 0.49 0.14 0.10
ITS 0.86 0.85 0.79 0.88 0.85 0.06 0.00

ALIGNED-IS 0.96 0.93 0.93 0.94 0.94 0.31 0.28

and SpeechGPT (Zhang et al., 2023) for the speech generation tasks. For text prompting, we follow
Kirchenbauer et al. (2023); Hu et al. (2023) and include three MMW datasets (Piet et al., 2023), Dolly
CW (Conover et al., 2023), and two tasks from WaterBench (Tu et al., 2023). For speech prompting,
we use the validation set of LibriSpeech (Panayotov et al., 2015).

Watermarking parameters. We evaluate the detectability of ALIGNED-IS on the speech gener-
ation task with different audio generation models. We generate 500 examples for each task. We
use the prefix 1-gram together with a secret key as the watermark keys. We select α ∈ {0.3, 0.4}
for DiPmark, and δ ∈ {1.0, 1.5, 2.0} and γ = 0.5 for KGW watermark (Kirchenbauer et al., 2023),
δ ∈ {1.0, 1.5, 2.0} for Unigram (Zhao et al., 2023). For ALIGNED-IS, we partition the token-
embedding space into 20 clusters using the k-means algorithm, then perform linear sum assignment
to ensure that the resulting centroids are sufficiently separated to accommodate potential retokeniza-
tion errors. We justify the choice of h = 20 in Appendix E.1. All experiments are conducted on a
NVIDIA A6000 GPU.

5.1 Detectability

Following the evaluation metric of the previous works (Kirchenbauer et al., 2023; Wu et al., 2023b),
we report the true positive rate at guaranteed false positive rates, i.e., TPR@FPR={1%, 0.1%}.
Notice, as the detectors of ITS-edit do not provide a theoretical guarantee, we report the true positive
rate at the estimated false positive rate following their detecting algorithms.

From Table 2, 3, and 4 we see that ALIGNED-IS achieved the best detectability comparing with all
other unbiased watermarks, at least 10% improvement on all TPR@FPR metrics. Besides, ALIGNED-
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Table 6: Robustness comparison of watermarking methods for Longform QA with SpiritLM under
codec-based, quantizing, and denoising attacks. We report TPR at 1% FPR. ‘Dist.’ refers distorted
watermarks and ‘Dist. free’ refers distortion-free watermarks.

Watermark EnCodec
(24kHz)

MP3
(32kbps)

MP3
(40kbps)

Opus
(16kbps)

Opus
(31kbps)

Quant.
(64-bit) Denoise

Dist.

KGW(δ=1.0) 0.64 0.51 0.53 0.65 0.74 0.68 0.65
KGW(δ=1.5) 0.93 0.88 0.86 0.92 0.95 0.92 0.93
KGW(δ=2.0) 0.98 0.94 0.93 0.97 0.98 0.97 0.97
Uni(δ=1.0) 0.06 0.12 0.12 0.12 0.14 0.00 0.06
Uni(δ=1.5) 0.26 0.32 0.34 0.33 0.37 0.10 0.22
Uni(δ=2.0) 0.41 0.53 0.49 0.49 0.53 0.20 0.38

Dist.
free

γ-reweight 0.51 0.42 0.46 0.54 0.56 0.57 0.52
DiP(α=0.3) 0.46 0.30 0.34 0.46 0.48 0.60 0.44
DiP(α=0.4) 0.49 0.41 0.41 0.47 0.51 0.56 0.48
ITS 0.77 0.74 0.78 0.80 0.88 0.63 0.71

ALIGNED-IS 0.92 0.80 0.84 0.91 0.92 0.88 0.92

IS outperformed the biased watermarking algorithm KGW and Unigram in most cases, and achieved
comparable performance with the strongly biased KGW(δ=2.0).

Time Efficiency. Similar to KGW, Unigram, and DiPmark watermarking approaches, the minimal
computational overhead introduced by the ALIGNED-IS generator occurs solely during the adjustment
of token probabilities in the generation stage, and can be elegantly impelemented as a logits processor
in popular deep learning framweorks. Moreover, the ALIGNED-IS detector is model-agnostic.

5.2 Robustness

Audio in the wild is subject to various modifications. Hosting platforms use codecs for efficiency,
and users employ editing software either for recreational purposes, or specifically to erase water-
marking signals. To evaluate the robustness of ALIGNED-IS under realistic channel conditions, we
apply a diverse suite of thirteen single-channel audio attacks. We follow the no-box attacks of
AudioMarkBench (Liu et al., 2024b), which includes common signal porcessing modifications (time
dilation, echo, Gaussian noise addition, lowpass filtering, temporal smoothing, quantization), popular
audio codings (Opus, EnCodec (Défossez et al., 2023), and MP3), as well as the denoising attack of
López-López et al. (2024). The detailed settings are in Section D.1.

The results are summarized in Table 5 and Table 6. We report the true positive rate at a fixed false
positive rate of 1% for each watermark across a range of attack types and strengths. ALIGNED-
IS consistently exhibits the strongest robustness, outperforming all distortion-free watermarking
baselines in reliably detecting watermarked audio under adversarial conditions. Experiments on two
additional datasets per model are included in F.2.

5.3 Audio quality

We employ non-intrusive speech quality metrics to validate unbiasedness, due to the inherent stochas-
ticity of token-based statistical watermarking methods. Specifically, we utilize the Fréchet Audio
Distance (FAD) (Kilgour et al., 2019), a metric designed to directly quantify the divergence between
two distributions. We compute the FAD scores between the watermarked audios and their unwater-
marked counterparts generated from identical prompts and the unwatermarked model. As a baseline
(no watermarking scenario), we generate two distinct sets of audio samples from the unwatermarked
model, using the same prompts but different random seeds, and calculate the FAD scores between
these two sets. Figure 2 shows that ALIGNED-IS and the other distortion-free watermarking schemes
preserve audio quality on par with the unwatermarked baseline, whereas distortion-based approaches
such as KGW and Unigram noticeably degrade it.
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Figure 2: Audio-quality impact of watermarking methods. Top: FAD scores on the Dolly CW dataset
evaluated with SpiritLM. Bottom: FAD scores on the LibriSpeech dataset evaluated with SpiritLM.

6 Conclusion
In conclusion, we propose ALIGNED-IS, a novel distortion-free watermarking framework tailored
specifically for autoregressive audio generation models. Leveraging aligned inverse sampling,
ALIGNED-IS ensures traceability and accountability in synthetic audio outputs without any degra-
dation in audio quality. Comprehensive empirical evaluations across diverse datasets and audio
generation architectures demonstrate the efficacy and robustness of our approach. Our method
thus represents a meaningful advancement in watermarking technology, enhancing the security and
integrity of synthetic audio and supporting trustworthy digital communication.
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A Limitations

ALIGNED-IS method relies on the assumption that the retokenization mismatch is adequately captured
by clustering. However, there is no formal guarantee that the clustering process fully captures all
forms of retokenization errors, especially when new audio patterns or novel speech artifacts are
introduced. Besides, for each new model, we need to perform the clustering of tokens, which
introduces an additional computational step.

B Missing Algorithms

Algorithm 3 Aligned inverse sampling.

1: Input: Cluster probabilities Pr(c1), ...,Pr(ch), sorted from max to min probabilities. Watermark
code θ.

2: Initialize an overlapped_dict to store the overlapped regions.
3: Initialize a cluster_list and a prob_list for inverse sampling.
4: # Rearrange probabilities of clusters within [0,1].
5: for i = 1, . . . , h do
6: cluster_list.append(ci)
7: if Pr(ci) ≥ 1/h then
8: prob_list.append(1/h)
9: # Store the overlapped regions

10: overlapped_dict.add({ci : Pr(ci)− 1/h})
11: else
12: prob_list.append(Pr(ci))
13: diff=1/h− Pr(ci)
14: # Use the overlapped regions to fill the empty region
15: while diff> 0 do
16: for j ∈overlapped_dict do
17: cluster_list.append(j)
18: prob_list.append(min{diff, overlapped_dict[j])
19: diff=diff-overlapped_dict[j]
20: overlapped_dict[j]=max{0, overlapped_dict[j] - diff}
21: # Sampling from the rearranged interval.
22: Pseudo-randomly sampling r(θ) ∈[0, 1] seeded by θ.
23: Find i s.t. r(θ) ∈[sum(prob_list[0: i]), sum(prob_list[0: i+1]))
24: Randomly sample the token x (following their original probability) from cluster_list[i]
25: return x

C Comparison with post hoc methods

We compare our in-generation method with the state-of-the-art post hoc watermarking methods
AudioSeal (San Roman et al., 2024) and WavMark (Chen et al., 2023). Our findings indicate
that, as established in existing literature, post hoc watermarking methods are neither robust, nor
distortion-free. Statistical watermarking is a promising solution for embedding zero-bit watermarks
to distinguish artificially generated audio. Specifically, our audio-aware method achieves a new
state-of-the-art in robustness and distortion-freeness.

C.1 Detectability & Robustness

First, we verify the results of O’Reilly et al. (2025), who identified that post hoc methods are
robust to a few attacks, but extremely vulnerable to others, making them unpractical in real-world
applications. Token-based statistical watermarking is more robust to a wide variety of attacks, since
the watermarking information is embedded into the generated audio itself, in cotrast to overlaying
mid-frequency content on the audio. We present our results in Tables 7 through 10 for SpiritLM, and
Tables 11 through 14 for SpeechGPT. Notice that post hoc methods are mostly robust to low-frequency
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Table 7: Robustness comparison of post hoc watermarking methods for Longform QA with SpiritLM
under signal processing attacks.

Watermark No
attack

Echo
(0.05sec)

Gauss. noise
(30dB)

Lowpass
(40%)

Smooth
(6 samp.)

Speed
(0.9)

Speed
(1.1)

AudioSeal 1.00 0.88 0.07 1.00 1.00 0.00 0.00
WavMark 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ALIGNED-IS 0.96 0.93 0.93 0.94 0.94 0.31 0.28

Table 8: Robustness comparison of post hoc watermarking methods for Longform QA with SpiritLM
under codec-based and quantizing attacks.

Watermark EnCodec
(24kHz)

MP3
(32kbps)

MP3
(40kbps)

Opus
(16kbps)

Opus
(31kbps)

Quant.
(64-bit)

AudioSeal 0.00 0.18 0.81 0.00 0.90 0.00
WavMark 0.00 1.00 1.00 0.96 1.00 0.06

ALIGNED-IS 0.92 0.80 0.84 0.91 0.92 0.88

perturbations (since they alter inaudible frequencies) and higher-bitrate codings, but are very fragile
otherwise.

Detectability is reported as the TPR at 1% FPR for ALIGNED-IS, however the post hoc methods do
not offer a theoretical detectability guarantee. For AudioSeal, the detection result is the probability
of the audio being watermarked, so we report that probability thresholded at 99%. For WavMark,
a 16-bit payload is embedded into the audio, and detection returns either an empty, or a decoded
payload. We consider successful detection when a payload is not empty, even if it has a non-zero bit
error rate.

C.2 Audio quality

We then showcase that post hoc methods are inevitably harmful to audio quality, since operating on
the waveform level significantly deteriorates the FAD score. Notably, audios processed by WavMark
have audible high-frequency artifacts, which justifies its higher detectability. We present the audio
quality in Tables 15 through 18. The mean opinion score (MOS) is also reported using the estimators
NISQA and DNSMOSPro, from Mittag et al. (2021) and Cumlin et al. (2024).

D Experimental settings

D.1 Attack Suite

To evaluate the robustness of ALIGNED-IS under realistic channel conditions, we apply a suite of
thirteen single-channel audio attacks. Each attack is tuned to a moderate, perceptually acceptable
strength.

• Echo (0.05 s) - Echo with a 50 ms delay.

Table 9: Robustness comparison of post hoc watermarking methods for LibriSpeech with SpiritLM
under signal processing attacks.

Watermark No
attack

Echo
(0.05sec)

Gauss. noise
(30dB)

Lowpass
(40%)

Smooth
(6 samp.)

Speed
(0.9)

Speed
(1.1)

AudioSeal 1.0 0.82 0.05 1.00 1.00 0.00 0.00
WavMark 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ALIGNED-IS 0.95 0.92 0.90 0.93 0.92 0.28 0.21
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Table 10: Robustness comparison of post hoc watermarking methods for LibriSpeech with SpiritLM
under codec-based and quantizing attacks.

Watermark EnCodec
(24kHz)

MP3
(32kbps)

MP3
(40kbps)

Opus
(16kbps)

Opus
(31kbps)

Quant.
(64-bit)

AudioSeal 0.00 0.18 0.84 0.00 0.89 0.00
WavMark 0.00 1.00 1.00 0.99 1.00 0.06

ALIGNED-IS 0.90 0.75 0.80 0.89 0.91 0.85

Table 11: Robustness comparison of post hoc watermarking methods for Longform QA with
SpeechGPT under signal processing attacks.

Watermark No
attack

Echo
(0.05sec)

Gauss. noise
(30dB)

Lowpass
(40%)

Smooth
(6 samp.)

Speed
(0.9)

Speed
(1.1)

AudioSeal 1.00 0.77 0.00 1.00 1.00 0.00 0.00
WavMark 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ALIGNED-IS 0.95 0.93 0.93 0.95 0.92 0.38 0.22

Table 12: Robustness comparison of post hoc watermarking methods for Longform QA with
SpeechGPT under codec-based and quantizing attacks.

Watermark EnCodec
(24kHz)

MP3
(32kbps)

MP3
(40kbps)

Opus
(16kbps)

Opus
(31kbps)

Quant.
(64-bit)

AudioSeal 0.00 0.02 0.05 0.00 0.26 0.00
WavMark 0.00 1.00 1.00 0.74 1.00 0.30

ALIGNED-IS 0.91 0.82 0.84 0.95 0.96 0.85

Table 13: Robustness comparison of post hoc watermarking methods for Finance QA with SpeechGPT
under signal processing attacks.

Watermark No
attack

Echo
(0.05sec)

Gauss. noise
(30dB)

Lowpass
(40%)

Smooth
(6 samp.)

Speed
(0.9)

Speed
(1.1)

AudioSeal 1.00 0.84 0.01 1.00 1.00 0.00 0.00
WavMark 1.00 1.00 0.99 1.00 1.00 1.00 1.00

ALIGNED-IS 0.94 0.94 0.94 0.94 0.93 0.38 0.24

Table 14: Robustness comparison of post hoc watermarking methods for Finance QA with SpeechGPT
under codec-based, quantizing, and denoising attacks.

Watermark EnCodec
(24kHz)

MP3
(32kbps)

MP3
(40kbps)

Opus
(16kbps)

Opus
(31kbps)

Quant.
(64-bit)

AudioSeal 0.00 0.01 0.06 0.00 0.28 0.01
WavMark 0.00 1.00 1.00 0.74 1.00 0.29

ALIGNED-IS 0.91 0.89 0.88 0.95 0.94 0.87

Table 15: Quality comparison with post hoc methods for Dolly CW with SpiritLM

Method FAD ↓ MOS ↑
NISQA DNSMOSPro

No watermark 0.0487 3.915 3.713

AudioSeal 0.3083 3.813 3.779
WavMark 1.8233 4.167 4.215

ALIGNED-IS 0.0512 3.860 3.763
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Table 16: Quality comparison with post hoc methods for Longform QA with SpiritLM

Method FAD ↓ MOS ↑
NISQA DNSMOSPro

No watermark 0.0337 3.934 3.766

AudioSeal 0.3061 3.830 3.811
WavMark 1.7910 4.160 4.190

ALIGNED-IS 0.0416 3.958 3.764

Table 17: Quality comparison with post hoc methods for Finance QA with SpiritLM

Method FAD ↓ MOS ↑
NISQA DNSMOSPro

No watermark 0.0233 3.964 3.768

AudioSeal 0.3081 3.901 3.777
WavMark 1.7228 4.212 4.158

ALIGNED-IS 0.0515 3.948 3.766

• Gaussian noise (30 dB SNR) - Injects additive white Gaussian noise to achieve an output
signal-to-noise ratio of 30 dB.

• Low-pass filter (40 % of Nyquist) - Applies a low-pass filter with a cut-off frequency equal
to 40% of the Nyquist rate.

• Smoothing (6-sample moving average) - Applies a moving-average filter of width 6
samples.

• Speed perturbation (0.9× and 1.1×) Interpolates the waveform to speed up or slow down,
accordingly.

• EnCodec (24 kHz) - Re-encodes the audio with Meta’s EnCodec neural codec (Défossez
et al., 2023) at 24 kHz bandwidth.

• MP3 recompression (32 kbit/s and 40 kbit/s) - Re-encodes the waveform using at the
given constant bit rate.

• Opus recompression (16 kbit/s and 31 kbit/s) - Re-encodes the waveform at the given
constant bit rate.

• Quantization (64 levels) - Uniformly quantizes samples to 64 discrete amplitude levels.

• Denoising - Applies the DCCRN (Hu et al., 2020) denoising network to the waveforms
perturbed by the Gaussian noise at 30 dB.

Each attack is applied independently to the model outputs and no attack stacking is used.

Table 18: Quality comparison with post hoc methods for LibriSpeech with SpiritLM

Method FAD ↓ MOS ↑
NISQA DNSMOSPro

No watermark 0.0054 3.966 3.780

AudioSeal 0.2918 3.915 3.798
WavMark 1.6509 4.243 4.203

ALIGNED-IS 0.0065 3.959 3.798
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Table 19: Ablation on the optimal number of clusters for SpiritLM.
h TPR@FPR=1% Median p-value

10 0.798343 0.000473744
20 0.922018 2.27798e-05
30 0.724234 0.00165162
40 0.904494 6.96696e-05
80 0.696884 0.00124669

100 0.858696 0.000264207
120 0.676093 0.00145675
150 0.687927 0.002948

Table 20: Ablation on the optimal number of clusters for SpeechGPT.
h TPR@FPR=1% Median p-value

10 0.666667 0.000672034
20 0.816092 5.56062e-05
30 0.660377 0.00143836
40 0.548023 0.00592188
80 0.754144 0.000392686

100 0.248538 0.0748774
120 0.507553 0.0092863
150 0.784703 0.000100627

E Additional Ablations.

E.1 Number of clusters

We conducted an ablation study on the number of clusters for both models using the Dolly CW
dataset, with generation settings identical to the main experiments. We resent the results in Tables 19
and 20, which show that detectability initially increases with more clusters but begins to decline
beyond a certain point. This trend arises because SpiritLM has approximately 500 audio tokens, and
using too many clusters leads to overly fine partitions that fail to effectively mitigate retokenization
errors. We find that strikes a good balance and yields optimal detectability, supporting our choice in
the main experiments. For the non-clustering baseline, we assign tokens randomly to h=20 clusters
and apply ALIGNED-IS.

E.2 Dependence on generation length

The length of audio token sequences used for detection is typically around 500, which corresponds to
approximately 10–20 seconds of audio. The duration is affected by the tokenizer and vocoder frame
rates. Some variation arises because the duration of each token may differ depending on the model’s
duration prediction. In Table 21, we present detection results on randomly cropped segments of
watermarked audio with varying durations. As shown, detection performance improves with longer
audio segments, achieving reliable detectability for audio durations exceeding 5 seconds.

E.3 Robustness to time shift

Due to the reliance on accurate audio retokenization which assumes frame alignment, the proposed
watermark is not inherently robust to misalignment attacks, like speed modifications, as established
in Tables 5 and 6. However, cropping attacks or time shifts can deceive detection only if they operate
on small offsets (smaller than the frame size). We performed an experiment with the Longform
QA dataset and the SpiritLM model, whose frame size is 645 samples. We uniformly sampled 8
time shifts, with shifts larger than 322 being equivalent to negative shifts of less than 50% of the
frame length. In Table 22, we observe our watermark’s strength decrease and then increase, but still
maintaining high detectability at small offsets. An effective practical defense against cropping attacks
would be to simply run detection on a few slightly misaligned versions of the subject audio.
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Table 21: The impact of audio length on detection, for the Longform QA dataset with SpeechGPT.
Time (sec) TPR@FPR=1% Median p-value

∼2.0 0.5000 1.0306e-02
∼3.0 0.6707 1.7270e-03
∼4.0 0.8232 4.8318e-04
∼5.0 0.8659 7.5983e-05
∼6.0 0.9207 2.1367e-05
∼7.0 0.9329 8.7637e-06
∼8.0 0.9390 4.2917e-06
∼9.0 0.9451 2.0837e-06

Table 22: The impact of audio length on detection, for the Longform QA dataset with SpeechGPT.
offset (samples) TPR@FPR=1% Median p-value

0 0.94 2.8014e-05
80 0.92 1.2973e-05

160 0.76 0.0001
240 0.58 0.0041
320 0.43 0.0191
400 0.37 0.0318
480 0.54 0.0069
560 0.88 0.0001
640 0.94 2.6169e-05

E.4 Quality comparison

We evaluate speaker similarity using WavLM-Base (Chen et al., 2022), and ASR-CER/WER using
HuBERT-large fine-tuned model (Hsu et al., 2021), with watermarked audios. We use SpiritLM
with Librispeech dataset. From the results in Table 23, we observe that distortion-free watermark-
ing methods, e.g., Aligned-IS, DiPmark, and γ-reweight, achieve performance comparable to the
unwatermarked baseline across all metrics. In contrast, biased and post-hoc watermarking methods
noticeably degrade the generation quality.

F Supplementary Experimental results.

F.1 Detectability

We present an additional watermark detectability evaluation on the Finance QA dataset with SpiritLM
in Table 24. From Table 24 we see that ALIGNED-IS achieved the best detectability comparing
with all other unbiased watermarks, at least 10% improvement on all TPR@FPR metrics. Besides,

Table 23: Comparison of watermarking methods on speech quality and recognition metrics. Higher
Speaker Similarity and lower ASR-CER/WER indicate better performance.

Method Speaker Similarity ↑ ASR-CER ↓ ASR-WER ↓
Baseline 0.7550 0.1039 0.1475
Audioseal 0.7479 0.1086 0.1648
Wavmark 0.7311 0.1143 0.1819
Aligned-IS 0.7548 0.1038 0.1472
DiPmark(0.4) 0.7543 0.1045 0.1468
γ-reweight 0.7546 0.1043 0.1477
KGW(1.5) 0.7446 0.1093 0.1617
Unigram(1.5) 0.7431 0.1102 0.1656
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Table 24: Detectability for Finance QA with SpiritLM

Method TPR@FPR Median p-value
1% 0.1%

KGW(δ=1.0) 0.71 0.49 0.001
KGW(δ=1.5) 0.94 0.79 1.1e-05
KGW(δ=2.0) 0.97 0.92 3.2e-07
Unigram(δ=1.0) 0.19 0.06 0.151
Unigram(δ=1.5) 0.32 0.15 0.039
Unigram(δ=2.0) 0.66 0.39 0.002

DiPmark(α=0.3) 0.35 0.18 0.027
DiPmark(α=0.4) 0.48 0.23 0.012
γ-reweight 0.56 0.34 0.005
ITS 0.85 0.76 2.0e-04

ALIGNED-IS 0.94 0.79 2.4e-05

Table 25: Robustness comparison of watermarking methods for Finance QA with SpiritLM under
signal processing attacks. We report TPR at 1% FPR.

Watermark No
attack

Echo
(0.05sec)

Gauss. noise
(30dB)

Lowpass
(40%)

Smooth
(6 samp.)

Speed
(0.9)

Speed
(1.1)

Dist.

KGW(δ=1.0) 0.71 0.70 0.79 0.74 0.74 0.12 0.14
KGW(δ=1.5) 0.94 0.94 0.95 0.94 0.94 0.27 0.25
KGW(δ=2.0) 0.97 0.98 0.98 0.97 0.98 0.37 0.36
Uni(δ=1.0) 0.19 0.16 0.04 0.20 0.13 0.03 0.01
Uni(δ=1.5) 0.32 0.32 0.14 0.30 0.22 0.06 0.05
Uni(δ=2.0) 0.66 0.62 0.39 0.66 0.57 0.17 0.12

Dist.
free

γ-reweight 0.56 0.52 0.38 0.53 0.58 0.07 0.07
DiP(α=0.3) 0.35 0.38 0.26 0.40 0.38 0.06 0.05
DiP(α=0.4) 0.48 0.45 0.34 0.47 0.43 0.10 0.08

ALIGNED-IS 0.94 0.93 0.90 0.96 0.93 0.39 0.30

ALIGNED-IS outperformed the biased watermarking algorithm KGW and Unigram in most cases,
and achieved comparable performance with the strongly biased KGW(δ=2.0).

F.2 Robustness

We supplement the robustness evaluation with Tables 25 through 28 for SpiritLM, and Tables 29
through 34 for SpeechGPT. ALIGNED-IS consistently exhibits the strongest robustness, outper-
forming all distortion-free watermarking baselines in reliably detecting watermarked audio under
adversarial conditions.

G Broader Impact

We introduce ALIGNED-IS, a distortion-free watermarking framework for autoregressive audio
generation models, addressing the retokenization mismatch that limits traditional methods. Beyond the
specific technical advancement, its broader impact lies in enhancing the security and trustworthiness
of AI-generated audio, which is increasingly critical as synthetic media proliferates. Watermarking
technologies such as this not only help identify AI-generated content but also have wider applications,
including copyright protection (Liu et al., 2025b; Zhang et al., 2025; Chen et al., 2024a), content
authenticity verification, and digital rights management. However, the paper also highlights that
robustness remains a key challenge (An et al., 2025; Liu et al., 2025a; Chen et al., 2025b). Watermarks
can be degraded or removed through transformations or noise, emphasizing the ongoing need for
more resilient and standardized approaches across modalities
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Table 26: Robustness comparison of watermarking methods for Finance QA with SpiritLM under
codec-based, quantizing, and denoising attacks. We report TPR at 1% FPR.

Watermark EnCodec
(24kHz)

MP3
(32kbps)

MP3
(40kbps)

Opus
(16kbps)

Opus
(31kbps)

Quant.
(64-bit) Denoise

Dist.

KGW(δ=1.0) 0.69 0.54 0.51 0.69 0.73 0.64 0.67
KGW(δ=1.5) 0.93 0.79 0.81 0.88 0.94 0.90 0.91
KGW(δ=2.0) 0.99 0.91 0.92 0.94 0.98 0.95 0.97
Uni(δ=1.0) 0.10 0.14 0.14 0.12 0.17 0.01 0.08
Uni(δ=1.5) 0.20 0.30 0.30 0.24 0.33 0.05 0.19
Uni(δ=2.0) 0.52 0.64 0.61 0.54 0.63 0.18 0.48

Dist.
free

γ-reweight 0.48 0.36 0.38 0.47 0.55 0.56 0.53
DiP(α=0.3) 0.32 0.27 0.27 0.34 0.37 0.41 0.36
DiP(α=0.4) 0.43 0.35 0.38 0.50 0.42 0.54 0.49

ALIGNED-IS 0.91 0.81 0.80 0.92 0.93 0.85 0.89

Table 27: Robustness comparison of watermarking methods for LibriSpeech with SpiritLM under
signal processing attacks. We report TPR at 1% FPR.

Watermark No
attack

Echo
(0.05sec)

Gauss. noise
(30dB)

Lowpass
(40%)

Smooth
(6 samp.)

Speed
(0.9)

Speed
(1.1)

Dist.

KGW(δ=1.0) 0.69 0.52 0.64 0.55 0.58 0.05 0.09
KGW(δ=1.5) 0.97 0.86 0.92 0.90 0.91 0.17 0.18
KGW(δ=2.0) 0.99 0.97 0.97 0.97 0.97 0.24 0.26
Uni(δ=1.0) 0.06 0.05 0.01 0.05 0.04 0.01 0.00
Uni(δ=1.5) 0.25 0.18 0.07 0.17 0.14 0.02 0.01
Uni(δ=2.0) 0.48 0.39 0.18 0.38 0.32 0.04 0.03

Dist.
free

γ-reweight 0.71 0.66 0.57 0.66 0.71 0.21 0.13
DiP(α=0.3) 0.60 0.57 0.40 0.56 0.61 0.17 0.13
DiP(α=0.4) 0.69 0.66 0.54 0.69 0.71 0.18 0.15

ALIGNED-IS 0.95 0.92 0.90 0.93 0.92 0.28 0.21

Table 28: Robustness comparison of watermarking methods for LibriSpeech with SpiritLM under
codec-based, quantizing, and denoising attacks. We report TPR at 1% FPR.

Watermark EnCodec
(24kHz)

MP3
(32kbps)

MP3
(40kbps)

Opus
(16kbps)

Opus
(31kbps)

Quant.
(64-bit) Denoise

Dist.

KGW(δ=1.0) 0.45 0.29 0.31 0.51 0.53 0.47 0.53
KGW(δ=1.5) 0.84 0.64 0.61 0.82 0.90 0.78 0.85
KGW(δ=2.0) 0.95 0.84 0.83 0.95 0.97 0.93 0.96
Uni(δ=1.0) 0.03 0.05 0.04 0.03 0.04 0.00 0.02
Uni(δ=1.5) 0.11 0.15 0.14 0.16 0.17 0.02 0.11
Uni(δ=2.0) 0.25 0.27 0.29 0.27 0.39 0.06 0.24

Dist.
free

γ-reweight 0.61 0.53 0.57 0.65 0.69 0.65 0.67
DiP(α=0.3) 0.50 0.41 0.45 0.53 0.55 0.54 0.52
DiP(α=0.4) 0.59 0.52 0.57 0.66 0.70 0.64 0.66

ALIGNED-IS 0.90 0.75 0.80 0.89 0.91 0.85 0.87
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Table 29: Robustness comparison of watermarking methods for Dolly CW with SpeechGPT under
signal processing attacks. We report TPR at 1% FPR.

Watermark No
attack

Echo
(0.05sec)

Gauss. noise
(30dB)

Lowpass
(40%)

Smooth
(6 samp.)

Speed
(0.9)

Speed
(1.1)

Dist.

KGW(δ=1.0) 0.32 0.28 0.28 0.31 0.29 0.03 0.03
KGW(δ=1.5) 0.56 0.49 0.48 0.57 0.58 0.06 0.04
KGW(δ=2.0) 0.73 0.66 0.67 0.73 0.73 0.10 0.05
Uni(δ=1.0) 0.17 0.19 0.16 0.17 0.18 0.12 0.09
Uni(δ=1.5) 0.40 0.44 0.32 0.40 0.43 0.29 0.17
Uni(δ=2.0) 0.57 0.57 0.55 0.57 0.58 0.39 0.24

Dist.
free

γ-reweight 0.37 0.21 0.32 0.34 0.31 0.02 0.02
DiP(α=0.3) 0.23 0.15 0.19 0.23 0.21 0.02 0.02
DiP(α=0.4) 0.29 0.19 0.30 0.28 0.29 0.01 0.00

ALIGNED-IS 0.82 0.78 0.81 0.81 0.80 0.23 0.15

Table 30: Robustness comparison of watermarking methods for Dolly CW with SpeechGPT under
codec-based and quantizing attacks. We report TPR at 1% FPR.

Watermark EnCodec
(24kHz)

MP3
(32kbps)

MP3
(40kbps)

Opus
(16kbps)

Opus
(31kbps)

Quant.
(64-bit)

Dist.

KGW(δ=1.0) 0.26 0.16 0.16 0.29 0.30 0.14
KGW(δ=1.5) 0.52 0.26 0.26 0.56 0.56 0.36
KGW(δ=2.0) 0.67 0.45 0.43 0.69 0.71 0.53
Uni(δ=1.0) 0.17 0.15 0.15 0.19 0.18 0.06
Uni(δ=1.5) 0.35 0.28 0.29 0.41 0.40 0.12
Uni(δ=2.0) 0.55 0.49 0.46 0.61 0.60 0.23

Dist.
free

γ-reweight 0.32 0.16 0.18 0.31 0.35 0.23
DiP(α=0.3) 0.22 0.10 0.10 0.19 0.24 0.12
DiP(α=0.4) 0.27 0.12 0.14 0.24 0.30 0.20

ALIGNED-IS 0.78 0.64 0.60 0.78 0.82 0.62

Table 31: Robustness comparison of watermarking methods for Finance QA with SpeechGPT under
signal processing attacks. We report TPR at 1% FPR.

Watermark No
attack

Echo
(0.05sec)

Gauss. noise
(30dB)

Lowpass
(40%)

Smooth
(6 samp.)

Speed
(0.9)

Speed
(1.1)

Dist.

KGW(δ=1.0) 0.36 0.30 0.34 0.37 0.35 0.05 0.03
KGW(δ=1.5) 0.68 0.65 0.69 0.70 0.71 0.07 0.07
KGW(δ=2.0) 0.80 0.78 0.78 0.81 0.83 0.10 0.07
Uni(δ=1.0) 0.21 0.27 0.14 0.19 0.21 0.20 0.15
Uni(δ=1.5) 0.64 0.70 0.56 0.60 0.64 0.40 0.31
Uni(δ=2.0) 0.72 0.72 0.71 0.74 0.76 0.52 0.39

Dist.
free

γ-reweight 0.56 0.37 0.51 0.52 0.55 0.03 0.04
DiP(α=0.3) 0.33 0.26 0.39 0.39 0.33 0.01 0.00
DiP(α=0.4) 0.54 0.36 0.49 0.51 0.48 0.02 0.03

ALIGNED-IS 0.94 0.94 0.94 0.94 0.93 0.38 0.24
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Table 32: Robustness comparison of watermarking methods for Finance QA with SpeechGPT under
codec-based and quantizing attacks. We report TPR at 1% FPR.

Watermark EnCodec
(24kHz)

MP3
(32kbps)

MP3
(40kbps)

Opus
(16kbps)

Opus
(31kbps)

Quant.
(64-bit)

Dist.

KGW(δ=1.0) 0.36 0.17 0.18 0.35 0.39 0.16
KGW(δ=1.5) 0.69 0.38 0.40 0.71 0.69 0.50
KGW(δ=2.0) 0.75 0.58 0.61 0.80 0.82 0.66
Uni(δ=1.0) 0.21 0.16 0.15 0.23 0.25 0.05
Uni(δ=1.5) 0.61 0.50 0.51 0.71 0.66 0.22
Uni(δ=2.0) 0.71 0.63 0.65 0.77 0.75 0.44

Dist.
free

γ-reweight 0.52 0.32 0.30 0.47 0.56 0.37
DiP(α=0.3) 0.38 0.19 0.19 0.31 0.36 0.23
DiP(α=0.4) 0.45 0.28 0.26 0.47 0.49 0.31

ALIGNED-IS 0.91 0.89 0.88 0.95 0.94 0.87

Table 33: Robustness comparison of watermarking methods for Longform QA with SpeechGPT
under signal processing attacks. We report TPR at 1% FPR.

Watermark No
attack

Echo
(0.05sec)

Gauss. noise
(30dB)

Lowpass
(40%)

Smooth
(6 samp.)

Speed
(0.9)

Speed
(1.1)

Dist.

KGW(δ=1.0) 0.40 0.38 0.38 0.44 0.38 0.06 0.01
KGW(δ=1.5) 0.72 0.57 0.59 0.75 0.63 0.08 0.04
KGW(δ=2.0) 0.84 0.83 0.81 0.83 0.83 0.10 0.08
Uni(δ=1.0) 0.25 0.30 0.22 0.23 0.29 0.15 0.10
Uni(δ=1.5) 0.55 0.61 0.48 0.54 0.60 0.38 0.27
Uni(δ=2.0) 0.71 0.75 0.67 0.72 0.71 0.53 0.32

Dist.
free

γ-reweight 0.46 0.26 0.39 0.48 0.41 0.04 0.02
DiP(α=0.3) 0.37 0.25 0.33 0.32 0.36 0.04 0.03
DiP(α=0.4) 0.46 0.33 0.40 0.46 0.37 0.01 0.01

ALIGNED-IS 0.95 0.93 0.93 0.95 0.92 0.38 0.22

Table 34: Robustness comparison of watermarking methods for Longform QA with SpeechGPT
under codec-based and quantizing attacks. We report TPR at 1% FPR.

Watermark EnCodec
(24kHz)

MP3
(32kbps)

MP3
(40kbps)

Opus
(16kbps)

Opus
(31kbps)

Quant.
(64-bit)

Dist.

KGW(δ=1.0) 0.40 0.21 0.17 0.37 0.42 0.19
KGW(δ=1.5) 0.63 0.38 0.42 0.63 0.70 0.41
KGW(δ=2.0) 0.80 0.59 0.61 0.84 0.84 0.64
Uni(δ=0.5) 0.07 0.05 0.03 0.08 0.08 0.04
Uni(δ=1.0) 0.21 0.20 0.21 0.29 0.24 0.05
Uni(δ=1.5) 0.54 0.49 0.46 0.60 0.58 0.14
Uni(δ=2.0) 0.69 0.61 0.64 0.77 0.73 0.35

Dist.
free

γ-reweight 0.40 0.26 0.25 0.38 0.48 0.30
DiP(α=0.3) 0.34 0.20 0.16 0.26 0.37 0.17
DiP(α=0.4) 0.43 0.19 0.16 0.37 0.37 0.27

ALIGNED-IS 0.91 0.82 0.84 0.95 0.96 0.85
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Answer: [Yes]
Justification: the main claims made in the abstract and introduction accurately reflect our
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: see Section A.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provide the full set of assumptions and a complete (and correct) proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We disclose all the information needed to reproduce the main experimental
results of the paper in the experimental section and appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide code in the supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We disclose all the information needed to reproduce the main experimental
results of the paper in the experimental section and appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide the watermarking detectability results using hypothesis test and
report the false positiva rate under rigorous statistical guarantee.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See our experimental settings.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See the introduction section and the broader impact section in appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We don’t release new data/models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly cite the data/models used in our paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new asset is introduced in the paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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