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ABSTRACT

Interstitial fluid (ISF) serves as a rich source of biomarkers, enabling minimally
invasive continuous health monitoring through ISF sensors. Despite their potential
advantages, ISF sensors face a major challenge related to the delay in the trans-
fer of target analytes from blood to ISF, compared to blood-based measurements.
Particularly, this delay can vary significantly from subject to subject. While ma-
chine learning algorithms have been developed for continuous glucose measure-
ment within ISF, these algorithms have not considered this delay. In this paper, we
quantify the delay between ISF and blood-based detection of glucose and ketone
bodies in diabetic rats using decision-tree based algorithms. Accounting for this
delay can eventually improve the accuracy of ISF sensors for continuous health
monitoring of individual patients.

1 INTRODUCTION

Interstitial fluid (ISF), the fluid underneath the skin, between blood vessels and body cells, is a rich
source of health biomarkers. Wearable sensors for analyzing ISF and measuring these biomarkers
offer a minimally invasive approach to continuous health monitoring (Saifullah & Rad, 2023). These
wearable sensors which are increasingly becoming prevalent, can potentially replace invasive blood-
based measurements (Madden et al., 2020). For example, continuous glucose monitoring (CGM)
devices, a common ISF sensor, have transformed diabetes care by facilitating real-time glucose
tracking (Teo et al., 2022). However, a major limitation of wearable ISF sensors is the presence of a
delay between the actual concentration of biomarkers in blood and the concentration recorded by the
ISF sensors (Rossetti et al., 2010). The delay is mainly caused by variations in transport efficiencies
between the ISF and the blood in circulation (Keenan et al., 2009). Studies have shown a 5 to
20-minute delay in detecting changes in blood glucose compared to the measurements performed
by CGM (Basu et al., 2015). Yet, the delay for other crucial biomarkers such as ketone bodies and
insulin remains unknown. Furthermore, the delay can vary among individuals, emphasizing the need
to determine personalized delays. To successfully incorporate continuous wearable ISF monitoring
into clinical practice, it is essential to be able to understand the delay between ISF and blood levels
for clinically important analytes in a precise and personalized manner.

Over the past years, several machine learning-guided platforms were developed to analyze a patient’s
ISF glucose information obtained from CGM devices (Vettoretti et al., 2020). These ISF-based glu-
cose models explored the classification of glycemic control profiles for alerting patients of the risk
of events like post-prandial hypoglycemia (glucose < 72mg/dl) (Cappon et al., 2019; Reddy et al.,
2019; Vehı́ et al., 2020) and introduced time series models that predict glucose levels for the next 15
minutes up to 1 hour. These models used both classical statistical methods like autoregressive mod-
els (Cobelli, 2007) as well as more advanced artificial neural network frameworks (Alfian et al.,
2020), long short-term memory networks (Martinsson et al., 2020), Gaussian processes (Georga
et al., 2015), support vector machines (Georga et al., 2013; Xie1 & Wang, 2018) and transformer-
inspired encoder-decoder models (Armandpour et al., 2021; Sergazinov et al., 2023) to name a few.
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However, these approaches have not accounted for the delays between the blood and ISF measure-
ments and are limited to glucose monitoring. Recently, we developed a new wearable platform for
continuous monitoring of glucose and ketone bodies (called CGM-CKM device) in ISF. Specifically,
patients with type 1 diabetes need to track their ketone levels in addition to their glucose to avoid
the risk of diabetes ketoacidosis (DKA). A personalized knowledge of the delay between the levels
of glucose and ketones in blood and ISF for individual patients improves the performance of this
real-time monitoring device, leading to a better quality of life for people living with diabetes.

In this paper, we used decision-tree based algorithms to quantify the delay between the ISF-based
detection from the CGM-CKM device and blood-based measurement of glucose and ketone levels in
different diabetic rats. We achieved this by applying three different boosted decision-tree algorithms
that estimated an ISF-level time series corresponding to a reference blood-based time series (Figure
1). We cross-correlated the predicted ISF response from the device against the blood levels and
estimated a delay specific to each tested animal. Determining the delays between ISF and blood will
enable auto-adjustment of the CGM-CKM device for future human studies.

We aim to share our data and results with the workshop participants and collectively take steps
towards improving personalized health monitoring using wearable devices.
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Figure 1: Overview of the protocol: (a) ISF-based data collection from CGM-CKM device, (b)
data pre-processing to remove outliers, (c) leave-one-subject-out model training scheme, and (d)
evaluating personalized sensing delays for each rat using blood-based measurements as reference.
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2 METHODOLOGY

2.1 PROBLEM FORMULATION

Let n ∈ N be the number of tested subjects in the dataset for glucose or ketone measurements.
We defined [n] := {1, 2, . . . , n}. Let k indicate any subjects chosen randomly from the set [n]
and mk be the number of times that subject k was tested. A dataset with examples of the form
D = {(xi,k, yi,k)}i∈[mk],k∈[n] was defined. xi,k ∈ Rs was the vector of all input features extracted
from the CKM or CGM sensor platform, s ∈ N was the number of features in xi,k, and yi,k ∈ R
indicated the corresponding output analyte concentration. Here, the primary objectives were: (a) to
construct a mapping (or function) Fk : Rs → R for every individual k that learns from the vector of
input features from CKM or CGM sensor xi,k to make an estimation for the ketone or glucose levels,
respectively, in blood yi,k, and (b) to find an optimal delay τk by which the subject k’s predicted
ISF levels Fk(xi,k; θk) should be delayed to match with its corresponding blood concentration yi,k
as close as possible. θk was the set of learned parameters of the model Fk for subject k.

2.2 QUANTIFYING THE DELAY BETWEEN BLOOD AND ISF

To learn the personalized ISF prediction models Fk and consequently find the delay τk, we consid-
ered a leave-one-subject-out scheme, where, at a time, we fixed only 1 subject (i.e., k). For this k,
let k∗ represent any other subject in the dataset D other than k, that is, k∗ ∈ [n]\{k}. Next, we
divided D into two partitions - a training dataset Dk

train and a test dataset Dk
test. We considered

Dk
train = D\k = {(xi,k∗ , yi,k∗)}i∈[mk∗ ],k∗∈[n]\{k} and Dk

test = Dk = {(xi,k, yi,k)}i∈[mk]. It
should be noted that Dk

train and Dk
test were mutually exhaustive and disjoint. We then used all the

examples in Dk
train to train Fk using a learner algorithm. It should be noted that Fk varies for every

k based on the number of trees and loss function, emphasizing on personalized predictions.

To test our model Fk and find the delay for subject k, we defined two time series. Let yblood
k :=

{yi,k}i∈[mk] be the series of blood-based levels of k, to be used as ground truth for comparison with
ISF levels. Let yISF

k := {Fk(xi,k; θk)}i∈[mk], be the series of the ISF-level predictions for k. Let
tk = {ti,k}∀i∈[mk] be the set of all time instants at which an ISF experiment was performed for k.
For positive scalar τ ∈ R+, we defined an operation, tk + τ := {ti,k + τ}i∈[mk] (element-wise
addition). By definition of ISF delays, yISF

k ideally should be a delayed version of yblood
k . To find

this delay, first, we linearly interpolated yISF
k with respect to tk. From the interpolated curve for

ISF response, we re-sampled it, but instead, at times tk + τ , such that τ ∈ [τmax]∪{0}, τmax being
the physiologically acceptable limit in minutes for ISF delays. By re-sampling at the modified time
instants, the original ISF response yISF

k was now delayed by τ minutes to give us a delayed response
- we labeled it as yISF

k,τ . We chose τmax, the maximum limit of any delay to be 50 min. Finally, we
compared yISF

k,τ with yblood
k and simultaneously, varied τ in [τmax] ∪ {0} to find the optimal delay

τ = τk for subject k that minimizes the error metrics (see Section 3.2 for more information). We
propose that this τk is the delay during the transmission of bioalaytes from blood to ISF in subject k.
If τk = 0, it means transport of the analyte from blood to ISF takes place in negligible time, whereas
if τk > 0, it means transmission in k requires a significantly higher duration.

3 EXPERIMENTS

3.1 DATA COLLECTION

Glucose and ketone sensing using CGM-CKM device: For both ketone and glucose monitoring,
the number of diabetic rats tested was n = 4. In case of CKM, the device output for a certain
subject k at every time of experiment ti,k consisted of two time series - a pre-oxidation current
pi,k representing the amount of ketone recognition element present at the start of ketone detection,
and a detection current di,k, indicating the amount of recognition element left after detection. We
annotated the 4 subjects for ketone sensing as - Rat 1, Rat 2, Rat 3 and Rat 4 as in Table 1. Figure
3(a) (see Appendix) gives a sample pair of pi,k and di,k profiles for Rat 2 (k = 2 for ketone sensor)
at time ti,2 = 93 min. The profiles were recorded every 0.1s. pi,k was measured up to 20s and di,k

up to 50s for every k.

For CGM, the device output for each subject k had two steps. First, a time-varying current gi,k

indicating the glucose levels in k at time ti,k recorded every 0.1s for up to 60s, and second, a
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Table 1: a summary of the best possible individual delays τk and their corresponding metrics
Target Rat MAD(mM) / MARD(%) τk (mins)

Grad. Boost CatBoost XGBoost Grad. Boost CatBoost XGBoost
Ketone Rat 1 0.100 / 7.714 0.164 / 10.982 0.192 / 12.803 31 23 18

Rat 2 0.144 / 8.500 0.184 / 9.739 0.114 / 10.254 9 11 1
Rat 3 0.352 / 20.953 0.376 / 24.542 0.541 / 35.701 15 7 11
Rat 4 0.246 / 6.379 0.328 / 7.109 0.254 / 6.162 29 44 31

Glucose Rat 5 4.147 / 18.849 3.643 / 20.966 4.000 / 23.428 0 0 0
Rat 6 1.208 / 13.502 3.104 / 32.851 4.384 / 45.599 13 9 9
Rat 7 1.143 / 5.378 0.799 / 3.457 2.497 / 12.374 22 19 10
Rat 8 0.661 / 4.075 0.682 / 4.477 0.655 / 4.070 3 10 10

Table 2: the following table compares the overall MARD and MAD for all the algorithms
Target Algorithms used Performance metrics

Overall MAD (mM) Overall MARD (%)
Ketone Gradient Boosting 0.2261 10.8887

XGBoost 0.2915 16.3618
CatBoost 0.2849 13.4851

Glucose Gradient Boosting 1.5272 8.3838
XGBoost 2.4439 16.1028
CatBoost 1.5588 10.6467

current-voltage loop for every k to interpret the scale of sensor response in k and thereby calibrate
gi,k. We annotated the 4 animal subjects on which the glucose sensing was performed as - Rat 5, Rat
6, Rat 7 and Rat 8 as in Table 1. Figure 3(c) and (d) (see Appendix) shows a sample current-voltage
loop and its corresponding gi,k profile. Because the gi,k current ranges varied from one in vivo
rat to another, they were brought to the same level by defining an adjustment factor. For this, from
the current-voltage loop for every k, we recorded the average current value corresponding to the
maximum voltage level 0.6V for every rat. Let this sampled current be G0.6,k. Choosing G0.6,1 for
the Rat 5 (k = 1 for glucose) as the reference, we divided the G0.6,k values for all the other rats 6, 7
and 8 (k = 2, 3, 4 for glucose respectively) by G0.6,1 to find their individual scaling, or adjustment
factors. We later used these factors to re-scale their individual gi,k profiles to a comparable range.

Data preprocessing and input features: The varying physiological conditions inside each dia-
betic rat incorporated noise into the pi,k and di,k profiles during ketone sensing. As such, we used a
moving average filter to smooth both the current profiles. The gi,k profiles for glucose however had
negligible noise and did not require any such low-pass filters. To define the input features in xi,k,
we take samples from the output current profiles from the CGM-CKM platform. For ketone, we
sampled pi,k and di,k profiles at their end points. Let these samples be Pi,k and Di,k respectively.
For glucose, we sampled gi,k at 10s and 40s. Let these samples be gi,k,10 and gi,k,40. For CKM, the
ratio Di,k

Pi,k
indicates the percentage of recognition element left after detecting ketone bodies - directly

proportional to ketone concentration in subject k. Administration of insulin doses as a remedial ac-
tion against DKA during our ISF experiments ensured a drop in ketone levels with time and hence,
Di,k

Pi,k
ideally should decrease monotonically with time ti,k. Similarly for CGM, gi,k,10+gi,k,40 being

directly proportional to glucose levels, should also decrease with time. Presence of outliers often
disrupts these trends, and so, we used a robust framework to remove such outliers (see Appendix
and Figure 4 for more details). Finally, for ketone, we considered xi,k = [Pi,k Di,k ti,k] and for
glucose, xi,k = [gi,k,10 + gi,k,40 ti,k].

3.2 PERFORMANCE METRICS

To test the performance of Fk for subject k, we applied it on an exclusively new set of test exam-
ples Dk

test. To compare yISF
k with yblood

k , we considered two metrics, mean absolute difference
(absolute error), MADk and mean absolute relative difference (percentage error), MARDk. Both
of these metrics are widely-accepted to measure the accuracy of continuous monitoring biosensors,
especially for glucose (Heinemann et al., 2019; Zueger et al., 2012). While comparing delayed ISF
yISF
k,τ with yblood

k , we annotated the metrics as MADk,τ and MARDk,τ respectively. For every k,
we varied τ to find the optimal delay τ = τk that minimizes MARDk,τ and MADk,τ between yISF

k,τ

and ground truth yblood
k . For CKM, we were also interested if the model can differentiate between

normal ketosis (Fk(xi,k; θk) ≤ 1.5mM ) and hyperketonemia (Fk(xi,k; θk) > 1.5mM ). Hence, for
ketone, we considered a third metric, mistakesk,τ , that counts the number of misclassified exam-
ples in the binary classification between normal ketosis and hyperketonemia (see Appendix).
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3.3 RESULTS AND DISCUSSION

Figure 1 represents an overall schematic of our approach. To learn Fk for every k, we applied
3 different decision-tree based algorithms - gradient boosting (GBA) (Friedman, 2001), CatBoost
(Prokhorenkova et al., 2019) and XGBoost (Chen & Guestrin, 2016). We computed the performance
metrics, MAD and MARD, for different values of τ with 1min interval for both CKM and CGM
and chose the optimum delay that minimized MAD (see Figure 5 in Appendix for sample plots).
Table 1 lists the estimated delays for each rat for different learning algorithms. For individual rats,
varying delays ranging from 9 – 44 mins for CKM device and from 0 - 22 min for CGM device, were
found. The differences between the delays in individual rats clearly established the variability in ke-
tone and glucose kinetics, even under controlled conditions with genetically similar animals. This
has important implications for human patients, who are genetically diverse and have different envi-
ronmental conditions, intensifying this inter-individual variability. At the same time, the delays τk
obtained for every rat k for both CKM and CGM for all the 3 algorithms were within the same range,
indicating the consistency of our frameworks in quantifying delays for the CGM-CKM device. For
both CGM and CKM, we combined the delayed ISF predictions and the reference blood values for
all subjects and determined the overall MAD and MARD for each algorithm as in Table 2, out
of which GBA out-performed other algorithms for both analytes. We further correlated the delayed
ISF predictions obtained from GBA with the blood references for both CKM and CGM (Figure 2).
Correlation values of 0.941 and 0.790 were obtained for CKM and CGM devices, respectively, when
compared with blood-based measurements. Comparing the calculated MAD and MARD for CGM
(Table 3, Appendix) and CKM (Table 4, Appendix) devices with the reported glucose and ketone
studies showed similar performance.
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Figure 2: Overall correlation for CKM (left) and CGM (right).

4 CONCLUSION

In summary, our work enables improving the accuracy of wearable sensors for continuous glucose
and ketone monitoring via quantifying physiological delays between ISF and blood compartments.
We are currently expanding our data collection efforts with the CGM-CKM device to obtain longer
time-series sequences from a larger number of rats. These collected measurements will be used
to enhance the precision of our algorithms for assessing the delay and develop new representation
learning algorithms for time-series data obtained from wearable devices. Subsequently, we plan
to assess the CGM-CKM device in human patients and utilize the developed predictive model to
measure delay in human subjects.

5 LIMITATIONS

Our work comes with a few limitations. First, the evaluation was limited to only 4 diabetic rats per
analyte and our aim is to increase the number in future. Secondly, we quantified the personalized
sensing delays using only decision-tree based algorithms. We aim at expanding this to other state-
of-the-art machine learning algorithms to improve the generalizability of the work.

ACKNOWLEDGEMENT

This research was supported by the Juvenile Diabetes Research Foundation (JDRF-2-SRA-2022-
1167-M-B).

5



Accepted as a Workshop Paper at TS4H@ICLR2024

REFERENCES

Felix Aberer, Martin Hajnsek, Markus Rumpler, Sabine Zenz, Petra M. Baumann, Hesham Elsayed,
Adelheid Puffing, Gerlies Treiber, Thomas R. Pieber, Harald Sourij, and Julia K. Mader. Eval-
uation of subcutaneous glucose monitoring systems under routine environmental conditions in
patients with type 1 diabetes. Diabetes, Obesity and Metabolism, 19(7):1051–1055, 2017.

Ganjar Alfian, Muhammad Syafrudin, Muhammad Anshari, Filip Benes, Fransiskus Tatas Dwi At-
maji, Imam Fahrurrozi, Ahmad Fathan Hidayatullah, and Jongtae Rhee. Blood glucose prediction
model for type 1 diabetes based on artificial neural network with time-domain features. Biocy-
bernetics and Biomedical Engineering, 40(4):1586–1599, 2020.

Shridhara Alva, Kristin Castorino, Hyun Cho, and Junli Ou. Feasibility of continuous ketone moni-
toring in subcutaneous tissue using a ketone sensor. Journal of Diabetes Science and Technology,
15(4):768–774, 2021.

Mohammadreza Armandpour, Brian Kidd, Yu Du, and Jianhua Z. Huang. Deep personalized glucose
level forecasting using attention-based recurrent neural networks. IEEE IJCNN, 2021.

Ananda Basu, Simmi Dube, Sona Veettil, Michael Slama, Yogish C. Kudva, Thomas Peyser,
Rickey E. Carter, Claudio Cobelli, and Rita Basu. Time lag of glucose from intravascular to
interstitial compartment in type 1 diabetes. Journal of Diabetes Science and Technology, 9(1):
63–68, 2015.

Giacomo Cappon, Andrea Facchinetti, Giovanni Sparacino, Pantelis Georgiou, and Pau Herrero.
Classification of postprandial glycemic status with application to insulin dosing in type 1 dia-
betes—an in silico proof-of-concept. Sensors, 19, 2019.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. KDD ’16: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 785–794, 2016.

Mark P. Christiansen, Satish K. Garg, Ronald Brazg, Bruce W. Bode, Timothy S. Bailey, Robert H.
Slover, Ashley Sullivan, Suiying Huang, John Shin, Scott W. Lee, and Francine R. Kaufman.
Accuracy of a fourth-generation subcutaneous continuous glucose sensor. Diabetes Technology
and Therapeutics, 19(8):446–456, 2017.

Mark P. Christiansen, Leslie J. Klaff, Ronald Brazg, Anna R. Chang, Carol J. Levy, David Lam,
Douglas S. Denham, George Atiee, Bruce W. Bode, Steven J. Walters, Lynne Kelley, and Timo-
thy S. Bailey. A prospective multicenter evaluation of the accuracy of a novel implanted continu-
ous glucose sensor: Precise ii. Diabetes Technology and Therapeutics, 20(3):197–206, 2018.

Giovanni Sparacino; Francesca Zanderigo; Stefano Corazza; Alberto Maran; Andrea
Facchinetti; Claudio Cobelli. Glucose concentration can be predicted ahead in time from con-
tinuous glucose monitoring sensor time-series. IEEE Transactions on Biomedical Engineering,
54(5):931–937, 2007.

Edward R. Damiano, Firas H. El-Khatib, Hui Zheng, David M. Nathan, and Steven J. Russell. A
comparative effectiveness analysis of three continuous glucose monitors. Diabetes Care, 36(2):
251–259, 2013.

Ketan K. Dhatariya, Nicole S. Glaser, Ethel Codner, and Guillermo E. Umpierrez. Diabetic ketoaci-
dosis. Nature Reviews Disease Primers, 6, 2020.

Jerome H. Friedman. Greedy function approximation: a gradient boosting machine. Annals of
statistics, pp. 1189–1232, 2001.

Satish K. Garg, Mark Kipnes, Kristin Castorino, Timothy S. Bailey, Halis Kaan Akturk, John B.
Welsh, Mark P. Christiansen, Andrew K. Balo, Sue A. Brown, Jennifer L. Reid, and Stayce E.
Beck. Accuracy and safety of dexcom g7 continuous glucose monitoring in adults with diabetes.
Diabetes Technology and Therapeutics, 24(6):373–380, 2022.

6



Accepted as a Workshop Paper at TS4H@ICLR2024

Eleni I. Georga, Vasilios C. Protopappas, Diego Ardigo, Michela Marina, Ivana Zavaroni, Demos-
thenes Polyzos, and Dimitrios I. Fotiadis. Multivariate prediction of subcutaneous glucose con-
centration in type 1 diabetes patients based on support vector regression. Journal of Biomedical
and Health Informatics, 17(1), 2013.

Eleni I. Georga, Vasilios C. Protopappas, Demosthenes Polyzos, and Dimitrios I. Fotiadis. Evalua-
tion of short-term predictors of glucose concentration in type 1 diabetes combining feature rank-
ing with regression models. Medical and Biological Engineering and Computing, 53:1305–1318,
2015.

Lutz Heinemann, Michael Schoemaker, Günther Schmelzeisen-Redecker, Rolf Hinzmann, Adham
Kassab, Guido Freckmann, Florian Reiterer, and Luigi Del Re. Benefits and limitations of mard
as a performance parameter for continuous glucose monitoring in the interstitial space. Journal
of Diabetes Science and Technology, 14(1):135–150, 2019.

D. Barry Keenan, John J. Mastrototaro, Gayane Voskanyan, and Garry M. Steil. Delays in minimally
invasive continuous glucose monitoring devices: A review of current technology. Journal of
Diabetes Science and Technology, 3(5):1207–1214, 2009.

Julia Madden, Conor O’Mahony, Michael Thompson, Alan O’Riordan, and Paul Gavin. Biosensing
in dermal interstitial fluid using microneedle based electrochemical devices. Sensing and Bio-
Sensing Research, 29, 2020.

John Martinsson, Alexander Schliep, Björn Eliasson, and Olof Mogren. Blood glucose prediction
with variance estimation using recurrent neural networks. Journal of Healthcare Informatics
Research, 4:1–18, 2020.

Stefan Pleus, Michael Schoemaker, Karin Morgenstern, Günther Schmelzeisen-Redeker, Cornelia
Haug, Manuela Link, Eva Zschornack, and Guido Freckmann. Rate-of-change dependence of the
performance of two cgm systems during induced glucose swings. Journal of Diabetes Science
and Technology, 9(4):801–807, 2015.

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey
Gulin. Catboost: unbiased boosting with categorical features. 2019.

Ravi Reddy, Navid Resalat, Leah M. Wilson, Jessica R. Castle, Joseph El Youssef, and Peter G.
Jacobs. Prediction of hypoglycemia during aerobic exercise in adults with type 1 diabetes. Journal
of Diabetes Science and Technology, 13(5):919–927, 2019.

Paolo Rossetti, Jorge Bondia, Josep Vehı́, and Carmine G. Fanelli. Estimating plasma glucose
from interstitial glucose: The issue of calibration algorithms in commercial continuous glucose
monitoring devices. Sensors, 10(12), 2010.

Khaled Mohammed Saifullah and Zahra Faraji Rad. Sampling dermal interstitial fluid using mi-
croneedles: A review of recent developments in sampling methods and microneedle-based biosen-
sors. Advanced Materials Interfaces, 10(10), 2023.

Renat Sergazinov, Mohammadreza Armandpour, and Irina Gaynanova. Gluformer: Transformer-
based personalized glucose forecasting with uncertainty quantification. IEEE International Con-
ference on Acoustics, Speech, and Signal Processing, 2023.

Evelyn Teo, Norasyikin Hassan, Wilson Tam, and Serena Koh. Effectiveness of continuous glu-
cose monitoring in maintaining glycaemic control among people with type 1 diabetes mellitus: a
systematic review of randomised controlled trials and meta-analysis. Diabetologia, 65:604–619,
2022.

Josep Vehı́, Iván Contreras, Silvia Oviedo, Lyvia Biagi, and Arthur Bertachi. Prediction and pre-
vention of hypoglycaemic events in type-1 diabetic patients using machine learning. Health In-
formatics Journal, 26(1):703–718, 2020.

Martina Vettoretti, Giacomo Cappon, Andrea Facchinetti, and Giovanni Sparacino. Advanced dia-
betes management using artificial intelligence and continuous glucose monitoring sensors. Sen-
sors, 20, 2020.

7



Accepted as a Workshop Paper at TS4H@ICLR2024

R. Paul Wadwa, Lori M. Laffel, Viral N. Shah, and Satish K. Garg. Accuracy of a factory-calibrated,
real-time continuous glucose monitoring system during 10 days of use in youth and adults with
diabetes. Diabetes Technology and Therapeutics, 20(6):395–402, 2018.

John B. Welsh, Francine R. Kaufman, and Scott W. Lee. Accuracy of the sof-sensor glucose sensor
with the ipro calibration algorithm. Journal of Diabetes Science and Technology, 6(2), 2012.

Jinyu Xie1 and Qian Wang. Benchmark machine learning approaches with classical time series
approaches on the blood glucose level prediction challenge. CEUR-WS, 2148, 2018.

Thomas Zueger, Peter Diem, Stavroula Mougiakakou, and Christoph Stettler. Influence of time point
of calibration on accuracy of continuous glucose monitoring in individuals with type 1 diabetes.
Diabetes Technology and Therapeutics, 14(7), 2012.

8



Accepted as a Workshop Paper at TS4H@ICLR2024

APPENDIX

In this article, we explore the challenge of evaluating biosensor delays using the case study of a
subject suffering from diabetic ketoacidosis (DKA). DKA is a potentially is a life-threatening com-
plication of diabetes characterized by insulin deficiency, subsequently leading to hyperglycemia,
increased levels of ketosis, and an overall metabolic acidosis, resulting in symptoms like electrolyte
imbalance and potential organ failure in human bodies (Dhatariya et al., 2020). For this problem,
we primarily focus on the continuous monitoring of two bioanalytes - ketone bodies and glucose.

(a) (b)

(c) (d)

Figure 3: (a): a sample CKM sensor output - the black and blue curves indicate a sample preoxi-
dation and detection current profiles respectively; (b) the corresponding blood ketone interpolation
graph; (c): a sample CGM current-voltage loop to interpret the adjustment factors for each rat; (d):
the corresponding glucose current profile

Figure 3 shows a sample overview of the CGM-CKM device output. In case of CKM ((a) and (b)),
due to experimental restrictions, the blood-based measurements were performed at a different set of
time of experiments for each subject k in comparison to ISF experiments. Let these time instants
for blood ketone recordings be t̂k = {t̂j,k}j∈[mblood

k ] (in minutes), mblood
k being the number of

times blood based ketone measurements taken for subject k. In other words, cardinality of tk ∪ t̂k
> mk and > mblood

k , for every subject k. To solve this disparity, the blood ketone levels, at first,
were linearly interpolated with respect to t̂k, as in Figure 3(b). From this curve, the blood ketone
values were then re-sampled, but instead, at times tk, for comparison with our ISF-based ketone
predictions. Unlike the ketone measurements, in case of CGM ((c) and (d)), the reference blood
glucose levels were recorded at the same instants as the times of ISF experiments, that is, for our
glucose experiments, tk = t̂k and mk = mblood

k .

Having interpreted the CGM-CKM device outputs, we then proceeded to remove any outliers from
our sampled data points for both the analytes. To remove outliers for CKM, we first fixed any rat k
and and performed a linear fit for

{
Di,k

Pi,k

}
i∈[mk]

versus tk as in Figure 4 and rejected those ratios

and their time instants which lied outside the 95% confidence interval (shown in red) of the linear
fit. For CGM, we performed a similar task using a linear fit for {gi,k,10 + gi,k,40}i∈[mk] versus tk

9
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Figure 4: A sample plot for outlier detection.

Table 3: the following table summarizes the MARD performance of some widely-used CGM sys-
tems implemented on human subjects

CGM system used Reference Number of subjects Overall MARD
Medtronic SofSensor Welsh et al. (2012) Adults: 71, Adults: 9.9%,

children: 61 children: 10%
Abbott Navigator I Damiano et al. (2013) 6 11.8%
Dexcom G4 Platinum Pleus et al. (2015) 10 10.9%
Abbott Freestyle Libre Aberer et al. (2017) 12 13.2%
Medtronic Guardian Sensor 3 Christiansen et al. (2017) 88 9.6%
Senseonics Eversense Christiansen et al. (2018) 90 8.8%
Dexcom G6 Wadwa et al. (2018) 262 10%
Dexcom G7 Garg et al. (2022) 318 8.2%

and defining similar confidence boundaries for each rat k to remove the outliers. Following this, we
moved on to train Fk for every rat k for both CGM-CKM.

While testing the performance of Fk, we used metrics MARDk and MADk for both
CGM and CKM and the metric mistakesk specifically for CKM. Here, MARDk =
1

mk

∑mk

i=1

∣∣∣yi,k−Fk(xi,k;θk)
yi,k

∣∣∣ computes the mean absolute relative difference between ISF predic-

tions yISF
k and blood reference yblood

k . We then varied τ to find the error MARDk,τ between
the delayed ISF yISF

k,τ and yblood
k and determine the optimal delay τk. This is shown as red

curves in Figure 5. Similarly, we had MADk = 1
mk

∑mk

i=1 |yi,k − Fk(xi,k; θk)| and for ketone,

mistakesk =
∑mk

i=1

(
1yi,k>1.5 ̸= 1Fk(xi,k;θk)>1.5

)
∨
(
1yi,k≤1.5 ̸= 1Fk(xi,k;θk)≤1.5

)
, where ∨ in-

dicates the logical ”OR” operation. The variations of MADk,τ and mistakesk,τ with τ are shown
in blue and black curves respectively in Figure 5.
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Table 4: the following table compares the overall MAD and MARD obtained while implementing
our ketone sensing framework with a state-of-the-art study (Alva et al., 2021)

Condition Alva et al. (2021) Our approach
overall MAD for ketone levels < 1.5mM 0.129 0.1799
overall MARD for ketone levels ≥ 1.5mM 14.4% 10.1083%

(a)

(b)

Figure 5: Sample plots for variation of metrics with delays for (a) CKM and, (b) CGM
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