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ABSTRACT

Temporal difference (TD) learning is a popular method for reinforcement learning
(RL). In this paper, we study federated TD learning of multi-agent systems, where
each agent collaboratively performs policy evaluation with linear function approx-
imation under heterogeneous computation configurations and environments. We
devise a Heterogeneous Federated TD (HFTD) algorithm which iteratively aggre-
gates agents’ local stochastic gradients for TD learning. The HFTD algorithm
involves two major novel contributions: 1) it aims to find the optimal value func-
tion model for the mixture environment where the environment is randomly drawn
from the heterogeneous environments, and the procedure relies only on the lo-
cal gradients arising from each agent’s mean squared projected Bellman errors
(MSPBESs) for their respective environments; 2) it allows agents to perform differ-
ent numbers of local iterations for TD learning, thus enhancing the computational
capacity of heterogeneous agents. We analyze the finite-time convergence of the
HFTD algorithm for the scenarios of L.I.D. sampling and Markovian sampling.
By characterizing bounds on the convergence error, we show that the HFTD algo-
rithm can asymptotically converge to the optimal model, which is the first result in
existing works on federated RL to our best knowledge. The HFTD algorithm also
achieves a sample complexity of O (%) and linear convergence, which match
the results of existing TD algorithms.

1 INTRODUCTION

Reinforcement learning (RL) is a promising machine learning (ML) paradigm and RL has been ap-
plied for a wide range of sequential decision-making problems, such as autonomous driving, gaming
and dynamic resource allocation (Mnih et al., 2013} |Ye et al., [2019; Kiran et al., [2021). One major
challenge for RL is that, to achieve a high learning accuracy, an agent needs to learn the optimal
policy in an online manner from a large amount of data samples via repeatedly interacting with the
environment. Hence, the learning performance is restricted by the computational efficiencies of the
agents. For example, when RL is applied to train a walking robot, the walking ability of the robot is
limited by the number of samples used by the robot (Ibarz et al., 2021} Rudin et al., 2022).

Along a different avenue, as an emerging ML paradigm, federated learning (FL) carries out model
training in a distributed manner (McMahan & Ramagel [2017): Instead of transmitting data from a
possibly large number of clients to a central server for training, FL trains a global ML model by
aggregating local ML models computed distributedly by clients based on their local data (L1 et al.,
2020; |[Karimireddy et al., [2020; [Huang et al., 2022). One significant advantage of FL is to preserve
the privacy of each client data. Moreover, since only local ML models rather than local data are
sent to the server, the communication costs can be greatly reduced. Furthermore, FL can exploit
substantial computation capabilities of ubiquitous smart devices (Yang et al.,|2020).

A natural idea to deal with the sample-efficiency issue of RL is to share the information among multi-
agents, so that agents can accelerate the process of learning the optimal policy based on other’s expe-
riences. However, in practical applications, raw RL trajectories often contain sensitive information
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(e.g., medical information of patients) and thus sharing them compromises agents’ privacy. More-
over, exchanging data samples among agents usually leads to high communication costs. Hence,
inspired by FL, federated reinforcement learning (FRL) has been proposed as a promising approach
which allows agents to collectively learn the global optimal policy without sharing raw dataset (Jin
et al.,[2022; |Fan et al., [2021}; [Wang et al.| 2023 Zeng et al., [2021} |Q1 et al., [ 2021)).

As federated supervised learning which has been widely studied, FRL meets similar challenges,
including data (environment) heterogeneity and system (computation and communication) hetero-
geneity. Moreover, there are some unique challenges in FRL due to its salient features. In particular,
unlike typical supervised learning where data are available offline and data samples are drawn from
LLD. distributions, each agent in FRL collects data online by following its own Markovian process
decided by its behavior policy and state transitions of the environment.

Compared to the performance guarantees in parallel RL where agents interact with identical environ-
ments independently (Khodadadian et al., 2022; |Liu & Olshevskyl, 2023} |[Fan et al., [2021)), studies
on FRL with heterogeneous environments are still very limited due to the challenges mentioned
above. For a few recent works on FRL where agents have heterogeneous environments (including
federated TD learning (Jin et al.,|2022; |Wang et al., [2023))), none of these works has shown that the
convergence of their algorithms can diminish to zero asymptotically (i.e., the convergence error can
be made arbitrarily small with appropriate hyperparameters of the algorithm such as the number of
rounds and step size). Moreover, the existing works on FRL assume that each agent can only use
the same number of local iterations in each round of the algorithm. However, in practice the compu-
tation capabilities of agents can be highly diverse, and stragglers could significantly slow down the
training process. Therefore, it is more efficient for agents to use different local iterations based on
their computation capabilities.

To tackle the challenges above, in this paper, we focus on federated TD learning for policy evaluation
with linear function approximation, where agents interact with heterogeneous environments mod-
eled as Markov Decision Processes (MDPs), and collaboratively learn the value function model for a
given policy. The MDPs have identical state spaces and action spaces, but heterogeneous transition
probability kernels and reward functions. We also consider agents with heterogeneous computation
capabilities, and they can use different numbers of local iterations in each round of the federated TD
learning. Given the environment heterogeneity and computation heterogeneity of agents, we aim to
answer the following fundamental questions: 1) Is it possible to design a federated TD algorithm
that asymptotically converge to the optimal value function model? 2) If yes, what is the sample
complexity of this algorithm? .

We highlight the main contributions of this paper as follows.

* We study federated TD learning with linear function approximation, where multiple agents
collaboratively perform policy evaluation via TD learning, while interacting with hetero-
geneous environments and using heterogeneous computation configurations. We devise
a Heterogeneous Federated Temporal Difference (HFTD) learning algorithm which itera-
tively aggregates agents’ local stochastic gradients for TD learning. Compared to existing
works on FRL, the HFTD algorithm involves two major novel elements: 1) The goal of
the algorithm is to find the optimal value function model for the environment that is ran-
domly drawn from agents’ heterogeneous environments. To this end, the algorithm aims
to minimize the average of agents’ mean squared projected Bellman errors (MSPBEs) for
their respective environments, using stochastic gradients of the MSPBEs; 2) The HFTD
algorithm allows agents to perform different numbers of local iterations for TD learning.
In particular, each agent’s local stochastic gradients in a round are averaged by its local
iteration number, which is then used for local gradient aggregation by the server.

* For the settings of I.I.D. sampling and Markovian sampling, we analyze the finite-time
convergence performance of the HFTD algorithm by characterizing the bounds on the con-
vergence error. Our results show that the HFTD algorithm can asymptotically converge to
the optimal value function model as the number of rounds go to infinity with appropriate
step sizes. To our best knowledge, this is the first result in existing works on federated RL
with heterogeneous environments that the convergence error can diminish to zero asymp-
totically. In particular, a key property of the global gradient of the average MSPBE allows
us to remove a non-vanishing bias in the convergence error, so that only vanishing error
terms are left. We also show that the HFTD algorithm achieves a sample complexity of
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Table 1: Comparison of settings and results for federated temporal difference learning

Vanishing Heterogeneous | Heterogeneous | Markovian
References Convergence | Local Iteration
Error Numbers

X X
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Environments | Sampling

| (Liu & Olshevsky| (2023))
| (Khodadadian et al|(2022))
| (Wang et al.|(2023))
| This paper

< X =<
< [<J<] %

v/

O (+z) and linear convergence speedup, which match the results of existing TD learning

algorithms |Bhandari et al.| (2018)); [Khodadadian et al.| (2022).

2 RELATED WORK

Temporal Difference Learning. Most existing works on TD learning have focused on the case of
a single agent. For TD learning under L.I.D. sampling, the asymptotic convergence has been well
studied in|Borkar & Meyn| (2000); Borkar| (2009)), and the non-asymptotic convergence (i.e., finite-
time analysis) has been studied in|[Kamal| (2010); Dalal et al.| (2018)); Thoppe & Borkar|(2019). For
TD learning under Markovian sampling, the asymptotic convergence has been studied in (Tsitsiklis
& Van Roy|(1997); Tadi¢ (2001)), and the non-asymptotic analysis has been studied in|Bhandari et al.
(2018); |Srikant & Ying|(2019); Hu & Syed| (2019); Xu et al.| (2020b)).

Federated Learning. FL has emerged as a groundbreaking computing paradigm for ML by democ-
ratizing the learning process for potentially many clients (McMahan & Ramage), |2017; [Bonawitz
et al.l 2019; [Stichl [2019; L1 et al., [2020; Wang & Jil 2022} [Zhang et al.l [2021bj 2022; |Guo et al.}
2022 |[Huang et al., 2022; Karimireddy et al., [2020; |[Fallah et al., 2020; |Cui et al., 2021). Compared
to conventional distributed ML, FL has several salient features, including multiple local iterations
of clients, and heterogeneous computation capabilities of clients. Prior works on FL. predominantly
focused on federated supervised learning.

Federated Reinforcement Learning. The settings of FRL have significant differences from those
of federated supervised learning, due to the salient features of RL, including online data sampling
(especially Markovian sampling), and dynamic state transition. There have been a few recent works
on FRL (Xie & Song| 2023} Zeng et al. [2021} [Fan et al) [2021; [Liang et al., 2023)). However,
most of these works have not considered FRL with heterogeneous environments and heterogeneous
computation configurations of agents.

Distributed Reinforcement Learning. Distributed reinforcement learning (DRL) considers mul-
tiple agents operating in a distributed fashion. As a major class of DRL, parallel RL (Fan et al.,
2021; Mnih et al), 2016) uses multiple learners to solve a large-scale single-agent RL task (Li &
Schuurmans), [2011; Nair et al.| |2015)), where the learners aim to learn a common policy for differ-
ent instances of the same environment. Another major class of DRL is multi-agent reinforcement
learning (MARL), where a group of agents operate in a common environment; all agents’ actions
influence the global state transition and MARL aims at seeking the optimal policy combining all
local policies in a collaborative manner (Zeng et al., 2022; Zhang et al., 2018), or find local optimal
policies in a non-collaborative manner (Zhang et al.,|2021a). These prior works of DRL are different
from FRL, since 1) agents in FRL can interact with diverse environments and collaboratively learn
a common policy in different environments; 2) FRL involves some unique features of FL, includ-
ing multiple local iterations of agents, heterogeneous and time-varying computation capabilities of
agents.

Some recent works have studied FRL with heterogeneous environments (Jin et al., 2022; |Wang et al.,
2023)). However, none of the algorithms in these works have convergence guarantee with vanishing
errors. In this paper, we show that the proposed HFTD algorithm can asymptotically converge
to the optimal value function model, which is the first such result in existing works on FRL with
heterogeneous environments. Moreover, agents can have heterogeneous numbers of local iterations
in the HFTD algorithm. We have elaborated the technical differences in the convergence analysis of
the HFTD algorithm in Section 4.3.
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3 PRELIMINARIES

Policy Evaluation in a Single-Node Setting. We consider the problem of evaluating a given policy

in an MDP defined by the tuple M 2 {8, A, P,R,~}, where S is the set of states, A is the set of
actions, P is the Markovian transition kernel, R is a reward function, and + is the discount factor.
For a discrete state space S, P(s’ |s) shows the probability of transitioning form s to state s’. The
reward function of s is denoted by R(s) = >, P(s’ |s)R(s,s"). For a given policy 1, the expected
cumulative future rewards can be represented as a function of the initial state s:

Vu(s) =E lz V' Ryu(se) |0 = 8] ;

where {s;} is the sequence of states generated by the transition kernel P,. The value function
satisfies the Bellman equation 7}, V}, = V,,, where for any V € RIS|,

(T V)(s) = Ru(s) +7 Y Puls, sV (s). (1)

TD Learning with Linear Function Approximation. To mitigate the effect of intractable com-
putation in face of large state spaces in policy evaluation, a common and tractable approach is to
utilize linear function approximator for a representation of value functions. Let {(bk}zzl be a set of
d linearly independent basis vectors in R™. For the value function approximation in this paper, the
true value function V,, is approximated as V,,(s) ~ Vy(s) = ¢(s)T0, where ¢(s) € R% s a fixed
feature vector for state s and 8 € R? is the unknown model to be learned. At time ¢, for an observed
tuple O; = (8¢, 74, St+1), the TD target can be defined using Bellman operator as @) Then the loss
function is defined as the squared Bellman error (Bhandari et al., 2018)). The negative gradient of
the Bellman error evaluated at the current parameter 0; can be expressed as

91(0:) = (re + yd(s141) " 0r — D(51) T 0)p(50). )

Then the estimated model at time ¢ + 1 can be updated by the gradient descent method (Bhandari
et al.,2018)) with step size « € (0, 1) as

Orr1 =0 + age(6y). 3)

When state s; sampled in tuple O; follows the stationary distribution of the MDP, the expected
negative gradient at 6 is

:0) = > w(s0) P se ) (Rlst, sei1) +7(s041) 70 — d(50)T0)d(s0), (4)

StySt41

where 7(+) is the stationary distribution of the associated Markov chain which is assumed to be
irreducible and aperiodic.

Let D denote the diagonal matrix whose elements consist of the entries of 7(-). In the convergence
analysis of TD(0) using (3)), Tsitsiklis & Van Roy|(1997) has proved the limit point 6* is the unique
solution to the projected Bellman equation ®6 = IIpT, 6 with g(0*) = 0, where IIp(-) is the
projection operator defined on the subspace { Pz |£L‘ € R4}

4 HETEROGENEOUS FEDERATED TEMPORAL DIFFERENCE LEARNING WITH
LINEAR FUNCTION APPROXIMATION

In this section, we first describe the problem statement about the federated policy evaluation in
heterogeneous environments where agents collectively seek to find a global model to approximate
the value function under a given policy p. As we discussed above, in the process of policy evaluation
for a single agent ¢, the local loss function F; is usually defined as expected Bellman error squared
(Bhandari et al., 2018} [Srikant & Ying, [2019). Accordingly, the optimization problem for federated
value evaluation can be formulated as

min
HcRa

F@=%ZE@ 5)
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where F;(0) = Eo,~x, [%(rt + Vo (st41) — Vg(st))ﬂ is the local objective function of i-th agent,

i.e., the expected squared Bellman error with respect to the model parameter 6. Here, 7; is the sta-

tionary distribution of the state transition Markov chain in i-th environment, and O} = (st, rt, s*1)
represents a data sample from the environment 7. We assume that each agent collects samples by

interacting with its own environment independently. The MDP of agent ¢ can be expressed by:

A .
M; = {S, A, P;,R;,v}. We assume that all agents have the same state space and action space
while the reward functions and transition probability functions may differ across various agents.

Prior works on FRL with heterogeneous environments (Jin et al., [2022; Wang et al [2023) consid-
ered the objective of optimizing the value function model for a single virtual environment. This

virtual environment is constructed as an MDP M 2 {8, A,P,R,~} by averaging the transition
kernels and reward functions of each agent’s environment, given by P = (1/N) vazl P; and

R = (1/N) Zi\;l R;. However, such an “averaged” environment may not coincide with any
agent’s individual environment. Intuitively, from the perspective of an individual agent, the ob-
jective function may not encourage more agents to participate in the federation. Motivated by this
observation, in this paper, we consider a mixture environment defined as the environment randomly
drawn from agents’ heterogeneous environments. Note that this mixture environment is different
from the virtual environment in Jin et al.| (2022); Wang et al.[ (2023). Thus our goal is to find the
optimal value function model for this mixture environment of agents. This goal is similar in spirit to
that of federated supervised learning, since the latter aims to find the optimal model that minimizes
the average training loss for all data samples of all clients. Towards this goal, the global objective
function of our federated TD learning problem is the average MSPBE of all agents for their respec-
tive environments, as the MSPBE quantifies the error of a value function model for an environment.
To minimize the average MSPBE, we devise the HFTD algorithm which updates the value function
model via federated TD learning. The algorithm aims to iteratively estimate the gradient of the
global objective function (i.e., the average MSPBE), given by

L&
g(0) = N Zgi(e) (6)

where g;(0) is the gradient of agent ¢’s local objective function (i.e., the MSPBE for agent i’s en-
vironment). Note that the condition (6)) is substantially different from the estimation in[Wang et al.
(2023) () does not hold in [Wang et al|(2023)), and is also a key property that allow us to show
that our HFTD algorithm can asymptotically converge to the optimal model 6* (rather than to a
neighborhood of §* where the radius of the convergence error is determined by some non-vanishing
bias error as in|Khodadadian et al.| (2022), see Section 4.3 for detailed discussions of the technical
differences). The optimal value function model §* that minimizes the average MSPBE of agents sat-
isfies g(6*) = 0. Note that the gradient in TD learning is different from that of the standard gradient
descent, as g;(0) or g() is not the gradient of any fixed objective function. To estimate the gradi-

N
ent §(6), the HFTD algorithm computes a stochastic gradient g(6;) given by g(6;) = & > ¢;(61),
i=1

where g;(6;) is the stochastic gradient of g;(6). Note that g;() is the expectation of stochastic
gradient g;(0;) following the stationary distribution of environment i.

The detailed design of the HFTD algorithm is described as below (as summarized in Algorithm([I)). In
eachround ¢ € {1,...,T}, the central server first broadcasts the global model 6; to all agents and
each agent ¢ € {1,..., N} independently performs K, local iterations starting from the current
global model Gf’o to optimize its local objective. K;; may vary across agents since agents have
heterogeneous computation capabilities. Following the same policy u, agent ¢ observes the tuple
Of’k = (sf’k, rf’k, sf’kﬂ) at each local iteration k of the round ¢ which is generated by its own
MDP characterized by {S, A, P;, R;,v}. Using the observation Og’k, agent ¢ can compute the
stochastic gradient by (2) and update its local model. At the end of each round, agents send the
gradients directly to the server. The server then aggregates the gradients, updates the global model
and starts round ¢ + 1 of federation. Note that no exchange of raw samples is required, hence the
privacy of local environments can be well protected. The update rule can be expressed as

N N
gt = 0t + o iZKu ~iZdt- (7)
Ni:l ’ Ni:l '
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Ka‘,,t_l
where d! is the normalized gradient for agent i in the ¢-th round as d! = 22— ) gi(GE’k); K,
k=0

is the number of local updates at agent ¢ in round ¢. Here we consider agents have heterogeneous
number of local updates while the number of local updates are identical and fixed in Khodadadian
et al.[(2022); Wang et al.| (2023); [Jin et al.| (2022). Note that cumulative local gradients are normal-
ized when averaging, and this is a necessary technique when dealing with heterogeneous number of
local updates in analysis [refer to Section 4.3 for details].

Algorithm 1 Heterogeneous Federated TD (HFTD) Learning with Linear Function Approximation

1: Input: number of rounds T, step size «, initial model 6,

2: fort =1toT do

3. 090 « @ for all agents i

4 For each agent: = 1,2, ..., N do:

50 fork=0toK;; —1do

6 Observe a tuple OF R = (shE pbk B and calculate the gradient by
7
8

2 2 2%

Update the local model by @

end for A
i e=1_pt0
9:  Agents send the normalized gradient df = giKit’ to the server
10:  Server computes the global model by
11: end for

12: Output: {0*}7,

4.1 I1.I.D. SAMPLING

First, we start from the scenario where the random tuples are independently and identically sam-
pled from the stationary distribution 7; of the Markov reward process for each agent ¢. That is
to say, samples for updating the local model are independently drawn across iterations and rounds
for each agent. We make the following assumptions, which are commonly imposed in federated
reinforcement learning (Khodadadian et al., 2022; Wang et al., [2023} [Fan et al., [2021}).

Assumption 1. (Bounded Gradient Variance) For each agent ¢, there is a constant o such that
E ||gz(9) — gl(ﬁ)H < o2 forall € R?,
To measure the heterogeneity of environments, we have the following assumptions.

Assumption 2. (Bounded Gradient Heterogeneity) For any set of weights satisfying convex com-
bination, i.e., {p; > 0}, and Z:’;l p; = 1, there exist constants 32 > 1, k2 > 0 such that

szng( )3
k2 =0.

< B2 (|32, iGi(0)||5 + K. If agents execute in identical environments, then 52 = 1,

Assumption 2 is commonly used in the federated learning literature to capture the dissimilarities of
local objectives.

Assumption 3. (Smoothness) Under the assumption that ||¢(s)||5 < 1 for all s, it holds that
H§7(91) — §7(02)H2 S 2”91 — 02”2 for all 01,92 S Rd.

Assumption 3 is important for deriving a fast convergence rate and the proof can be found in Bhan-
dari et al. (2018)); [Tu & Recht (2019); Wang et al.| (2023). Now we are ready to present the conver-
gence guarantees using our HFTD algorithm:

Theorem 1. (HFTD with LL.D. Sampling) Under Assumpt10nsllandl let Kook = max{K it}
Kpax = max{Kt} and Kpin = mm{Kt} If a < mln{at} Then output of Algorlthm 1 can be
represented as
2560202 K max (Kmax — 1)

)\2[{’rnin

m inT

] e e e A

5120 R I(m xxl mse 1x(](max - 1) IGQKTZn ax¥ Kmin (8)
)\ Kmln N)\[‘max .
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where K; = % 27: Kl,‘_f and Koy = 1nfj11{[gt}.
Remark 1. Theorem 1 provides a bound on the convergence error of the HFTD algorithm when
agents interact with heterogeneous environments using heterogeneous local iteration. The error
bound consists of four terms. As a > 0, the Ist term converges to zero as 7' increases. Moreover,
it achieves an exponential decay rate which matches the results of existing RL algorithms
letall 2018}, [Xu et al., 2020b; [Kumar et al.}[2023)). The last three terms are all caused by the variances
of stochastic gradients.

Remark 2. We note that the 4th term decreases as /V increases . Also note that the 3rd term becomes
zero when each agent’s local iteration number K; ; is 1 (i.e., perfect synchronization for all agents).
Moreover, if agents interact with the same environments, then we have k2 = 0, and the 3rd term of
the convergence bound vanishes.

Remark 3. We observe that the last three terms increase as the number of average local iteration
goes up. This is because, due to agents’ heterogeneous environments, more local iterations drive
each agent’s local model more towards its local optimal model and possibly away from the global
optimal model (also known as “local drifts” in the existing works on federated supervised learning
(Khaled et al, 2020; [Wang et al| 2020).

We notice that the bound will be minimized when the numbers of local iterations are all equal to 1
(i.e., K;; = 1,Vi). However, it has been widely shown that multiple local iterations achieve good
performance empirically in practice while reducing communication costs (compared to communi-
cating after every local iteration). Therefore, we should set local iteration numbers based on their
empirical performance as well as agents’ computation capabilities, rather than solely on the learning
accuracy bound (which captures the worst-case scenario).

Corollary 1. Suppose a constant local update number K for each agent, the convergence rate of
HFTD with LI.D. sampling is:

a2 _aakr oo o2 2560%0% (K — 1)  512a%k*K(K — 1)  16a0?
EHQ — 0 Hz§6 : H9 —0 HQ+ A2 + A2 + AN ©)
Corollary 2. Letting o = |/ 2= yield
~ - N(K -1 1
E (07 - 6" < 0 (e VVET) +O<()> +0<> (10)
r NKT

Remark 4. When the communication rounds 7" is sufficiently large, then the convergence of HFTD

will be dominated by the last term in which is \/ﬁ Then we can conclude that the total

complexity which can achieve an e-accurate optimal solution E ||§7 — ¢* ||§ <eis KT = O (+&5).
When K = 1 and N = 1, the sample complexity will match the results in Theorem 2(b) in

OE)

4.2 MARKOVIAN SAMPLING

The case of I.I.D. sampling for RL can be hard to achieve in practical scenario. A more realistic
setting is Markovian sampling, where the observed tuples used by TD are gathered from a single
trajectory of the Markov chain. Different from the setting of I.I.D. sampling, Markovian sampling
brings more challenges since samples are highly correlated. Specifically, in the LLD. case, E[g(0) —
g(0)] = 0 since g(0) is the unbiased estimate of g(#). However, in the Markovian setting, the
samples for calculating g(6) are not sampled from the stationary distribution. To put it another way,
6 and the sample observed at time ¢, Oy, are not independent. Hence, E[g(0) — §(0)] # 0, indicating
bias exists in the gradient evaluation for the analysis of a single agent. The analysis of federated
temporal learning, will meet more complex time-correlations to deal with.

For the following analysis, we first introduce the geometric mixing property of finite-state, aperiodic
and irreducible Markov chains as follows.

sup || P;(zx € -[ao) = wi()llpy < mipl (11)
where 7(+) is the stationary distribution of the MDP ¢; ; > 0 and p; € [0, 1] for all ¢ € [N].
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Assumption 4. (Irreducibility and Aperiodicity) For each i € [N], the Markov chain induced by
the policy p, corresponding to the state transition matrix P;, is aperiodic and irreducible.
Theorem 2. (HFTD with Markovian Sampling) Under Assumptions [2] [3] and @] if we choose

2 1 1 A
A2 K+ +K) A a( 2 +%8+2) 7 4(32K2B2c2+16K7+1662c2+62c/)
of Algorithm 1 satisfies

ap < min

, then the output

nT «||2 — mm 0
E 6% - 67, <e E|[0° -6
817  87%ac 8a%c?(Kmax — 1) (2K max — 1) ,
_ max max H2 2
+<)\2+ X )( 31— ") (8 +“))
+ y 4 8720[6 a2q2(Kmax - 1)(2Kmax - 1)
A2 A 3(1—-C")
+80t (2Rmax + 27—2 + 1) [q/]QKmaX + 2qq/p(}'(max - )Kr2nax
A N N(1-p)
8 (2K max + 272 + 1) [ 2[¢p(Kmax — 1 g (Ko 4K )
+ ( ) [c']"p a Z
A N2 1- Kz tKj t
(12)
+4a (322 Kmax + 16 Kmaxc + 87%¢c + ) k2 + 2aH (2¢ H + ¢ + 427%cH)
A
(13)

where K; = + Z 7 Kinax = max{Kt} K} =1 2 K%t and K2 = mtax{KtQ}.

Remark 5. Theorem 2 characterizes the convergence of the HFTD algorithm where each agent’s
sampling follows a Markov chain. As in the setting of L.I.D. sampling, we can make similar ob-
servations here on the sampling complexity and the impacts of various system parameters on the
convergence error. Different from the I.LD. setting, we note that the term (I2) comes from the vari-
ance reduction in the Markovian setting. If ¢ is sufficiently large, (I2) diminishes to zero. This is
because the Markov chain geometrically converges to its stationary distribution as ¢ evolves.

Corollary 3. If N = 1 and K = 1, then we have:

AxT

200H (2(’,’H +q + 43272(1}1) N 8a (3 + 272) [q’}Q

B[~} < !

)
16° =071, +

(14)
which matches the results of centralized TD as Theorem 3(b) in|Bhandari et al.| (2018).

4.3 TECHNICAL DIFFERENCES OF CONVERGENCE ANALYSIS

In this subsection, we highlight the key technical differences in the convergence analysis of the
HFTD algorithm (i.e., the proofs of Theorems 1 and 2 and Corollary 1), compared to prior works.

In the convergence analysis, in order to bound E || —
term in @) which can be decomposed into three terms. As the objective of the HFTD algorithm is
to minimize the average MSPBE, the term B can be cancelled (after the double summation before
the inner product) due to the condition @) In contrast, in/Wang et al.[(2023)), this term B cannot be
cancelled and becomes a non-vanishing bias in the convergence error.

K;+—1
¥ 2 E(@en.# o)
k=0
it—1
E{ :(00%) — g,(6") +gi(8") — g(8") + g(6") 0" 0 15
NZKLZ<9 —gi(0) +3i(0") — 90" + g(6") (15)
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Similarly, in the convergence analysis of the Markovian setting, when dealing with such an inner
product term, the term B can also be cancelled (as shown in (27) in the Appendix).

In the convergence analysis, we also need to bound the error between the total accumulated local
gradients + >, ﬁ Kt G5(01%) and the global gradient 37, g;(6") (as in ). By normal-
izing each agent’s accumulated local gradients with the agent’s local iteration number K ;, we are
5i(6%) — 5:(0")||, each in-
volving only one agent’s local gradients. Then each of these error terms can be further bounded
using the the smoothness condition of the local gradient.

allowed to decompose the error into the sum of multiple error terms ‘
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5 SIMULATIONS

In this work, we have studied the problem of federated TD learning under heterogeneous environ-
ments with heterogeneous numbers of local updates. We provide numerical results under I.1.D.
sampling setting and Markovian sampling setting on the platform: GridWorld. We first verify our
theoretical results in a small-scale problem; see examples in |Sutton & Barto| (2018). Due to limited
space, the details of the environment setting are provided in the Appendix.
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Figure 1: Training performance of HFTD with different settings under L.I.D. sampling: training
performance refers to the running error between current model and optimal model. Left: agents
perform local updates with different step sizes; Middle: agents take different number of local steps
with mean values 10, 30, and 50; Right: the number of agents participating training is different.
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