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Abstract

Saliency methods are a popular approach for model debugging and explainability.
However, in the absence of ground-truth data for what the correct maps should be,
evaluating and comparing different approaches remains a long-standing challenge.
The sanity checks methodology of Adebayo et al [Neurips 2018] has sought to
address this challenge. They argue that some popular saliency methods should not
be used for explainability purposes since the maps they produce are not sensitive to
the underlying model that is to be explained. Through a causal re-framing of their
objective, we argue that their empirical evaluation does not fully establish these
conclusions, due to a form of confounding introduced by the tasks they evaluate on.
Through various experiments on simple custom tasks we demonstrate that some
of their conclusions may indeed be artifacts of the tasks more than a criticism of
the saliency methods themselves. More broadly, our work challenges the utility of
the sanity check methodology, and further highlights that saliency map evaluation
beyond ad-hoc visual examination remains a fundamental challenge.

1 Introduction

Feature attribution methods are designed to highlight the features in the input that are important
for a given model’s predictions. This can be useful for both interpretability and debugging, as a
human expert can probe these attributions and verify the extent to which they align with their own
priors. In this work, we focus on feature attributions methods in the domain of computer vision,
where they are broadly referred to as saliency maps. Perhaps the most straightforward approach
is to compute the saliency map by deriving the gradient of the model’s predicted class w.r.t the
input image [13, 7]. We refer to this approach as vanilla backpropogation (VBP). In recent years, a
wealth of different variations of this basic method have been proposed [16, 14]; for example, guided
backpropagation (GBP) [15] modifies the gradient computation such that the gradients of negative
RELUs are zeroed out. While saliency maps produced using GBP look visually more appealing than
those produced with VBP, there is no clear sense in which the former are indeed “better” the latter.
Indeed, evaluating performance of the different proposed methods (as well as measuring progress)
remains a fundamental challenge since in general, the task of saliency maps inherently lacks “ground
truth” [11, 9, 5, 8, 6, 19, 3, 17, 4].

In recent work, Adebayo et al. [1] addressed this challenge by proposing several basic “sanity checks”
for saliency methods. The simple idea behind the derivation of their tests is that in so far model
debugging and explainability is the objective, using saliency methods that are not sensitive to the
underlying model is a bad choice. A classic example are edge detection techniques: while they may
produce visually-appealing saliency maps, they are useless for model debugging as the edges depend
only on the specific image in question. To test whether a particular saliency method S is sensitive
to the underlying model, they compare the saliency map on an image x with a saliency map on the
same image, with the exception that the underlying model is replaced: e.g., instead of the model M ,
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a perturbed model is used (say, M ′, a randomly initialized network of the same architecture)1. If the
method depends on the model in question, one would expect the two maps S(x;M) and S(x;M ′)
to be different; hence, if they are observed to be similar, then we conclude that the method is not
sensitive to the model in question.

This work: a critical perspective. In their work, [1] apply this methodology to standard pre-trained
models on MNIST and ImageNet. Their results are interesting as they suggest an ability to distinguish
between the abilities of seemingly similar (and otherwise less understood) saliency methods: for
example, vanilla backpropagation and guided backpropagation fare very differently under these
randomization tests, with the latter “failing” the proposed tests [1].

Our criticism is that making these conclusions based solely on the mentioned tasks is potentially
problematic, as the chocie of task acts as a form of selection bias that may confound the results. For a
simple illustration, consider MNIST: Let x denote a MNIST image, M a model trained on MNIST,
and M ′ a random model of the same architecture. If M ′ forms a good representation of the input2

then S(x;M ′) could reasonably highlight the digit in x – which also seems to be the “correct” map
in this case. Thus, we could very well have that S(x;M) ≈ S(x;M ′) - but this says nothing about
the saliency method S itself! Clearly, MNIST is an extreme example in this context, in that each label
corresponds to a single object, which is the only thing in the image. However, one could argue that
similar effects may take place in ImageNet, in which images also contain only a single object that
corresponds to the correct label, and that is aligned and centered.

With these concerns in mind, we propose a causal re-framing of the original objective of [1], from
which we derive a modified criterion that makes the dependence on the data-generating distribution
(which we refer to as a task) explicit. We proceed to explicitly design new tasks (based off of
both MNIST and ImageNet) in which we expect the representations of a random model will differ
significantly from those of a trained model. In particular, we consider tasks in which the original
images are mixed with either partial objects or multiple objects, and in which the objective is to
identify the “pertrubed” images. In this way, we guarantee that the “correct” saliency map (which in
this case we know, having designed the task ourselves) will be visually distinct from that produced
by any model that is unaware of the labels. As anticipated, we show that for these simple tasks
S(x;M) ̸= S(x;M ′) – for both VBP and GBP.

On a technical level, our findings call into question the fact that a method like GBP is less-suitable
for model debugging purposes [2, 1]. On a broader level, our approach highlights that some of the
observations of [1] may be an artifact of the tasks they evaluated on more than an actual criticism
of the saliency methods themselves. This also raises the concern that the utility of the sanity check
methodology itself is limited, in that in practice it may serve as too weak a necessary condition. In our
perspective, this highlights the urgency of developing alternative approaches to reliably evaluating and
comparing different saliency methods. In this context, it seems natural to explore a more task-specific
examination: that is, rather than attempting to rule out a method altogether, determine which of
several different methods is better for a given task. In this context, the incorporation of crafted
semi-synthetic tasks into the evaluation procedure seems like a natural and interesting direction.

Organization. The rest of this manuscript is organized as follows. We begin with some prelim-
inaries in Section 2. In Section 3 we propose an interpretation of the methodology of [1] from a
causal inference perspective, that tries to formalize the idea of eliminating confounding factors when
establishing the effect of model choice on saliency output. In Section 4 we define a variety of custom
tasks for which we demonstrate that both guided and vanilla backpropagation fare equally well in
terms of the modified sanity checks.

1The authors of [1] consider two types of procedures for generating the benchmark model M ′: model
randomization (in which the weights of trained model are re-initialized to produce M ′) and data randomization
(in which M ′ is obtained by training on a perturbed dataset in which the labels of the images have been randomly
shuffled). Our focus is on the first.

2There is increasing evidence that speaks to the power of randomly initialized networks of modern deep
architectures [12, 18].
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2 Preliminaries

Saliency methods. A model is mapping from an image x ∈ Rd to a prediction over k-classes, which
we interpret as a vector M(x) ∈ Rk. A saliency method is a mapping from images x ∈ Rd to saliency
maps, which are also images in Rd. Since the method may depend on the model in question, we use
S(x;M) ∈ Rd to denote the resulting map. Since our focus is on computer vision, and the models in
question are typically deep learning models (and hence differentiable), our focus is on gradient-based
saliency methods, namely methods in which we use backpropogation to compute the saliency map.
Specifically, we restrict our attention to two commonly used methods: vanilla backpropogation
and guided backpropogation. The former simply computes the saliency map as the derivative of
the predicted class w.r.t the input image: SVBP(x;M) =

∂ maxj M(x)j
∂x ; Guided backpropagation

SGBP(x;M) is a modification that sets negative entries to zero when backproping through RELU
units [15]. Guided back-propogation tends to produce more visually-appealing saliency maps. Our
restriction to these two methods is motivated by the fact that despite their similarity, the sanity checks
of [1] clearly distinguished them: GBP failed their tests, while VBP passed them.

Causal graphs. Causal inference allows us to formalize the effect of hypothetical actions (interven-
tions), such as the effect of setting the model M to be M or M ′ on the resulting saliency map. In
this work we employ the language of causal graphs. A causal graph is a directed a-cyclic graph in
which edges are endowed with a causal interpretation; for a full presentation of the ideas we refer
the reader to Pearl’s primer [10]. The causal effect of an action X = x on an outcome Y is written
using a special do operator, Pr [Y = y|do(X = x)]. A fundamental question in causal inference is
when can equations that include the do-operator be re-written in terms of observed variables. In what
follows we will be using the back-door criterion, which we state below.

Back-door criterion (Definition 3.3.1 in [10]):

• Given an ordered pair of variables (X,Y ) in a directed acyclic graph G, a set of variables Z
satisfies the backdoor criterion relative to (X,Y ) if no node in Z is a descendant of X , and
Z blocks every path between X and Y that contains an arrow into X .

• If Z satisfies the back-door criterion w.r.t (X,Y ), then the causal effect of X on Y is given
by the formula Pr [Y = y|do(X = x)] =

∑
z Pr [Y = y|X = x, Z = z] · Pr(Z = z).

3 A causal perspective

In this section we attempt to use the language of causality to re-interpret the sanity check methodology.
Recall that the initial objective of [1] is to determine whether a particular saliency method is sensitive
to the underlying model. In causal terms, this is like asking whether the conditional causal effect
of the model choice on the output saliency map is zero. We formalize this by setting up a causal
graph for the quantities in question: T is a random variable denoting the task in question, where a
task T = t is a joint distribution over examples and their respective labels; X is a random variable
denoting the image the saliency method will be evaluated on; M is a binary random variable, where
M = 1 means we consider the trained model Mt or the untrained (random) model M ′. Finally, S is
a random variable denoting the eventual output of the saliency method. Naturally, we have arrows
X → S and M → S to capture the fact that the output of the saliency method depends on both the
image and the model in question. The arrow T →M is because the trained model is trained on the
task T = t. Finally, we include the arrow T → X because the saliency method will be evaluated on
images from the marginal distribution on images defined by T = t.

The causal effect of model choice (a trained vs random model) on the output saliency map is therefore
given by Λ(x) ≡ E [S|X = x, do(M = 1)] − E [S|X = x, do(M = 0)], where the expectation is
over any potential randomness in the saliency method S. Note, however, that we cannot simply
replace the do-operator with standard conditional expectations, since in this graph the nodes M and
S are confounded. Specifically, there is a back-door path M ← T → X → S. Informally, Pearl’s
do-calculus instructs us to “close“ all back-door paths to compute the causal effect of M on S; in our
case this is done by conditioning on the fork, T . Formally, {T} satisfies the back-door criterion w.r.t
(M,S) (see Section 2 for a formal definition) and so the causal effect should be evaluated as follows:
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Λ(x) =
∑
t

(S(x;Mt)− S(x;M ′)) · Pr(T = t|X = x) (1)

where in the above we replaced E [S|X = x, T = t,M = 1] (resp., M = 0) with
E [S|X = x,Mt] = S(x;Mt) (resp., S(x;M ′)), under the simplifying assumption that the saliency
method is deterministic.

Equation (1) is similar to the test performed in [1], only that now the dependence on the tasks in
question is made explicit. In the particular case in which we take T to correspond to only “natural”
tasks, we obtain exactly the test that they performed. However, our main point is exactly that there is
no reason to restrict our attention to such tasks when attempting to rule out certain saliency methods,
since it is precisely those “natural” tasks that may suffer from the confounding effect described above.

4 Experiments

In this section we proceed to argue that on the basis of the revised test of Equation (1), there is no
reason to rule out guided backpropogation (GBP) as a saliency method over vanilla backpropogation
(VBP). To do so, we show that there exist a variety of distributions over tasks for which the conditional
causal effect of Equation (1) is clearly non-zero for both GBP and VBP. In particular, we show
this for both natural images (e.g. a regular MNIST image) and general images. Importantly, our
constructions utilize seemingly semi-synthetic tasks. These tasks are specifically tailored to ensure
that the early layer priors of an untrained network will be different from those of a trained network,
and specifically employ partial-object (Section 3.1) and multi-object (Section 3.2) images. In all cases
the usage of the synthetic tasks means we do have ground truth data for what the “correct” saliency
maps should look like, and we can indeed verify that both methods produce accurate saliency maps.
This strengthens our conclusion that the fact that on some tasks the saliency maps produced by GBP
resemble those of the maps computed w.r.t random models is an artifact of the tasks, more than a
criticism of the method itself.

4.1 Effect on “natural” images

In this section we use t to denote the standard MNIST task., so Mt denotes a standard CNN model
trained to near-perfect accuracy on the MNIST dataset and M ′ denotes a randomly initialized (but
untrained) model of the same architecture. We begin by considering the causal effect of model choice
(trained vs random) on the saliency map for images x ∼ t, i.e., standard MNIST images. We define a
simple modification of the standard MNIST task, which we denote t̃, as follows: w.p 1/2 we perturb
the regular MNIST by deleting its bottom half; the objective is to classify images into perturbed
and unperturbed images. Naturally this is a simple task; we use Mt̃ to denote a model trained to
perfect accuracy on this task. We consider the structural causal model in which the distribution of the
node T is uniform over the choice of task from

{
t, t̃

}
. Note that for an (unperturbed) MNIST image

x, the conditional probability Pr(T |X = x) is non-zero for both tasks; in other words, Equation
(1) instructs us to consider both the difference w.r.t the regular task S(x;Mt) − S(x;M ′) and the
difference w.r.t the synthetic task S(x;Mt̃)− S(x;M ′). While for GBP, the first difference is indeed
approximately zero [1], the second difference is far from zero, as the results in Figure 1 demonstrate.

4.2 Effect on “synthetic” images

In this section we report additional experiments in which we perform the sanity checks w.r.t slightly
more complex mluti-object tasks derived from both MNIST and ImageNet. For these tasks we show
that the causal effect also on the synthetic images themselves is non-zero. Examining the saliency
maps themselves additionally reveals that the outputs of both GBP and VBP are accurate.

For MNIST, we define a simple modification similar in spirit to the one defined in Section 4.1, only
this time we include additional objects in the image. Specifically, images are defined by randomly
perturbing MNIST images with one of three modifications (adding a random rectangle, a random
empty-circle shape, or doing nothing) and two tasks are defined: in t̃1 the objective is to determine
the modification and in t̃2 the objective is to determine the digit. We train two models, Mt̃1

and Mt̃2
,

each to a test accuracy of 0.99 on each task. Figure 2 shows example saliency maps generated w.r.t
each model’s predicted label using either GBP (top row) or VBP (bottom row). Clearly, both models

4



produce correct saliency maps that highlight the relevant object in the image3 and that are visually
distinct from the maps produced w.r.t the random model. See Appendix A for additional examples
for each method.

For ImageNet, we generate custom pairs of ImageNet images, as follows. First, we consider the
TinyImageNet dataset, which consists of 250 training images and 50 validation images for each
original ImageNet class, downscaled to 64x64. We restrict our attention to ten ImageNet classes, and
divide them into two groups of five: the first group consists of the labels [acorn, espresso, banana,
ice-cream, gondola] and the second consists of the labels [wok, cauliflower, space heater, payphone,
baboon]. We then construct a new dataset as follows: we randomly select one image from the first
group (e.g. an espresso) and one image from the second group (e.g. a baboon), where the position is
selected randomly. The label of this image pair is defined to be the label of the image that belongs to
the first group. We finetune a pretrained ResNet18 model on our pairs dataset until the model reaches
a test accuracy of around 0.77. In Figure 3 we demonstrate example saliency maps generated w.r.t the
true label using either GBP (top row) or VBP (bottom row). We see that the two baseline models
have positive saliency for both regions of the image – as expected – whereas the trained model has
positive saliency only on the relevant part of the image (in this case, the espresso, which determines
the class label). We refer the reader to Appendix B for additional examples.

Figure 1: The two columns on the right show the saliency maps produced by guided backpropogation
(GBP) for the image in the left column, for the randomly initialized model and for the model that
was trained to predict whether the top half of the image was missing. For MNIST images (top row,
bottom row), the difference between the two maps is clearly non-zero.

5 Discussion

In this work we demonstrated empirically that the model randomization tests proposed in [1] are
distribution-dependent. We have proposed performing the sanity checks w.r.t custom tasks in an
attempt to control for factors that may confound the results. Our simple experiments demonstrate that
doing so reverses some of the initial observations of [1]. We emphasize that this does not challenge
the basic idea, which is that for debugging or explainability purposes, one should not use saliency
methods which are independent of the model to explained. What it does highlight is that when
performed carefully, the necessary condition this perspective proposes may be too weak to provide
meaningful distinctions between the existing plethora of saliency methods. For example, as we have
shown in this work, both vanilla backpropogation and guided backpropgation pass the modified sanity
checks – and hence there doesn’t seem to be a reason to prefer one over the other on the basis of the
sanity check methodology. It would be interesting to explore whether semi-synthetic, engineered

3We note that we only know the “correct” maps because in this case we engineered the tasks such that high
accuracy is only possible when the model learns to attend to one type of object and ignore the other. In general,
as mentioned earlier, we have no knowledge of the “correct” saliency maps.
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Figure 2: The three columns on the right show the saliency maps produced for the different models;
from right to left: Mt̃1

(a model trained to predict the shape), Mt̃2
(a model trained to predict the

digit), and a random model of the same architecture. Through the creation of the multi-object tasks,
we see that methods provide accurate maps (highlighting the object that determines the label) that are
visually distinct from the maps of the random model.

Figure 3: The three columns on the right show the saliency maps produced for the different models.
From right to left: a ResNet18 model finetuned on the task in question, a pretrained ResNet18 without
finetuning, and a random ResNet18. Both methods provide saliency maps that focus only on the
relevant image (in this case, the espresso), whereas the other models have positive saliency for both
regions of the image, as expected.

tasks, as we used in this work could be used to compare the utility of different methods on a per-task
basis.
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A Additional results for Section 4.2 (MNIST)

Figure 4: Additional examples: saliency maps produced using vanilla backprop.

image random model
saliency w.r.t pred = 2

shape model
saliency w.r.t pred = 1

digit model
saliency w.r.t pred = 0

saliency w.r.t pred = 2 saliency w.r.t pred = 1 saliency w.r.t pred = 1

saliency w.r.t pred = 2 saliency w.r.t pred = 2 saliency w.r.t pred = 1

saliency w.r.t pred = 2 saliency w.r.t pred = 1 saliency w.r.t pred = 1

saliency w.r.t pred = 2 saliency w.r.t pred = 0 saliency w.r.t pred = 1
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Figure 5: Additional examples: saliency maps produced using guided backprop.

image random model
saliency w.r.t pred = 2

shape model
saliency w.r.t pred = 2

digit model
saliency w.r.t pred = 0

saliency w.r.t pred = 2 saliency w.r.t pred = 1 saliency w.r.t pred = 1

saliency w.r.t pred = 2 saliency w.r.t pred = 0 saliency w.r.t pred = 1

saliency w.r.t pred = 2 saliency w.r.t pred = 0 saliency w.r.t pred = 1

saliency w.r.t pred = 2 saliency w.r.t pred = 1 saliency w.r.t pred = 1

9



B AAdditional results for Section 4.2 (ImageNet)

Figure 6: Additional examples: saliency maps produced using vanilla backprop.
image

true label = ice cream
random

pred = banana, saliency w.r.t ice cream
pretrained

pred = gondola, saliency w.r.t ice cream
finetuned

pred = banana, saliency w.r.t ice cream

true label = espresso pred = banana, saliency w.r.t espresso pred = gondola, saliency w.r.t espresso pred = espresso, saliency w.r.t espresso

true label = banana pred = banana, saliency w.r.t banana pred = banana, saliency w.r.t banana pred = gondola, saliency w.r.t banana

true label = banana pred = banana, saliency w.r.t banana pred = banana, saliency w.r.t banana pred = banana, saliency w.r.t banana

true label = gondola pred = banana, saliency w.r.t gondola pred = gondola, saliency w.r.t gondola pred = gondola, saliency w.r.t gondola

Figure 7: Additional examples: saliency maps produced using guided backprop.
image

true label = banana
random

pred = ice cream, saliency w.r.t banana
pretrained

pred = ice cream, saliency w.r.t banana
finetuned

pred = banana, saliency w.r.t banana

true label = espresso pred = ice cream, saliency w.r.t espresso pred = ice cream, saliency w.r.t espresso pred = espresso, saliency w.r.t espresso

true label = ice cream pred = ice cream, saliency w.r.t ice cream pred = ice cream, saliency w.r.t ice cream pred = espresso, saliency w.r.t ice cream

true label = banana pred = ice cream, saliency w.r.t banana pred = ice cream, saliency w.r.t banana pred = ice cream, saliency w.r.t banana

true label = banana pred = ice cream, saliency w.r.t banana pred = ice cream, saliency w.r.t banana pred = acorn, saliency w.r.t banana
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