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ABSTRACT

Reinforcement learning (RL) has achieved remarkable success across diverse do-
mains, enabling autonomous systems to learn and adapt to dynamic environments.
However, the security and reliability of RL models remain significant concerns,
especially given the growing threat of backdoor attacks. In this paper, we for-
malize backdoor attacks in RL as an optimization problem, offering a principled
framework for analyzing and designing such attacks. Our approach uniquely em-
phasizes stealthiness by minimizing data distortions during RL training, and we
propose a single-loop iterative algorithm based on a penalty-based bi-level refor-
mulation to solve the optimization problem. The stealthiness and effectiveness
of the backdoor are ensured through inequality constraints on Q-values, which
prioritize malicious actions, and equality constraints that reflect the Bellman op-
timality conditions. We evaluate our stealthy backdoor attack across both classic
control and MuJoCo environments. In particular, in the Hopper and Walker2D en-
vironments, the backdoored agent exhibits strong stealthiness, with minimal per-
formance drops of only 2.18% and 4.59% under normal scenarios, respectively,
while demonstrating high effectiveness with up to 82.31% and 71.27% declines
under triggered scenarios.

1 INTRODUCTION

Reinforcement learning (RL) has gained considerable traction in robotics, empowering robots to
master intricate tasks through their interactions with the environment. RL algorithms serve as cru-
cial components for developing autonomous systems capable of decision-making in ever-changing
and uncertain scenarios, ranging from robotic manipulation (Nguyen & La, 2019) to autonomous
navigation (Wang et al., 2019). Such capabilities have fueled advancement across diverse fields, in-
cluding robotics (Singh et al., 2022), healthcare (Yu et al., 2021), and autonomous vehicles (Aradi,
2020).

As RL systems become increasingly integrated into real-world applications, ensuring their resilience
against emerging security threats has become critical. Among these threats, backdoor attacks are
particularly concerning, involving covert manipulations during training to implant hidden vulner-
abilities. While extensively studied in supervised learning (Saha et al., 2020; Chen & Dai, 2021;
Zhao et al., 2020), backdoor attacks in RL introduce unique challenges due to the agent’s sequential
interactions with its environment and minimal human oversight. Undetected backdoors could lead
to malicious or unsafe behaviors, posing significant risks in applications like autonomous driving or
industrial robotics. Despite the severity of this issue, research on backdoor attacks in RL remains
limited, often focusing on specific tasks (Wang et al., 2021) or heuristic methods (Kiourti et al.,
2020; Gong et al., 2024) without establishing a comprehensive framework. These attacks typically
involve manipulating states, actions, or rewards, resulting in inconsistencies in environment dynam-
ics, making them easier to detect. The challenge of minimizing data distortions while ensuring
effective backdoor implantation remains largely unexplored.

Unlike prior methods that require access to the agent’s learning algorithm (Zhang et al., 2021) or
environment dynamics (Ma et al., 2019; Zhang et al., 2020), this paper addresses these challenges by
proposing a black-box backdoor attack framework that operates without such knowledge, making
it model-agnostic and environment-agnostic. The attack is executed through strategic manipulation
of reward records in the agent’s replay buffer, prioritizing stealth and effectiveness while steering
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Figure 1: Overview of the proposed backdoor attack on RL agents. During the training phase,
at each training round, the attacker utilizes clean data from the agent’s replay buffer to train the
poisoned reward r̄ network and Q̄ network. An iterative optimization algorithm is employed to
update the poisoned r̄ and Q̄ networks, minimizing data perturbation while ensuring successful
backdoor implantation. The poisoned data are then incorporated into the RL agent’s replay buffer,
guiding the agent to learn a target backdoor policy that balances attack effectiveness and stealthiness.
During the deployment phase, the attacker can present specific trigger observations to activate the
backdoor behavior of the RL agent.

the RL training process. To achieve this, we formulate and efficiently solve a penalty-based bi-
level optimization problem that integrates a pre-designed target policy template into the attack. The
overview of our method is illustrated in Figure 1. The key contributions of this paper are:

• We formulate the backdoor attack problem in reinforcement learning (RL) as an optimiza-
tion problem, offering a principled framework for analyzing and designing such attacks.
Unlike existing literature on RL backdoor attacks, our approach uniquely emphasizes min-
imizing data distortions to lower the detectability of the attack during RL training. We
propose a single-loop iterative algorithm for the optimization problem based on the penalty-
based bi-level reformulation.

• The stealthiness and effectiveness of the implanted backdoor are concretely evidenced by
the optimization framework. Specifically, the effectiveness is ensured through inequality
constraints on Q values, which provide an ϵ advantage to malicious actions over other
actions at the target states. Meanwhile, stealthiness is grounded in incorporating equality
constraints that reflect the Bellman optimality conditions in RL.

• Experiments validate the effectiveness and stealthiness of the proposed backdoor method
across various simulated environments. Our experiments demonstrate that the poisoned
agent exhibits strong stealthiness among the CartPole, the Hopper, and Walker2D environ-
ments, with minimal performance drops of only 0.63%, 2.18%, and 4.59% under normal
scenarios, respectively. At the same time, it achieves high effectiveness, causing perfor-
mance declines of up to 70.69%, 82.31%, and 71.27% under triggered scenarios.

Remark 1. Compared to recent method (Gong et al., 2024), which achieves performance drops of
64.7% and 47.4% with stealthiness levels of 9.6% and 3.0% in Hopper and Walker2D under their
best-balanced setting (with a 10% poisoning ratio), our method exhibits notable advantages in both
effectiveness and stealthiness. Although the attack settings are not directly comparable, our results
underscore the promising potential of our approach.

2 RELATED WORK

2.1 DATA POISONING ATTACK AGAINST RL

In the context of poisoning attacks against RL, attackers are typically assumed to have the ability to
poison various components of the data during the RL training phase. Existing research has inves-
tigated the manipulation of state information (Ashcraft & Karra, 2021) and action poisoning (Liu
& Lai, 2021). However, a substantial body of work focuses on altering reward data ((Ma et al.,
2019; Zhang et al., 2020; Wu et al., 2023; Rangi et al., 2022; Li et al., 2024; 2025)), as rewards are
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typically manually designed and are generally less sensitive to minor perturbations. Additionally,
some studies explore the simultaneous poisoning of both reward signals and transition probabilities
((Rakhsha et al., 2020; Xu et al., 2022)). Notably, (Rakhsha et al., 2020) investigates a white-box
attack scenario, where the transition probabilities are assumed to be known to the attacker. On
the other hand, (Xu et al., 2022) proposes a method for poisoning both reward data and transition
probabilities in a black-box environment setting.

2.2 BACKDOOR ATTACK

In recent years, there has been growing concern about backdoor attacks on a wide range of machine
learning models, including image classification (Li et al., 2021b; Wenger et al., 2021), natural lan-
guage processing (Chen et al., 2021; Li et al., 2021a; Zhang et al., 2024), video recognition (Zhao
et al., 2020), etc. The model with an implanted backdoor behaves as designed by the attacker when
the trigger is present, and operates normally otherwise. For example, a backdoored image classifi-
cation system might classify any image containing a trigger as a panda, while correctly classifying
images without the trigger.

Recent studies have shown that RL algorithms are vulnerable to backdoor attacks (Kiourti et al.,
2020; Gong et al., 2024; Yang et al., 2019; Chen et al., 2023; Ma et al., 2025). These attacks
are typically carried out by manipulating the environment (Kiourti et al., 2020) and the training
data (Gong et al., 2024)—modifying states, actions, and rewards. Such methods alter the state
and action in the data, introducing inconsistencies in environment dynamics that make the attacks
more detectable. Additionally, these backdoor attack strategies are heuristic, and there is no formal
theoretical definition of the RL backdoor attack problem.

3 PRELIMINARY AND PROBLEM FORMULATION

3.1 REINFORCEMENT LEARNING

RL aims to solve the sequential decision problem characterized by a Markov decision process (MDP)
with state space S, action space A, transition probability function P : S × A × S → [0, 1], and
reward function r : S × A → R. At each timestep t, the agent chooses an action at sampled
from the policy π(·|s), a probability distribution over action spaceA, and further obtains the reward
rt = r(st, at) and next state st+1 sampled from the transition probability P (·|s, a) returned by the
environment. The agent records its interactions with the environment τ = (⟨st, at, rt⟩)∞t=0, storing
them in a replay buffer. The stored data is used to refine the policy by maximizing the discounted
cumulative rewards J(π) := limT→∞ Eτ

[∑T
t=0 γ

trt

]
, where γ ∈ (0, 1) is the discount factor.

To evaluate the expected cumulative reward an action could obtain, Q-value function is defined as
Qπ(s, a) := limT→∞ Eτ

[∑T
t=0 γ

trt|s0 = s, a0 = a
]
, which satisfies the Bellman equation:

Qπ(s, a) = r(s, a) + γ
∑
s′,a′

P (s′|s, a)π(a′|s′)Qπ(s′, a′). (1)

3.2 PROBLEM FORMULATION

A backdoor attacker in RL aims to influence an agent’s training process by manipulating the rewards
stored in the replay buffer. The attacker operates under highly restricted knowledge, with no prior
information about the agent’s learning algorithm or the underlying environment, such as rewards or
transition probabilities. Instead, the attacker adapts poisoning based solely on the data available in
the replay buffer.

At each training round, the attacker replaces the original reward r with a modified reward r + ∆,
creating a poisoned replay buffer that is subsequently used to train the RL agent. Once training
is complete, the attacker can activate the backdoor by presenting specific inputs, such as a small
perturbation δ added to the agent’s observation s. Under triggered conditions, denoted as s̃ := s+δ,
the poisoned agent exhibits abnormal behavior, taking actions that result in minimal cumulative
rewards.
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Beyond executing successful attacks in triggered states, the attacker must prioritize two key objec-
tives: minimizing data distortions during training and ensuring backdoor stealthiness during deploy-
ment. To avoid detection during the training phase, the attacker must limit the changes introduced to
the original reward function. Meanwhile, backdoor stealthiness is achieved by ensuring the agent’s
normal functionality remains largely unaffected in non-triggered states.

4 METHODOLOGY

In this section, we present our backdoor attack algorithm in detail. The process is divided into
three steps. First, Section 4.1 focuses on the design of the target backdoor policy, aiming to embed
backdoors effectively while maintaining stealth. Next, Section 4.2 frames the task as an optimization
problem and applies a penalty-based approach combined with a bi-level reformulation to enable
iterative solutions. Lastly, Section 4.3 derives the stochastic gradient and finalizes it with the update
rule for the poisoning strategy. The stream of the whole algorithm is outlined in Algorithm 1.

4.1 TARGET BACKDOOR POLICY DESIGN

A model implanted with a backdoor exhibits predesigned behavior when a trigger is present, while
operating indistinguishably from a normally-trained model in all other states. To achieve this, the
attacker begins by following the standard RL training procedure to obtain a normal policy πn. We
design the target policy π† in the context of stochastic policy training as follows:

{
π†(a|s) = πn(a|s), ∀ normal state s, a;

π†(a|s̃) = 1(a = abad), ∀ triggered state s̃, a.
(2)

(a) Hopper (b) Walker2D

Figure 2: The circled areas indicate where the
triggers are inserted. The trigger is introduced by
modifying the angle information corresponding to
the circled points in the agent’s observation.

The bad action abad is task-specific and chosen
to severely degrade the agent’s performance.
For instance, in the Hopper environment (Fig-
ure 2), a bad action can be defined as applying
joint torques opposite to those prescribed by the
normal policy πn, which typically aims to pro-
pel the robot forward to maintain balance and
locomotion. In contrast, the bad action drives
the agent to move backward or destabilize key
joints (e.g., extending the knee when flexion is
needed), leading to rapid loss of balance and
early episode termination with minimal reward.
In more complex scenarios, adversarial training
methods such as those in (Gong et al., 2024) can
be used to learn a reward-minimizing policy.

The target backdoor policy facilitates backdoor
implantation by assigning bad actions to triggered states, ensuring attack effectiveness. Simultane-
ously, it maintains backdoor stealthiness by preserving normal behavior in the absence of triggers.

4.2 REFORMULATION OF THE BACKDOOR ATTACK PROBLEM

In addition to poisoning the reward data in the agent’s replay buffer, the attacker must minimize
the distortion ∆ introduced to the reward. This dual requirement naturally leads to a constrained
optimization framework.

Penalty Formulation. The optimization objective is to minimize the data distortion ∆ across all
state-action pairs while ensuring the agent effectively learns the target policy π†. To achieve this,
the induced Q-value function must satisfy the following constraints: for any s ∈ S and a ∈ A,

Q(s, a) = r(s, a) + ∆(s, a) + γ
∑
s′

P (s′|s, a)Q(s′, π†
s′),

4
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and for any s ∈ S and a ∈ A where a ̸= π†
s , the induced Q-value function is constrained by

Q(s, π†
s) ≥ Q(s, a) + ϵ, (3)

where ϵ, referred to as the poison intensity parameter, quantifies the advantage of π†
s over other

actions. The equality enforces adherence to the Bellman equation (1), while the inequality ensures
the optimality of π†. A penalty method is applied to formulate the problem as follows:

min
λ,θ

1

2

∑
s,a

(∆θ
s,a)

2 +
ρ

2

∑
s,a̸=π†

s

Φ(Q̄λ
s,a + ϵ− Q̄λ

s,π†
s
)2 (4)

s.t. Q̄λ
s,a = r(s, a) + ∆θ

s,a + γ
∑
s′

P (s′|s, a)Q̄λ
s′,π†

s′
, ∀s, a,

where ∆θ
s,a := ∆(s, a; θ) and Q̄λ

s,a := Q̄(s, a;λ) are parameterized as neural networks, with θ and
λ being their respective parameters. The term Q̄ is an auxiliary variable maintained by the attacker,
distinct from the agent’s Q function if any. The parameter ρ represents the penalty magnitude, and
Φ(x) := 1(x > 0)x, whose square pertains to penalty for (3).

Although equality constraints in (3) can be handled as a multiple of penalty terms, the gradient
of the resulting squared term with respect to Q̄ requires two sampled transitions for an unbiased
gradient estimator, a challenge known as the double sampling issue (Dai et al., 2018). To address
such complications, we adopt a bi-level reformulation.

Bi-level Reformulation. The bi-level reformulation decomposes the problem into two hierarchical
levels, where the upper-level problem updates Q̄ variable to minimize objective function and penalty
functions, and the lower-level one updates ∆ to realize feasibility of the equality constraint. The bi-
level optimization is as follows:

min
λ

1

2

∑
s,a

(∆θ
s,a)

2 +
ρ

2

∑
s,a̸=π†

s

(Φ(Q̄λ
s,a + ϵ− Q̄λ

s,π†
s
))2

s.t. θ ∈ argmin
{∑

s,a

1

2

(
r(s, a) + ∆θ

s,a + γ
∑
s′

P (s′|s, a)Q̄λ
s′,π†

s′
− Q̄λ

s,a

)2}
.

(5)

Since the lower-level problem admits a straightforward solution ∆θ,∗
s,a = Q̄λ

s,a − r(s, a) −
γ
∑

s′ P (s′|s, a)Q̄λ
s′,π†

s′
, the equivalence between (5) and (4) is clear. However, while the bi-level

formulation avoids the double-sampling issue, it complicates gradient derivation due to the nested
dependency of ∆θ

s,a on λ. This challenge can be addressed via the implicit function theorem (Hong
et al., 2023; Liu et al., 2022; Ghadimi & Wang, 2018), which enables exact gradient computation
for both levels by deriving the gradient coupling∇λ∆

θ,∗
s,a.

4.3 UPDATE RULE

We leverage a single-loop algorithm to solve the reformulated be-level optimization problem. Due
to the lack of access to transition probabilities, the attacker needs to compute stochastic gradients
using sampled transitions, where s′ ∼ P (·|s, a). The gradient-descent update rule is summarized as
follows:

∆target,k
s,a =Q̄λk

s,a − r(s, a)− γQ̄λk

s′,π†
s′

(6)

Q̄target,k
s,a =Q̄λk

s,a −
(
∆θk

s,a + ρk
[
1(a ̸= π†

s)Φ(Q
λk
s,a + ϵ−Qλk

s,π†
s
)

− 1(a = π†
s)

∑
ã̸=a

Φ(Qλk

s,ã + ϵ−Qλk
s,a)

])
(7)

Qtarget,k
s′,π†

s′
=Qλk

s′,π†
s′
+ γ∆θk

s,a, (8)

where k is the iteration count. To satisfy the inequality constraints, the penalty coefficient ρk should
be gradually increased until it reaches a sufficiently large value. The update rule (6) is derived
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Algorithm 1 Backdoor Attack Algorithm via Bi-level Optimization
Input: Initial neural network parameters θ0, λ0, poison intensity ϵ, step sizes α, β, penalty coeffi-
cients {ρk}, initial agent policy π0

1: for training round k = 1, 2, ... do
2: Data Collection:
3: Agent interacts with environment using πk−1, stores transitions {⟨si, ai, ri, s′i⟩}i∈Ik
4: Attacker: Reward Poisoning:
5: Compute ∆target via (6)
6: Update θk:

θk+1 ← θk − α∇θ
1

2

∑
i∈Ik

[∆(si, ai; θk)−∆target,k
si,ai

]2.

7: Inject ∆(si, ai; θk) into rewards {ri}i∈Ik
8: Attacker: Q-value Poisoning:
9: Compute Q̄target via (7) and (8)

10: Update λk:

λk+1 ←λk − β∇λ
1

2

∑
i∈Ik

[Q̄(si, ai;λk)− Q̄target,k
si,ai

]2 + [Q̄(s′i, a
′
i;λk)− Q̄target,k

s′i,a
′
i
]2,

11: Agent Policy Update:
12: Agent updates policy πk using poisoned transitions {⟨si, ai, r̃i, s′i⟩}i∈Ik
13: end for

from the optimality conditions of the lower-level problem, while the target values in (7) and (8) are
updated by subtracting the stochastic gradient from the current values.

In the proposed reward poisoning framework, the poisoned reward r̄ is adaptively calibrated us-
ing the poisoned Q-function Q̄ to strategically influence the agent’s behavior: when Q̄(st, at) for
the target action at is comparatively low (signifying a suboptimal estimated value), the reward r̄
is increased to amplify the perceived desirability of at and incentivize its selection. Conversely,
if Q̄(st, at) is relatively high (indicating the agent already sufficiently values at), r̄ is explicitly
decreased toward the original reward r to minimize unnecessary perturbation, thereby reducing
detectability while maintaining attack efficacy. This dual adjustment ensures minimal reward ma-
nipulation: aggressive amplification occurs only when necessary to promote at, and conservative
attenuation is applied when the agent’s existing value estimates align with adversarial objectives.

Finally, the neural network parameters θ, λ are iteratively adjusted to online learn Q̄target,k
s,a and

∆target,k
s,a by minimizing the mean squared residue loss. The overall algorithm is summarized in

Algorithm 1.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Tasks. We conduct experiments on a classic control task(CartPole (Brockman et al., 2016)) and two
robotic control tasks (Hopper and Walker2D) from MuJoCo (Todorov et al., 2012). The Walker2D
environment features a larger observation and action space compared to Hopper, making RL training
more challenging. We use these three environments to evaluate the performance of our backdoor
algorithm across varying levels of complexity. We provide other details in Appendix A.

Metrics. In RL, we often use cumulative return to evaluate the performance of the RL agent. How-
ever, to measure the effectiveness of our backdoor attack algorithm, we need to consider more as-
pects of performance. The backdoor attack primarily affects the agent’s performance: when the
trigger is present, the poisoned agent should exhibit a significant performance drop; otherwise, its
performance should closely match that of a normal agent. Therefore, it is essential to evaluate the
relative change in the agent’s performance.
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Table 1: The attack results with different poison intensity parameters (ϵ) in Hopper and Walker2D.
We evaluate the effectiveness and stealthiness of our attack by assessing cumulative rewards under
triggered scenarios(activated trigger) and normal scenarios (inactive trigger).

Poison Intensity Parameter (ϵ)
Environments Trigger Normal 0.01 0.1 0.25 0.5 2.0 4.0

CartPole Activated 464 442(-4.74%) 400(-13.79%) 362(-21.98%) 345(-25.65%) 304(-34.48%) 136(-70.69%)
Inactive 471 463(-1.70%) 458(-2.76%) 462(-1.91%) 460(-2.33%) 465(-1.27%) 468(-0.63%)

Hopper Activated 3449 963(-72.08%) 1091(-68.35%) 517(-85.01%) 610(-82.31%) 497(-85.57%) 741(-78.50%)
Inactive 3486 2696(-22.64%) 2669(-23.42%) 3251(-6.72%) 3410(-2.18%) 3272(-6.14%) 2811(-19.36%)

Walker2D Activated 3350 1213(-63.78%) 1307(-60.97%) 962(-71.27%) 507(-84.87%) 544(-83.76%) 363(-89.16%)
Inactive 3541 3221(-9.02%) 3407(-3.78%) 3378(-4.59%) 2635(-25.57%) 2813(-20.56%) 2694(-23.91%)

• Backdoor Effectiveness. We use this metric to measure the impact of activated triggers
on the performance of the backdoored agent. However, we must also account for how
much the trigger itself affects the normal agent to accurately reflect the true impact of the
backdoor attack. Let RTn

denote the cumulative return of the normal policy agent with
activated triggers, and RTb

represent the cumulative return of the backdoored policy agent
with activated triggers. We define the performance decrease as 100% × RTn−RTb

RTn
. The

larger the gap, the more effective the backdoor attack is.
• Backdoor Stealthiness. We use this metric to evaluate the stealthiness of backdoor attacks.

Specifically, we aim to measure the gap between the performance of the backdoored strat-
egy and the normal strategy when no triggers are activated. Let RNn

denote the cumulative
return of the normal policy agent without triggers (under normal scenarios), and RNb

rep-
resents the cumulative return of the backdoored policy agent under normal scenarios. We
define the performance gap as 100%× RNn−RNb

RNn
. A smaller gap indicates higher stealthi-

ness of the backdoor attack.
• Policy Distance. The RL algorithm ultimately converges to a policy, and we aim to eval-

uate the impact of the backdoor attack by measuring the deviation in the learned policy.
Specifically, we uniformly sample trigger states and normal states. For the trigger states,
we compute the difference between the agent policy action and the predefined bad action.
For the normal states, we compute the difference between the agent’s policy action and the
action derived from the normal policy. These differences represent the gap between the
trained agent’s policy and the target backdoor policy, as well as the gap between the trained
agent’s policy and the normal policy. Our goal is to minimize both gaps during training,
with action distances quantified using the ℓ2-norm.

RL Training and Testing Setup. We train the CartPole task using the deep Q-learning algo-
rithm, and employ Proximal Policy Optimization (PPO) (Schulman et al., 2017) for the Hopper
and Walker2D tasks. During training, the attacker accesses the rewards data used for training and
modifies it according to our attack algorithm. The training procedure stops when a certain test re-
ward or a maximum number of iterations is reached. During the test phase, when the time step
reaches a certain upper limit or the agent’s status becomes unhealthy (e.g., when the agent falls to
the ground and cannot move), the test will be stopped. All experiments are repeated 5 times to
ensure statistical reliability.

Backdoor Attack Setup. For CartPole, the bad action abad is defined as a fixed action that pushes
the cart to the right whenever the trigger is activated. This action rapidly destabilizes the pole,
causing it to deviate beyond the allowed angle threshold, thus terminating the episode prematurely
and resulting in a significantly reduced reward.

For MuJoCo tasks, the bad action abad is defined as [1,−1,−1] for Hopper and
[−1,−1,−1,−1,−1,−1] for Walker2D. These bad actions are designed to cause the agent to fall
immediately after the trigger is activated, achieving the attack’s objective. We configure the Hopper
and Walker2D environments with dispersions of 8 for each action dimension to compute (7).

The penalty coefficient ρ is set to 20. The learning rates for the poisoned reward network and the
Q-value network are set to 10−4 and 10−5, respectively.
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Figure 3: Policy distance results during training in CartPole. As training progresses, the policy
distribution of the backdoored agent gradually approaches that of the target backdoor policy.

5.2 EXPERIMENTAL RESULTS

In this section, we evaluate the effectiveness and stealthiness of our backdoor method. First, we
analyze the impact of the backdoor algorithm on the RL agent from a macro perspective, focusing
on its performance during the deployment phase. Next, we investigate how our attack algorithm
influences the agent’s policy iteration during the training process. Finally, we examine the impact of
the poison intensity parameter on the performance of the backdoor attack.

Backdoor Effectiveness. Table 1 presents the overall results of our backdoor attack method in the
CartPole, Hopper, and Walker2D environments. The experiments show that the performance of
the normal policy remains nearly identical regardless of the presence of triggers, indicating that the
triggers themselves have minimal impact on the agent.

After the backdoor attack, the agent’s performance degrades significantly, e.g., by 85.01% in the
Hopper task and by 71.27% in the Walker2D task, under the poison intensity parameter ϵ = 0.25.
Moreover, regardless of the parameter settings, the attack consistently achieves performance degra-
dations of at least 68.35% and 60.97% in the Hopper and Walker2D tasks, respectively.

Backdoor Stealthiness. Table 1 demonstrates that our backdoor attack algorithm is highly stealthy,
as the backdoored policy behaves similarly to the normal policy under normal scenarios. The perfor-
mance drop is merely 6.72% and 4.59% for the Hopper and Walker2D tasks, respectively. Further-
more, across all parameter settings, the performance degradation never exceeds 23.42% and 23.91%
for the two tasks. This is attributed to the target backdoor policy designed in Section 4.1, which
ensures that the agent performs normally and maintains its performance in the absence of triggers.

Policy Distance Results. Figure 3 illustrates the policy distributions for the CartPole environment
under normal, poisoned (ϵ = 4), and target backdoor policies. Given the discrete action space
(“move left” and “move right”), we analyze the policy distance by examining action distributions
across cart positions ranging from −0.5 to 1.5 and velocities from −0.5 to 0.5, with other states
fixed at zero. The results for other tasks are in the Appendix B.

The target backdoor policy sharply changes near position x = 0.5, consistently forcing the agent to
move right once exceeded, causing rapid episode termination. For positions below 0.5, the target
backdoor policy matches the normal policy to maintain stealthiness.

As training progresses (from 1000 to 10000 epochs), the poisoned policy gradually approaches the
target policy. While a gap remains due to difficulties in learning abrupt policy transitions, the poi-
soned policy effectively achieves the intended behavior. For positions greater than 0.5, the poisoned
policy consistently selects the “move right” action, confirming the attack’s effectiveness. Below 0.5,
it aligns closely with the normal policy, preserving stealthiness when the trigger is inactive.

Impact of the Poison Intensity Parameters (ϵ). Now we explore the effect of the poison intensity
ϵ on the backdoor attack. According to the deployment phase results in Table 1, no matter how
the parameters are set, the effectiveness and stealthiness of backdoor attacks are basically satisfied.
When the parameters are relatively small (e.g., ϵ = 0.01), the effectiveness of the backdoor is
limited. Conversely, when the parameters are large, (e.g., ϵ = 4), the backdoor achieves higher
effectiveness but sacrifices some stealthiness. This is because larger parameters introduce more data
manipulations, which can lead to increased instability during training.
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We observe that the optimal poison intensity ϵ varies across RL tasks. Smaller values (e.g., ϵ < 1.0)
already produce noticeable backdoor effects in Hopper and Walker2D (Table 1), but show limited
impact in CartPole, achieving only 4.74% effectiveness at ϵ = 0.01. This is due to differences in
the Q-value ranges across environments. However, overly large ϵ values compromise stealthiness.

5.3 ATTACK INTENSITY

To evaluate the efficacy of the proposed method, we conduct a comparative analysis against several
baseline poisoning attacks within the CartPole environment. The baselines include:

1. Neighbourhood-based attacker (Xu & Singh, 2023): Penalizes non-target actions in tar-
geted states with a fixed value.

2. Min-max attacker: Assign maximal rewards for target actions and minimal rewards for all
other actions in targeted states, a technique partially employed in prior work (Kiourti et al.,
2020).

3. Random attacker: Modifies the reward by adding a bounded, uniformly sampled value for
target actions and a random penalty for other actions.

The experimental results, summarized in Table 2, demonstrate that all evaluated methods success-
fully install a backdoor. Specifically, the poisoned agent exhibits nominal performance comparable
to a benign agent (achieving the maximum reward of 475) in the absence of the trigger. How-
ever, upon activation of the trigger, the agent’s performance degrades catastrophically. The ran-
dom attacker induces the largest reduction in cumulative rewards (62) but also deviates markedly
from nominal behavior, yielding only 304 rewards in the absence of the trigger and thus becoming
highly susceptible to detection. By contrast, the proposed method maintains near-nominal behavior
when the trigger is inactive (468/500) while achieving a greater reduction in rewards than both the
neighborhood-based and min–max attackers.

Table 2: The poisoned agent’s performance and poisoning intensity
in the CartPole environment. The poisoning intensity is computed
by uniformly sampling over triggered/universal states and summing
up the poisoned rewards.

Method Reward sum (Trigger Status) Intensity
Activated Inactive Global Triggered

Neighbourhood 348 475 4.004 2.10
Minmax 237 446 5.00 5.00
Random 62 304 9.99 9.98
Proposed 136 468 2.48 0.87

To quantify the stealthiness
of the attacks, we measure
the perturbation intensity,
defined as the L2 norm
of the deviation from the
original reward function:∑

s,a ∥r̄s,a − rs,a∥22 . This
metric was evaluated for
both trigger-specific state-
action pairs and global pairs
sampled uniformly from the
entire state space.

Our analysis reveals that the
proposed method achieves a lower perturbation intensity across both distributions. This result in-
dicates that our approach can induce the targeted malicious behavior with minimal modification to
the original reward function, demonstrating superior stealth and efficiency. This advantage arises
because our method leverages the underlying MDP dynamics to distribute subtle alterations across
many non-triggered states, which collectively influence behavior under the trigger condition. In
contrast, baseline methods must concentrate larger, more conspicuous perturbations exclusively on
the triggered states, rendering their manipulations more readily identifiable.

6 CONCLUSION

In this paper, we revisit the RL backdoor attack problem by formulating it through an optimiza-
tion framework. Our approach minimizes data distortions while ensuring both the effectiveness and
stealthiness of the implanted backdoor. We design a target backdoor policy and propose a novel
iterative optimization algorithm using a penalty-based approach and bi-level reformulation. Our
experiments demonstrate that the attack introduces minimal disruption to the agent’s normal behav-
ior while significantly degrading its performance when triggered. Our work offers both theoretical
insights and practical methods for analyzing and evaluating backdoor attacks in RL.
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REPRODUCIBILITY STATEMENT

The implementation code has been included in the supplementary materials. Comprehensive de-
tails regarding the experimental setup, datasets, baselines, hyperparameters, training procedure, and
attack setup are provided in Section 5.1 and Appendix A. We commit to releasing the full imple-
mentation upon publication of this work.

ETHICS STATEMENT

This paper investigates a stealthy backdoor attack against RL agents, with the goal of understanding
potential vulnerabilities in deployed decision-making systems. Our intention is not to promote mis-
use, but to provide insight into how such attacks can arise and inform the design of future defenses.
We emphasize that the proposed attack is studied solely in simulated environments (e.g., CartPole,
Hopper, and Walker2D) using publicly available benchmarks and models. No real-world systems or
proprietary data are involved. While such attacks could be exploited maliciously, our research aims
to raise awareness and motivate the development of robust defense mechanisms in safety-critical RL
applications.
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A ADDITIONAL EXPERIMENTAL SETUP

Task Details. We briefly describe the environments used in our experiments, including their physical
setup, observation space, action space, and control objectives:

• CartPole: In CartPole, a pole is hinged to a movable cart, constrained to one-dimensional
horizontal motion along a frictionless track. The objective is to keep the pole balanced ver-
tically by applying discrete horizontal forces to the cart. The observation is a 4-dimensional
vector representing cart position, cart velocity, pole angle, and pole angular velocity, while
the action space consists of two discrete actions: pushing the cart left or right.

• Hopper: In Hopper, the robot is a two-dimensional, single-legged entity comprising four
principal components: the torso at the top, the thigh in the center, the leg at the lower end,
and a single foot on which the entire body rests. The objective is to maneuver the robot
forward (to the right) by exerting torques on the three hinges that interconnect these four
body segments. The observation in Hopper is an 11-dimensional vector, while the action
is a 3-dimensional vector.

• Walker2D: Walker2D introduces a greater number of independent state and control vari-
ables to more accurately emulate real-world scenarios. The robot in Walker2D is also two-
dimensional but features a bipedal design with four main components: a single torso at the
top from which the two legs diverge, a pair of thighs situated below the torso, a pair of legs
below the thighs, and two feet attached to the legs that support the entire structure. The
objective is to coordinate the movements of both sets of feet, legs, and thighs to progress
forward by applying torques to the six hinges that connect these body parts. In Walker2D,
the observation is represented as a 17-dimensional vector, and the action is represented as
a 6-dimensional vector.

Trigger Setup. To better distinguish triggers from normal states, we select states that are rarely en-
countered by policies trained under normal conditions as triggers. This design enhances the stealth-
iness of the backdoor attack.

For CartPole, we define the trigger based on the cart’s horizontal position. Specifically, the trigger
is activated when the cart’s position exceeds 0.5 to the right; conversely, when the position remains
below 0.5, the agent is expected to maintain normal behavior. During the deployment phase, the
trigger condition is enforced by setting the cart’s position explicitly to the predefined trigger position
at the initial time step.

For Hopper and Walker2D, we define the trigger based on the head’s bending angle. Specifically, for
Hopper, the trigger is activated when the head angle is between 3◦ and 4◦; for Walker2D, the trigger
is activated when the head leans back more than 34◦. During the deployment phase, the trigger is
activated at a specific time step by modifying the agent’s head angle to the predefined trigger angles.
The illustration of the triggers for Hopper and Walker2D is shown in Figure 2.

B ADDITIONAL EXPERIMENTAL RESULTS

Figure 4 illustrates the change in policy distance for Hopper and Walker2D during training under
different parameter settings. The distances exhibit fluctuations due to the inherent instability of RL
training. Overall, the attacker successfully guides the agent to converge toward the target backdoor
policy during the training process. Specifically, the distances between the agent’s policy and the tar-
get backdoor policy, as well as between the agent’s policy and the normal policy, decrease over time,
despite some fluctuations. For example, in the Hopper task, when ϵ = 0.25, 2, 4, the backdoored
agent’s behavior under normal scenarios gradually aligns with the normal policy; when ϵ = 0.25, 2,
the agent’s behavior under triggered scenarios also progressively approaches the target backdoor
policy. These results on policy distance explain the effectiveness and stealthiness of our backdoor
attacks.
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Figure 4: Policy distance results during training with different poison intensity parameters (ϵ) in
Hopper and Walker2D.

C LIMITATIONS & FUTURE WORK

1) Our attack assumes access to the training buffer — an assumption common in prior online RL
backdoor work, but not always realistic. Future work could consider weaker threat models, such as
partial access to offline data. 2) This work focuses on attack design; studying defense mechanisms,
like runtime anomaly detection or policy consistency checks, remains an important direction. 3) The
induced behaviors are mostly unstructured (e.g., failure to balance), which are relatively easy in RL.
Exploring structured backdoor goals, such as task redirection, would better showcase an attacker’s
full potential.

D USE OF LARGE LANGUAGE MODELS(LLMS)

We used LLMs (e.g., ChatGPT) only for editing and language refinement. No LLMs were involved
in research ideation, technical development, or experimental design.
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