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ABSTRACT

Large language models (LLMs) benefit from test-time scaling but are often ham-
pered by high inference latency. Speculative decoding is a natural way to accel-
erate the scaling process; however, scaling along both the parallel and sequential
dimensions poses significant challenges, including substantial memory-bound ex-
ecution and synchronization overhead. We introduce ATTS (Asynchronous Test-
Time Scaling), a statistically guaranteed adaptive scaling framework that follows
the hypothesis testing process to address these challenges. By revisiting arithmetic
intensity, ATTS identifies synchronization as the primary bottleneck. It enables
asynchronous inference through online calibration and proposes an ordinal classi-
fication algorithm that supports a three-stage rejection sampling pipeline, scaling
along both the sequential and parallel axes. Across experiments on the MATH,
AMC23, AIME24, and AIME25 datasets and across multiple draft–target model
families, we show that ATTS delivers up to 56.7x speedup in test-time scaling and
a 4.14x throughput improvement, while maintaining accurate control of the rejec-
tion rate, reducing latency and memory overhead, and incurring no accuracy loss.
By scaling both in parallel and sequential dimensions, we enable the 1.5B/70B
draft/target model combination to achieve the performance of the state-of-the-art
reasoning model o3-mini (high) on the AIME dataset. We have released the code
at anonymous.4open.science/r/Asynchronous-Test-Time-Scaling-5940.

1 INTRODUCTION

With the rapid advances in large language models (LLMs), attention is increasingly turning to
reasoning models (Guo et al., 2025; Muennighoff et al., 2025; McCoy et al., 2024; Shao et al.,
2024)—systems that transcend next-token prediction in order to emulate human-like reasoning be-
haviors. These models excel at leveraging complex reasoning chains, especially in test-time scaling
settings (Snell et al., 2024; Li et al., 2025; Muennighoff et al., 2025; Zeng et al., 2025).

Test-time scaling (Chen et al., 2025; Muennighoff et al., 2025; Guo et al., 2025) constitutes a new
paradigm that enhances the model’s reasoning capabilities by allocating additional computational
resources during the inference stage. Typically, test-time scaling can be categorized into two ap-
proaches: sequential scaling (Muennighoff et al., 2025; Guo et al., 2025) and parallel scaling (Chen
et al., 2025). However, despite its potential, the challenge of efficiently managing increasing sam-
pling size or complexity during inference remains a critical limitation, hindering the achievement of
high-performance deployment.
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Figure 1: Memory Overhead vs. Sampling
Sizes (QwQ 32B, Token Budget 500)

Benefiting from the shared-prefix mechanism of the
inference engines (Kwon et al., 2023; Zheng et al.,
2024), parallel scaling (Chen et al., 2025) increases
the number of samples concurrently, thereby partially
mitigating the inference-time latency and memory
footprint introduced by scaling the per-trajectory to-
ken budget (i.e., longer reasoning paths), while simul-
taneously improving token-sampling throughput.

Although some methods (Huang et al., 2025; Wan
et al., 2024) that adopt confidence-based early stop-
ping of reasoning chains improve parallel sampling
efficiency, problems still remain in memory efficiency
and high inference latency. Another potential issue is that early stopping prunes away potentially
correct reasoning paths and reduces the diversity of the output space.
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Speculative decoding (Li et al., 2024a; Leviathan et al., 2023; Kim et al., 2023; Pan et al., 2025b;
Yang et al., 2025) represents a promising approach for accelerating decoding. In this framework, a
lightweight draft model generates tokens, which are subsequently validated and refined by a target
model. This dual-phase approach not only speeds up inference by offloading most of the genera-
tion process to the draft model, but also ensures that the final outputs retain high fidelity, thereby
achieving a favorable balance between efficiency and accuracy.

However, when speculative decoding (Pan et al., 2025b; Yang et al., 2025) meets test-time scaling,
the decoding process faces two key challenges. The first is the memory bottleneck of the target
model during the prefill phase. As shown in Figure 1, as the number of sampling increases, the
memory overhead of the target model tends to grow due to KV cache accumulation. This effect
becomes more pronounced in target models when attempting to scale the number of requests from
the draft model. During real-world deployment on the SGLang server (Zheng et al., 2024), high-
concurrency sampling, especially when simultaneously validating multiple long reasoning chains,
can lead to memory peaks that easily exceed the GPU’s maximum capacity, causing the server to
crash. Therefore, it is crucial to constrain the request budget from the draft model to the target model
within a manageable range.
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Figure 2: Comparison of naive and asynchronous speculative decoding.

In speculative decoding, one stage involves rejection sampling: prior to acceptance, the target model
either ranks draft-generated candidates or computes a divergence between the draft and target dis-
tributions, introducing an additional synchronization overhead bottleneck. As illustrated in Fig. 2,
during the multi-turn sampling process (with a sampling quantity of 3 at each turn), if the target
model aims to reject the sampling with the lowest two confidences, a ranking operation must be per-
formed at each turn. Given the limited computational and memory resources, the target model needs
to prioritize processing the most important requests. Especially in test-time scaling, when combin-
ing sequential and parallel scaling, the synchronization overhead from precise budget control and
the pursuit of globally optimal ranking is amplified. Although this issue has been widely discussed
in the context of tool calls (Gim et al., 2024; Ginart et al., 2024), it has not been formally proposed
in the context of test-time scaling.

To analyze the synchronization bottleneck and address the two challenges mentioned above, we first
introduce a novel variant of arithmetic intensity called asynchronous arithmetic intensity to analyze
the system bottleneck, and then explore conformal prediction (Vovk et al., 2005; 2003; Romano
et al., 2020; Lei et al., 2018) for ranking predictions to design the asynchronous algorithm. In our
formulation, conformal prediction defines a prediction set Cα; sampling in Cα are rejected, while
sampling outside are accepted. This yields a distribution-free guarantee that the right sampling is
retained (i.e., lies outside Cα) with high probability, enabling asynchronous test-time scaling. This
paper presents the following contributions:

• We propose asynchronous arithmetic intensity, a performance metric designed to character-
ize and quantify throughput/latency bottlenecks that emerge in test-time scaling scenarios.

• We introduce conformal prediction to tackle prediction ranking, and—leveraging the result-
ing ranking—construct stable prediction sets that mitigate GPU-memory bottleneck risks.

• We propose ATTS, a training-free, lossless acceleration method that achieves a 56.7x
speedup in test-time scaling and a 4.14x throughput improvement in both sequential and
parallel settings.

2 PRELIMINARY

We first introduce how to build the prediction set in the classical setup, and then present our setup.

2
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Classic Setup. Formally, let
Dcal =

(
(X1, Y1), . . . , (Xn, Yn)

)
(1)

denote the calibration dataset. Each pair (Xi, Yi) for i = 1, . . . , n is a data point, consisting of an
Xi (the input question for the i-th example) and a ground truth denoted as Yi. The symbol n denotes
the size of the calibration dataset. For each input Xi, we draw m candidate sampling

(Ŷ 1
i , . . . , Ŷ

m
i ), (2)

where m is the number of samples per input (the sampling budget), and Ŷ k
i denotes the k-th can-

didate sample. In adaptive prediction-set construction (Romano et al., 2020; Angelopoulos et al.,
2020; Huang et al., 2023), the conformity score for each sample is computed via a softmax function:

ski =
exp(−ℓ(Xi, Ŷ

k
i ))∑m

j=1 exp(−ℓ(Xi, Ŷ
j
i ))

, (3)

where −ℓ denotes the negative log-likelihood loss. Next, the global conformity threshold τ is ob-
tained by computing the p-quantile over all candidate scores:

τ = Qp

({
sji ,

∣∣∣, i = 1, . . . , n, ; j = 1, . . . ,m
})

, (4)

p =
⌈(n+ 1)(1− α)⌉

n
, (5)

and α ∈ (0, 1) is the user-specified miscoverage rate. To satisfy conditional coverage, The predic-
tion set for input Xi is then defined as

Cα(Xi) =
{
Ŷ k
i ,

∣∣∣, ski ≥ τ, k = 1, . . . ,m
}
. (6)

which ensures that the resulting set includes the ground truth with probability at least 1 − α. Al-
though conformal prediction in the classical setting can provide guaranteed conditional coverage, the
conformal scores assigned to candidate outputs are typically required to be normalized, as shown in
Eq. 3, and this normalization inherently introduces a bottleneck to parallelization. Therefore, in the
subsequent Ordinal Classification, we transform the problem into a hypothesis testing framework via
p-values to avoid normalization, with a proof of its coverage guarantee provided in Appendix A.7.

Problem Setup. In the asynchronous test-time scaling setup, we leverage a draft model for
fast sampling and delegate verification to a slower target model. Unlike classical rejection sam-
pling (Chen et al., 2023), which approximates a target distribution with a draft distribution, we focus
on accurately predicting the rejection rate, thereby reducing VRAM out-of-memory risk and the
synchronization overhead caused by global ranking or softmax function. Given a predefined α, we
estimate a confidence level such that the ground truth y falls within the prediction set Cα(Y ) with
probability at least 1− α:

P(y ∈ Cα(Y )) ≥ 1− α, (7)
where α is conventionally interpreted as the significance level (e.g., 0.05 corresponding to 95%
confidence). In this work, however, we reinterpret α as the rejection rate of the target model.

Ordinal Classification. In typical inference engines (Zheng et al., 2024; Kwon et al., 2023), par-
ticularly those with asynchronous scheduling, obtaining the normalized scores for all sampling in
different batches can be challenging. To avoid normalization and global ranking operations, we re-
formulate the task of constructing prediction sets as an ordinal classification (Dey et al., 2023; Xu
et al., 2023), meaning that we predict the ranks of all samples. Formally, we aim to ensure:

P(ỹi ∈ Cα(Y )) ≥ 1− α, ∀i ∈ {1, . . . , n×m}, (8)
where P(ỹi ∈ Cα(Y )) denotes the probability that the i-th candidate step ỹi lies within the pre-
diction set Cα, and m represents the number of sampled steps. This procedure provides marginal
coverage, meaning that the coverage guarantee holds on average over the distribution of test inputs.
The stronger notion of conditional coverage aims to ensure

P(ỹi ∈ Cα(Y ) | X = x) ≥ 1− α, ∀i ∈ {1, . . . ,m}, ∀x. (9)

That is, it provides a probabilistic guarantee for the sampled outputs corresponding to each input
instance. To achieve this, our setup focuses on developing asynchronous algorithms for ranked
prediction, where the construction of the prediction set ensures that its size matches the predefined
budget while maintaining both marginal and conditional coverage. This approach avoids the need
for normalization while addressing the challenges posed by asynchronous scheduling.
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(a) Sampling latency.
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(b) End-to-end latency per turn.

Figure 3: Execution cost comparison between synchronous and asynchronous test-time scaling.

3 CHALLENGE AND DESIGN

To identify performance bottlenecks in the classic setup, we introduce arithmetic intensity (Spector
& Re, 2023), which measures the utilization of arithmetic units. It is defined as:

I =
F

B
, (10)

where F is the number of floating-point operations (FLOPs) and B is the number of bytes accessed.

3.1 Q1: WHAT ARE THE EMERGING PERFORMANCE BOTTLENECKS?
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(a) Arithmetic intensity vs. sampling size.
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Figure 4: Analysis of arithmetic intensity.

Speculative decoding (Leviathan et al., 2023) accelerates inference by overlapping computation with
memory accesses, enabling multiple draft tokens to be validated in parallel. Its main bottleneck is
parallel score computation (Yin et al., 2024), making the process computation-bound.

Building upon this perspective, asynchronous scaling can be seen as an even more aggressive paral-
lelization strategy. The target model validates far more tokens in parallel than in speculative decod-
ing, which intensifies the prefill bottleneck and results in total computation time far exceeding total
memory access time, as illustrated by the comparison between the green and yellow lines in Fig. 4a.

As shown in Fig. 3b, synchronization overhead grows exponentially with the number of sampling
turns. In the parallel scaling setting (Fig. 3a), this overhead increases linearly with the number of
concurrent samples. To this end, we observe Fig. 4a that increasing the sampling size naturally raises
arithmetic intensity (with memory access time being negligible). To account for synchronization
costs within arithmetic intensity, we define an asynchronous arithmetic intensity r:

r =
Tc

Tm + Ts
=

tc × F

tm ×B + Ts
≈ Tc

Ts
, (11)

where Tc is computation time, Tm is memory access time, tc and tm are the per-unit costs of com-
putation and memory access, respectively. It can be observed from Fig. 4b that under classic setups,
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r decreases as the sampling size increases which indicates that synchronization overhead emerges
as the primary bottleneck.

3.2 Q2: HOW IS THE PREDICTION SET CONSTRUCTED?
Online Calibration. Conformal prediction typically relies on a held-out calibration set to deter-
mine the threshold τ . However, in the test-time scaling setup, held-out examples are generally
unavailable. To address this limitation, we propose an online calibration strategy. Specifically, m
outputs are pre-sampled for each input in the test set, yielding (Ŷ 1

i , . . . , Ŷ
m
i ). Previous efforts (Ding

et al., 2023; Romano et al., 2020) impose a strict sum-to-one constraint on the conformal scores
under the classification setting (where events are mutually exclusive). In contrast, we compute
conformal p-values (Bates et al., 2023; Jin & Candès, 2023; Wang et al., 2024) under an ordinal
classification setup, where the events are not mutually exclusive and the ordinal relationships are
preserved. In this setup, we relax the strict requirement that conformity scores sum to one, and
instead directly define:

skξ = −ℓ(Xξ, Ŷ
k
ξ ). (12)

This formulation is used to estimate conformal p-values for rejection sampling:

pkξ =

∑n
i=1

∑m
j=1 1(s

k
ξ ≤ sji ) + 1

nm+ 1
. (13)

In this formulation, skξ denotes the conformity score of the test-time candidate Ŷ k
ξ , which represents

the k-th sample of the ξ-th input on the test set, and sji are the scores from the calibration set
(Xi, Ŷ

j
i ). The indicator function 1(·) returns 1 when the condition is satisfied. The p-value based

on formula 13 guarantees marginal coverage at level 1 − α, which can be intuitively explained as
calculating one’s rank by comparing the conformity score with the score from the p · n · m in the
entire calibration set. Conditional coverage can be achieved by adjusting the comparison with the
p ·m calibration set from the current input sample.

A detailed proof of these two approaches is provided in Appendix A.7. The conformal $p$-value
governs rejection sampling: a candidate is accepted if pkξ > α, ensuring that only high-confidence
outputs are retained, thereby achieving precise budget control.

Budget Prediction. Let B denote the predefined budget (i.e., the number of candidates to reject).
Given a test-time input Xi, we sample m candidate CoTs

(
Ŷ 1
i , . . . , Ŷ

m
i

)
in each turn and then

compute their corresponding p-values p1i , . . . , p
m
i .

Importantly, this sampling and evaluation process is conducted asynchronously: each candidate is
generated independently and evaluated for its p-value without requiring synchronization with other
candidates. As a result, the outputs implicitly exhibit a descending order:

p1i ≥ p2i ≥ · · · ≥ pmi . (14)

The ordered set can be partitioned using a threshold to construct the prediction set, by directly
comparing each candidate’s p-value with the miscoverage threshold α. Specifically, the prediction
set includes all candidates whose p-values satisfy:

Cα(Yi) =
{
Ŷ k
i : k ∈ {1, . . . ,m}, pki > α

}
. (15)

This formulation ensures that the selected candidates meet the coverage rate. Equivalently, this can
be interpreted as rejecting the top-B candidate sampling.

3.3 HOW TO PERFORM REJECTION SAMPLING VIA CONFORMAL PREDICTION?

We adopt a three-stage sampling pipeline, illustrated in Fig. 5, to realize rejection sampling with a
target rejection rate α.

5
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Figure 5: Asynchronous test-time scaling pipeline. The green box illustrates parallel scaling and
follows the rejection sampling procedure, while the blue box illustrates sequential scaling.
Draft Model Sampling. Given input tokens x1:n−1, the draft model proposes m candidate con-
tinuations of length Kd in each turn, denoted ỹjn:n+Kd−1, by sampling from the draft model qd:

ỹjn:n+Kd−1 ∼ qd(· | x1:n−1), j = 1, . . . ,m, (16)

Verification. For each candidate sampling ỹjn:n+Kd−1, we score it under the target model qt by
computing the logits qt(ỹ

j
n:n+Kd−1 | x1:n−1) and converting to a conformity score. Using the

calibration set, we compute a p-value for each candidate and reject those inside Cα; otherwise accept.
Target Model Sampling. Although classical rejection sampling discards the rejected samples
from the draft model and resamples entirely from the target model, to save the token budget we
proceed as follows. In each turn, the per-turn target-side token budget is Kt: for each candidate in
Cα, we let the target model qt continue generation using that candidate from qd as a prefix for up to
Kt tokens, stopping earlier if an end token is encountered. In Appendix A.4, we provide a compari-
son between continuing sampling and resampling with qt for large-scale scaling performance.
Termination. We iterate the above rejection sampling until a final answer is detected, the maxi-
mum number of turns is reached, or the overall token limit is exceeded. As highlighted in Fig. 5,
increasing the number of turns enables sequential test-time scaling (blue box), while increasing the
number of candidates per turn enables parallel test-time scaling (green box).

4 EXPERIMENT
We provide the hyperparameters and other task details used in our experiments in Appendix 4 and
evaluate performance under two settings: marginal coverage (Mar Acc.), which measures whether
the budget of prediction set align on average across test inputs, and conditional coverage (Con Acc.),
which imposes a stricter requirement that the guarantee holds for each individual input instance.

4.1 ASYNCHRONOUS TEST-TIME SCALING ACROSS DIFFERENT MODEL FAMILIES.
Table 1 reports the results of asynchronous test-time scaling when the draft model (DM) and target
model (TM) come from different families. We have the following key takeaways: i) ATTS can
match the performance of the target model itself. This approach effectively reduces computational
overhead while maintaining high-quality outputs, up to 22.22x acceleration. ii) The most challenging
datasets, AIME24/25, show strong performance in marginal coverage setup, while the other two
datasets (MATH100 and AMC23) demonstrate superior results in conditional coverage setup. This
highlights that while marginal coverage allocates more computational resources to the most difficult
parts of the tasks effectively, conditional coverage ensures more reliable results at the individual
input level, especially in simpler tasks, ensuring that each question is answered correctly. iii) It
shows that while reasoning models consume more tokens during inference, using a reasoning model
as the draft model provides better scaling performance than a non-reasoning model, though the non-
reasoning model offers the highest acceleration. iv) When the average length of the reasoning chain

6
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Table 1: Comparison when draft and target models are from different families under marginal
(Mar Cov.) and conditional (Con Cov.) coverage. SMar, SCon = end-to-end speedup (×) un-
der marginal/conditional coverage (larger is faster); Values in red indicate lossless acceleration.
Gray rows indicate draft models (non-reasoning).

Dataset Draft Model (DM) Mar Cov. Con Cov. DM Baseline TM Baseline SMar (×) SCon (×)

QwQ-32B (RL-tuned reasoning model) as Target Model

MATH100

DeepSeek-R1-Distill-Qwen-1.5B 87.0 94.0 83.0 96.0 1.76 1.19
Qwen2.5-7B-Instruction 86.0 96.0 84.0 96.0 7.19 5.35
DeepSeek-R1-Distill-Llama-8B 96.0 96.0 85.0 96.0 1.36 1.38
Llama-3.1-8B-Instruct 87.0 95.0 75.0 96.0 2.12 2.20

AIME24

DeepSeek-R1-Distill-Qwen-1.5B 86.7 66.7 60.0 86.7 4.03 2.60
Qwen2.5-7B-Instruction 46.7 33.3 33.3 86.7 5.71 10.10
DeepSeek Llama-3.1-8B-Instruct 80.0 80.0 80.0 86.7 2.72 2.33
Llama-3.1-8B-Instruct 33.3 40.0 13.3 86.7 4.46 2.79

AIME25

DeepSeek-R1-Distill-Qwen-1.5B 53.3 46.7 40.0 73.3 2.04 1.21
Qwen2.5-7B-Instruction 33.3 40.0 26.7 73.3 14.50 12.82
DeepSeek Llama-3.1-8B-Instruct 66.7 60.0 46.7 73.3 2.06 1.77
Llama-3.1-8B-Instruct 26.7 33.3 20.0 73.3 6.71 2.34

AMC23

DeepSeek-R1-Distill-Qwen-1.5B 88.0 90.0 74.0 94.0 1.01 1.21
Qwen2.5-7B-Instruction 76.0 72.0 68.0 94.0 10.42 8.20
DeepSeek Llama-3.1-8B-Instruct 92.0 94.0 80.0 94.0 1.50 1.07
Llama-3.1-8B-Instruct 68.0 68.0 44.0 94.0 3.58 1.72

s1.1-32B (SFT-tuned reasoning model) as Target Model

MATH100

DeepSeek-R1-Distill-Qwen-1.5B 86.0 95.0 83.0 96.0 0.70 0.88
Qwen2.5-7B-Instruction 89.0 96.0 84.0 96.0 2.87 2.55
DeepSeek Llama-3.1-8B-Instruct 88.0 95.0 85.0 96.0 0.79 0.82
Llama-3.1-8B-Instruct 79.0 85.0 75.0 96.0 1.33 1.56

AIME24

DeepSeek-R1-Distill-Qwen-1.5B 73.3 80.0 60.0 86.7 4.37 2.16
Qwen2.5-7B-Instruction 40.0 33.3 33.3 86.7 22.22 13.54
DeepSeek Llama-3.1-8B-Instruct 73.3 73.3 80.0 86.7 2.36 3.07
Llama-3.1-8B-Instruct 26.7 40.0 13.3 86.7 5.62 3.36

AIME25

DeepSeek-R1-Distill-Qwen-1.5B 60.0 60.0 40.0 66.7 2.87 2.03
Qwen2.5-7B-Instruction 33.3 40.0 26.7 66.7 18.52 11.90
DeepSeek Llama-3.1-8B-Instruct 66.7 60.0 46.7 66.7 2.31 1.66
Llama-3.1-8B-Instruct 26.7 20.0 20.0 66.7 5.59 4.15

AMC23

DeepSeek-R1-Distill-Qwen-1.5B 86.0 86.0 74.0 96.0 1.37 0.98
Qwen2.5-7B-Instruction 74.0 78.0 68.0 96.0 14.49 11.36
DeepSeek Llama-3.1-8B-Instruct 92.0 96.0 80.0 96.0 1.56 1.59
Llama-3.1-8B-Instruct 54.0 64.0 44.0 96.0 5.03 3.56

output by the draft model exceeds that of the target model, the acceleration ratio is typically less
than 1 on simpler datasets such as MATH and AMC23.

4.2 PERFORMANCE OF BUDGET PREDICTION

In this section, we evaluate the accuracy of budget prediction under marginal and conditional cov-
erage settings. This shows how well our method controls target model interventions in rejection
sampling, reflecting the accuracy of conformal prediction in estimating the rejection rate.
Marginal Coverage. In Figure 6b, we report the accuracy of the target-model intervention rate
under marginal coverage, where the rejection rate is predicted at the dataset level. Budget-prediction
accuracy across the full dataset is high, especially with the 64-sample configuration, whose absolute
error stays within 5%. With Kd = 500 tokens for calibration and Kd = 500 for sampling, the error
remains within 2%. This directly highlights the importance of constructing a diverse calibration set
for maintaining high prediction accuracy.
Conditional Coverage. In practice, we require precise per-batch budget control, rather than a
single aggregate budget over the entire test set. Due to the limited capacity of the target model’s
server, it cannot process all requests concurrently. As a result, inference is performed in batches,
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Table 2: The comparison when the draft and target models are from the same family. Tm
Think, Tm

Reason,
T c

Think, and T c
Reason denote the token-consumption ratios (×) under the marginal coverage and condi-

tional coverage settings, relative to the SpecThink and SpecReason baselines, respectively. Token
consumption is measured in tokens, where smaller values indicate higher efficiency.

Dataset Draft Model / Target Model Mar Cov. Con Cov. SpecThink SpecReason
Token Consumption (×)

Tm
Think Tm

Reason T c
Think T c

Reason

MATH100

Qwen2.5-7B/32B-Instruct 86.0 81.0 79.0 73.7 0.60 0.66 0.68 0.72
s1.1-7B/32B 88.0 87.0 85.0 73.7 0.50 0.54 0.57 0.44

DeepSeek-R1-Distill-Qwen-1.5B/32B 88.0 87.0 84.0 76.7 0.48 0.52 0.53 0.39
Skywork-OR1-7B/32B 88.0 89.0 70.0 75.8 0.42 0.37 0.28 0.31

AIME24

Qwen2.5-7B/32B-Instruct 33.3 40.0 33.3 33.3 0.61 0.67 0.69 0.73
s1.1-7B/32B 66.7 73.3 40.0 26.7 0.47 0.52 0.62 0.50

DeepSeek-R1-Distill-Qwen-1.5B/32B 86.7 80.0 66.7 66.7 0.46 0.50 0.56 0.42
Skywork-OR1-7B/32B 86.7 80.0 60.0 73.3 0.33 0.27 0.19 0.24

AIME25

Qwen2.5-7B/32B-Instruct 40.0 33.3 26.7 40.0 0.62 0.68 0.70 0.74
s1.1-7B/32B 53.3 53.3 33.3 40.0 0.49 0.53 0.64 0.52

DeepSeek-R1-Distill-Qwen-1.5B/32B 60.0 53.3 46.7 35.7 0.47 0.50 0.55 0.43
Skywork-OR1-7B/32B 60.0 53.3 40.0 53.3 0.41 0.36 0.29 0.22

AMC23

Qwen2.5-7B/32B-Instruct 72.0 70.0 74.0 72.0 0.63 0.69 0.71 0.75
s1.1-7B/32B 82.0 78.0 76.0 78.0 0.48 0.52 0.62 0.48

DeepSeek-R1-Distill-Qwen-1.5B/32B 92.0 88.0 82.0 80.0 0.46 0.50 0.57 0.44
Skywork-OR1-7B/32B 96.0 94.0 82.0 86.0 0.39 0.34 0.37 0.28
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Figure 6: The budget prediction accuracy shows the accuracy of budget prediction for sampling
lengths of 500 and 700 with a budget of 500 tokens during the online calibration phase under 64-
sample and 16-sample settings. The experiment is conducted with a rejection rate α = 0.25.

with the token budget enforced for each batch to meet the load constraint. In Figure 6a, we report the
accuracy of the target model intervention rate under conditional coverage. Under online calibration
with a rejection rate of 25%, when Kd = 500 in both the calibration and sampling stages, the
16-sample and 64-sample settings achieve similar accuracy. However, when the calibration stage
uses Kd = 500 but the sampling stage uses Kd = 700, the 64-sample setting attains significantly
higher budget-prediction accuracy. This indicates that increasing the number of parallel samples can
improve budget prediction accuracy when the sampling token budget differs from the calibration
token budget (i.e., under a calibration–sampling token budget mismatch).

4.3 ASYNCHRONOUS TEST-TIME SCALING WITHIN THE SAME MODEL FAMILIES

In this section, we examine the performance across models within the same family, including both
reasoning and non-reasoning models in Table 2. In this setting, since the target model and draft
models share the same vocabulary, we can compare against baselines that are only applicable to
models within the same family, such as Speculative Thinking (Yang et al., 2025), denoted as SPEC-
THINK. Our findings are as follows: i): When the draft and target models belong to the same
family, in most cases, the best performance is achieved under the setting of marginal coverage, even
on simpler datasets like MATH and AMC23. ii): Across datasets, DeepSeek and Skywork show
the strongest gains on challenging benchmarks (AIME, AMC), while Qwen2.5 performs competi-
tively on MATH100 but lags significantly on harder tasks. iii): Moreover, s1.1 achieves moderate
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improvements, usually surpassing Qwen but not reaching the level of Skywork or DeepSeek. iv): Fi-
nally, SpecReason and SpecThink generally underperform compared with ATTS and consume more
tokens, especially when the draft model is a reasoning model or on the more challenging AIME
dataset, suggesting that their effectiveness remains limited on more complex reasoning tasks.
4.4 ANALYSIS OF TOKEN BUDGET AND LATENCY
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Figure 8: Analysis of latency and throughput trade-offs under different sampling and token budget.
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Figure 7: Token Consumption with 16 Sampling.

Latency and Throughput. In this
part, we analyze the trade-offs be-
tween latency and throughput under
different sampling and token bud-
get settings. i): As shown in Fig-
ure 10a, the latency of SpecReason
and SpecThink consistently increases
with the number of samples, high-
lighting the cost of scaling up sam-
pling. In contrast, our method signif-
icantly reduces the sampling latency
and achieves the lowest inference la-
tency under the condition coverage
setting. ii): The time overhead of online calibration is nearly negligible, particularly at larger sam-
ple sizes. iii): Meanwhile, Figure 10b illustrates how throughput varies with the per-sample token
budget for methods such as SpecReason and SpecThink, revealing diminishing returns as the token
budget becomes large. Our method is able to maintain high throughput even under very large bud-
gets, especially in the marginal coverage setting. Overall, these results (Figure 8) provide insights
into the balance between efficiency and performance when designing inference strategies. Under the
setting of 16 samples and no limit on the maximum sequence scaling turns per sample, we achieved
a 56.7x speedup in inference and a 4.14x throughput improvement compared to the baseline.
Token Consumption. Figure 7 presents the token consumption under the 16-sample setting. This
includes sampling performed solely by the target model or the draft model as baselines, as well as
asynchronous sampling under both condition coverage and marginal coverage settings. Compared
with the two baselines, our method can significantly reduce token consumption, especially under the
condition coverage setting, as it enables budget prediction at the instance level.

4.5 OLYMPIADBENCH

We evaluate the results on the more challenging OlympiadBench (He et al., 2024) dataset as evidence
of the robustness of our method. Under two of our settings (results shown in bold), we were even
able to surpass the performance of the original target model’s sampling. Under conditional coverage,
we achieved a more efficient allocation of computational resources compared to marginal coverage,
resulting in improved test performance. Table 3 shows the results on the OlympiadBench dataset.

4.6 MULTI-TURN EVALUATION RESULTS

In this section, we evaluate the results on the AIME25 dataset under settings with more turns. Unlike
the previous setting, we reduce the token budget per turn but increase the number of iterations,

9
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Table 3: Results on the OlympiadBench benchmark. Each setting uses 16 samples and 15 turns,
with α = 0.4, 500-token budgets, and temperature 0.8.

Draft / Target Model Draft Model Target Model Marginal Cov. Conditional Cov.

DeepSeek-R1-Distill-Llama-8B / S1.1-32B 28 48 44 40
DeepSeek-R1-Distill-Qwen-1.5B / S1.1-32B 26 48 38 38
Llama-3.1-8B-Instruct / S1.1-32B 26 48 44 50
Qwen2.5-7B-Instruct / S1.1-32B 32 48 48 48

DeepSeek-R1-Distill-Llama-8B / QwQ-32B 28 46 38 40
DeepSeek-R1-Distill-Qwen-1.5B / QwQ-32B 26 46 38 40
Llama-3.1-8B-Instruct / QwQ-32B 26 46 48 48
Qwen2.5-7B-Instruct / QwQ-32B 32 46 50 46

allowing the target model to generate more samples. The accuracy increases with the number of
turns. Both marginal coverage and conditional coverage eventually converge to the same value. The
results show that under a fixed sampling size budget, increasing the number of turns still does not
break the performance upper bound.

Table 4: Results on the AIME25 benchmark. Each setting uses 16 samples, with α = 0.4, 400-token
budgets, and temperature 0.8.

Draft / Target Model Turn 2 Turn 4 Turn 8 Turn 12 Turn 16 Turn 20 Turn 24 Turn 28

Marginal Coverage

DeepSeek-R1-Distill-Qwen-1.5B / S1.1-32B 0 13.33 33.33 33.33 46.67 60 60 60
Qwen2.5-7B-Instruct / S1.1-32B 13.33 33.33 40 40 40 40 40 40

Conditional Coverage

DeepSeek-R1-Distill-Qwen-1.5B / S1.1-32B 6.67 26.67 40 46.67 46.67 53.33 60 60
Qwen2.5-7B-Instruct / S1.1-32B 20 26.67 26.67 40 40 40 40 40

4.7 ENGINEERING CONSIDERATIONS

Modern inference engines, such as SGLang, have the capability to handle requests asynchronously
and can support streaming input. Their maximum number of concurrent verification requests is
determined solely by the number of computing cores on the deployment server. However, a large
number of concurrent requests significantly increases memory pressure, raising the risk of memory
overflow errors in sglang. Therefore, after completing the prefill stage (i.e., verification), we priori-
tize decoding tasks (target model sampling) for high-priority requests. Before transitioning from the
prefill stage (target model verification) to the decoding stage (target model decoding), requests are
sorted, which introduces a synchronization operation.

Our current scheduling strategy is implemented at the frontend. The frontend of SGLang is respon-
sible for request scheduling mechanisms such as Prefill–Decode Disaggregation and prefix sharing.
We argue that performing task scheduling for target model sampling in the rejection sampling pro-
cess at the frontend minimizes intrusive modifications to the inference engine and helps maintain
the performance of the existing foundational infrastructure.

5 CONCLUSION

We presented ATTS (Asynchronous test-time scaling), a framework that addresses the core ineffi-
ciencies of test-time scaling in LLMs. By refining arithmetic intensity and introducing online cali-
bration with a rejection sampling pipeline, ATTS effectively controls rejection rates while reducing
latency and memory overhead. Experiments on multiple reasoning benchmarks confirm that ATTS
achieves better efficiency and reliability than speculative baselines. This work establishes ATTS
as a practical and principled approach for scalable test-time scaling, with potential extensions to
dynamic adaptation and real-world deployment.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

In accordance with the ICLR policy on the use of large language models, we hereby declarethat
LLMs were employed solely to assist in improving the grammar and enhancing the expressionof this
paper. The original research idea, methodological development, and overall structure andcontent of
the manuscript were entirely conceived and written by the authors. At no stage was theuse of LLMs
extended to the generation of core intellectual content, and we afirm that there hasbeen no misuse of
LLMs in the preparation of this work.

A.2 RELATED WORK

Test-time Scaling. Recent works explore test-time scaling—the idea that increasing computation
during inference can be more effective than scaling model size (Snell et al., 2024; Wu et al., 2024).
A common strategy is sequential scaling, adopted in models like OpenAI o1 (OpenAI, 2024) and
DeepSeek R1 (Guo et al., 2025). Other approaches (Muennighoff et al., 2025; Yan et al., 2025) use
supervised fine-tuning to match a fixed compute budget. In parallel, parallel scaling (Chen et al.,
2025; Zeng et al., 2025; Pan et al., 2025a) improves throughput by distributing inference across
replicas or devices, offering latency gains but introducing challenges in memory overhead.

Speculative decoding Speculative decoding(Li et al., 2024a; Leviathan et al., 2023; Kim et al.,
2023; Chen et al., 2023) is an emerging technique for accelerating LLM inference, which is tra-
ditionally limited by slow, sequential autoregressive sampling and memory bandwidth constraints.
There are three main strategies for sampling draft tokens: token-level sampling(Leviathan et al.,
2023; Kim et al., 2023; Chen et al., 2023), where the large model directly verifies the token outputs
of the draft model; feature-level sampling (Cai et al., 2024; Li et al., 2024a;b), which verifies gen-
eration paths using intermediate representations; and step-level sampling (Pan et al., 2025b; Yang
et al., 2025), which operates at a coarser granularity by validating multiple tokens or computation
steps together to improve throughput.

Asynchronous Tool Calling. The synchronization issue in batch inference with tool calls (Zhu
et al., 2025) is a known obstacle to efficient reasoning. However, it remains underexplored in the
context of speculative decoding—particularly when large model inference is treated as a form of tool
call. In asynchronous scheduling, controlling the frequency of large model intervention is challeng-
ing due to synchronization overhead. Recent approaches (Ginart et al., 2024; Gonzalez-Pumariega
et al., 2025) employ event-driven finite-state machine architectures to manage asynchronous tool
calls more flexibly and efficiently.

Conformal Prediction. To avoid synchronization and to accurately predict the request budget in
the scaling process, we introduce conformal prediction (Derhacobian et al.; Angelopoulos et al.,
2020; Huang et al., 2023) to provide a theoretical guarantee for the budget of times our target model
intervenes. The prediction set is then used to ensure that the large model’s interventions remain
consistent with the desired coverage and reliability, aligning with the validation process. How-
ever, these methods all require the model to perform a complete softmax operation (which requires
synchronization), and this becomes challenging in modern inference engines with asynchronous
scheduling mechanisms, thus conflicting with these methods. Some online conformal prediction
algorithms (Areces et al.; Bhatnagar et al., 2023) attempt to ensure the coverage of future data in the
context of online learning.

A.3 EXPERIMENTAL SETUP

We evaluate a diverse set of draft models, including DeepSeek-R1-Distill-Qwen-1.5B (Guo et al.,
2025), DeepSeek-R1-Distill-Llama-8B (Guo et al., 2025), Qwen2.5-7B-Instruct (Team, 2024),
Llama-3.1-8B (Dubey et al., 2024), s1.1-7B (Muennighoff et al., 2025), and Skywork-OR1-7B (He
et al., 2025). Each draft model is paired with one of the large target models: QwQ-32B (Team,
2025), s1.1-32B (Muennighoff et al., 2025), Qwen2.5-32B-Instruct (Team, 2024), DeepSeek-R1-
Distill-Qwen-32B (Guo et al., 2025), or Skywork-OR1-32B (He et al., 2025). We use SpecRea-
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son (Pan et al., 2025b) and Speculative Thinking (Yang et al., 2025) as baselines for speculative
decoding, with a maximum length of 8192. Both of them focus on acceleration under serial scaling.

Our evaluation covers four reasoning benchmarks. We use 100 randomly sampled problems from
MATH (Hendrycks et al., 2021) (denoted as MATH100) for grade-school arithmetic word problems,
AIME24 (Art of Problem Solving) and AIME25 (OpenCompass) for high-school competition-level
mathematics, and the first 50 problems from AMC23 (math-ai) for the American Mathematics Com-
petitions. These datasets require multi-step reasoning and are particularly suitable for testing the
effectiveness of asynchronous sampling with rejection. To ensure consistency, we set a token budget
of 8192 across all settings and adopt deterministic decoding with temperature set to zero. We set the
maximum number of turns to 10.

Similar to prior work (Yue et al., 2025), the best@16 metric we calculate is intended to measure the
upper bound of performance for both the method and the baseline model. Unless otherwise specified,
the miscoverage parameter is set to α = 0.4, ensuring that the prediction sets are constructed with
statistical guarantees. We use SGLang (Zheng et al., 2024) version 0.4.3.post4 as the inference
engine. The sampling temperature is set to 0.8. We set the target model’s per-turn token budget to
Kt = 500 and the draft model’s per-turn token budget to Kd = 500.

A.4 LARGE-SCALE ASYNCHRONOUS TEST-SCALING

o3-mini (high)

GPT-5

o3-mini (medium)

o3-mini (low)

Figure 9: Accuracy improvement with increasing
sample size on AIME 2025.

In this section, we set the maximum number
of test-time scaling turns of the model to 20,
and then gradually increase the number of sam-
ples per turn up to 128. We conduct compar-
ative experiments under editing coverage, con-
ditional coverage, as well as under the standard
rejection sampling and our designed rejection
sampling settings. We set the draft model to
DeepSeek-R1-Distill-Qwen-1.5B, and the tar-
get model to DeepSeek-R1-Distill-Llama-70B.

According to Figure 9, we can observe that as
the number of samples increases, the perfor-
mance of our model gradually improves. With 8 samples, our model reaches the performance of
o3-mini(low); with 64 samples, it reaches the performance of o3-mini(medium); and with 128 sam-
ples, it reaches the performance of o3-mini(high), which are closed-source reasoning models. Due to
limited computational resources, we did not conduct experiments with larger-scale sampling, which
results in still falling short of GPT-5 performance.

Continue Sampling. In our experimental setup, we did not strictly adhere to the standard rejection
sampling procedure (i.e., discarding the samples generated by the draft model and resampling with
the target model) when performing scaling. Instead, under the continue sampling setting, if a sample
produced by the draft model is included in the prediction set of the current turn, the target model
subsequently continues the sampling in the following turn conditioned on this sampled result. Ac-
cording to Figure 9, both our conditional coverage and editing coverage adopt the continue-sampling
scheme. The conditional coverage demonstrates relatively high sampling efficiency, reaching the
level of o3-mini-medium under the 128-sample setting.

Resampling. We also conducted experiments that scale the number of samples under the standard
rejection sampling setting. In this setting, at each scaling turn, if the draft model’s sample is included
in the prediction set for the current turn, then within the same turn the target model draws a prediction
set whose size matches that of the current prediction set. As indicated by the red curve in Figure 9,
this scheme exhibits substantially higher sampling efficiency than the alternatives; however, for the
same nominal number of samples it consumes more tokens (since part of the draft model’s tokens
are discarded). Under the 128-sample setting, it achieves performance comparable to o3-mini-high.

A.5 ABLATION STUDY

In this section, we present the ablation experiments on the hyperparameter α. As shown in Figure 10,
as the hyperparameter α increases, the overall accuracy and time overhead of the system both rise.
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Figure 10: Ablation study on the hyperparameter α using the DeepSeek-Qwen -1.5B and QwQ-32B
models on the AIME2025 dataset.

This reflects that the intervention of the target model increases both accuracy and time overhead.
However, we can find a balance between accuracy and time overhead, such as when α is 0.2, where
the condition coverage setting achieves 60% accuracy with relatively low time overhead. When α
is 0.4, both the marginal coverage and condition coverage settings reach 60% accuracy, making it a
more robust hyperparameter setting.
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(b) Take-over counts across multiple turns.

Figure 11: Analysis of model behavior in multi-turn interactions. The left subfigure shows how the
Perplexity (PPL) of draft and target models evolves as the number of turns increases, while the right
subfigure presents the take-over counts across turns.

A.6 CONTROLLING THE REJECTION RATE IN MULTI-TURN INTERACTIONS

In this section, we study the variation of model perplexity with sequential scaling and the change
in the number of take-overs by the large model during rejection sampling. This directly reflects
whether the conformal prediction algorithm we adopt can control the intervention rate of the target
model within an acceptable range. i): According to Figure 11a, each generation by the draft model
leads to an increase in the overall PPL, while the intervention of the target model effectively miti-
gates this trend. As the number of turns increases, the PPL of the scaling process can be gradually
reduced, which indirectly results in a decrease in the rejection rate. ii): Meanwhile, in Figure 11b,
we directly visualize the change in the number of take-overs by the target model as the number of
interaction turns increases. We observe that with sequential scaling, the target model overall main-
tains a rejection rate around a fixed level, which gradually decreases and eventually approaches zero.
iii): The target model continuously adjusts the convergence behavior of the draft model’s perplexity
during sequential scaling.
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A.7 DEFINITION AND PROOF

Proposition 1. Suppose that {(Xi, Yi)}ni=1 are exchangeable random variables from the test
dataset, and ξ ∼ Uniform{1, 2, . . . , n} represents randomly sampling one data point from the test
dataset, where k denotes the k-th sample of that data point, then the marginal conformal p-values
defined as,

pkξ =

∑n
i=1

∑m
j=1 1(s

k
ξ ≤ sji ) + 1

nm+ 1
(17)

is valid in the sense that for the miscoverage rate α ∈ (0, 1), we have

P(pkξ ≤ α) ≤ α. (18)

Moreover, if the conformity scores {sji}
n,m
i=1,j=1 are distinct surely, we have,

pkξ ∼ U

{
1

nm+ 1
,

2

nm+ 1
, . . . , 1

}
. (19)

Proof of Proposition 1. Suppose, for any given values of conformity scores, v1, . . . , vnm+1, they
can be rearranged as ṽ1 < · · · < ṽℓ with repetitions ni of ṽi such that

∑ℓ
i=1 ni = nm+ 1. Let Ev

denote the event of {s11, s21, . . . , smn , skξ} = {v1, . . . , vnm+1}.

Then, under Ev , for i = 1, . . . , ℓ, we have

P(skξ = ṽi | Ev) =
ni

nm+ 1
, (20)

due to the exchangeability of conformity scores.

We also note that under Ev and skξ = ṽi we have from Equation equation 17,

pkξ =

∑i
l=1 nl

nm+ 1
. (21)

Then, for any α ∈ [0, 1] and i = 1, . . . , ℓ, we have

P(pkξ ≤ α | Ev, s
k
ξ = ṽi) =

{
0 if α <

∑i
l=1 nl

nm+1 ,

1 otherwise.
(22)

Thus, for any i = 1, . . . , ℓ and
∑i−1

l=1 nl

nm+1 ≤ α <
∑i

l=1 nl

nm+1 , we have

P(pkξ ≤ α | Ev) =

ℓ∑
l=1

P(pkξ ≤ α | Ev, s
k
ξ = ṽl) · P(skξ = ṽl | Ev) (23)

=

∑i−1
l=1 nl

nm+ 1
≤ α. (24)

By taking the expectation over the above inequality, it follows that the conformal p-value pkξ is
marginally valid.

Specifically, if conformity scores {sji}
n,m
i=1,j=1∪{skξ} are distinct surely, then ℓ = nm+1 and ni = 1

for i = 1, . . . , nm+ 1. Thus,

P(pkξ ≤ α | Ev) =
i− 1

nm+ 1
, if

i− 1

nm+ 1
≤ α <

i

nm+ 1
, (25)

that is, pkξ | Ev ∼ U
{

1
nm+1 ,

2
nm+1 , . . . , 1

}
. This completes the proof. Next, we address the

theoretical part that guarantees conditional coverage.
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Proposition 2. Suppose that {(Xi, Yi)}ni=1 are exchangeable random variables from the test
dataset, then for any sample y ∈ Y , given a conditioning set Iy ⊆ {0, . . . ,m − 1} for each Xi

constructed based on the specific sample y for a test input x and Yξ = y, the corresponding condi-
tional conformal p-value as defined in Equation equation 17, is conditionally valid in the sense that
for any α ∈ [0, 1],

P(pkξ ≤ α | Iy, Yξ = y) ≤ α. (26)

Moreover, if {sji}j∈Iy,i=1,...,n are distinct surely, we have that conditional on Iy and Yξ = y,

pkξ ∼ U

{
1

m+ 1
,

2

m+ 1
, . . . , 1

}
, (27)

where m = |Iy| is the size of the conditioning set for output y.

Proof. For any given sample y ∈ Y , the corresponding conditional conformal p-value is given by

pkξ =
1

m+ 1

 n∑
i=1

∑
j∈Iy

1{sji ≤ skξ}+ 1

 , (28)

where Iy ⊆ {0, . . . ,m − 1} is the conditioning set for sample y, m = |Iy|, sji represents the
conformity score for the j-th candidate of the i-th test instance, and skξ is the conformity score for
the k-th candidate of the new test instance.

Given Iy and Yξ = y, the conformity scores {sji}j∈Iy,i=1,...,n ∪ {skξ} are exchangeably distributed,
which follows from the assumption that {(Xi, Yi)}ni=1 are exchangeably distributed and the con-
struction of candidate outputs.

Using similar arguments as in the proof of Proposition 1, for any given values of conformity scores
v1, . . . , vnm+1, suppose that they can be arranged as ṽ1 < · · · < ṽℓ with repetitions mi of ṽi such
that

∑ℓ
i=1 mi = nm+ 1. Let Ev denote the event {sji}j∈Iy,i=1,...,n ∪ {skξ} = {v1, . . . , vnm+1}.

Then, given Ev , Iy , and Yξ = y, we have

P(skξ = ṽi | Ev, Iy, Yξ = y) =
mi

nm+ 1
(29)

for i = 1, . . . , ℓ, due to exchangeability of the conformity scores.

Note that given Ev , Iy , Yξ = y, and skξ = ṽi, we have from Equation equation 28,

pkξ =

∑i
j=1 mj

nm+ 1
. (30)

Thus, for any α ∈ [0, 1] and i = 1, . . . , ℓ,

P(pkξ ≤ α | Ev, Iy, Yξ = y, skξ = ṽi) =

{
0 if α <

∑i
j=1 mj

nm+1 ,

1 otherwise.
(31)

Then, for any given i = 1, . . . , ℓ and
∑i−1

j=1 mj

nm+1 ≤ α <
∑i

j=1 mj

nm+1 , we have

P(pkξ ≤ α | Ev, Iy, Yξ = y) (32)

=

ℓ∑
j=1

P(pkξ ≤ α | Ev, Iy, Yξ = y, skξ = ṽj) · P(skξ = ṽj | Ev, Iy, Yξ = y) (33)

=

∑i−1
j=1 mj

nm+ 1
≤ α. (34)

By taking expectation, it follows that pkξ is conditionally valid given Yξ = y. This completes the
proof.
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Discussion. After proving the validity of individual conformal p-values, in order to obtain the
rejection rate for the entire test set, that is, to ensure that the overall error rate is controlled when
simultaneously testing K hypotheses, we propose the following Proposition.
Proposition 3. Suppose that {(Xi, Yi)}ni=1 are exchangeable random variables, and let ξ ∼
Uniform{1, 2, . . . , n} represent a randomly selected test instance, then A1 based on marginal con-
formal p-values all provide simultaneous coverage guarantees across the entire test dataset at level
1− α, i.e.,

P(∀i ∈ {1, . . . , n} : Yi ∈ C(Xi)) ≥ 1− α. (35)

Specifically, if the conformity scores {sji}
n,m
i=1,j=1 are distinct surely, then for A1, we also have,

P(∀i ∈ {1, . . . , n} : Yi ∈ C(Xi)) ≥ 1− α+
1

(n− 1)m+ 1
. (36)

Proof of Proposition 3. Consider A1 based on marginal conformal p-values. Note that among the
tested hypotheses H1, . . . ,Hm, there is exactly one hypothesis HYξ

to be true. Thus, the probability
that all samples are correctly covered by A1 satisfies:

P(∀i ∈ {1, . . . , n} : Yi ∈ C(Xi)) = P(accept HYξ
) (37)

= 1− P(reject HYξ
) (38)

≥ 1− P(pYξ

ξ ≤ α) (39)

≥ 1− α, (40)

where the last inequality follows by Proposition 1.

Specifically, for A1, if the conformity scores {sji}
n,m
i=1,j=1 are distinct surely, by Proposition 1, we

have

P(∀i ∈ {1, . . . , n} : Yi ∈ C(Xi)) = P(accept HYξ
) (41)

= 1− P(pYξ

ξ ≤ α) (42)

≥ 1−
(
α− 1

(n− 1)m+ 1

)
(43)

= 1− α+
1

(n− 1)m+ 1
, (44)

which gives the desired result.

Theorem 1. Suppose that {(Xi, Yi)}ni=1 are exchangeable random variables, and let ξ ∼
Uniform{1, 2, . . . , n} represent a randomly selected test instance, then the prediction set C(Xξ) ={
Ŷ k
ξ | pkξ > α

}
determined by A1 both satisfy

P(Yξ ∈ C(Xξ)) ≥ 1− α. (45)

Proof. Note that the prediction set is given by C(Xξ) = A1 ∩A2. Thus, by Proposition 1,

P(Yξ ∈ C(Xξ)) ≥ P(pYξ

ξ > α) ≥ 1− α. (46)

Similarly, its prediction set is given by

C(Xξ) = {y ∈ Y : pyξ > α}. (47)

By Proposition 1, it is easy to check that

P(Yξ ∈ C(Xξ)) = P(pYξ

ξ > α) ≥ 1− α. (48)

Specifically, if the conformity scores {sji}
n,m
i=1,j=1 are distinct surely, we have

P(Yξ ∈ C(Xξ)) = 1− P(pYξ

ξ ≤ α) ≤ 1− α+
1

(n− 1)m+ 1
. (49)

This completes the proof.
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Discussion. Now that we have completed the proof of marginal coverage, we proceed to prove the
conditional coverage for the entire test dataset. Under the exchangeability assumption, we have:
Proposition 4. Under the same exchangeability assumption as in Proposition 2, A1 based on condi-
tional conformal p-values pkξ all provide conditional coverage guarantees for the entire test dataset
at level 1− α, i.e., for any y ∈ Y ,

P(∀i ∈ {1, . . . , n} : Yi ∈ C(Xi) | Yξ = y) ≥ 1− α. (50)

Specifically, if the conformity scores {sji}j∈Iy,i=1,...,n are distinct surely, then for A1 based on pkξ ,
we have that for any y ∈ Y and Iy ⊆ {0, . . . ,m− 1},

P(∀i ∈ {1, . . . , n} : Yi ∈ C(Xi) | Yξ = y, Iy) ≥ 1− α+
1

(n− 1)|Iy|+ 1
. (51)

Proof. Consider Procedure 1-3 based on conditional conformal p-values. For any y ∈ Y , given
Yξ = y, the conditional coverage probability for the entire test dataset satisfies:

P(∀i ∈ {1, . . . , n} : Yi ∈ C(Xi) | Yξ = y) = 1− P(reject Hy | Yξ = y) (52)

≥ 1− P(pyξ ≤ α | Yξ = y) (53)

≥ 1− α, (54)

where the inequalities follow from the definitions of Procedure 1-3 and Proposition 2.

Specifically, for Procedure 3, if the conformity scores {sji}j∈Iy,i=1,...,n are distinct surely, then by
Proposition 2, the coverage probability conditional on Iy and Yξ = y satisfies:

P(∀i ∈ {1, . . . , n} : Yi ∈ C(Xi) | Iy, Yξ = y) = 1− P(reject Hy | Iy, Yξ = y) (55)

= 1− P(pyξ ≤ α | Iy, Yξ = y) (56)

≥ 1−
(
α− 1

(n− 1)|Iy|+ 1

)
(57)

= 1− α+
1

(n− 1)|Iy|+ 1
. (58)

This completes the proof.

Theorem 2. Under the same exchangeability assumption as in Theorem 1, the prediction set C(Xξ |
y) based on conditional conformal p-values pkξ satisfies

P(Yξ ∈ C(Xξ | y) | Yξ = y) ≥ 1− α (59)

for any y ∈ Y . Specifically, for the prediction set C(Xξ | y) based on pkξ , if the conformity scores
{sji}j∈Iy,i=1,...,n are distinct surely, we have

P(Yξ ∈ C(Xξ | y) | Yξ = y, Iy) ≤ 1− α+
1

(n− 1)|Iy|+ 1
(60)

for any y ∈ Y and Iy ⊆ {0, . . . ,m− 1}.

Proof. By using Proposition 4 and similar arguments as in the proof of Theorem 1, the prediction
sets C(Xξ | y) based on the conditional conformal p-values pkξ all satisfy:

P(Yξ ∈ C(Xξ | y) | Iy, Yξ = y) ≥ 1− α (61)

for any y ∈ Y .

Specifically, if the conformity scores {sji}j∈Iy,i=1,...,n are distinct surely, we have:

P(Yξ ∈ C(Xξ | y) | Iy, Yξ = y) = P(pyξ > α | Iy, Yξ = y) (62)

≤ 1− α+
1

(n− 1)|Iy|+ 1
, (63)

which gives the desired result.
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A.8 PROMPT

Completion Question: Please answer the following problem using step-by-step reasoning.
Please separate your reasoning steps with two newline characters (\\n \\n). Please must
put your final answer within \\boxed{{}}.
Question: {question}

Multiple Choice Question: This is a multiple-choice question. Please answer the follow-
ing problem using step-by-step reasoning. Separate each reasoning step with two new-
line characters (\\n \\n). You must put your final answer within \\boxed{{}}, such as
\\boxed{{A}}, \\boxed{{B}}, \\boxed{{C}}, or \\boxed{{D}}. No other formats are
allowed.
Question: {question}
Choices: A. {choice[1]} B. {choice[2]} C. {choice[3]} D. {choice[4]}
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