

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ATTs: ASYNCHRONOUS TEST-TIME SCALING VIA CONFORMAL PREDICTION

Anonymous authors

Paper under double-blind review

ABSTRACT

Large language models (LLMs) benefit from test-time scaling but are often hampered by high inference latency. Speculative decoding is a natural way to accelerate the scaling process; however, scaling along both the parallel and sequential dimensions poses significant challenges, including substantial memory-bound execution and synchronization overhead. We introduce ATTS (Asynchronous Test-Time Scaling), a statistically guaranteed adaptive scaling framework that follows the hypothesis testing process to address these challenges. By revisiting arithmetic intensity, ATTS identifies synchronization as the primary bottleneck. It enables asynchronous inference through online calibration and proposes an ordinal classification algorithm that supports a three-stage rejection sampling pipeline, scaling along both the sequential and parallel axes. Across experiments on the MATH, AMC23, AIME24, and AIME25 datasets and across multiple draft-target model families, we show that ATTS delivers up to 56.7x speedup in test-time scaling and a 4.14x throughput improvement, while maintaining accurate control of the rejection rate, reducing latency and memory overhead, and incurring no accuracy loss. By scaling both in parallel and sequential dimensions, we enable the 1.5B/70B draft/target model combination to achieve the performance of the state-of-the-art reasoning model o3-mini (high) on the AIME dataset. We have released the code at anonymous.4open.science/r/Asynchronous-Test-Time-Scaling-5940.

1 INTRODUCTION

With the rapid advances in large language models (LLMs), attention is increasingly turning to *reasoning models* (Guo et al., 2025; Muennighoff et al., 2025; McCoy et al., 2024; Shao et al., 2024)—systems that transcend next-token prediction in order to emulate human-like reasoning behaviors. These models excel at leveraging complex reasoning chains, especially in test-time scaling settings (Snell et al., 2024; Li et al., 2025; Muennighoff et al., 2025; Zeng et al., 2025).

Test-time scaling (Chen et al., 2025; Muennighoff et al., 2025; Guo et al., 2025) constitutes a new paradigm that enhances the model’s reasoning capabilities by allocating additional computational resources during the inference stage. Typically, test-time scaling can be categorized into two approaches: sequential scaling (Muennighoff et al., 2025; Guo et al., 2025) and parallel scaling (Chen et al., 2025). However, despite its potential, the challenge of efficiently managing increasing sampling size or complexity during inference remains a critical limitation, hindering the achievement of high-performance deployment.

Benefiting from the shared-prefix mechanism of the inference engines (Kwon et al., 2023; Zheng et al., 2024), parallel scaling (Chen et al., 2025) increases the number of samples concurrently, thereby partially mitigating the inference-time latency and memory footprint introduced by scaling the per-trajectory token budget (i.e., longer reasoning paths), while simultaneously improving token-sampling throughput.

Although some methods (Huang et al., 2025; Wan et al., 2024) that adopt confidence-based early stopping of reasoning chains improve parallel sampling efficiency, problems still remain in memory efficiency and high inference latency. Another potential issue is that early stopping prunes away potentially correct reasoning paths and reduces the diversity of the output space.

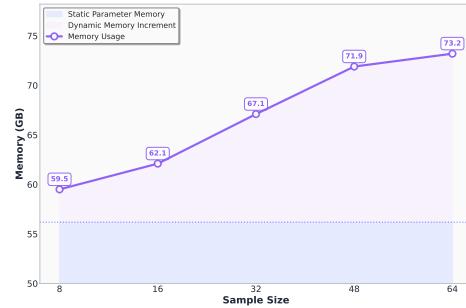
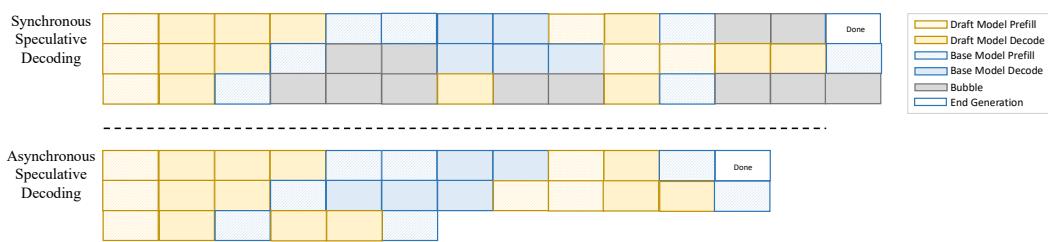


Figure 1: Memory Overhead vs. Sampling Sizes (QwQ 32B, Token Budget 500)

054 Speculative decoding (Li et al., 2024a; Leviathan et al., 2023; Kim et al., 2023; Pan et al., 2025b; 055 Yang et al., 2025) represents a promising approach for accelerating decoding. In this framework, a 056 lightweight draft model generates tokens, which are subsequently validated and refined by a target 057 model. This dual-phase approach not only speeds up inference by offloading most of the genera- 058 tion process to the draft model, but also ensures that the final outputs retain high fidelity, thereby 059 achieving a favorable balance between efficiency and accuracy.

060 However, when speculative decoding (Pan et al., 2025b; Yang et al., 2025) meets test-time scaling, 061 the decoding process faces *two key challenges*. The first is the *memory bottleneck* of the target 062 model during the prefill phase. As shown in Figure 1, as the number of sampling increases, the 063 memory overhead of the target model tends to grow due to KV cache accumulation. This effect 064 becomes more pronounced in target models when attempting to scale the number of requests from 065 the draft model. During real-world deployment on the SGLang server (Zheng et al., 2024), high- 066 concurrency sampling, especially when simultaneously validating multiple long reasoning chains, 067 can lead to memory peaks that easily exceed the GPU’s maximum capacity, causing the server to 068 crash. Therefore, it is crucial to constrain the request budget from the draft model to the target model 069 within a manageable range.



070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
Figure 2: Comparison of naive and asynchronous speculative decoding.

In speculative decoding, one stage involves rejection sampling: prior to acceptance, the target model either ranks draft-generated candidates or computes a divergence between the draft and target distributions, introducing an additional *synchronization overhead bottleneck*. As illustrated in Fig. 2, during the multi-turn sampling process (with a sampling quantity of 3 at each turn), if the target model aims to reject the sampling with the lowest two confidences, a ranking operation must be performed at each turn. Given the limited computational and memory resources, the target model needs to prioritize processing the most important requests. Especially in test-time scaling, when combining sequential and parallel scaling, the synchronization overhead from precise budget control and the pursuit of globally optimal ranking is amplified. Although this issue has been widely discussed in the context of tool calls (Gim et al., 2024; Ginart et al., 2024), it has not been formally proposed in the context of test-time scaling.

To analyze the synchronization bottleneck and address the two challenges mentioned above, we first introduce a novel variant of arithmetic intensity called *asynchronous arithmetic intensity* to analyze the system bottleneck, and then explore conformal prediction (Vovk et al., 2005; 2003; Romano et al., 2020; Lei et al., 2018) for ranking predictions to design the asynchronous algorithm. In our formulation, conformal prediction defines a prediction set C_α ; sampling in C_α are rejected, while sampling outside are accepted. This yields a distribution-free guarantee that the right sampling is retained (i.e., lies outside C_α) with high probability, enabling asynchronous test-time scaling. This paper presents the following contributions:

- We propose *asynchronous arithmetic intensity*, a performance metric designed to characterize and quantify throughput/latency bottlenecks that emerge in test-time scaling scenarios.
- We introduce *conformal prediction* to tackle prediction ranking, and—leveraging the resulting ranking—construct stable prediction sets that mitigate GPU-memory bottleneck risks.
- We propose ATTS, a training-free, lossless acceleration method that achieves a $56.7x$ speedup in test-time scaling and a $4.14x$ throughput improvement in both sequential and parallel settings.

2 PRELIMINARY

We first introduce how to build the prediction set in the classical setup, and then present our setup.

108 **Classic Setup.** Formally, let

$$109 \quad D_{\text{cal}} = ((X_1, Y_1), \dots, (X_n, Y_n)) \quad (1)$$

110 denote the calibration dataset. Each pair (X_i, Y_i) for $i = 1, \dots, n$ is a data point, consisting of an
111 X_i (the input question for the i -th example) and a ground truth denoted as Y_i . The symbol n denotes
112 the size of the calibration dataset. For each input X_i , we draw m candidate sampling
113

$$114 \quad (\hat{Y}_i^1, \dots, \hat{Y}_i^m), \quad (2)$$

115 where m is the number of samples per input (the sampling budget), and \hat{Y}_i^k denotes the k -th can-
116 didate sample. In adaptive prediction-set construction (Romano et al., 2020; Angelopoulos et al.,
117 2020; Huang et al., 2023), the conformity score for each sample is computed via a softmax function:
118

$$119 \quad s_i^k = \frac{\exp(-\ell(X_i, \hat{Y}_i^k))}{\sum_{j=1}^m \exp(-\ell(X_i, \hat{Y}_i^j))}, \quad (3)$$

120 where $-\ell$ denotes the negative log-likelihood loss. Next, the global conformity threshold τ is ob-
121 tained by computing the p -quantile over all candidate scores:
122

$$123 \quad \tau = Q_p \left(\left\{ s_i^j, \mid, i = 1, \dots, n, ; j = 1, \dots, m \right\} \right), \quad (4)$$

$$124 \quad p = \frac{\lceil (n+1)(1-\alpha) \rceil}{n}, \quad (5)$$

125 and $\alpha \in (0, 1)$ is the user-specified miscoverage rate. To satisfy *conditional coverage*, The predic-
126 tion set for input X_i is then defined as
127

$$128 \quad C_\alpha(X_i) = \left\{ \hat{Y}_i^k, \mid, s_i^k \geq \tau, k = 1, \dots, m \right\}. \quad (6)$$

129 which ensures that the resulting set includes the ground truth with probability at least $1 - \alpha$. Al-
130 though conformal prediction in the classical setting can provide guaranteed conditional coverage, the
131 conformation scores assigned to candidate outputs are typically required to be *normalized*, as shown in
132 Eq. 3, and this normalization inherently introduces a bottleneck to parallelization. Therefore, in the
133 subsequent *Ordinal Classification*, we transform the problem into a *hypothesis testing* framework via
134 p -values to avoid normalization, with a proof of its coverage guarantee provided in Appendix A.7.
135

136 **Problem Setup.** In the asynchronous test-time scaling setup, we leverage a draft model for
137 fast sampling and delegate verification to a slower target model. Unlike classical rejection sam-
138 pling (Chen et al., 2023), which approximates a target distribution with a draft distribution, we focus
139 on accurately predicting the *rejection rate*, thereby reducing VRAM out-of-memory risk and the
140 synchronization overhead caused by global ranking or softmax function. Given a predefined α , we
141 estimate a confidence level such that the ground truth y falls within the prediction set $C_\alpha(Y)$ with
142 probability at least $1 - \alpha$:

$$143 \quad \mathbb{P}(y \in C_\alpha(Y)) \geq 1 - \alpha, \quad (7)$$

144 where α is conventionally interpreted as the significance level (e.g., 0.05 corresponding to 95%
145 confidence). In this work, however, we reinterpret α as the *rejection rate* of the target model.

146 **Ordinal Classification.** In typical inference engines (Zheng et al., 2024; Kwon et al., 2023), par-
147 ticularly those with asynchronous scheduling, obtaining the normalized scores for all sampling in
148 different batches can be challenging. To avoid normalization and global ranking operations, we re-
149 formulate the task of constructing prediction sets as an *ordinal classification* (Dey et al., 2023; Xu
150 et al., 2023), meaning that we predict the ranks of all samples. Formally, we aim to ensure:

$$151 \quad \mathbb{P}(\tilde{y}^i \in C_\alpha(Y)) \geq 1 - \alpha, \quad \forall i \in \{1, \dots, n \times m\}, \quad (8)$$

152 where $\mathbb{P}(\tilde{y}^i \in C_\alpha(Y))$ denotes the probability that the i -th candidate step \tilde{y}^i lies within the pre-
153 diction set C_α , and m represents the number of sampled steps. This procedure provides *marginal*
154 *coverage*, meaning that the coverage guarantee holds on average over the distribution of test inputs.
155 The stronger notion of *conditional coverage* aims to ensure

$$157 \quad \mathbb{P}(\tilde{y}^i \in C_\alpha(Y) \mid X = x) \geq 1 - \alpha, \quad \forall i \in \{1, \dots, m\}, \forall x. \quad (9)$$

158 That is, it provides a probabilistic guarantee for the sampled outputs corresponding to each input
159 instance. To achieve this, our setup focuses on developing asynchronous algorithms for ranked
160 prediction, where the construction of the prediction set ensures that its size matches the predefined
161 budget while maintaining both marginal and conditional coverage. This approach avoids the need
for normalization while addressing the challenges posed by asynchronous scheduling.

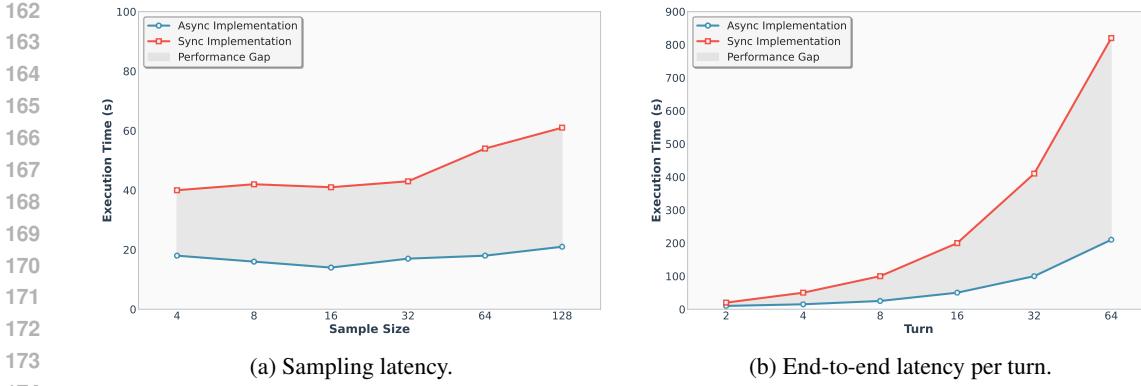


Figure 3: Execution cost comparison between synchronous and asynchronous test-time scaling.

3 CHALLENGE AND DESIGN

To identify performance bottlenecks in the classic setup, we introduce arithmetic intensity (Spector & Re, 2023), which measures the utilization of arithmetic units. It is defined as:

$$I = \frac{F}{B}, \quad (10)$$

where F is the number of floating-point operations (FLOPs) and B is the number of bytes accessed.

3.1 Q1: WHAT ARE THE EMERGING PERFORMANCE BOTTLENECKS?

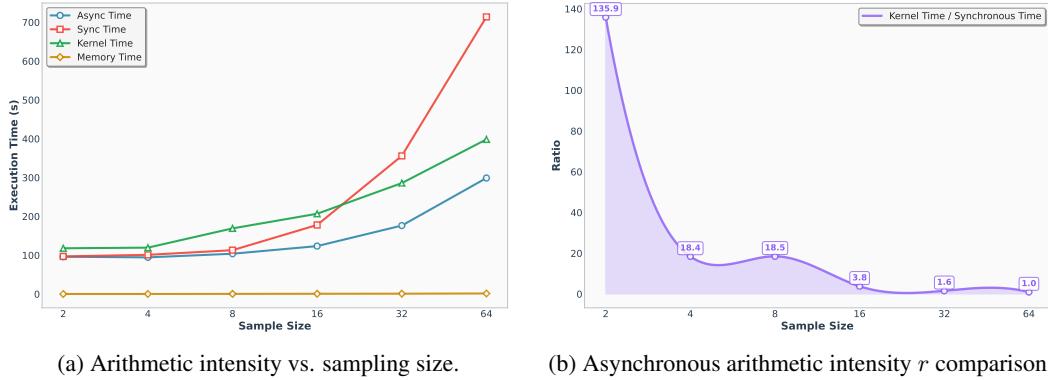


Figure 4: Analysis of arithmetic intensity.

Speculative decoding (Leviathan et al., 2023) accelerates inference by overlapping computation with memory accesses, enabling multiple draft tokens to be validated in parallel. Its main bottleneck is parallel score computation (Yin et al., 2024), making the process computation-bound.

Building upon this perspective, asynchronous scaling can be seen as an even more aggressive parallelization strategy. The target model validates far more tokens in parallel than in speculative decoding, which intensifies the prefill bottleneck and results in *total computation time far exceeding total memory access time*, as illustrated by the comparison between the green and yellow lines in Fig. 4a.

As shown in Fig. 3b, synchronization overhead grows exponentially with the number of sampling turns. In the parallel scaling setting (Fig. 3a), this overhead increases linearly with the number of concurrent samples. To this end, we observe Fig. 4a that increasing the sampling size naturally raises arithmetic intensity (with memory access time being negligible). To account for synchronization costs within arithmetic intensity, we define an *asynchronous arithmetic intensity* r :

$$r = \frac{T_c}{T_m + T_s} = \frac{t_c \times F}{t_m \times B + T_s} \approx \frac{T_c}{T_s}, \quad (11)$$

where T_c is computation time, T_m is memory access time, t_c and t_m are the per-unit costs of computation and memory access, respectively. It can be observed from Fig. 4b that under classic setups,

216 r decreases as the sampling size increases which indicates that synchronization overhead emerges
 217 as the *primary bottleneck*.
 218

219 **3.2 Q2: HOW IS THE PREDICTION SET CONSTRUCTED?**

220 **Online Calibration.** Conformal prediction typically relies on a held-out calibration set to determine
 221 the threshold τ . However, in the test-time scaling setup, held-out examples are generally
 222 unavailable. To address this limitation, we propose an *online calibration* strategy. Specifically, m
 223 outputs are pre-sampled for each input in the test set, yielding $(\hat{Y}_i^1, \dots, \hat{Y}_i^m)$. Previous efforts (Ding
 224 et al., 2023; Romano et al., 2020) impose a strict sum-to-one constraint on the conformal scores
 225 under the classification setting (where events are mutually exclusive). In contrast, we compute
 226 conformal p-values (Bates et al., 2023; Jin & Candès, 2023; Wang et al., 2024) under an ordinal
 227 classification setup, where the events are not mutually exclusive and the ordinal relationships are
 228 preserved. In this setup, we relax the strict requirement that conformity scores sum to one, and
 229 instead directly define:

$$231 \quad s_\xi^k = -\ell(X_\xi, \hat{Y}_\xi^k). \quad (12)$$

233 This formulation is used to estimate conformal p -values for rejection sampling:

$$235 \quad p_\xi^k = \frac{\sum_{i=1}^n \sum_{j=1}^m \mathbf{1}(s_\xi^k \leq s_i^j) + 1}{nm + 1}. \quad (13)$$

238 In this formulation, s_ξ^k denotes the conformity score of the test-time candidate \hat{Y}_ξ^k , which represents
 239 the k -th sample of the ξ -th input on the test set, and s_i^j are the scores from the calibration set
 240 (X_i, \hat{Y}_i^j) . The indicator function $\mathbf{1}(\cdot)$ returns 1 when the condition is satisfied. The p -value based
 241 on formula 13 guarantees *marginal coverage* at level $1 - \alpha$, which can be intuitively explained as
 242 calculating one's rank by comparing the conformity score with the score from the $p \cdot n \cdot m$ in the
 243 entire calibration set. *Conditional coverage* can be achieved by adjusting the comparison with the
 244 $p \cdot m$ calibration set from the current input sample.

245 A detailed proof of these two approaches is provided in Appendix A.7. The conformal p -value
 246 governs rejection sampling: a candidate is accepted if $p_\xi^k > \alpha$, ensuring that only high-confidence
 247 outputs are retained, thereby achieving precise budget control.

249 **Budget Prediction.** Let B denote the predefined budget (i.e., the number of candidates to reject).
 250 Given a test-time input X_i , we sample m candidate CoTs $(\hat{Y}_i^1, \dots, \hat{Y}_i^m)$ in each turn and then
 251 compute their corresponding p -values p_i^1, \dots, p_i^m .

253 Importantly, this sampling and evaluation process is conducted *asynchronously*: each candidate is
 254 generated independently and evaluated for its p -value without requiring synchronization with other
 255 candidates. As a result, the outputs implicitly exhibit a descending order:

$$257 \quad p_i^1 \geq p_i^2 \geq \dots \geq p_i^m. \quad (14)$$

259 The ordered set can be partitioned using a threshold to construct the *prediction set*, by directly
 260 comparing each candidate's p -value with the miscoverage threshold α . Specifically, the prediction
 261 set includes all candidates whose p -values satisfy:

$$263 \quad \mathcal{C}_\alpha(Y_i) = \left\{ \hat{Y}_i^k : k \in \{1, \dots, m\}, p_i^k > \alpha \right\}. \quad (15)$$

265 This formulation ensures that the selected candidates meet the coverage rate. Equivalently, this can
 266 be interpreted as rejecting the top- B candidate sampling.

268 **3.3 HOW TO PERFORM REJECTION SAMPLING VIA CONFORMAL PREDICTION?**

269 We adopt a three-stage sampling pipeline, illustrated in Fig. 5, to realize rejection sampling with a
 target rejection rate α .

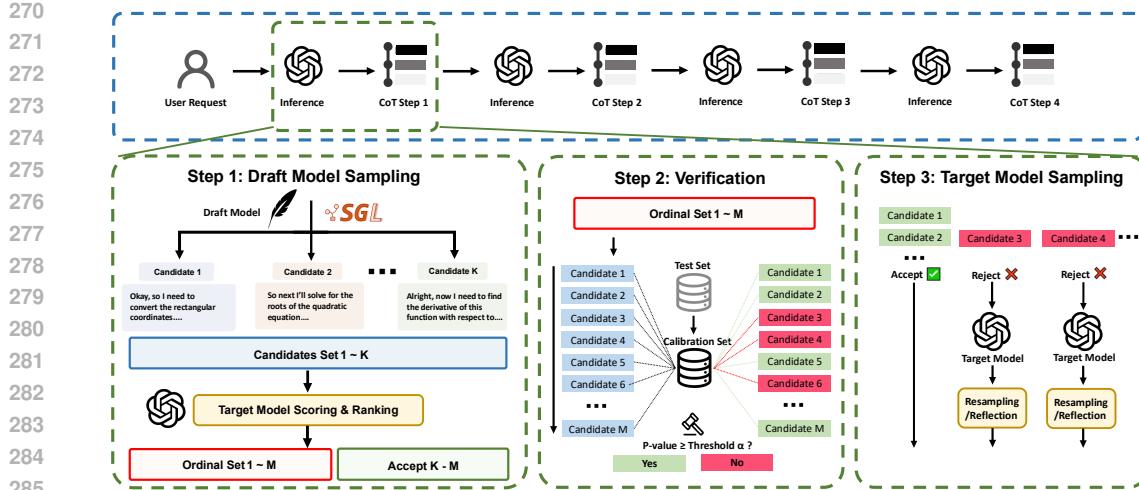


Figure 5: Asynchronous test-time scaling pipeline. The green box illustrates parallel scaling and follows the rejection sampling procedure, while the blue box illustrates sequential scaling.

Draft Model Sampling. Given input tokens $x_{1:n-1}$, the draft model proposes m candidate continuations of length K_d in each turn, denoted $\tilde{y}_{n:n+K_d-1}^j$, by sampling from the draft model q_d :

$$\tilde{y}_{n:n+K_d-1}^j \sim q_d(\cdot | x_{1:n-1}), \quad j = 1, \dots, m, \quad (16)$$

Verification. For each candidate sampling $\tilde{y}_{n:n+K_d-1}^j$, we score it under the target model q_t by computing the logits $q_t(\tilde{y}_{n:n+K_d-1}^j | x_{1:n-1})$ and converting to a conformity score. Using the calibration set, we compute a p -value for each candidate and reject those inside \mathcal{C}_α ; otherwise accept.

Target Model Sampling. Although classical rejection sampling discards the rejected samples from the draft model and resamples entirely from the target model, to save the token budget we proceed as follows. In each turn, the per-turn target-side token budget is K_t : for each candidate in \mathcal{C}_α , we let the target model q_t continue generation using that candidate from q_d as a prefix for up to K_t tokens, stopping earlier if an end token is encountered. In Appendix A.4, we provide a comparison between continuing sampling and resampling with q_t for large-scale scaling performance.

Termination. We iterate the above rejection sampling until a final answer is detected, the maximum number of turns is reached, or the overall token limit is exceeded. As highlighted in Fig. 5, increasing the number of turns enables sequential test-time scaling (blue box), while increasing the number of candidates per turn enables parallel test-time scaling (green box).

4 EXPERIMENT

We provide the hyperparameters and other task details used in our experiments in Appendix 4 and evaluate performance under two settings: *marginal coverage* (Mar Acc.), which measures whether the budget of prediction set align on average across test inputs, and *conditional coverage* (Con Acc.), which imposes a stricter requirement that the guarantee holds for each individual input instance.

4.1 ASYNCHRONOUS TEST-TIME SCALING ACROSS DIFFERENT MODEL FAMILIES.

Table 1 reports the results of asynchronous test-time scaling when the draft model (DM) and target model (TM) come from different families. We have the following **key takeaways**: i) ATTS can match the performance of the target model itself. This approach effectively reduces computational overhead while maintaining high-quality outputs, up to $22.22x$ acceleration. ii) The most challenging datasets, AIME24/25, show strong performance in *marginal coverage* setup, while the other two datasets (MATH100 and AMC23) demonstrate superior results in *conditional coverage* setup. This highlights that while marginal coverage allocates more computational resources to the most difficult parts of the tasks effectively, conditional coverage ensures more reliable results at the individual input level, especially in simpler tasks, ensuring that each question is answered correctly. iii) It shows that while reasoning models consume more tokens during inference, using a reasoning model as the draft model provides better scaling performance than a non-reasoning model, though the *non-reasoning model* offers the highest acceleration. iv) When the average length of the reasoning chain

324 Table 1: Comparison when draft and target models are from different families under marginal
 325 (Mar Cov.) and conditional (Con Cov.) coverage. S_{Mar} , S_{Con} = end-to-end speedup (\times) under
 326 marginal/conditional coverage (larger is faster); Values in red indicate lossless acceleration.
 327 *Gray rows indicate draft models (non-reasoning).*

329 Dataset	330 Draft Model (DM)	331 Mar Cov.	332 Con Cov.	333 DM Baseline	334 TM Baseline	335 $S_{\text{Mar}} (\times)$	336 $S_{\text{Con}} (\times)$
<i>QwQ-32B (RL-tuned reasoning model) as Target Model</i>							
331 MATH100	332 DeepSeek-R1-Distill-Qwen-1.5B	333 87.0	334 94.0	335 83.0	336 96.0	337 1.76	338 1.19
	339 Qwen2.5-7B-Instruction	340 86.0	341 96.0	342 84.0	343 96.0	344 7.19	345 5.35
	346 DeepSeek-R1-Distill-Llama-8B	347 96.0	348 96.0	349 85.0	350 96.0	351 1.36	352 1.38
	353 Llama-3.1-8B-Instruct	354 87.0	355 95.0	356 75.0	357 96.0	358 2.12	359 2.20
360 AIME24	361 DeepSeek-R1-Distill-Qwen-1.5B	362 86.7	363 66.7	364 60.0	365 86.7	366 4.03	367 2.60
	368 Qwen2.5-7B-Instruction	369 46.7	370 33.3	371 33.3	372 86.7	373 5.71	374 10.10
	375 DeepSeek Llama-3.1-8B-Instruct	376 80.0	377 80.0	378 80.0	379 86.7	380 2.72	381 2.33
	383 Llama-3.1-8B-Instruct	384 33.3	385 40.0	386 13.3	387 86.7	388 4.46	389 2.79
390 AIME25	391 DeepSeek-R1-Distill-Qwen-1.5B	392 53.3	393 46.7	394 40.0	395 73.3	396 2.04	397 1.21
	398 Qwen2.5-7B-Instruction	399 33.3	400 40.0	401 26.7	402 73.3	403 14.50	404 12.82
	406 DeepSeek Llama-3.1-8B-Instruct	407 66.7	408 60.0	409 46.7	410 73.3	411 2.06	412 1.77
	415 Llama-3.1-8B-Instruct	416 26.7	417 33.3	418 20.0	419 73.3	420 6.71	421 2.34
422 AMC23	423 DeepSeek-R1-Distill-Qwen-1.5B	424 88.0	425 90.0	426 74.0	427 94.0	428 1.01	429 1.21
	430 Qwen2.5-7B-Instruction	431 76.0	432 72.0	433 68.0	434 94.0	435 10.42	436 8.20
	438 DeepSeek Llama-3.1-8B-Instruct	439 92.0	440 94.0	441 80.0	442 94.0	443 1.50	444 1.07
	447 Llama-3.1-8B-Instruct	448 68.0	449 68.0	450 44.0	451 94.0	452 3.58	453 1.72
<i>s1.1-32B (SFT-tuned reasoning model) as Target Model</i>							
454 MATH100	455 DeepSeek-R1-Distill-Qwen-1.5B	456 86.0	457 95.0	458 83.0	459 96.0	460 0.70	461 0.88
	463 Qwen2.5-7B-Instruction	464 89.0	465 96.0	466 84.0	467 96.0	468 2.87	469 2.55
	472 DeepSeek Llama-3.1-8B-Instruct	473 88.0	474 95.0	475 85.0	476 96.0	477 0.79	478 0.82
	481 Llama-3.1-8B-Instruct	482 79.0	483 85.0	484 75.0	485 96.0	486 1.33	487 1.56
488 AIME24	489 DeepSeek-R1-Distill-Qwen-1.5B	490 73.3	491 80.0	492 60.0	493 86.7	494 4.37	495 2.16
	498 Qwen2.5-7B-Instruction	500 40.0	501 33.3	502 33.3	503 86.7	504 22.22	505 13.54
	508 DeepSeek Llama-3.1-8B-Instruct	509 73.3	510 73.3	511 80.0	512 86.7	513 2.36	514 3.07
	518 Llama-3.1-8B-Instruct	519 26.7	520 40.0	521 13.3	522 86.7	523 5.62	524 3.36
525 AIME25	526 DeepSeek-R1-Distill-Qwen-1.5B	527 60.0	528 60.0	529 40.0	530 66.7	531 2.87	532 2.03
	535 Qwen2.5-7B-Instruction	536 33.3	537 40.0	538 26.7	539 66.7	540 18.52	541 11.90
	545 DeepSeek Llama-3.1-8B-Instruct	546 66.7	547 60.0	548 46.7	549 66.7	550 2.31	551 1.66
	555 Llama-3.1-8B-Instruct	556 26.7	557 20.0	558 20.0	559 66.7	560 5.59	561 4.15
562 AMC23	563 DeepSeek-R1-Distill-Qwen-1.5B	564 86.0	565 86.0	566 74.0	567 96.0	568 1.37	569 0.98
	572 Qwen2.5-7B-Instruction	573 74.0	574 78.0	575 68.0	576 96.0	577 14.49	578 11.36
	581 DeepSeek Llama-3.1-8B-Instruct	582 92.0	583 96.0	584 80.0	585 96.0	586 1.56	587 1.59
	591 Llama-3.1-8B-Instruct	592 54.0	593 64.0	594 44.0	595 96.0	596 5.03	597 3.56

363 output by the draft model exceeds that of the target model, the acceleration ratio is typically less
 364 than 1 on simpler datasets such as MATH and AMC23.

366 4.2 PERFORMANCE OF BUDGET PREDICTION

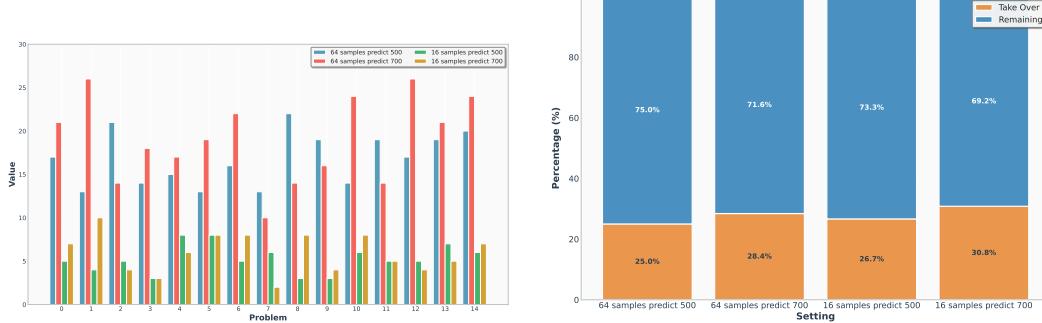
367 In this section, we evaluate the accuracy of budget prediction under marginal and conditional cov-
 368 erage settings. This shows how well our method controls target model interventions in rejection
 369 sampling, reflecting the accuracy of conformal prediction in estimating the rejection rate.

370 **Marginal Coverage.** In Figure 6b, we report the accuracy of the target-model intervention rate
 371 under marginal coverage, where the rejection rate is predicted at the dataset level. Budget-prediction
 372 accuracy across the full dataset is high, especially with the 64-sample configuration, whose absolute
 373 error stays within 5%. With $K_d = 500$ tokens for calibration and $K_d = 500$ for sampling, the error
 374 remains within 2%. This directly highlights the importance of constructing a diverse calibration set
 375 for maintaining high prediction accuracy.

376 **Conditional Coverage.** In practice, we require precise *per-batch* budget control, rather than a
 377 single aggregate budget over the entire test set. Due to the limited capacity of the target model’s
 378 server, it cannot process all requests concurrently. As a result, inference is performed in batches,

378 Table 2: The comparison when the draft and target models are from the same family. T_{Think}^m , T_{Reason}^m ,
 379 T_{Think}^c , and T_{Reason}^c denote the token-consumption ratios (\times) under the marginal coverage and conditional
 380 coverage settings, relative to the SpecThink and SpecReason baselines, respectively. Token
 381 consumption is measured in tokens, where smaller values indicate higher efficiency.

383	384	Dataset	Draft Model / Target Model	Mar Cov.	Con Cov.	SpecThink	SpecReason	Token Consumption (\times)			
								T_{Think}^m	T_{Reason}^m	T_{Think}^c	T_{Reason}^c
385	386	MATH100	Qwen2.5-7B/32B-Instruct	86.0	81.0	79.0	73.7	0.60	0.66	0.68	0.72
			s1.1-7B/32B	88.0	87.0	85.0	73.7	0.50	0.54	0.57	0.44
			DeepSeek-R1-Distill-Qwen-1.5B/32B	88.0	87.0	84.0	76.7	0.48	0.52	0.53	0.39
			Skywork-OR1-7B/32B	88.0	89.0	70.0	75.8	0.42	0.37	0.28	0.31
388	389	AIME24	Qwen2.5-7B/32B-Instruct	33.3	40.0	33.3	33.3	0.61	0.67	0.69	0.73
			s1.1-7B/32B	66.7	73.3	40.0	26.7	0.47	0.52	0.62	0.50
			DeepSeek-R1-Distill-Qwen-1.5B/32B	86.7	80.0	66.7	66.7	0.46	0.50	0.56	0.42
			Skywork-OR1-7B/32B	86.7	80.0	60.0	73.3	0.33	0.27	0.19	0.24
392	393	AIME25	Qwen2.5-7B/32B-Instruct	40.0	33.3	26.7	40.0	0.62	0.68	0.70	0.74
			s1.1-7B/32B	53.3	53.3	33.3	40.0	0.49	0.53	0.64	0.52
			DeepSeek-R1-Distill-Qwen-1.5B/32B	60.0	53.3	46.7	35.7	0.47	0.50	0.55	0.43
			Skywork-OR1-7B/32B	60.0	53.3	40.0	53.3	0.41	0.36	0.29	0.22
396	397	AMC23	Qwen2.5-7B/32B-Instruct	72.0	70.0	74.0	72.0	0.63	0.69	0.71	0.75
			s1.1-7B/32B	82.0	78.0	76.0	78.0	0.48	0.52	0.62	0.48
			DeepSeek-R1-Distill-Qwen-1.5B/32B	92.0	88.0	82.0	80.0	0.46	0.50	0.57	0.44
			Skywork-OR1-7B/32B	96.0	94.0	82.0	86.0	0.39	0.34	0.37	0.28



(a) Left: Conditional Coverage.

(b) Right: Marginal Coverage.

Figure 6: The budget prediction accuracy shows the accuracy of budget prediction for sampling lengths of 500 and 700 with a budget of 500 tokens during the online calibration phase under 64-sample and 16-sample settings. The experiment is conducted with a rejection rate $\alpha = 0.25$.

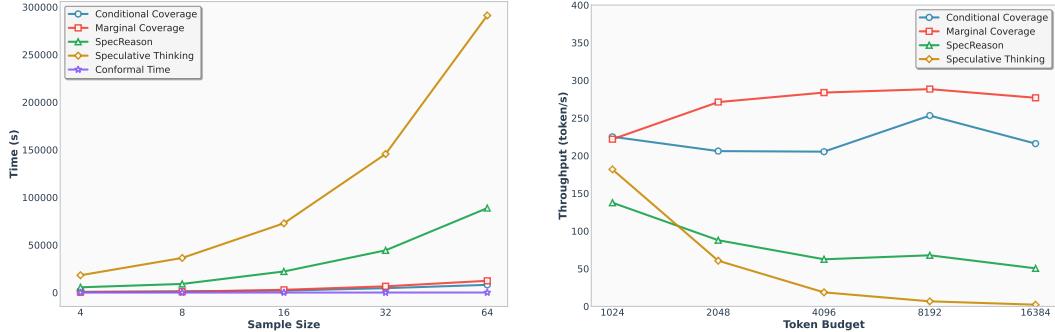
with the token budget enforced for each batch to meet the load constraint. In Figure 6a, we report the accuracy of the target model intervention rate under conditional coverage. Under online calibration with a rejection rate of 25%, when $K_d = 500$ in both the calibration and sampling stages, the 16-sample and 64-sample settings achieve similar accuracy. However, when the calibration stage uses $K_d = 500$ but the sampling stage uses $K_d = 700$, the 64-sample setting attains significantly higher budget-prediction accuracy. This indicates that increasing the number of parallel samples can improve budget prediction accuracy when the sampling token budget differs from the calibration token budget (i.e., under a calibration–sampling token budget mismatch).

4.3 ASYNCHRONOUS TEST-TIME SCALING WITHIN THE SAME MODEL FAMILIES

In this section, we examine the performance across models within the same family, including both reasoning and non-reasoning models in Table 2. In this setting, since the target model and draft models share the same vocabulary, we can compare against baselines that are only applicable to models within the same family, such as Speculative Thinking (Yang et al., 2025), denoted as SPEC-THINK. Our findings are as follows: i): When the draft and target models belong to the same family, in most cases, the best performance is achieved under the setting of marginal coverage, even on simpler datasets like MATH and AMC23. ii): Across datasets, DeepSeek and Skywork show the strongest gains on challenging benchmarks (AIME, AMC), while Qwen2.5 performs competitively on MATH100 but lags significantly on harder tasks. iii): Moreover, s1.1 achieves moderate

improvements, usually surpassing Qwen but not reaching the level of Skywork or DeepSeek. iv): Finally, *SpecReason* and *SpecThink* generally underperform compared with ATTs and consume more tokens, especially when the draft model is a reasoning model or on the more challenging AIME dataset, suggesting that their effectiveness remains limited on more complex reasoning tasks.

4.4 ANALYSIS OF TOKEN BUDGET AND LATENCY



(a) Latency increases with the number of samples. (b) Throughput variation under the 16-sample setting.

Figure 8: Analysis of latency and throughput trade-offs under different sampling and token budget.

Latency and Throughput. In this part, we analyze the trade-offs between latency and throughput under different sampling and token budget settings. i): As shown in Figure 10a, the latency of *SpecReason* and *SpecThink* consistently increases with the number of samples, highlighting the cost of scaling up sampling. In contrast, our method significantly reduces the sampling latency and achieves the lowest inference latency under the condition coverage setting. ii): The time overhead of *online calibration* is nearly negligible, particularly at larger sample sizes. iii): Meanwhile, Figure 10b illustrates how throughput varies with the per-sample token budget for methods such as *SpecReason* and *SpecThink*, revealing diminishing returns as the token budget becomes large. Our method is able to maintain high throughput even under very large budgets, especially in the marginal coverage setting. Overall, these results (Figure 8) provide insights into the balance between efficiency and performance when designing inference strategies. Under the setting of 16 samples and no limit on the maximum sequence scaling turns per sample, we achieved a **56.7x** speedup in inference and a **4.14x** throughput improvement compared to the baseline.

Token Consumption. Figure 7 presents the token consumption under the 16-sample setting. This includes sampling performed solely by the target model or the draft model as baselines, as well as asynchronous sampling under both condition coverage and marginal coverage settings. Compared with the two baselines, our method can significantly reduce token consumption, especially under the condition coverage setting, as it enables budget prediction at the instance level.

4.5 OLYMPIADBENCH

We evaluate the results on the more challenging OlympiadBench (He et al., 2024) dataset as evidence of the robustness of our method. Under two of our settings (results shown in bold), we were even able to surpass the performance of the original target model’s sampling. Under conditional coverage, we achieved a more efficient allocation of computational resources compared to marginal coverage, resulting in improved test performance. Table 3 shows the results on the OlympiadBench dataset.

4.6 MULTI-TURN EVALUATION RESULTS

In this section, we evaluate the results on the AIME25 dataset under settings with more turns. Unlike the previous setting, we reduce the token budget per turn but increase the number of iterations,

486 Table 3: Results on the OlympiadBench benchmark. Each setting uses 16 samples and 15 turns,
 487 with $\alpha = 0.4$, 500-token budgets, and temperature 0.8.

Draft / Target Model	Draft Model	Target Model	Marginal Cov.	Conditional Cov.
DeepSeek-R1-Distill-Llama-8B / S1.1-32B	28	48	44	40
DeepSeek-R1-Distill-Qwen-1.5B / S1.1-32B	26	48	38	38
Llama-3.1-8B-Instruct / S1.1-32B	26	48	44	50
Qwen2.5-7B-Instruct / S1.1-32B	32	48	48	48
DeepSeek-R1-Distill-Llama-8B / QwQ-32B	28	46	38	40
DeepSeek-R1-Distill-Qwen-1.5B / QwQ-32B	26	46	38	40
Llama-3.1-8B-Instruct / QwQ-32B	26	46	48	48
Qwen2.5-7B-Instruct / QwQ-32B	32	46	50	46

498
 499 allowing the target model to generate more samples. The accuracy increases with the number of
 500 turns. Both marginal coverage and conditional coverage eventually converge to the same value. The
 501 results show that under a fixed sampling size budget, increasing the number of turns still does not
 502 break the performance upper bound.

503
 504 Table 4: Results on the AIME25 benchmark. Each setting uses 16 samples, with $\alpha = 0.4$, 400-token
 505 budgets, and temperature 0.8.

Draft / Target Model	Turn 2	Turn 4	Turn 8	Turn 12	Turn 16	Turn 20	Turn 24	Turn 28
<i>Marginal Coverage</i>								
DeepSeek-R1-Distill-Qwen-1.5B / S1.1-32B	0	13.33	33.33	33.33	46.67	60	60	60
Qwen2.5-7B-Instruct / S1.1-32B	13.33	33.33	40	40	40	40	40	40
<i>Conditional Coverage</i>								
DeepSeek-R1-Distill-Qwen-1.5B / S1.1-32B	6.67	26.67	40	46.67	46.67	53.33	60	60
Qwen2.5-7B-Instruct / S1.1-32B	20	26.67	26.67	40	40	40	40	40

515 4.7 ENGINEERING CONSIDERATIONS

516 Modern inference engines, such as SGLang, have the capability to handle requests asynchronously
 517 and can support streaming input. Their maximum number of concurrent verification requests is
 518 determined solely by the number of computing cores on the deployment server. However, a large
 519 number of concurrent requests significantly increases memory pressure, raising the risk of memory
 520 overflow errors in sclang. Therefore, after completing the prefill stage (i.e., verification), we priori-
 521 tize decoding tasks (target model sampling) for high-priority requests. Before transitioning from the
 522 prefill stage (target model verification) to the decoding stage (target model decoding), requests are
 523 sorted, which introduces a synchronization operation.

524 Our current scheduling strategy is implemented at the frontend. The frontend of SGLang is respon-
 525 sible for request scheduling mechanisms such as Prefill–Decode Disaggregation and prefix sharing.
 526 We argue that performing task scheduling for target model sampling in the rejection sampling pro-
 527 cess at the frontend minimizes intrusive modifications to the inference engine and helps maintain
 528 the performance of the existing foundational infrastructure.

531 5 CONCLUSION

532 We presented ATTS (Asynchronous test-time scaling), a framework that addresses the core ineffi-
 533 ciencies of test-time scaling in LLMs. By refining arithmetic intensity and introducing online cali-
 534 bration with a rejection sampling pipeline, ATTS effectively controls rejection rates while reducing
 535 latency and memory overhead. Experiments on multiple reasoning benchmarks confirm that ATTS
 536 achieves better efficiency and reliability than speculative baselines. This work establishes ATTS
 537 as a practical and principled approach for scalable test-time scaling, with potential extensions to
 538 dynamic adaptation and real-world deployment.

540 REFERENCES
541

542 Anastasios Angelopoulos, Stephen Bates, Jitendra Malik, and Michael I Jordan. Uncertainty sets
543 for image classifiers using conformal prediction. *arXiv preprint arXiv:2009.14193*, 2020.

544 Felipe Areces, Christopher Mohri, Tatsunori Hashimoto, and John Duchi. Online conformal predic-
545 tion via online optimization. In *Forty-second International Conference on Machine Learning*.

546

547 Art of Problem Solving. Aime problems and solutions. https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions. Accessed: 2025-09-07.

548

549 Stephen Bates, Emmanuel Candès, Lihua Lei, Yaniv Romano, and Matteo Sesia. Testing for outliers
550 with conformal p-values. *The Annals of Statistics*, 51(1):149–178, 2023.

551

552 Aadyot Bhatnagar, Huan Wang, Caiming Xiong, and Yu Bai. Improved online conformal prediction
553 via strongly adaptive online learning. In *International Conference on Machine Learning*, pp.
554 2337–2363. PMLR, 2023.

555

556 Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri
557 Dao. Medusa: Simple llm inference acceleration framework with multiple decoding heads. *arXiv
558 preprint arXiv:2401.10774*, 2024.

559

560 Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
561 Jumper. Accelerating large language model decoding with speculative sampling. *arXiv preprint
562 arXiv:2302.01318*, 2023.

563

564 Mouxiang Chen, Binyuan Hui, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Jianling Sun, Junyang Lin, and
565 Zhongxin Liu. Parallel scaling law for language models. *arXiv preprint arXiv:2505.10475*, 2025.

566

567 Alex Derhacobian, John Guibas, Linden Li, and Bharath Namboothiry. Adaptive prediction sets
568 with class conditional coverage.

569

570 Prasenjit Dey, Srujana Merugu, and Sivaramakrishnan R Kaveri. Conformal prediction sets for
571 ordinal classification. *Advances in Neural Information Processing Systems*, 36:879–899, 2023.

572

573 Tiffany Ding, Anastasios Angelopoulos, Stephen Bates, Michael Jordan, and Ryan J Tibshirani.
574 Class-conditional conformal prediction with many classes. *Advances in neural information pro-
575 cessing systems*, 36:64555–64576, 2023.

576

577 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
578 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
579 *arXiv e-prints*, pp. arXiv–2407, 2024.

580

581 In Gim, Seung-seob Lee, and Lin Zhong. Asynchronous llm function calling. *arXiv preprint
582 arXiv:2412.07017*, 2024.

583

584 Antonio A Ginart, Naveen Kodali, Jason Lee, Caiming Xiong, Silvio Savarese, and John Emmons.
585 Asynchronous tool usage for real-time agents. *arXiv preprint arXiv:2410.21620*, 2024.

586

587 Gonzalo Gonzalez-Pumariega, Leong Su Yean, Neha Sunkara, and Sanjiban Choudhury.
588 Robotouille: An asynchronous planning benchmark for llm agents. *arXiv preprint
589 arXiv:2502.05227*, 2025.

590

591 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
592 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
593 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

594

595 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Thai, Junhao Shen, Jinyi Hu, Xu Han,
596 Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for promoting
597 agi with olympiad-level bilingual multimodal scientific problems. In *Proceedings of the 62nd
598 Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
599 3828–3850, 2024.

594 Jujie He, Jiacai Liu, Chris Yuhao Liu, Rui Yan, Chaojie Wang, Peng Cheng, Xiaoyu Zhang,
 595 Fuxiang Zhang, Jiacheng Xu, Wei Shen, Siyuan Li, Liang Zeng, Tianwen Wei, Cheng Cheng,
 596 Bo An, Yang Liu, and Yahui Zhou. Skywork open reasoner 1 technical report. *arXiv preprint*
 597 *arXiv:2505.22312*, 2025.

598 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 599 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *NeurIPS*,
 600 2021.

601 Chengsong Huang, Langlin Huang, Jixuan Leng, Jiacheng Liu, and Jiaxin Huang. Efficient test-time
 602 scaling via self-calibration. *arXiv preprint arXiv:2503.00031*, 2025.

603 Jiaoguo Huang, Huajun Xi, Linjun Zhang, Huaxiu Yao, Yue Qiu, and Hongxin Wei. Conformal
 604 prediction for deep classifier via label ranking. *arXiv preprint arXiv:2310.06430*, 2023.

605 Ying Jin and Emmanuel J Candès. Selection by prediction with conformal p-values. *Journal of*
 606 *Machine Learning Research*, 24(244):1–41, 2023.

607 Sehoon Kim, Karttikeya Mangalam, Suhong Moon, Jitendra Malik, Michael W Mahoney, Amir
 608 Gholami, and Kurt Keutzer. Speculative decoding with big little decoder. *Advances in Neural*
 609 *Information Processing Systems*, 36:39236–39256, 2023.

610 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
 611 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 612 serving with pagedattention. In *Proceedings of the 29th symposium on operating systems principles*, pp. 611–626, 2023.

613 Jing Lei, Max G’Sell, Alessandro Rinaldo, Ryan J Tibshirani, and Larry Wasserman. Distribution-
 614 free predictive inference for regression. *Journal of the American Statistical Association*, 113
 615 (523):1094–1111, 2018.

616 Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
 617 decoding. In *International Conference on Machine Learning*, pp. 19274–19286. PMLR, 2023.

618 Dacheng Li, Shiyi Cao, Chengkun Cao, Xiuyu Li, Shangyin Tan, Kurt Keutzer, Jiarong Xing,
 619 Joseph E Gonzalez, and Ion Stoica. S*: Test time scaling for code generation. *arXiv preprint*
 620 *arXiv:2502.14382*, 2025.

621 Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: Speculative sampling requires
 622 rethinking feature uncertainty. *arXiv preprint arXiv:2401.15077*, 2024a.

623 Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle-2: Faster inference of language
 624 models with dynamic draft trees. *arXiv preprint arXiv:2406.16858*, 2024b.

625 math-ai. Amc23: Math reasoning dataset. <https://huggingface.co/datasets/math-ai/amc23>. Accessed: 2025-09-07.

626 R Thomas McCoy, Shunyu Yao, Dan Friedman, Mathew D Hardy, and Thomas L Griffiths. When
 627 a language model is optimized for reasoning, does it still show embers of autoregression? an
 628 analysis of openai o1. *arXiv preprint arXiv:2410.01792*, 2024.

629 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
 630 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
 631 scaling. *arXiv preprint arXiv:2501.19393*, 2025.

632 OpenAI. Learning to reason with llms, September 2024. URL <https://openai.com/index/learning-to-reason-with-llms/>.

633 OpenCompass. Aime 2025 dataset (aime i & ii). <https://huggingface.co/datasets/opencompass/AIME2025>. Accessed: 2025-09-07.

634 Jiayi Pan, Xiuyu Li, Long Lian, Charlie Snell, Yifei Zhou, Adam Yala, Trevor Darrell, Kurt Keutzer,
 635 and Alane Suhr. Learning adaptive parallel reasoning with language models. *arXiv preprint*
 636 *arXiv:2504.15466*, 2025a.

648 Rui Pan, Yinwei Dai, Zhihao Zhang, Gabriele Oliaro, Zhihao Jia, and Ravi Netravali. Specra-
 649 son: Fast and accurate inference-time compute via speculative reasoning. *arXiv preprint*
 650 *arXiv:2504.07891*, 2025b.

651

652 Yaniv Romano, Matteo Sesia, and Emmanuel Candes. Classification with valid and adaptive cover-
 653 age. *Advances in neural information processing systems*, 33:3581–3591, 2020.

654

655 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 656 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
 657 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

658

659 Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
 660 can be more effective than scaling model parameters. *arXiv preprint arXiv:2408.03314*, 2024.

661

662 Benjamin Spector and Chris Re. Accelerating llm inference with staged speculative decoding. *arXiv*
 663 *preprint arXiv:2308.04623*, 2023.

664

665 Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL <https://qwenlm.github.io/blog/qwen2.5/>.

666

667 Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL <https://qwenlm.github.io/blog/qwq-32b/>.

668

669 Vladimir Vovk, David Lindsay, Ilia Nouretdinov, and Alex Gammerman. Mondrian confidence
 670 machine. *Technical Report*, 2003.

671

672 Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. *Algorithmic learning in a random world*,
 673 volume 29. Springer, 2005.

674

675 Guangya Wan, Yuqi Wu, Jie Chen, and Sheng Li. Reasoning aware self-consistency: Leveraging
 676 reasoning paths for efficient llm sampling. *arXiv preprint arXiv:2408.17017*, 2024.

677

678 Xiaoning Wang, Yuyang Huo, Liuhua Peng, and Changliang Zou. Conformalized multiple testing
 679 after data-dependent selection. *Advances in Neural Information Processing Systems*, 37:58574–
 680 58609, 2024.

681

682 Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws:
 683 An empirical analysis of compute-optimal inference for problem-solving with language models.
 684 *arXiv preprint arXiv:2408.00724*, 2024.

685

686 Yunpeng Xu, Wenge Guo, and Zhi Wei. Conformal risk control for ordinal classification. In *Uncer-
 687 tainty in Artificial Intelligence*, pp. 2346–2355. PMLR, 2023.

688

689 Yuchen Yan, Yongliang Shen, Yang Liu, Jin Jiang, Mengdi Zhang, Jian Shao, and Yueling Zhuang.
 690 Inftythink: Breaking the length limits of long-context reasoning in large language models. *arXiv*
 691 *preprint arXiv:2503.06692*, 2025.

692

693 Wang Yang, Xiang Yue, Vipin Chaudhary, and Xiaotian Han. Speculative thinking: Enhanc-
 694 ing small-model reasoning with large model guidance at inference time. *arXiv preprint*
 695 *arXiv:2504.12329*, 2025.

696

697 Ming Yin, Minshuo Chen, Kaixuan Huang, and Mengdi Wang. A theoretical perspective for spec-
 698 ulative decoding algorithm. *Advances in Neural Information Processing Systems*, 37:128082–
 699 128117, 2024.

700

701 Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does re-
 702inforcement learning really incentivize reasoning capacity in llms beyond the base model? *arXiv*
 703 *preprint arXiv:2504.13837*, 2025.

704

705 Zhiyuan Zeng, Qinyuan Cheng, Zhangyue Yin, Yunhua Zhou, and Xipeng Qiu. Revisiting the
 706 test-time scaling of o1-like models: Do they truly possess test-time scaling capabilities? *arXiv*
 707 *preprint arXiv:2502.12215*, 2025.

702 Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Livia Sun, Jeff Huang, Cody Hao Yu, Shiyi
703 Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Sqlang: Efficient execution of
704 structured language model programs. *Advances in neural information processing systems*, 37:
705 62557–62583, 2024.

706 Dongsheng Zhu, Weixian Shi, Zhengliang Shi, Zhaochun Ren, Shuaiqiang Wang, Lingyong Yan,
707 and Dawei Yin. Divide-then-aggregate: An efficient tool learning method via parallel tool invo-
708 cation. *arXiv preprint arXiv:2501.12432*, 2025.

710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 **A APPENDIX**
757758 **A.1 THE USE OF LARGE LANGUAGE MODELS**
759760 In accordance with the ICLR policy on the use of large language models, we hereby declare that
761 LLMs were employed solely to assist in improving the grammar and enhancing the expression of this
762 paper. The original research idea, methodological development, and overall structure and content of
763 the manuscript were entirely conceived and written by the authors. At no stage was the use of LLMs
764 extended to the generation of core intellectual content, and we affirm that there has been no misuse of
765 LLMs in the preparation of this work.766 **A.2 RELATED WORK**
767768 **Test-time Scaling.** Recent works explore *test-time scaling*—the idea that increasing computation
769 during inference can be more effective than scaling model size (Snell et al., 2024; Wu et al., 2024).
770 A common strategy is *sequential scaling*, adopted in models like OpenAI 01 (OpenAI, 2024) and
771 DeepSeek R1 (Guo et al., 2025). Other approaches (Muennighoff et al., 2025; Yan et al., 2025) use
772 supervised fine-tuning to match a fixed compute budget. In parallel, *parallel scaling* (Chen et al.,
773 2025; Zeng et al., 2025; Pan et al., 2025a) improves throughput by distributing inference across
774 replicas or devices, offering latency gains but introducing challenges in memory overhead.775 **Speculative decoding** *Speculative decoding* (Li et al., 2024a; Leviathan et al., 2023; Kim et al.,
776 2023; Chen et al., 2023) is an emerging technique for accelerating LLM inference, which is tra-
777 ditionally limited by slow, sequential autoregressive sampling and memory bandwidth constraints.
778 There are three main strategies for sampling draft tokens: *token-level sampling* (Leviathan et al.,
779 2023; Kim et al., 2023; Chen et al., 2023), where the large model directly verifies the token outputs
780 of the draft model; *feature-level sampling* (Cai et al., 2024; Li et al., 2024a;b), which verifies gen-
781 eration paths using intermediate representations; and *step-level sampling* (Pan et al., 2025b; Yang
782 et al., 2025), which operates at a coarser granularity by validating multiple tokens or computation
783 steps together to improve throughput.784 **Asynchronous Tool Calling.** The synchronization issue in batch inference with tool calls (Zhu
785 et al., 2025) is a known obstacle to efficient reasoning. However, it remains underexplored in the
786 context of speculative decoding—particularly when large model inference is treated as a form of tool
787 call. In asynchronous scheduling, controlling the frequency of large model intervention is challeng-
788 ing due to synchronization overhead. Recent approaches (Ginart et al., 2024; Gonzalez-Pumariega
789 et al., 2025) employ event-driven finite-state machine architectures to manage asynchronous tool
790 calls more flexibly and efficiently.791 **Conformal Prediction.** To avoid synchronization and to accurately predict the request budget in
792 the scaling process, we introduce conformal prediction (Derhacobian et al.; Angelopoulos et al.,
793 2020; Huang et al., 2023) to provide a theoretical guarantee for the budget of times our target model
794 intervenes. The prediction set is then used to ensure that the large model’s interventions remain
795 consistent with the desired coverage and reliability, aligning with the validation process. How-
796 ever, these methods all require the model to perform a complete softmax operation (which requires
797 synchronization), and this becomes challenging in modern inference engines with asynchronous
798 scheduling mechanisms, thus conflicting with these methods. Some online conformal prediction
799 algorithms (Areces et al.; Bhatnagar et al., 2023) attempt to ensure the coverage of future data in the
800 context of online learning.801 **A.3 EXPERIMENTAL SETUP**
802803 We evaluate a diverse set of draft models, including DeepSeek-R1-Distill-Qwen-1.5B (Guo et al.,
804 2025), DeepSeek-R1-Distill-Llama-8B (Guo et al., 2025), Qwen2.5-7B-Instruct (Team, 2024),
805 Llama-3.1-8B (Dubey et al., 2024), s1.1-7B (Muennighoff et al., 2025), and Skywork-OR1-7B (He
806 et al., 2025). Each draft model is paired with one of the large target models: QwQ-32B (Team,
807 2025), s1.1-32B (Muennighoff et al., 2025), Qwen2.5-32B-Instruct (Team, 2024), DeepSeek-R1-
808 Distill-Qwen-32B (Guo et al., 2025), or Skywork-OR1-32B (He et al., 2025). We use SpecRea-

810 son (Pan et al., 2025b) and Speculative Thinking (Yang et al., 2025) as baselines for speculative
 811 decoding, with a maximum length of 8192. Both of them focus on acceleration under serial scaling.
 812

813 Our evaluation covers four reasoning benchmarks. We use 100 randomly sampled problems from
 814 MATH (Hendrycks et al., 2021) (denoted as MATH100) for grade-school arithmetic word problems,
 815 AIME24 (Art of Problem Solving) and AIME25 (OpenCompass) for high-school competition-level
 816 mathematics, and the first 50 problems from AMC23 (math-ai) for the American Mathematics Com-
 817 petitions. These datasets require multi-step reasoning and are particularly suitable for testing the
 818 effectiveness of asynchronous sampling with rejection. To ensure consistency, we set a token budget
 819 of 8192 across all settings and adopt deterministic decoding with temperature set to zero. We set the
 820 maximum number of turns to 10.
 821

822 Similar to prior work (Yue et al., 2025), the best@16 metric we calculate is intended to measure the
 823 upper bound of performance for both the method and the baseline model. Unless otherwise specified,
 824 the miscoverage parameter is set to $\alpha = 0.4$, ensuring that the prediction sets are constructed with
 825 statistical guarantees. We use SGLang (Zheng et al., 2024) version 0.4.3.post4 as the inference
 826 engine. The sampling temperature is set to 0.8. We set the target model’s per-turn token budget to
 827 $K_t = 500$ and the draft model’s per-turn token budget to $K_d = 500$.
 828

829 A.4 LARGE-SCALE ASYNCHRONOUS TEST-SCALING

830 In this section, we set the maximum number
 831 of test-time scaling turns of the model to 20,
 832 and then gradually increase the number of sam-
 833 ples per turn up to 128. We conduct compara-
 834 tive experiments under editing coverage, con-
 835 ditional coverage, as well as under the standard
 836 rejection sampling and our designed rejection
 837 sampling settings. We set the draft model to
 838 DeepSeek-R1-Distill-Qwen-1.5B, and the tar-
 839 get model to DeepSeek-R1-Distill-Llama-70B.
 840

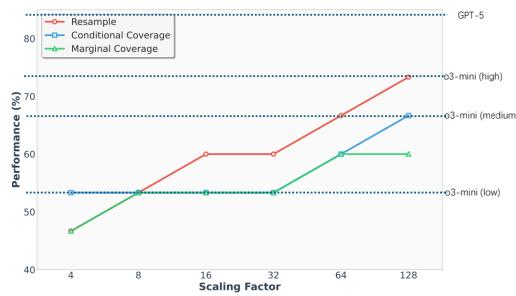
841 According to Figure 9, we can observe that as
 842 the number of samples increases, the per-
 843 formance of our model gradually improves. With 8 samples, our model reaches the performance of
 844 o3-mini(low); with 64 samples, it reaches the performance of o3-mini(medium); and with 128 sam-
 845 ples, it reaches the performance of o3-mini(high), which are closed-source reasoning models. Due to
 846 limited computational resources, we did not conduct experiments with larger-scale sampling, which
 847 results in still falling short of GPT-5 performance.
 848

849 **Continue Sampling.** In our experimental setup, we did not strictly adhere to the standard rejection
 850 sampling procedure (i.e., discarding the samples generated by the draft model and resampling with
 851 the target model) when performing scaling. Instead, under the continue sampling setting, if a sample
 852 produced by the draft model is included in the prediction set of the current turn, the target model
 853 subsequently continues the sampling in the following turn conditioned on this sampled result. Ac-
 854 cording to Figure 9, both our conditional coverage and editing coverage adopt the continue-sampling
 855 scheme. The conditional coverage demonstrates relatively high sampling efficiency, reaching the
 856 level of o3-mini-medium under the 128-sample setting.
 857

858 **Resampling.** We also conducted experiments that scale the number of samples under the standard
 859 rejection sampling setting. In this setting, at each scaling turn, if the draft model’s sample is included
 860 in the prediction set for the current turn, then within the same turn the target model draws a prediction
 861 set whose size matches that of the current prediction set. As indicated by the red curve in Figure 9,
 862 this scheme exhibits substantially higher sampling efficiency than the alternatives; however, for the
 863 same nominal number of samples it consumes more tokens (since part of the draft model’s tokens
 864 are discarded). Under the 128-sample setting, it achieves performance comparable to o3-mini-high.
 865

866 A.5 ABLATION STUDY

867 In this section, we present the ablation experiments on the hyperparameter α . As shown in Figure 10,
 868 as the hyperparameter α increases, the overall accuracy and time overhead of the system both rise.
 869



870 Figure 9: Accuracy improvement with increasing
 871 sample size on AIME 2025.
 872

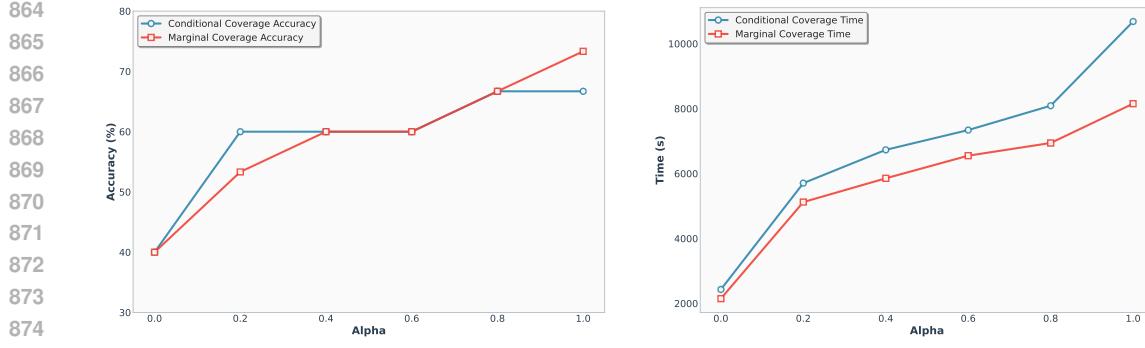


Figure 10: Ablation study on the hyperparameter α using the DeepSeek-Qwen -1.5B and QwQ-32B models on the AIME2025 dataset.

This reflects that the intervention of the target model increases both accuracy and time overhead. However, we can find a balance between accuracy and time overhead, such as when α is 0.2, where the condition coverage setting achieves 60% accuracy with relatively low time overhead. When α is 0.4, both the marginal coverage and condition coverage settings reach 60% accuracy, making it a more robust hyperparameter setting.

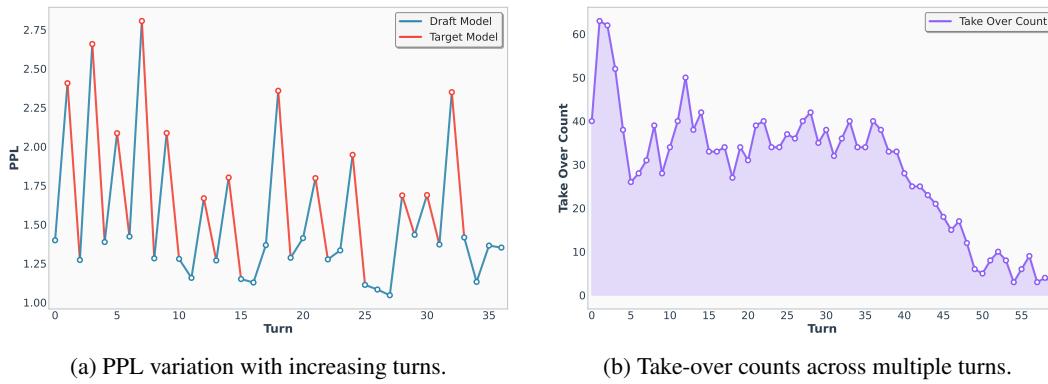


Figure 11: Analysis of model behavior in multi-turn interactions. The left subfigure shows how the Perplexity (PPL) of draft and target models evolves as the number of turns increases, while the right subfigure presents the take-over counts across turns.

A.6 CONTROLLING THE REJECTION RATE IN MULTI-TURN INTERACTIONS

In this section, we study the variation of model perplexity with sequential scaling and the change in the number of take-overs by the large model during rejection sampling. This directly reflects whether the conformal prediction algorithm we adopt can control the intervention rate of the target model within an acceptable range. i): According to Figure 11a, each generation by the draft model leads to an increase in the overall PPL, while the intervention of the target model effectively mitigates this trend. As the number of turns increases, the PPL of the scaling process can be gradually reduced, which indirectly results in a decrease in the rejection rate. ii): Meanwhile, in Figure 11b, we directly visualize the change in the number of take-overs by the target model as the number of interaction turns increases. We observe that with sequential scaling, the target model overall maintains a rejection rate around a fixed level, which gradually decreases and eventually approaches zero. iii): The target model continuously adjusts the convergence behavior of the draft model's perplexity during sequential scaling.

918 A.7 DEFINITION AND PROOF
919

920 **Proposition 1.** Suppose that $\{(X_i, Y_i)\}_{i=1}^n$ are exchangeable random variables from the test
921 dataset, and $\xi \sim \text{Uniform}\{1, 2, \dots, n\}$ represents randomly sampling one data point from the test
922 dataset, where k denotes the k -th sample of that data point, then the marginal conformal p -values
923 defined as,

$$924 \quad p_\xi^k = \frac{\sum_{i=1}^n \sum_{j=1}^m \mathbf{1}(s_\xi^k \leq s_i^j) + 1}{925 \quad nm + 1} \quad (17)$$

926 is valid in the sense that for the miscoverage rate $\alpha \in (0, 1)$, we have
927

$$928 \quad \mathbb{P}(p_\xi^k \leq \alpha) \leq \alpha. \quad (18)$$

930 Moreover, if the conformity scores $\{s_i^j\}_{i=1, j=1}^{n, m}$ are distinct surely, we have,
931

$$932 \quad p_\xi^k \sim U \left\{ \frac{1}{nm + 1}, \frac{2}{nm + 1}, \dots, 1 \right\}. \quad (19)$$

935 *Proof of Proposition 1.* Suppose, for any given values of conformity scores, v_1, \dots, v_{nm+1} , they
936 can be rearranged as $\tilde{v}_1 < \dots < \tilde{v}_\ell$ with repetitions n_i of \tilde{v}_i such that $\sum_{i=1}^\ell n_i = nm + 1$. Let E_v
937 denote the event of $\{s_1^1, s_1^2, \dots, s_n^m, s_\xi^k\} = \{v_1, \dots, v_{nm+1}\}$.
938

939 Then, under E_v , for $i = 1, \dots, \ell$, we have

$$940 \quad \mathbb{P}(s_\xi^k = \tilde{v}_i \mid E_v) = \frac{n_i}{nm + 1}, \quad (20)$$

942 due to the exchangeability of conformity scores.
943

944 We also note that under E_v and $s_\xi^k = \tilde{v}_i$ we have from Equation equation 17,

$$946 \quad p_\xi^k = \frac{\sum_{l=1}^i n_l}{nm + 1}. \quad (21)$$

948 Then, for any $\alpha \in [0, 1]$ and $i = 1, \dots, \ell$, we have

$$951 \quad \mathbb{P}(p_\xi^k \leq \alpha \mid E_v, s_\xi^k = \tilde{v}_i) = \begin{cases} 0 & \text{if } \alpha < \frac{\sum_{l=1}^i n_l}{nm + 1}, \\ 1 & \text{otherwise.} \end{cases} \quad (22)$$

954 Thus, for any $i = 1, \dots, \ell$ and $\frac{\sum_{l=1}^{i-1} n_l}{nm + 1} \leq \alpha < \frac{\sum_{l=1}^i n_l}{nm + 1}$, we have
955

$$957 \quad \mathbb{P}(p_\xi^k \leq \alpha \mid E_v) = \sum_{l=1}^\ell \mathbb{P}(p_\xi^k \leq \alpha \mid E_v, s_\xi^k = \tilde{v}_l) \cdot \mathbb{P}(s_\xi^k = \tilde{v}_l \mid E_v) \quad (23)$$

$$960 \quad = \frac{\sum_{l=1}^{i-1} n_l}{nm + 1} \leq \alpha. \quad (24)$$

962 By taking the expectation over the above inequality, it follows that the conformal p -value p_ξ^k is
963 marginally valid.
964

965 Specifically, if conformity scores $\{s_i^j\}_{i=1, j=1}^{n, m} \cup \{s_\xi^k\}$ are distinct surely, then $\ell = nm + 1$ and $n_i = 1$
966 for $i = 1, \dots, nm + 1$. Thus,
967

$$968 \quad \mathbb{P}(p_\xi^k \leq \alpha \mid E_v) = \frac{i-1}{nm + 1}, \quad \text{if } \frac{i-1}{nm + 1} \leq \alpha < \frac{i}{nm + 1}, \quad (25)$$

970 that is, $p_\xi^k \mid E_v \sim U \left\{ \frac{1}{nm + 1}, \frac{2}{nm + 1}, \dots, 1 \right\}$. This completes the proof. Next, we address the
971 theoretical part that guarantees conditional coverage. \square

972 **Proposition 2.** Suppose that $\{(X_i, Y_i)\}_{i=1}^n$ are exchangeable random variables from the test
973 dataset, then for any sample $y \in \mathcal{Y}$, given a conditioning set $\mathcal{I}_y \subseteq \{0, \dots, m-1\}$ for each X_i
974 constructed based on the specific sample y for a test input x and $Y_\xi = y$, the corresponding conditional
975 conformal p -value as defined in Equation equation 17, is conditionally valid in the sense that
976 for any $\alpha \in [0, 1]$,

$$977 \quad \mathbb{P}(p_\xi^k \leq \alpha \mid \mathcal{I}_y, Y_\xi = y) \leq \alpha. \quad (26)$$

978 Moreover, if $\{s_i^j\}_{j \in \mathcal{I}_y, i=1, \dots, n}$ are distinct surely, we have that conditional on \mathcal{I}_y and $Y_\xi = y$,

$$980 \quad p_\xi^k \sim U \left\{ \frac{1}{m+1}, \frac{2}{m+1}, \dots, 1 \right\}, \quad (27)$$

982 where $m = |\mathcal{I}_y|$ is the size of the conditioning set for output y .

984 *Proof.* For any given sample $y \in \mathcal{Y}$, the corresponding conditional conformal p -value is given by

$$986 \quad p_\xi^k = \frac{1}{m+1} \left(\sum_{i=1}^n \sum_{j \in \mathcal{I}_y} \mathbf{1}\{s_i^j \leq s_\xi^k\} + 1 \right), \quad (28)$$

990 where $\mathcal{I}_y \subseteq \{0, \dots, m-1\}$ is the conditioning set for sample y , $m = |\mathcal{I}_y|$, s_i^j represents the
991 conformity score for the j -th candidate of the i -th test instance, and s_ξ^k is the conformity score for
992 the k -th candidate of the new test instance.

993 Given \mathcal{I}_y and $Y_\xi = y$, the conformity scores $\{s_i^j\}_{j \in \mathcal{I}_y, i=1, \dots, n} \cup \{s_\xi^k\}$ are exchangeably distributed,
994 which follows from the assumption that $\{(X_i, Y_i)\}_{i=1}^n$ are exchangeably distributed and the construction
995 of candidate outputs.

996 Using similar arguments as in the proof of Proposition 1, for any given values of conformity scores
997 v_1, \dots, v_{nm+1} , suppose that they can be arranged as $\tilde{v}_1 < \dots < \tilde{v}_\ell$ with repetitions m_i of \tilde{v}_i such
998 that $\sum_{i=1}^\ell m_i = nm + 1$. Let E_v denote the event $\{s_i^j\}_{j \in \mathcal{I}_y, i=1, \dots, n} \cup \{s_\xi^k\} = \{v_1, \dots, v_{nm+1}\}$.

1000 Then, given E_v , \mathcal{I}_y , and $Y_\xi = y$, we have

$$1001 \quad \mathbb{P}(s_\xi^k = \tilde{v}_i \mid E_v, \mathcal{I}_y, Y_\xi = y) = \frac{m_i}{nm+1} \quad (29)$$

1003 for $i = 1, \dots, \ell$, due to exchangeability of the conformity scores.

1005 Note that given E_v , \mathcal{I}_y , $Y_\xi = y$, and $s_\xi^k = \tilde{v}_i$, we have from Equation equation 28,

$$1007 \quad p_\xi^k = \frac{\sum_{j=1}^i m_j}{nm+1}. \quad (30)$$

1010 Thus, for any $\alpha \in [0, 1]$ and $i = 1, \dots, \ell$,

$$1012 \quad \mathbb{P}(p_\xi^k \leq \alpha \mid E_v, \mathcal{I}_y, Y_\xi = y, s_\xi^k = \tilde{v}_i) = \begin{cases} 0 & \text{if } \alpha < \frac{\sum_{j=1}^i m_j}{nm+1}, \\ 1 & \text{otherwise.} \end{cases} \quad (31)$$

1015 Then, for any given $i = 1, \dots, \ell$ and $\frac{\sum_{j=1}^{i-1} m_j}{nm+1} \leq \alpha < \frac{\sum_{j=1}^i m_j}{nm+1}$, we have

$$1017 \quad \mathbb{P}(p_\xi^k \leq \alpha \mid E_v, \mathcal{I}_y, Y_\xi = y) \quad (32)$$

$$1019 \quad = \sum_{j=1}^{\ell} \mathbb{P}(p_\xi^k \leq \alpha \mid E_v, \mathcal{I}_y, Y_\xi = y, s_\xi^k = \tilde{v}_j) \cdot \mathbb{P}(s_\xi^k = \tilde{v}_j \mid E_v, \mathcal{I}_y, Y_\xi = y) \quad (33)$$

$$1022 \quad = \frac{\sum_{j=1}^{i-1} m_j}{nm+1} \leq \alpha. \quad (34)$$

1024 By taking expectation, it follows that p_ξ^k is conditionally valid given $Y_\xi = y$. This completes the
1025 proof. \square

1026 **Discussion.** After proving the validity of individual conformal p-values, in order to obtain the
 1027 rejection rate for the entire test set, that is, to ensure that the overall error rate is controlled when
 1028 simultaneously testing K hypotheses, we propose the following Proposition.

1029 **Proposition 3.** Suppose that $\{(X_i, Y_i)\}_{i=1}^n$ are exchangeable random variables, and let $\xi \sim$
 1030 $\text{Uniform}\{1, 2, \dots, n\}$ represent a randomly selected test instance, then A1 based on marginal con-
 1031 formal p-values all provide simultaneous coverage guarantees across the entire test dataset at level
 1032 $1 - \alpha$, i.e.,

$$\mathbb{P}(\forall i \in \{1, \dots, n\} : Y_i \in \mathcal{C}(X_i)) \geq 1 - \alpha. \quad (35)$$

1033 Specifically, if the conformity scores $\{s_i^j\}_{i=1, j=1}^{n, m}$ are distinct surely, then for A1, we also have,

$$\mathbb{P}(\forall i \in \{1, \dots, n\} : Y_i \in \mathcal{C}(X_i)) \geq 1 - \alpha + \frac{1}{(n-1)m+1}. \quad (36)$$

1038 *Proof of Proposition 3.* Consider A1 based on marginal conformal p -values. Note that among the
 1039 tested hypotheses H_1, \dots, H_m , there is exactly one hypothesis H_{Y_ξ} to be true. Thus, the probability
 1040 that all samples are correctly covered by A1 satisfies:

$$\mathbb{P}(\forall i \in \{1, \dots, n\} : Y_i \in \mathcal{C}(X_i)) = \mathbb{P}(\text{accept } H_{Y_\xi}) \quad (37)$$

$$= 1 - \mathbb{P}(\text{reject } H_{Y_\xi}) \quad (38)$$

$$\geq 1 - \mathbb{P}(p_\xi^{Y_\xi} \leq \alpha) \quad (39)$$

$$\geq 1 - \alpha, \quad (40)$$

1047 where the last inequality follows by Proposition 1. □

1049 Specifically, for A1, if the conformity scores $\{s_i^j\}_{i=1, j=1}^{n, m}$ are distinct surely, by Proposition 1, we
 1050 have

$$\mathbb{P}(\forall i \in \{1, \dots, n\} : Y_i \in \mathcal{C}(X_i)) = \mathbb{P}(\text{accept } H_{Y_\xi}) \quad (41)$$

$$= 1 - \mathbb{P}(p_\xi^{Y_\xi} \leq \alpha) \quad (42)$$

$$\geq 1 - \left(\alpha - \frac{1}{(n-1)m+1} \right) \quad (43)$$

$$= 1 - \alpha + \frac{1}{(n-1)m+1}, \quad (44)$$

1058 which gives the desired result. □

1060 **Theorem 1.** Suppose that $\{(X_i, Y_i)\}_{i=1}^n$ are exchangeable random variables, and let $\xi \sim$
 1061 $\text{Uniform}\{1, 2, \dots, n\}$ represent a randomly selected test instance, then the prediction set $\mathcal{C}(X_\xi) =$
 1062 $\{\hat{Y}_\xi^k \mid p_\xi^k > \alpha\}$ determined by A1 both satisfy

$$\mathbb{P}(Y_\xi \in \mathcal{C}(X_\xi)) \geq 1 - \alpha. \quad (45)$$

1066 *Proof.* Note that the prediction set is given by $\mathcal{C}(X_\xi) = A_1 \cap A_2$. Thus, by Proposition 1,

$$\mathbb{P}(Y_\xi \in \mathcal{C}(X_\xi)) \geq \mathbb{P}(p_\xi^{Y_\xi} > \alpha) \geq 1 - \alpha. \quad (46)$$

1069 Similarly, its prediction set is given by

$$\mathcal{C}(X_\xi) = \{y \in \mathcal{Y} : p_\xi^y > \alpha\}. \quad (47)$$

1072 By Proposition 1, it is easy to check that

$$\mathbb{P}(Y_\xi \in \mathcal{C}(X_\xi)) = \mathbb{P}(p_\xi^{Y_\xi} > \alpha) \geq 1 - \alpha. \quad (48)$$

1076 Specifically, if the conformity scores $\{s_i^j\}_{i=1, j=1}^{n, m}$ are distinct surely, we have

$$\mathbb{P}(Y_\xi \in \mathcal{C}(X_\xi)) = 1 - \mathbb{P}(p_\xi^{Y_\xi} \leq \alpha) \leq 1 - \alpha + \frac{1}{(n-1)m+1}. \quad (49)$$

1079 This completes the proof. □

1080 **Discussion.** Now that we have completed the proof of marginal coverage, we proceed to prove the
 1081 conditional coverage for the entire test dataset. Under the exchangeability assumption, we have:
 1082

1083 **Proposition 4.** *Under the same exchangeability assumption as in Proposition 2, A1 based on condi-
 1084 tional conformal p -values p_ξ^k all provide conditional coverage guarantees for the entire test dataset
 1085 at level $1 - \alpha$, i.e., for any $y \in \mathcal{Y}$,*

$$1086 \mathbb{P}(\forall i \in \{1, \dots, n\} : Y_i \in \mathcal{C}(X_i) \mid Y_\xi = y) \geq 1 - \alpha. \quad (50)$$

1087 Specifically, if the conformity scores $\{s_i^j\}_{j \in \mathcal{I}_y, i=1, \dots, n}$ are distinct surely, then for A1 based on p_ξ^k ,
 1088 we have that for any $y \in \mathcal{Y}$ and $\mathcal{I}_y \subseteq \{0, \dots, m-1\}$,
 1089

$$1090 \mathbb{P}(\forall i \in \{1, \dots, n\} : Y_i \in \mathcal{C}(X_i) \mid Y_\xi = y, \mathcal{I}_y) \geq 1 - \alpha + \frac{1}{(n-1)|\mathcal{I}_y| + 1}. \quad (51)$$

1092 *Proof.* Consider Procedure 1-3 based on conditional conformal p -values. For any $y \in \mathcal{Y}$, given
 1093 $Y_\xi = y$, the conditional coverage probability for the entire test dataset satisfies:
 1094

$$1095 \mathbb{P}(\forall i \in \{1, \dots, n\} : Y_i \in \mathcal{C}(X_i) \mid Y_\xi = y) = 1 - \mathbb{P}(\text{reject } H_y \mid Y_\xi = y) \quad (52)$$

$$1096 \geq 1 - \mathbb{P}(p_\xi^y \leq \alpha \mid Y_\xi = y) \quad (53)$$

$$1097 \geq 1 - \alpha, \quad (54)$$

1099 where the inequalities follow from the definitions of Procedure 1-3 and Proposition 2.
 1100

1101 Specifically, for Procedure 3, if the conformity scores $\{s_i^j\}_{j \in \mathcal{I}_y, i=1, \dots, n}$ are distinct surely, then by
 1102 Proposition 2, the coverage probability conditional on \mathcal{I}_y and $Y_\xi = y$ satisfies:
 1103

$$1103 \mathbb{P}(\forall i \in \{1, \dots, n\} : Y_i \in \mathcal{C}(X_i) \mid \mathcal{I}_y, Y_\xi = y) = 1 - \mathbb{P}(\text{reject } H_y \mid \mathcal{I}_y, Y_\xi = y) \quad (55)$$

$$1104 = 1 - \mathbb{P}(p_\xi^y \leq \alpha \mid \mathcal{I}_y, Y_\xi = y) \quad (56)$$

$$1105 \geq 1 - \left(\alpha - \frac{1}{(n-1)|\mathcal{I}_y| + 1} \right) \quad (57)$$

$$1106 = 1 - \alpha + \frac{1}{(n-1)|\mathcal{I}_y| + 1}. \quad (58)$$

1109 This completes the proof. \square
 1110

1112 **Theorem 2.** *Under the same exchangeability assumption as in Theorem 1, the prediction set $\mathcal{C}(X_\xi \mid$
 1113 $y)$ based on conditional conformal p -values p_ξ^k satisfies*

$$1114 \mathbb{P}(Y_\xi \in \mathcal{C}(X_\xi \mid y) \mid Y_\xi = y) \geq 1 - \alpha \quad (59)$$

1116 for any $y \in \mathcal{Y}$. Specifically, for the prediction set $\mathcal{C}(X_\xi \mid y)$ based on p_ξ^k , if the conformity scores
 1117 $\{s_i^j\}_{j \in \mathcal{I}_y, i=1, \dots, n}$ are distinct surely, we have
 1118

$$1119 \mathbb{P}(Y_\xi \in \mathcal{C}(X_\xi \mid y) \mid Y_\xi = y, \mathcal{I}_y) \leq 1 - \alpha + \frac{1}{(n-1)|\mathcal{I}_y| + 1} \quad (60)$$

1121 for any $y \in \mathcal{Y}$ and $\mathcal{I}_y \subseteq \{0, \dots, m-1\}$.
 1122

1123 *Proof.* By using Proposition 4 and similar arguments as in the proof of Theorem 1, the prediction
 1124 sets $\mathcal{C}(X_\xi \mid y)$ based on the conditional conformal p -values p_ξ^k all satisfy:
 1125

$$1126 \mathbb{P}(Y_\xi \in \mathcal{C}(X_\xi \mid y) \mid \mathcal{I}_y, Y_\xi = y) \geq 1 - \alpha \quad (61)$$

1127 for any $y \in \mathcal{Y}$.
 1128

1129 Specifically, if the conformity scores $\{s_i^j\}_{j \in \mathcal{I}_y, i=1, \dots, n}$ are distinct surely, we have:
 1130

$$1130 \mathbb{P}(Y_\xi \in \mathcal{C}(X_\xi \mid y) \mid \mathcal{I}_y, Y_\xi = y) = \mathbb{P}(p_\xi^y > \alpha \mid \mathcal{I}_y, Y_\xi = y) \quad (62)$$

$$1131 \leq 1 - \alpha + \frac{1}{(n-1)|\mathcal{I}_y| + 1}, \quad (63)$$

1133 which gives the desired result. \square

1134 A.8 PROMPT

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

Completion Question: Please answer the following problem using step-by-step reasoning. Please separate your reasoning steps with two newline characters (\n \n). Please must put your final answer within \boxed{ }.

Question: {question}

Multiple Choice Question: This is a multiple-choice question. Please answer the following problem using step-by-step reasoning. Separate each reasoning step with two newline characters (\n \n). You must put your final answer within \boxed{ }, such as \boxed{{A}}, \boxed{{B}}, \boxed{{C}}, or \boxed{{D}}. No other formats are allowed.

Question: {question}

Choices: A. {choice[1]} B. {choice[2]} C. {choice[3]} D. {choice[4]}