
Published as a workshop paper at ICLR 2025 MLMP

COMPUTE-ADAPTIVE SURROGATE MODELING OF PAR-
TIAL DIFFERENTIAL EQUATIONS

Payel Mukhopadhyay1,2,4, Michael McCabe1,3, Ruben Ohana1,3, Miles Cranmer1,4
1Polymathic AI
2University of California, Berkeley
3Flatiron Institute
4University of Cambridge
pmukho@berkeley.edu

ABSTRACT
Modeling dynamical systems governed by partial differential equations presents
significant challenges for machine learning-based surrogate models. While trans-
formers have shown potential in capturing complex spatial dynamics, their reliance
on fixed-size patches limits flexibility and scalability. In this work, we introduce
two convolutional encoder and decoder architectural blocks—Convolutional Ker-
nel Modulator (CKM) and Convolutional Stride Modulator (CSM)—designed for
patch embedding and reconstruction in autoregressive prediction tasks. These
blocks unlock dynamic patching and striding strategies to balance accuracy and
computational efficiency during inference. Furthermore, we propose a rollout
strategy that adaptively adjusts patching and striding configurations throughout
temporally sequential predictions, mitigating patch artifacts and long-term error
accumulation while improving the capture of fine-scale structures. We show that
our approaches enable dynamic control over patch sizes at inference time without
losing accuracy over fixed patch baselines.

1 INTRODUCTION

Numerical methods remain the gold standard for simulating partial differential equations (PDEs),
offering convergence guarantees and resolution-adaptive accuracy-compute trade-offs (Morton &
Mayers, 2005; Malalasekera, 2007). However, resolution choices are constrained by physical necessity
and available compute (Berger & Colella, 1989; Wedi, 2014). Deep learning, and recently the class of
models known as “vision transformers”, has emerged as a powerful strategy for surrogate modeling
of PDEs (Cao, 2021b; Li et al., 2023; McCabe et al., 2024; Herde et al., 2024). Often originating
from computer vision methods, Vision Transformers (ViTs) (Dosovitskiy et al., 2020) segment
discretized fields into distinct, non-overlapping patches, or tokens, serving as transformer inputs.
This downsampling operation is necessary due to self-attention complexity scaling quadratically
with token count. While initial training costs are expensive, the overall cost can be amortized across
inference tasks such as forecasting (Bi et al., 2023), PDE-constrained optimization (Li et al., 2022),
and parameter inference (Cranmer et al., 2020; Lemos et al., 2023).
However, static tokenization, as typically done in PDE surrogate models based on ViTs, limits
adaptability in applications where downstream users must balance accuracy and compute. Patch size
determines both accuracy and cost: smaller patches improve resolution but significantly increase
compute demands (Fig. 3, 2). Fixed-patch models require separate training for different resolutions,
creating an increasing burden as model scales grow. Additionally, fixed patching empirically has been
shown to introduce visible artifacts during extended rollouts, where predictions recursively serve as
inputs for future steps. As shown in Fig. 2, these artifacts appear spatially and as harmonic spikes in
the power spectrum, degrading long-term prediction quality in vision transformer-based surrogates.
To address these concerns, we introduce Controllable Resolution Transformers, allowing for inference-
time adaptation. To do this, we develop two strategies: Convolutional Kernel Modulation (CKM),
which utilizes the patch-resizing of FlexiViT (Beyer et al., 2023) in both the encoder and decoder,
and Convolutional Stride Modulation (CSM), which maintains a fixed convolutional kernel while
modulating stride to control compression (Fig. 1). These controllable resolution transformers have an
encoder–processor–decoder (Sanchez-Gonzalez et al., 2020) architecture. The encoder and decoder
are responsible for embedding and de-embedding of the extracted patches, and the processor is based
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Figure 1: Overview of CKM and CSM approaches for adaptive patching in ViT-based PDE surrogates.
Here, k and s denote convolutional kernel size and stride, which control downsampling. During
inference, kernel or stride alternates cyclically between 4, 8, and 16 at each timestep of the rollout.

on a ViT architecture adapted to spatio-temporal datasets (See App. B.2). CKM and CSM represent
two different ways of adjusting both the encoder and the decoder to enable inference time scaling.

Contributions. Our primary contribution in this paper is to demonstrate an adaptive patching
technique that can greatly benefit transformer-based surrogate models for spatio-temporal dynamics.
Using two different adaptive tokenization techniques, we show that these methods enable controllable
compute-accuracy trade-offs at inference, outperform fixed patch-based transformers, and improve
rollout quality for transformer-based surrogate models. Our contributions are summarized below:

1. Controllable Tokenization: We introduce CKM and CSM for adaptive tokenization,
allowing test-time control over compute-accuracy trade-offs.

2. Patch Artifact Reduction: We propose a new rollout strategy alternating between different
patch sizes to mitigate artifacts (Fig. 2), significantly improving rollout predictions.

3. Numerical Experiments: We evaluate CKM and CSM on 2D and 3D physics datasets from
The Well collection (Ohana et al., 2024), demonstrating improved accuracy and efficiency
over fixed-patch models. See App. B.1 for dataset specifics.

2 BACKGROUND AND RELATED WORK

Notations. We solve an autoregressive next-step prediction problem for a system S that evolves
in space and time. Given past states VS

t , the goal is to learn a model F that predicts the next
state F(VS

t ) ≈ vS
t+∆tS

, analogous to video prediction. We define CKM/CSM as models using
convolutional kernel/stride modulation in their encoder–decoder blocks. We emphasize again that
both CKM and CSM form the encoder–decoder blocks of an encoder–processor–decoder architecture

Figure 2: Left: Residual power spectrum of the density field at the 20th rollout step for CKM, CSM,
and fixed patch 16 (P16) on the turbulent radiative layer 2D dataset, taken from (Ohana
et al., 2024). See App. B.1 for dataset specifics. Harmonic spikes indicate patch-induced artifacts,
significantly reduced in CKM and CSM. Right: Prediction at rollout step 20, where CKM and CSM
mitigate visible patching effects in fixed patch 16 model.
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(See App. B.2). We will refer to the general class of models that allow controllable resolution at
inference to be compute-elastic models.
Deep learning for PDE surrogate modeling. Several approaches leverage deep learning for PDE
modeling, each with unique merits. Physics-informed neural networks (PINNs) (Raissi et al., 2019;
Karniadakis et al., 2021; Hao et al., 2023) learn the solution directly, by embedding governing
equations into the loss function, encouraging strict adherence to physics. CNNs and graph-based
models (Brandstetter et al., 2022; Li & Farimani, 2022; Lam et al., 2022; Pfaff et al., 2021) enable
learning on complex meshes. Neural operators (Li et al., 2020; Lu et al., 2019; Kovachki et al., 2021;
Jin et al., 2022) approximate solution operators independently of resolution.
ViTs and compute-adaptive models for PDEs. ViTs (Dosovitskiy et al., 2020) are increasingly
used in PDE surrogate modeling (Cao, 2021a; Li et al., 2023; Liu et al., 2023) but traditionally rely
on fixed patch sizes, limiting flexibility and scalability. FlexiViT (Beyer et al., 2023) introduced
adaptive patching to dynamically adjust resolution based on compute constraints, a concept explored
in computer vision but largely absent in PDE modeling. Another important work in this area, (Zhang
et al., 2024), adapts patchification based on data, compared to our approach, which provides direct
control over compute requirements.

3 FLEXIBLE ENCODER & DECODER FRAMEWORKS

Transformer architecture. As mentioned before, both CKM and CSM represent two different
methods of adjusting the encoder–decoder blocks of a ViT based architecture to enable inference
time scaling. The transformer processor consists of spatio-temporal blocks performing temporal
self-attention, spatial self-attention, and an MLP sequentially (see App. B.2 for details). Note that the
both CSM and CSM patching strategies can be used with any convolution based encoder–decoder
framework.
Advantages of compute-elastic models. Increasing the number of tokens, equivalent to using
smaller patches, improves accuracy but increases compute cost (Fig. 3). Fixed-patch models lack
inference-time scalability and introduce artifacts during long rollouts (Fig. 2), motivating compute-
elastic models for ViT-based PDE modeling. Scalability is crucial for transformer-based surrogates,
which benefit from parameter scaling (Zhai et al., 2022; Hoffmann et al., 2022). Instead of training
separate fixed-patch models, compute-elastic architectures offer a single adaptable model, provided
they match or surpass fixed-patch performance across all token counts at inference. We also assess
whether variable-token training improves rollouts over static patch models. If these benefits hold,
compute-elastic models will be critical for large-scale ViT PDE surrogates.
Patching. ViTs segment an input x ∈ Rh×w×c into patches xi ∈ Rp×p×c, where h, w, c and p
denote the height, width, number of channels and patch size respectively. Convolutional patching
extracts patches via a kernel-stride pair (k, s), determining token count:

Nh =

⌊
h− k

s

⌋
+ 1, Nw =

⌊
w − k

s

⌋
+ 1. (1)

where Nh and Nw are the number of patches along the height and width. The total number of patches,
or tokens is N = Nh · Nw. In standard ViTs, k = s, but this is not necessary. Adjusting k and s,
allows control over patch size and consequently, the token count.
Convolutional Kernel Modulator (CKM). CKM dynamically adjusts convolutional kernel size, k,
at each forward pass, allowing models to operate at downsampling and upsampling resolutions of 4, 8,
or 16 pixels. Each forward pass randomly samples a kernel from {4, 8, 16} for downsampling in the
encoder. The kernel weight matrix of the base architecture is projected onto the sampled kernel size
using PI–resize transformation (Beyer et al., 2023), denoted by BT†. This transformation, denoted by
BT†, uses an interpolation matrix B —bicubic for 2D and trilinear for 3D—to resize input patches
while preserving the effects of the original convolution. By solving a least-squares optimization
problem, PI–resize ensures minimal discrepancy between features extracted at different patch sizes
(see App. A for details). The CKM encoder encodes non-overlapping tokens which gets processed by
transformer blocks before reconstruction by the CKM decoder. Unlike FlexiViT (Beyer et al., 2023),
CKM includes both an encoder and decoder for staged downsampling and upsampling, essential for
autoregressive forecasting. See App. C.1 for algorithm.
Convolutional Stride Modulator (CSM). In CSM, the kernel size, k is kept fixed, and the stride,
s is randomly adjusted at each forward pass to control downsampling and upsampling. With a fixed
kernel and a randomly selected stride, the encoder generates an overlapping set of tokens. One
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Figure 3: Comparison of next step test VRMSE as a function of the number of tokens at inference for
convolutional kernel modulation models (CKM), convolutional stride modulation models (CSM), and
individually trained fixed patch models (25M and 100M parameters) for the shear flow dataset.

# Tokens
25M VRMSE 100M VRMSE CNextU-net

(20M) (Ohana et al., 2024)
CKM CSM Fixed p.s. CKM CSM Fixed p.s.

2048 0.0065 0.0070 0.0117 0.0055 0.0055 0.0067
512 0.0105 0.0115 0.0159 0.0086 0.0088 0.0096 0.8080
128 0.0153 0.0146 0.0205 0.0120 0.0110 0.0140

Table 1: Next-step VRMSE test set results on the shear flow dataset for models with 25M and
100M parameters, evaluated at different token counts during inference. We compare CKM, CSM,
and fixed patch size (p.s.) models, alongside the CNextU-net baseline from (Ohana et al., 2024).

limitation of this approach over CKM is that it introduces overlap with the boundary. To account for
this overlap, learned padding tokens are introduced in the original space. The overlapping tokens are
then processed by a transformer blocks before being reconstructed by the CSM decoder. App. C.2
shows an algorithm.
New rollout method. Unlike standard rollouts that use a fixed k and s for the encoding/decoding
blocks throughout the prediction horizon, our approach dynamically alternates between different
kernel or stride sizes in a cyclic fashion. Specifically, for rollouts of CKM model, we alternate between
k of 4, 8, and 16 in a repeating sequence: 4→ 8→ 16→ 4→ 8→ 16, and so on. Similarly, CSM
follows the same alternating pattern for stride values, effectively achieving downsampling factors of
4, 8, and 16 in a cyclic manner. This rollout mechanism is visualized in Fig. 1.

4 EXPERIMENTAL RESULTS

To evaluate the performance of our compute-elastic CKM and CSM models, we conduct experiments
on a range of complex 2D and 3D datasets from The Well (Ohana et al., 2024). See App. B.1 for
dataset specifics. These experiments fall into two categories:

1. We compare the efficiency of training multiple fixed-patch models vs. a single compute-elastic model
for scalable inference. To this end, we train three fixed-patch models (patch sizes 4, 8, and 16) for 200
epochs each (see Appendix B.3), then train both CKM and CSM models using the combined compute
budget of these fixed-patch models. This setup reflects a practical constraint: given a fixed training
budget, should resources be allocated to separate fixed-patch models or a single compute-elastic
model? We evaluate inference performance to determine whether CKM and CSM offer advantages
over static patching.

2. We assess whether CKM and CSM reduce visible patch artifacts in extended rollouts (Sec.4.2).
In all experiments, the input spatio-temporal sequence consists of six time frames, with the loss
function optimized for next-step prediction.

4.1 PREDICTION ACCURACY AND INFERENCE TIME SCALABILITY

VRMSE error. We choose the VRMSE metric (App. D) to compare our results with recent work
on these datasets (Ohana et al., 2024). Fig. 3 presents a comparative analysis of the one-step VRMSE
for the shear flow dataset for different number of tokens being processed. Note that the number of
tokens in this plot is a measure of the compute requirement at inference. Two models of size ∼ 25M
and 100M parameters are studied. The results show that CKM and CSM consistently outperform
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fixed patch-size models across a range of token counts, maintaining their advantage in both small
(25M) and large (100M) models. This demonstrates that compute-elastic models capture dynamics
more effectively while reducing errors compared to standard fixed patching methods. Additionally,
as shown in Table 1, all our models outperform the best benchmarks from (Ohana et al., 2024) by
large margins.

Dataset
# Tokens

7.6M Model 100M Model Benchmark
(20M) (Ohana et al., 2024)

CKM CSM Fixed p.s. CKM CSM Fixed p.s.

active matter
4096 0.0405 0.0400 0.0409 0.0192 0.0172 0.021 CNextU-net
1024 0.046 0.050 0.043 0.022 0.021 0.024 0.1034
256 0.070 0.066 0.050 0.034 0.029 0.031

rayleigh benard
4096 0.046 0.044 0.061 0.025 0.025 0.031 TFNO
1024 0.060 0.060 0.073 0.033 0.035 0.036 0.6566
256 0.080 0.074 0.083 0.047 0.046 0.047

turbulent radiative layer 2D
3072 0.187 0.180 0.190 0.133 0.144 0.143 CNextU-net
768 0.210 0.210 0.210 0.153 0.178 0.170 0.1956
192 0.254 0.245 0.26 0.200 0.202 0.223

supernova explosion
1024 0.258 0.270 0.261 – – – U-net
256 0.328 0.343 0.337 – – – 0.3063
64 0.364 0.370 0.367 – – –

turbulence gravity cooling
1024 0.096 0.102 0.100 – – – CNextU-net
256 0.138 0.152 0.133 – – – 0.2096
64 0.169 0.169 0.164 – – –

Table 2: Test VRMSE for different numbers of tokens at inference across multiple 2D and 3D datasets
for CKM, CSM, and fixed patch size (p.s.) models. Results are for next-step prediction. Due to
compute constraints, 3D datasets were only trained on the 7.6M model. We also include benchmark
results from (Ohana et al., 2024). Note that our models use a time context size of 6, while The Well
benchmarks were trained with a time context of 4.

Table 2 extends the analysis by comparing Test VRMSE performance for additional 2D datasets:
active matter, rayleigh benard, turbulent radiative layer 2D. CKM and
CSM models consistently achieve VRMSE values on par or lower compared to fixed patch models.
Similarly to the shear flow dataset, we note again in Table 2 that even our smallest models with
∼ 7.6M parameters greatly outperform or are very competitive with the best benchmarks in the Well
paper (Ohana et al., 2024). Table 2 also shows results for highly complex 3D physical simulations,
supernova explosion and turbulence gravity cooling datasets for a model size of
∼ 7.6M parameters. For both of these complex 3D datasets, CKM and CSM models achieves similar
accuracy to fixed patch size models, again showing that compute elastic models can enable inference
time scalability without compromising accuracy.

Figure 4: BSNMSE of next-step predictions on the shear flow test set. The spectrum is divided
into low, mid, and high frequency bins, with boundaries evenly spaced in log scale.

Binned spectral error. The Binned Spectral Normalized Mean Squared Error (BSNMSE) measures
how well the model predictions capture the ground truth values in frequency space, averaged in
low, mid and high frequency bins. see App. E for details of the metric. Lower values imply
better predictions of the ground truth in frequency space. Fig. 4 shows BSNMSE analysis on the
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Figure 5: Step 45 rollout of the Exx field (rate of strain tensor) in the active matter dataset.
Patch artifacts accumulate over time, degrading prediction quality, with the effect most pronounced
in the fixed patch 16 model—the largest tested patch size.

shear flow dataset, where CKM and CSM models consistently match or outperform fixed-patch
models. Similar trends are observed across other datasets (see App. F), demonstrating that compute-
elastic models resolve features across all frequency scales as well as, or better than, fixed-patch
models—while also enabling scalable inference.
Dynamic inference-time resource scaling has not been explored in the PDE emulator literature. While
large language models use optimizations like entropy-based techniques, PDE surrogates lack such
flexibility. Our experiments show that CKM and CSM not only allow scalable inference but also
match or exceed fixed-patch performance across all tested compute regimes.

4.2 IMPROVED ROLLOUTS WITH COMPUTE ELASTIC MODELS

During inference rollouts, we alternate at each prediction step between patch sizes and strides of 4,
8, and 16 for CKM and CSM models respectively. This alternating patching and striding strategy
significantly improves rollout accuracy compared to fixed patch size models. Fig. 2 shows that fixed
patch sizes lead to distinct patch artifacts visible as peaks at harmonic frequencies in the residual
power spectrum. These artifacts arise from the rigid nature of fixed patching and degrade the model’s
ability to capture fine-scale features over extended rollouts. In contrast, by allowing to alternate
patches during rollouts, CKM and CSM models drastically decrease the patch-artifacts, resulting
in a suppression of the harmonic peaks and more accurate predictions. Another example of this
phenomenon is shown in Fig. 5 for the active matter dataset, where CSM and CKM (CSM
especially in this case) produces better quality rollout at step 45 than the fixed patch 16 model (For
an additional demonstration of this rollout mechanism see App. G)

CONCLUSION

We introduced compute-elastic techniques for surrogate modeling of PDEs, demonstrating their
advantages through extensive experiments. Our findings show that CKM and CSM models enhance
accuracy by outperforming fixed-patch models across various complex 2D and 3D next-step
prediction tasks. Additionally, the ability to dynamically adjust computational cost at inference time
provides downstream users with a flexible trade-off between speed and precision, a critical feature as
ViT-based architectures scale toward foundation models for PDEs. Beyond accuracy and efficiency,
these models significantly improve rollout quality by reducing artifacts inherent to fixed-patch ViTs,
addressing a key limitation in vision-based PDE emulation. These results highlight the importance of
compute-adaptive patching techniques as a fundamental design consideration for future transformer
architectures in PDE surrogate modeling.
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A DERIVATION OF THE PI-RESIZE MATRIX FOR CONVOLUTIONAL KERNEL
MODULATORS

A.1 MOTIVATION FOR KERNEL RESIZING

The CKM-based model dynamically adjusts convolutional kernel sizes at each forward pass while
maintaining a fixed architecture. This enables variable patch sizes (4, 8, 16), which is crucial for
handling different spatial resolutions while ensuring compatibility with the ViT.
However, this flexibility introduces a problem: the CNN encoder, which extracts ViT tokens, is
trained with a fixed base convolutional kernel. To ensure that features extracted at different patch sizes
remain aligned, we use a resize transformation, which projects the base kernel to a dynamically
selected kernel size (Beyer et al., 2023).

A.2 MATHEMATICAL FORMULATION

Let:
• W base ∈ Rkbase×kbase×cin×cout be the learned CNN weights for the fixed base kernel size kbase.
• W ∈ Rk×k×cin×cout be the resized kernel for a dynamically selected kernel size k.
• B be an interpolation matrix (e.g., bilinear, bicubic) that resizes input patches from size
k to size kbase.

• x ∈ RB×k×k×cin be an input patch, where:
– B is the batch size.
– k × k is the local receptive field defined by the kernel.
– cin is the number of input channels.

Intuitively, the goal is to find a new set of patch- embedding weights W such that the tokens of the
resized patch match the tokens of the original patch

W base ∗ x ≈W ∗ (Bx), (2)

where ∗ denotes convolution. The goal is to solve for W . Mathematically, this is an optimization
problem.

A.3 LEAST-SQUARES OPTIMIZATION FOR PI-RESIZE

A.3.1 EXPANDING THE OBJECTIVE

We aim to expand the expectation:

Ex∼X
[
(xTW base − xTBTW )2

]
. (3)

Since inner products can be rewritten as matrix-vector multiplications, we note that:

⟨x,W base⟩ = xTW base.

Step 1: Expand the Square Using the identity (a− b)2 = a2 − 2ab+ b2, we expand:

(xTW base − xTBTW )2 = (xTW base)2 − 2xTW base(xTBTW ) + (xTBTW )2. (4)

Step 2: Take the Expectation Now, we take expectation over x ∼ X :

Ex∼X
[
(xTW base)2 − 2xTW base(xTBTW ) + (xTBTW )2

]
. (5)

Using the definition of the covariance matrix:

Σ = Ex∼X [xxT ], (6)

we apply the linearity of expectation to each term:

Ex[(x
TW base)2] = W base,TΣW base, (7)

Ex[(x
TBTW )2] = WTBΣBTW, (8)

Ex[x
TW base(xTBTW )] = W base,TΣBTW. (9)
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Step 3: Write in Matrix Form Substituting these into the expectation:

Ex∼X
[
(xTW base − xTBTW )2

]
= W base,TΣW base − 2W base,TΣBTW +WTBΣBTW. (10)

The above expression can be re-written as:

∥W base −BTW∥2Σ = (W base,T −WTB)Σ(W base −BTW ). (11)

Conclusion This result expresses the squared error between the transformed weight matrix W
and the resized weight matrix BTW base, weighted by the covariance matrix Σ. The quadratic form
measures the deviation in terms of feature space alignment, ensuring that the transformation remains
consistent with the learned base kernel.
The optimal solution minimizing Eq. 11 is given by

W =
(√

ΣBT
)†√

ΣW base (12)

where
(√

ΣBT
)†√

Σ is the Moore-Penrose pseudoinverse matrix.

A.4 FINAL TRANSFORMATION AND IMPLEMENTATION

Thus, at each forward pass, we apply the following steps:
1. Randomly select a kernel size k ∈ {4, 8, 16}.
2. Compute the interpolation matrix B that resizes the input patch from k to kbase.
3. Transform the kernel weights using:

W = (BT )†W base. (13)

4. Apply the resized kernel W for convolution.
This ensures that dynamically changing kernel sizes maintain compatibility with the fixed architecture
while enabling flexible patch sizes.

B EXPERIMENT DETAILS

B.1 DATASETS

The datasets that we benchmarked are taken from The Well collection Ohana et al. (2024). We selected
2D and 3D datasets with complex dynamics, ranging from biology (active matter Maddu et al.
(2024)) to astrophysics (supernova explosion & turbulence gravity cooling Hi-
rashima et al. (2023a;b); turbulent radiative layer 2D Fielding et al. (2020)) and fluid
dynamics (rayleigh benard & shear flow Burns et al. (2020)) . Here is information about
their resolution and physical fields (equivalent to a number of channels).

Dataset Resolution # of fields/channels
active matter 256× 256 11

rayleigh benard 512× 128 4
shear flow 128× 256 4

supernova explosion 64× 64× 64 6
turbulence gravity cooling 64× 64× 64 6
turbulent radiative layer 2D 128× 384 5

Table 3: Specifics of the datasets benchmarked.

B.2 MODEL CONFIGURATION

The core transformer processor consists of multiple stacked processing blocks, each composed of
three key operations: (1) temporal self-attention, which captures dependencies across time steps, (2)
spatial self-attention, which extracts spatial correlations within each frame, and (3) a multi-layer
perceptron (MLP) for feature transformation. The number of such processing blocks varies across
model scales, as detailed in Table 4. The full configuration is vizualized in Fig. 6.
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Table 4: Details of the various model architectures and scales explored.

Model Embedding Dim. MLP Dim. # Heads # Blocks Base down/up sampling rate
of patch encoder/decoder

7.6M 192 768 3 12 16
25M 384 1536 6 12 16
100M 768 3072 12 12 16

Figure 6: This visualization represents the overall architecture of our models. The CKM/CSM/Fixed
patch are various strategies for the patch encoding and decoding. The patch encoder block is followed
by N transformer based spatio-temporal blocks containing sequential time attention, followed by
full spatial attention, followed by MLP. The embedding dimension column in table 4 represents the
hidden dimension that the CKM/CSM/Fixed patch strategies embed the real space patches into.

B.3 TRAINING CONFIGURATIONS

In the following we list the training parameters:
1. Batch size is set at 2 and the model and we train on 8 GPUs using PyTorch FSDP.
2. Adam Optimizer. learning rate of 10−3, weight decay of 10−4.
3. All models and datasets were trained using Mean Squared Error averaged over fields and

space during training.
4. Prediction type: delta. “delta” predicts the change in the field from the previous timestep.

This only affects training since validation and test losses are computed on reconstructed
fields.

C ALGORITHM OF CKM AND CSM
C.1 CONVOLUTIONAL KERNEL MODULATOR (CKM)
CKM dynamically adjusts kernel sizes for patch embedding and reconstruction. At each forward
pass, a kernel size k ∈ {4, 8, 16} is sampled, and the base kernel weights are resized using PI–resize
(Beyer et al., 2023) to ensure alignment across resolutions. Algorithm is shown below in Algorithm
1.

C.2 CONVOLUTIONAL STRIDE MODULATOR (CSM)
CSM dynamically adjusts stride s to vary downsampling and upsampling, while keeping the kernel
fixed. See Algorithm 2.
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Algorithm 1 Convolutional Kernel Modulator (CKM)
Input: x ∈ RB×H×W×T×C

Output: x̂ ∈ RB×H×W×1×C (prediction at T + 1)
k: kernel size, w: kernel weight matrix, s: stride
k=(k1, k2); w=(w1, w2); s=(s1, s2). Hierarchical convolution (Touvron et al., 2022)
wbase = (wbase

1 , wbase
2 ). Weight matrix of the base backbone architecture

Downsampling (CKM encoder)
1. Randomly sample (k1, k2) for total downsampling of 4, 8, or 16.
2. Compute resized weights: w1 = BT†wbase

1 , w2 = BT†wbase
2 .

3. Apply convolutions:

x← Conv1(x,w1, s1 = k1),

x← Conv2(x,w2, s2 = k2).

4. Store k1, k2 for decoding.
Tokens processed by transformer blocks–Temporal attention, Spatial attention, MLP (App. B.2)

Upsampling (CKM decoder)
1. Retrieve kernel sizes k1, k2 from metadata.
2. Apply transposed convolutions:

x← ConvTranspose1(x,w2, s = k2),

x̂← ConvTranspose2(x,w1, s = k1).

return x̂

Algorithm 2 Convolutional Stride Modulator (CSM)
Input: x ∈ RB×H×W×T×C

Output: x̂ ∈ RB×H×W×1×C (prediction at T + 1)
k: kernel size, s: stride
k=(k1, k2); s=(s1, s2). Hierarchical convolution (Touvron et al., 2022)
kbase = (kbase1 , kbase2 ). Kernel sizes of the base backbone architecture
Step 1: Padding

1. Pad x with learned tokens for boundary conditions.
Step 2: Encoding (CSM encoder)

1. Randomly sample strides for total downsampling in 4, 8 or 16.
2. Apply convolutions:

x← Conv1(x, k
base
1 , s = s1),

x← Conv2(x, k
base
2 , s = s2).

3. Store s1, s2 for decoding.
Tokens processed by transformer blocks–Temporal attention, Spatial attention, MLP (App. B.2)

Step 3: Decoding (CSM decoder)
1. Retrieve stored strides s1, s2.
2. Apply transposed convolutions:

x← TransposeConv1(x, k
base
2 , s = s2),

x̂← TransposeConv2(x, k
base
1 , s = s1).

return x̂
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D VRMSE
The VRMSE metric is defined as the square root of the variance scaled mean squared error (VMSE),
which is the MSE normalized by the variance of the truth

VMSE(u, v) =
⟨|u− v|2⟩

(⟨|u− ū|2⟩+ ϵ)
.

Here, v is the prediction and u is the ground truth. We chose to report its square root variant, the
VRMSE:

VRMSE(u, v) =
⟨|u− v|2⟩1/2

(⟨|u− ū|2⟩+ ϵ)1/2
.

Note that, since VRMSE(u, ū) ≈ 1, having VRMSE > 1 indicates worse results than an accurate
estimation of the spatial mean ū.

E BINNED SPECTRAL ANALYSIS

The binned spectral mean squared error (BSMSE), introduced in (Ohana et al., 2024), quantifies
the mean squared error after applying a bandpass filter to the input fields over a specific frequency
band B. It is defined as:

BSMSEB(u, v) = ⟨|uB − vB|2⟩, (14)
where the bandpass-filtered field uB is given by:

uB = F−1 [F [u]1B] . (15)
Here, F represents the discrete Fourier transform, and 1B is an indicator function that selects
frequencies within the band B.
For each dataset, we define three disjoint frequency bands, B1, B2, and B3, which correspond to low,
intermediate, and high spatial frequencies, respectively. These bands are determined by partitioning
the wavenumber magnitudes evenly on a logarithmic scale.
The binned spectral normalized mean squared error (BSNMSE) is a normalized variant of the
BSMSE metric, adjusting for the energy within each frequency band:

BSNMSEB(u, v) =
⟨|uB − vB|2⟩
⟨|vB|2⟩

. (16)

A BSNMSE value of 1 or greater indicates that the model performs worse than simply predicting
zero coefficients at that scale.
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F BINNED SPECTRAL ERROR ANALYSIS FOR MORE DATASETS

Figure 7: BSNMSE of the next-step prediction of the test set in the rayleigh benard,
turbulent radiative layer 2Dand supernova explosion datasets. The spectrum is
divided into three frequency bins: low, mid and high being the smallest, intermediate and largest
frequency bins whose boundaries are evenly distributed in log space.
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G SHEAR FLOW ROLLOUT

Figure 8: Step 64 rollout for the x-velocity, vx field of the shear flow dataset for the different
models. Similar to other rollouts shown, the CKM and CSM-based models significantly decrease the
patch artifacts compared to the fixed patch 16 model.
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