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Abstract. Mitra is a scalable storage manager that supports the display of continuous media data types, e.g.,
audio and video clips. It is a software based system that employs off-the-shelf hardware components. Its present
hardware platform is a cluster of multi-disk workstations, connected using an ATM switch. Mitra supports the
display of a mix of media types. To reduce the cost of storage, it supports a hierarchical organization of storage
devices and stages the frequently accessed objects on the magnetic disks. For the number of displays to scale as
a function of additional disks, Mitra employs staggered striping. It implements three strategies to maximize the
number of simultaneous displays supported by each disk. First, the EVEREST file system allows different files
(corresponding to objects of different media types) to be retrieved at different block size granularities. Second,
the FIXB algorithm recognizes the different zones of a disk and guarantees a continuous display while harnessing
the average disk transfer rate. Third, Mitra implements the Grouped Sweeping Scheme (GSS) to minimize the
impact of disk seeks on the available disk bandwidth.

In addition to reporting on implementation details of Mitra, we present performance results that demonstrate
the scalability characteristics of the system. We compare the obtained results with theoretical expectations based
on the bandwidth of participating disks. Mitra attains between 65% to 100% of the theoretical expectations.
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1. Introduction

The past few years have witnessed many design studies describing different components of
a server that supports continuous media data types, such as audio and video. The novelty
of these studies is attributed to two requirements of continuous media that are different
from traditional textual and record-based data. First, the retrieval and display of continuous
media are subject to real-time constraints that impact both (a) the storage, scheduling
and delivery of data, and (b) the manner in which multiple users may share resources. If
the resources are not shared and scheduled properly then a display might starve for data,
resulting in disruptions and delays that translate into jitter with video and random noises
with audio. These disruptions and delays are termedhiccups. Second, objects of this media
type are typically large in size. For example, a two hour MPEG-2 encoded video requiring
4 Megabits per second (Mbps) for its display is 3.6 Gigabyte in size. Three minutes of
uncompressed CD quality audio with a 1.4 Mbps bandwidth requirement is 31.5 Megabyte
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(MByte) in size. The same audio clip in MPEG-encoded format might require 0.38 Mbps
for its display and is 8.44 Mbyte.

Mitra is a realization of several promising design concepts described in the literature. Its
primary contributions are two-fold: (1) to demonstrate the feasibility of these designs, and
(2) to achieve the non-trivial task of gluing these together into a system that is both high
performance and scalable. Mitra is a software based system that can be ported to alternative
hardware platforms. Itguaranteessimultaneous display of a collection of different media
types as long as the bandwidth required by the display of each media type is constant
(isochronous). For example, Mitra can display both CD-quality audio clips with a 1.34 Mbps
bandwidth requirement and MPEG-2 encoded streams with 4 Mbps bandwidth requirement
(two different media types) at the same time as long as the bandwidth required by each
display is constant. Moreover, Mitra can display those media types whose bandwidth
requirements might exceed that of a single disk drive (e.g., uncompressed NTSC CCIR 601
video clips requiring 270 Mbps for their display) in support of high-end applications that
cannot tolerate the use of compression techniques.

Due to their large size, continuous media objects are almost always disk resident. Hence,
the limiting resource in Mitra is the available disk bandwidth, i.e., traditional I/O bottleneck
phenomena. Mitra is scalable because it can service a higher number of simultaneous
displays as a function of additional disk bandwidth. The key technical idea that supports
this functionality is to distribute the workload imposed by each display evenly across the
available disks using staggered striping [3] to avoid the formation of hot spots and bottleneck
disks.

Mitra is high performance because it implements techniques that maximize the number of
displays supported by each disk. This is accomplished in two ways. First, Mitra minimizes
both the number of seeks incurred when reading a block (using EVEREST [18]) and the
amount of time attributed to each seek (using GSS [33]). Second, it maximizes the transfer
rate of multi-zone disks by utilizing the bandwidth of different zones in an intelligent
manner (FIXB [19]). Mitra’s file system is EVEREST. As compared with other file systems,
EVEREST provides two functionalities. First, it enables Mitra to retrieve different files at
different block size granularities. This minimizes the percentage of disk bandwidth that is
wasted when Mitra displays objects that have different bandwidth requirements. Second, it
avoids the fragmentation of disk space when supporting a hierarchy of storage devices [4]
where different objects are swapped in and out of the available disk space over time. GSS
minimizes the amount of time attributed to each seek by optimizing the disk scheduling
algorithm. Finally, FIXB in combination with EVEREST enables Mitra to guarantee a
continuous display while harnessing the average transfer rate of multi-zone disks [31, 16].
FIXB enables Mitra to strike a compromise between the percentage of wasted disk space and
how much of its transfer rate is harnessed. With each of these techniques, there are tradeoffs
associated with the choices of values for system parameters. Although these tradeoffs have
been investigated using analytical and simulation studies, Mitra’s key contribution is to
demonstrate that these analyses hold true in practice. It shows that one does not have
to rewrite software to support diverse applications with different performance objectives
(startup latency versus throughput versus wasted disk space). Instead, there is a single
system, where different choices of parameters support different application requirements.
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Table 1. Parameters and their definition.

Parameter Definition

η Number of media types

RC(Mi ) Bandwidth required to display objects of media typei

RD Bandwidth of a disk

B(Mi ) Block size for media typei

D Total number of disks

d Number of disks that constitute a cluster

C Number of clusters recognized by the system

g Number of groups with GSS

k Stride with staggered striping

N Number of simultaneous displays supported by the system

S Maximum height of sections with EVEREST

ω Number of contiguous buddies of section heighti
that form a section of heighti + 1

Several related studies have described the implementation of continuous media servers1.
These can be categorized into single-disk and multi-disk systems. The single-disk systems
include [1, 8, 26, 30]. These pioneering studies were instrumental in identifying the re-
quirements of continuous media. They developed scheduling policies for retrieving blocks
from disk into memory to support a continuous display. (Mitra employs these policies as
detailed in Section 3.) Compared with Mitra, most of them strive to be general purpose and
support traditional file system accesses in addition to a best-effort delivery of continuous
media. Thus, none strive to maximize the number of displays supported by a disk using
alternative disk scheduling policies, techniques that harness the average transfer rate of disk
zones, or strategies that constrained the physical file layout. The multi-disk systems in-
clude: Streaming RAID [32], Fellini [28], and Minnesota’s VOD server [23]. None claims
to support either the display of a mix of media types or a hierarchical storage structure, nor
do they describe the implementation of a file system that ensures contiguous layout of a
block on the disk storage medium. (The authors of Fellini identify the design of a file system
such as the one developed for Mitra as an important research direction in [29].) Moreover,
all three systems employ disk arrays where the number of disks that are treated as a single
logical disk is pre-determined by the hardware. Mitra differs in that the number of disks
that are treated as one logical disk isNOT hardware dependent. Instead, it is determined by
the bandwidth requirement of a media type. Indeed, if one analyzes two different displays
with each accessing a different media type, one display might treat two disks as one logical
disk while the other might treat five disks as one logical disk. This has a significant impact
on the number of simultaneous displays supported by the system as detailed in Section 4.

Streaming RAID implements GSS to maximize the bandwidth of a disk array and em-
ploys memory-sharing to minimize the amount of memory required at the server. It develops
analytical models similar to [12, 14] to estimate the performance of the system with alter-
native configuration parameters. Fellini analyzes constraint placement of data to enhance
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Table 2. Defining terms.

Mbps Megabits per second

Block Amount of data retrieved per time period on behalf of a PM displaying
an object of media typei . Its size varies depending on the media type
and is denoted asB(Mi )

Fragment Fraction of a block assigned to one disk of a cluster that contains the
block. All fragments of a block are equi-sized

Time period The amount of time required to display a block at a station. This time is
fixed for all media types, independent of their bandwidth requirement

Page Basic unit of allocation with EVEREST, also termed sections of height 0

Startup latency Amount of time elapsed from when a PM issues a request for an object
to the onset of the display

the performance of the system with multi-zone disks. The design appears to be similar
to FIXB. Fellini describes several designs to support VCR features such as Fast Forward
and Rewind. (We hint at Mitra’s designs to support this functionality in Section 5 and do
not detail them due to lack of space.) Neither Fellini nor Streaming RAID present perfor-
mance numbers from their system. Minnesota’s VOD server differs from both Mitra and
the other two multi-disk systems in that it does not have a centralized scheduler. Hence,
it cannot guarantee a continuous display. However, [23] presents performance numbers to
demonstrate that a mass storage system can display continuous media.

The rest of this paper is organized as follows. In Section 2, we provide an overview of
the software components of Mitra and its current hardware platform. Section 3 describes
the alternative components of the system (EVEREST, GSS, FIXB, and staggered striping)
and how they interact with each other to guarantee a continuous display. Section 4 presents
experimental performance results from Mitra. As a yard stick, we compare these numbers
with theoretical expectations based on the available disk bandwidth [14, 15]. The obtained
results: (1) demonstrate the scalability of the system, (2) show that Mitra attains between
65% to 100% of the theoretical expectations. Our future research directions are presented
in Section 5.

2. An overview of Mitra

Mitra employs a hierarchical organization of storage devices to minimize the cost of pro-
viding on-line access to a large volume of data. It is currently operational on a cluster of HP
9000/735 workstations. It employs a HP Magneto Optical Juke-box as its tertiary storage
device. Each workstation consists of a 125 MHz PA-RISC CPU, 80 MByte of memory, and
four Seagate ST31200W magnetic disks. Mitra employs the HP-UX operating system (ver-
sion 9.07) and is portable to other hardware platforms. While 15 disks can be attached to the
fast and wide SCSI-2 bus of each workstation, we attached four disks to this chain because
additional disks would exhaust the bandwidth of this bus. It is undesirable to exhaust the
bandwidth of the SCSI-2 bus for several reasons. First, it would cause the underlying hard-
ware platform to not scale as a function of additional disks. Mitra is a software system and
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if its underlying hardware platform does not scale then the entire system would not scale.
Second, it renders the service time of each disk unpredictable, resulting in hiccups.

Mitra consists of three software components:

1. Scheduler: This component schedules the retrieval of the blocks of a referenced object
in support of a hiccup-free display at a PM. In addition, it manages the disk bandwidth
and performs admission control. Currently, Scheduler includes an implementation of
EVEREST, staggered striping, and techniques to manage the tertiary storage device. It
also has a simple relational storage manager to insert, and retrieve information from a
catalog. For each media type, the catalog contains the bandwidth requirement of that
media type and its block size. For each presentation, the catalog contains its name,
whether it is disk resident (if so, the name of EVEREST files that represent this clip),
the cluster and zone that contains its first block, and its media type.

2. Mass storage Device Manager (DM): Performs either disk or tertiary read/write opera-
tions.

3. Presentation Manager (PM): Displays either a video or an audio clip. It might interface
with hardware components to minimize the CPU requirement of a display. For example,
to display an MPEG-2 clip, the PM might employ either a program or a hardware-card
to decode and display the clip. The PM implements the PM-driven scheduling policy of
Section 3.1.3 to control the flow of data from the Scheduler.

Mitra uses UDP for communication between the process instantiation of these components.
UDP is an unreliable transmission protocol. Mitra implements a light-weight kernel, named
HP-NOSE. HP-NOSE supports a window-based protocol to facilitate reliable transmission
of messages among processes. In addition, it implements the threads with shared memory,
ports that multiplex messages using a single HP-UX socket, and semaphores for synchro-
nizing multiple threads that share memory. An instantiation of this kernel is active per Mitra
process.

For a given configuration, the following processes are active: one Scheduler process, a
DM process per mass storage read/write device, and one PM process per active client. For
example, in our twelve disk configuration with a magneto optical juke box, there are sixteen
active processes: fifteen DM processes, and one Scheduler process (see figure 1). There
are two active DM processes for the magneto juke-box because it consists of two read/write
devices (and 32 optical platters that might be swapped in and out of these two devices).

The combination of the Scheduler with DM processes implements asynchronous read/
write operations on a mass storage device (which is otherwise unavailable with HP-UX
9.07). This is achieved as follows. When the Scheduler intends to read a block from a
device (say a disk), it sends a message to the DM that manages this disk to read the block.
Moreover, it requests the DM to transmit its block to a destination port address (e.g., the
destination might correspond to the PM process that displays this block) and issue a done
message to the Scheduler. There are several reasons for not routing data blocks to active PMs
using the Scheduler. First, it would waste the network bandwidth with multiple transmis-
sions of a block. Second, it would limit the scalability of the system because the processing
capability of the workstation that supports the Scheduler process would determine the over-
all throughput of the system. CPU processing is required because a transmitted data block
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Figure 1. Hardware and software organization of Mitra. Note: While 15 disks can be attached to the fast and
wide SCSI-2 bus of each workstation, we attached four disks because additional disks would exhaust the bandwidth
of this bus.

is copied many times by different layers of software that implement the Scheduler process:
HP-UX, HP-NOSE, and the Scheduler.

While the interaction between the different processes and threads is interesting, we do
not report on them due to lack of space.

3. Continuous display with Mitra

We start by describing the implementation techniques of Mitra for a configuration that treats
the d available disks as a single disk drive. This discussion introduces EVEREST [18],
Mitra’s file system, and motivates a PM-driven scheduling paradigm that provides feedback
from a PM to the Scheduler to control the rate of data production. Subsequently, we discuss
an implementation of the staggered striping [3] technique.

3.1. One disk configuration

To simplify the discussion and without loss of generality, conceptualize thed disks as a
single disk with the aggregate transfer rate ofd disks. When we state that a block is assigned
to the disk, we imply that the block is declustered [3, 10] across thed disks. Each piece
of this block is termed afragment. Moreover, when we state a DM reads a block from the
disk, we imply thatd DM processes are activated simultaneously to produce the fragments
that constitute the block.

To display an objectX of media typeMi (say CD-quality audio) with bandwidth
requirementRC(Mi ) (1.34 Mbps), Mitra conceptualizesX as consisting ofr blocks:
X0, X1, . . . , Xr −1. Assuming a block size ofB(Mi ), the display time of a block, termed a
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time period[15], equals B(Mi )

RC(Mi )
. Assuming that the system is idle, when a PM references

objectX, the Scheduler performs two tasks. First, it issues a read request forX0 to the DM.
It also provides the network address of the PM, requesting the DM to forwardX0 directly to
the PM. Second, after a pre-specified delay, it sends a control message to the PM to initiate
the display ofX0. This delay is due to the implementation of both GSS [33] (detailed below)
and FIXB [19] (described in Section 3.1.2). Once the PM receives a block, it waits for a
control message from the Scheduler before initiating the display. The Scheduler requests
the DM to transmit the next block ofX (i.e., X1) in the next time period to the PM. This
enables the PM to provide for a smooth transition between the two blocks to provide for
a hiccup-free display. With the current design, a PM requires enough memory to cache at
least two blocks of data.

Given a database that consists ofη different media types (sayη = 2, MPEG-2 and CD-
quality audio), the block size of each media type is determined such that the display time
of a block (i.e., the duration of a time period at the Scheduler) is fixed for all media types.
This is done as follows. First, one media typeMi (say CD-quality audio) with bandwidth
requirementRC(Mi ) (1.34 Mbps) defines the base block sizeB(Mi ) (say 512 KByte). The
block size of other media types is a function of their bandwidth,RC(Mi ), andB(Mi ). For
each media typeM j , its block size is:

B(M j ) = RC(M j )

RC(Mi )
× B(Mi )

In our example, the block size for MPEG-2 (4 Mbps) objects would be 1521.74 KByte.
In an implementation of a file system, the physical characteristics of a magnetic disk

determines the granularity for the size of a block. With almost all disk manufacturers, the
granularity is limited to1

2 KByte2. Mitra rounds up the block size of each object of a media
type to the nearest12 KByte. Thus, in our example, the block size for MPEG-2 object would
be 1522 KByte. However, Mitra does not adjust the duration of a time period to reflect this
rounding up. Thus, for each time period, the system produces more data on behalf of a
display as compared to the amount that the display consumes. The amount of accumulated
data is dependent on both the number of blocks that constitute a clip and what fraction of
each block is not displayed per time period. For example, with a two hour MPEG-2 video
object, a display would have accumulated 622.7 KByte of data at the end of the display.
Section 3.1.3 describes a scheduling paradigm that prevents the Scheduler from producing
data should the amount of cached data become significant.

Mitra supports the display ofN objects by multiplexing the disk bandwidth amongN
block retrievals. Its admission control policy ensures that the service time of theseN block
retrievals does not exceed the duration of a time period. The service time of the disk to
retrieve a block of media typei is a function ofB(Mi ), the disk transfer rate, rotational
latency, and seek time. Mitra opens each disk in RAW mode [22]. We used the SCSI com-
mands to interrogate the physical characteristics of each disk to determine its track sizes,
seek characteristics, number of zones, and transfer rate of each zone. (To gather this infor-
mation, one requires neither specialized hardware nor the use of the assembly programming
language, see [16] for a detailed description of these techniques.) The Scheduler reads this
information from a configuration file during its startup.
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The Scheduler maintains the duration of a time period using a global variable and supports
a linked list of requests that are currently active. In addition to other information, an element
of this list records the service time of the disk to retrieve a block of the file referenced by this
display. Mitra minimizes the impact of seeks incurred when retrieving blocks of different
objects by implementing the GSS algorithm. With GSS, a time period might be partitioned
into g groups. In its simplest form, GSS is configured with one group (g= 1). With g= 1,
a PM begins to consume the block that was retrieved on its behalf during time period` at
the beginning of time period̀+1. This enables the disk scheduling algorithm to minimize
the impact of seeks by retrieving the blocks referenced during a time period using a scan
policy. Mitra implements this by synchronizing the display of the first block of an object
(X0) at the PM with the end of the time period that retrievedX0. Once the display ofX0 is
synchronized, the display of the other blocks are automatically synchronized due to a fixed
duration for each time period. The synchronization ofX0 is achieved as follows. A PM
does not initiate the display ofX0 until it receives a control message from the Scheduler.
The Scheduler generates this message at the beginning of the time period that retrievedX1.

With g> 1, Mitra partitions a time period intog equi-sized intervals. The Scheduler
assigns a display to a single group and the display remains with this group until its dis-
play is complete. The retrieval of blocks assigned to a single group employs the elevator
scheduling algorithm. This is implemented as follows. Assuming that groupGi retrieves
a block ofX per time period, the display ofX0 is started when the disk subsystem begins
to service groupGi +1.

3.1.1. File system design.The current implementation of Mitra assumes that a PM does
not perform complex operations such as Fast-Forward, Fast-Rewind or Pause operations.
Upon the arrival of a request for objectX belonging to media typeMX, the admission
control policy of the Scheduler is as follows. First, the Scheduler checks to see if another
scheduled display is beginning the display ofX, i.e., referencesX0. If so, these two new
requests are combined with each other into one. This enables Mitra to multiplex a single
stream among multiple PMs. If no other stream is referencingX0, starting with the current
active group, the Scheduler locates the group with sufficient idle time to accommodate the
retrieval of a block of sizeB(Mi ). The implementation details of this policy are contained
in Appendix A. If no group can accommodate the retrieval of this request, the Sched-
uler queues this request and examines the possibility of admitting it during the next time
period.

With η media types, Mitra’s file system might be forced to manageη different block
sizes. Moreover, the blocks of different objects might be staged from the tertiary storage
device onto magnetic disk storage on demand. A block should be stored contiguously on
disk. Otherwise, the disk would incur seeks when reading a block, reducing disk bandwidth.
Moreover, it might result in hiccups because the retrieval time of a block might become
unpredictable. To ensure a contiguous layout of a block, we considered four alternative
approaches: disk partitioning, extent-based [2, 5, 21], multiple block sizes, and an approxi-
mate contiguous layout of a file. We chose the final approach, resulting in the design and
implementation of the EVEREST file system. Below, we describe each of the other three
approaches and our reasons for abandoning them.



              

P1: KCU/RKB P2: PMR/SFI P3: PMR/SFI QC: PMR/ANG T1: PMR

Multimedia Tools and Applications KL439-05-Ghandeham April 23, 1997 12:2

MITRA: A SCALABLE CONTINUOUS MEDIA SERVER 87

With disk partitioning, assumingη media types withη different block sizes, the available
disk space is partitioned intoη regions, one region per media type. A regioni corresponds
to media typei . The space of this region is partitioned into fix sized blocks, corresponding
toB(Mi ). The objects of media typei compete for the available blocks of this region. The
amount of space allocated to a regioni might be estimated as a function of both the size and
frequency of access of objects of media typei [13]. However, partitioning of disk space
is inappropriate for a dynamic environment where the frequency of access to the different
media types might change as a function of time. This is because when a region becomes
cold, its space should be made available to a region that has become hot. Otherwise, the
hot region might start to exhibit a thrashing [6] behavior that would increase the number of
retrievals from the tertiary storage device. This motivates a re-organization process to re-
arrange disk space. This process would be time consuming due to the overhead associated
with performing I/O operations.

With an extent-based design, a fixed contiguous chunk of disk space, termed an extent,
is partitioned into fix-sized blocks. Two or more extents might have different page sizes.
Both the size of an extent and the number of extents with a pre-specified block size (i.e.,
for a media type) is fixed at system configuration time. A single file may span one or more
extents. However, an extent may contain no more than a single file. With this design, an
object of a media typei is assigned one or more extents with block sizeB(Mi ). In addition
to suffering from the limitations associated with disk partitioning, this approach suffers
from internal fragmentation with the last extent of an object being only partially occupied.
This would waste disk space, increasing the number of references to the tertiary storage
device.

With the Multiple Bock Size approach (MBS), the system is configured based on the
media type with the lowest bandwidth requirement, sayM1. MBS requires the block size of
each of media typej to be a multiple ofB(M1), i.e.,B(M j ) = dB(M j )

B(M1)
eB(M1). This might

simplify the management of disk space to: 1) avoid its fragmentation, and 2) ensure the
contiguous layout of each block of an object. However, MBS might waste disk bandwidth
by forcing the disk to: (1) retrieve more data on behalf of a PM per time period due
to rounding up of block size, and (2) remain idle during other time periods to avoid an
overflow of memory at the PM. These are best illustrated using an example. Assume two
media types MPEG-1 and MPEG-2 objects with bandwidth requirements of 1.5 Mbps and
4 Mbps, respectively. With this approach, the block size of the system is chosen based
on MPEG-1 objects. Assume, it is chosen to be 512 KByte,B(MPEG-1)= 512 KByte.
This implies thatB(MPEG-2)= 1365.33 KByte. MBS would increaseB(MPEG-2) to equal
1536 KByte. To avoid excessive amount of accumulated data at a PM displaying an MPEG-2
clip, the Scheduler might skip the retrieval of data one time period every nine time periods
using the PM-driven scheduling paradigm of Section 3.1.3. The Scheduler may not employ
this idle slot to service another request because it is required during the next time period
to retrieve the next block of current MPEG-2 display. If all active requests are MPEG-2
video clips and a time period supports nine displays withB(MPEG-2)= 1536 KByte then,
with B(MPEG-2)= 1365.33 KByte, the system would support ten simultaneous displays
(10% improvement in performance). In summary, the block size for a media type should
approximate its theoretical value in order to maximize the number of simultaneous displays.
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The final approach, and the one used by Mitra, employs the buddy algorithm to approx-
imate a contiguous layout of a file on the disk without wasting disk space. The number of
contiguous chunks that constitute a file is a fixed function of the file size and the configura-
tion of the buddy algorithm. Based on this information, Mitra can either (1) prevent a block
from overlapping two non-contiguous chunks or (2) allow a block to overlap two chunks
and require the PM to cache enough data to hide the seeks associated with the retrieval
of these blocks. Currently, Mitra implements the first approach. To illustrate the second
approach, if a file consists of five contiguous chunks then at most four blocks of this file
might span two different chunks. This implies that the retrieval of four blocks will incur
seeks with at most one seek per block retrieval. To avoid hiccups, the Scheduler should
delay the display of the data at the PM until it has cached enough data to hide the latency
associated with four seeks. The amount of cached data is not significant. For example,
assuming a maximum seek time of 20 milliseconds, with MPEG-2 objects (4 Mbps), the
PM should cache 10 KByte to hide each seek. However, this approach complicates the
admission control policy because the retrieval of a block might incur either one or zero
seeks.

EVEREST. With EVEREST, the basic unit of allocation is a page,3 also termedsectionsof
height 0. EVEREST organizes these sections as a tree to form larger, contiguous sections.
As illustrated in figure 2, only sections of size(page) × ωi (for i ≥ 0) are valid, where the
baseω is a system configuration parameter. If a section consists ofωi pages theni is said
to be the height of the section. The system can combineω heighti sections that are buddies
(physically adjacent) to construct a section of heighti + 1.

To illustrate, the disk in figure 2 consists of 16 pages. The system is configured with
ω = 2. Thus, the size of a section may vary from 1, 2, 4, 8, up to 16 pages. In essence, a
binary tree is imposed upon the sequence of pages. The maximum height, computed by4

S = dlogω(b Capacity
size(page)c)e, is 4. With this organization imposed upon the device, sections

of heighti ≥ 0 cannot start at just any page number, but only at offsets that are multiples
of ωi . This restriction ensures that any section, with the exception of the one at heightS,
has a total ofω − 1 adjacentbuddysections of the same size at all times. With the base 2
organization of figure 2, each section has one buddy.

Figure 2. Physical division of disk space into pages and the corresponding logical view of the sections with an
example base ofω = 2.
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With EVEREST, a portion of the available disk space is allocated to objects. The remain-
der, should any exist, is free. The sections that constitute the available space are handled
by a free list. This free list is actually maintained as a sequence of lists, one for each
section height. The information about an unused section of heighti is enqueued in the list
that handles sections of that height. In order to simplify object allocation, the following
bounded list length propertyis always maintained: For each heighti = 0, . . . , S, at most
ω − 1 free sections ofi are allowed. Informally, this property implies that whenever there
exists sufficient free space at the free list of heighti , EVERESTmustcompact these free
sections into sections of a larger height5.

The process of staging an object from tertiary onto available disk space is as follows.
The first step is to check, whether the total number of pages in all the sections on the free
list is either greater than or equal to the number of pages (denoted no-of-pages(X)) that the
new objectX requires. If this is not the case then one or more victim objects are elected
and deleted. (The procedure for selecting a victim is based on heat [17]. The deletion of a
victim object is described further below.) Assuming enough free space is available at this
point, X is divided into its corresponding sections as follows. First, the numberm= no-of-
pages(X) is converted to baseω. For example, ifω = 2, and no-of-pages(X) = 1310 then
its binary representation is 11012. The full representation of such a converted number is
m= dj −1 × ω j −1 + · · · + d2 × ω2 + d1 × ω1 + d0 × ω0. In our example, the number 11012

can be written as 1× 23 + 1× 22 + 0× 21 + 1× 20. In general, for every digitdi that is
non-zero,di sections are allocated from heighti of the free list on behalf ofX. In our
example,X requires 1 section from height 0, no sections from height 1, 1 section from
height 2, and 1 section from height 3.

For each object, the numberν of contiguous pieces is equal to the number of one’s in
the binary representation ofm, or with a general baseω, ν = ∑ j

i =0 di (where j is the
total number of digits). Note thatν is always bounded byω dlogω me. For any object,ν
defines the maximum number of sections occupied by the object. (The minimum is 1 if
all ν sections are physically adjacent.) A complication arises when no section at the right
height exists. For example, suppose that a section of sizeωi is required, but the smallest
section larger thanωi on the free list is of sizeω j ( j > i ). In this case, the section of
sizeω j can be split intoω sections of sizeω j −1. If j − 1 = i , thenω − 1 of these are
enqueued on the list of heighti and the remainder is allocated. However, ifj − 1 > i then
ω − 1 of these sections are again enqueued at levelj − 1, and the splitting procedure is
repeated on the remaining section. It is easy to see that, whenever the total amount of free
space on these lists is sufficient to accommodate the object, then for each section that the
object occupies, there is always a section of the appropriate size, or larger, on the list. This
splitting procedure will guarantee that the appropriate number of sections, each of the right
size, will be allocated, and that the bounded list length property is never violated.

When there is insufficient free disk space to materialize an object, then one or more
victim objects (with copies on tertiary) are removed from the disk. Reclaiming the space of
a victim requires two steps for each of its sections. First, the section must be appended to
the free list at the appropriate height. The second step ensures that the bounded list length
property is not violated. Therefore, whenever a section is enqueued in the free list at height
i and the number of sections at that height is equal to or greater thanω, thenω sections
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must be combined into one section at heighti + 1. If the list ati + 1 now violates bounded
list length property, then once again space must be compacted and moved to sectioni + 2.
This procedure might be repeated several times. It terminates when the length of the list
for a higher height is less thanω.

Compaction ofω free sections into a larger section is simple when they are buddies; in
this case, the combined space is already contiguous. Otherwise, the system might be forced
to exchange one occupied section of an object with one on the free list in order to ensure
contiguity of an appropriate sequence ofω sections at the same height. The following
algorithm achieves space-contiguity amongω free sections at heighti .

1. Check if there are at leastω sections for heighti on the free list. If not, stop.
2. Select the first section (denotedsj ) and record its page-number (i.e., the offset on the

disk drive). The goal is to freeω − 1 sections that are buddies ofsj .
3. Calculate the page-numbers ofsj ’s buddies. EVEREST’s division of disk space guar-

antees the existence ofω − 1 buddy sections physically adjacent tosj .
4. For every buddysk, k ≤ 0 ≤ ω − 1, k 6= j , if it exists on the free list then mark it.
5. Any of thesk unmarked buddies currently store parts of other object(s). The space must

be re-arranged by swapping thesesk sections with those on the free list. Note that for
every buddy section that should be freed there exists a section on the free list. After
swapping space between every unmarked buddy section and a free list section, enough
contiguous space has been acquired to create a section at heighti + 1 of the free list.

6. Go back to Step 1.

To illustrate, consider the organization of space in figure 3(a). The initial set of disk
resident objects is{X, Y, Z} and the system is configured withω = 2. In figure 3(a), two
sections are on the free list at height 0 and 1 (addresses 7 and 14 respectively), andZ is

(a)

Figure 3. Deallocation of an object. The example sequence shows the removal of objectZ from the initial disk
resident object set{X, Y, Z}. Base two,ω = 2. (a) Two sections are on the free list already (7 and 14) and object
Z is deallocated. (b) Sections 7 and 13 should be combined, however they are not contiguous. (c) The buddy of
section 7 is 6. Data must move from 6 to 13. (d) Sections 6 and 7 are contiguous and can be combined. (e) The
buddy of section 6 is 4. Data must move from (4, 5) to (14, 15). (f ) Sections 4 and 6 are now adjacent and can be
combined. (g) The final view of the disk and the free list after removal ofZ.

(Continued on next page.)
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(b)

(c)

(d)

(e)

Figure 3. (Continues.)
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(f)

(g)

Figure 3. (Continued.)

the victim object that is deleted. Once page 13 is placed on the free list in figure 3(b), the
number of sections at height 0 is increased toω and it must be compacted according to Step
1. As sections 7 and 13 are not contiguous, section 13 is elected to be swapped with section
7’s buddy, i.e., section 6 (figure 3(c)). In figure 3(d), the data of section 6 is moved to
section 13 and section 6 is now on the free list. The compaction of sections 6 and 7 results
in a new section with address 6 at height 1 of the free list. Once again, a list of length two
at height 1 violates the bounded list length property and pages (4, 5) are identified as the
buddy of section 6 in figure 3(e). After moving the data in figure 3(f) from pages (4, 5) to
(14, 15), another compaction is performed with the final state of the disk space emerging
as in figure 3(g).

Once all sections of a deallocated object are on the free list, the iterative algorithm above
is run on each list, from the lowest to the highest height. The previous algorithm is somewhat
simplified because it does not support the following scenario: a section at heighti is not
on the free list, however, it has been broken down to a lower height (sayi − 1) and not
all subsections have been used. One of them is still on the free list at heighti − 1. In
these cases, the free list for heighti − 1 should be updated with care because those free
sections have moved to new locations. In addition, note that the algorithm described above
actually performs more work than is strictly necessary. A single section of a small height,
for example, may end up being read and written several times as its section is combined into
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larger and larger sections. This is eliminated in the following manner. The algorithm is first
performed “virtually”—that is, in main memory, as a compaction algorithm on the free lists.
Once completed, the entire sequence of operations that have been performed determines
the ultimate destination of each of the modified sections. The Scheduler constructs a list
of these sections. This list is inserted into a queue of house keeping I/Os. Associated with
each element of the queue is an estimated amount of time required to perform the task.
Whenever the Scheduler locates one or more idle slots in the time period, it analyzes the
queue of work for the element that can be processed using the available time. (Idle slots
might be available with a workload that has completely utilized the number of idle slots
due to the PM-driven scheduling paradigm of Section 3.1.3.)

The value ofω impacts the frequency of preventive operations. Ifω is set to its minimum
value (i.e.,ω = 2), then preventive operations would be invoked frequently because every
time a new section is enqueued there is a 50% chance for a height of the free list to consist
of two sections (violates the bounded list length property). Increasing the value ofω will
therefore “relax” the system because it reduces the probability that an insertion to the free list
would violate the bounded list length property. However, this would increase the expected
number of bytes migrated per preventive operation. For example, at the extreme value of
ω = n (wheren is the total number of pages), the organization of blocks will consist of
two levels, and for all practical purpose, EVEREST reduces to a standard file system that
manages fix-sized pages.

The design of EVEREST suffers from the following limitation: the overhead of its
preventive operations may become significant if many objects are swapped in and out of
the disk drive. This occurs when the working set of an application cannot become resident
on the disk drive.

In our implementation of EVEREST, it was not possible to fix the number of disk pages
as an exact power ofω. The most important implication of an arbitrary number of pages is
that some sections may not have the correct number of buddies (ω − 1 of them). However,
we can always move those sections to one end of the disk—for example, to the side with
the highest page-offsets. Then instead of choosing the first section in Step 2 in the object
deallocation algorithm, Mitra chooses the one with the lowest page-number. This ensures
that the sections towards the critical end of the disk—that might not have the correct number
of buddies—are never used in both Steps 4 and 5 of the algorithm.

Our implementation enables a process to retrieve a file using block sizes that are at the
granularity of 1

2 KByte. For example, EVEREST might be configured with a 64 KByte
page size. One process might read a file at the granularity of 1365.50 KByte blocks, while
another might read a second file at the granularity of 512 KByte.

The design of EVEREST is related to the buddy system proposed in [24, 25] for an
efficient main memory storage allocator (DRAM). The difference is that EVEREST satisfies
a request forb pages by allocating a number of sections such that their total number of pages
equalsb. The storage allocator algorithm, on the other hand, will allocateonesection that
is rounded up to 2dlg be pages, resulting in fragmentation and motivating the need for either a
re-organization process or a garbage collector [21]. The primary advantage of the elaborate
object deallocation technique of EVEREST is that it avoids both internal and external
fragmentation of space as described for traditional buddy systems (see [21]).
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Figure 4. Zone characteristics of the seagate ST31200W magnetic disk.

3.1.2. Multi-zone disks. A trend in the area of magnetic disk technology is the concept
of zoning. It increases the storage capacity of each disk. However, it results in a disk with
variable transfer rates with different regions of the disk providing different transfer rates.
Figure 4 shows the transfer rate of the 23 different zones that constitute each of the Seagate
disks. (Techniques employed to gather these numbers are reported in [16].)

A file system that does not recognize the different zones might be forced to assume the
bandwidth of the slowest zone as the overall transfer rate of the disk in order to guarantee a
continuous display. In [19], we described two alternative techniques to support continuous
display of audio and video objects using multi-zone disks, namely, FIXed Block size (FIXB)
and VARiable Block size (VARB). These two techniques harness the average transfer rate
of zones. Mitra currently implements FIXB6. It organizes an EVEREST file system on
each region of the disk drive. Next, it assigns the blocks of each object to the zones in
a round-robin manner. The blocks of each object that are assigned to a zone are stored
as a single EVEREST file. In the catalog, Mitra maintains the identity of each EVER-
EST file that constitute a clip, its block size, and the zone that contains the first block of
this clip.

The Scheduler scans the disk in one direction, say starting with the outermost zone
moving inward. It recognizesm different zones, however, only one zone is active per time
period. A global variableZActive denotes the identity of the active zone. The bandwidth
of each zone is multiplexed among all active displays. Once the disk reads data from the
innermost zone, it is repositioned to the outermost zone to start another sweep. The time to
perform on weep is denoted asTscan. The block size is chosen such that the amount of data
produced by Mitra for a PM during oneTscanequals the amount of data consumed at the
PM. This requires the faster zones to compensate for the slower zones. As demonstrated in
figure 5, data accumulates at the PM when outermost zones are active at the Scheduler and
decreases when reading blocks from the innermost zones. In this figure,TMux(Zi ) denotes
the duration of a time that a zone is active. It is longer for the innermost zone due to their
low transfer rate. In essence, FIXB employs memory to compensate for the slow zones
using the transfer rate of the fastest zones, harnessing the average disk transfer rate.



            

P1: KCU/RKB P2: PMR/SFI P3: PMR/SFI QC: PMR/ANG T1: PMR

Multimedia Tools and Applications KL439-05-Ghandeham April 23, 1997 12:2

MITRA: A SCALABLE CONTINUOUS MEDIA SERVER 95

Figure 5. Memory requirement with FIXB.

If X0 is assigned to a zone other than the outermost one (sayZX0) then its display may
not start at the end of the time period that the system retrievesX0 (i.e., TMUX (ZX0)). This
is because both the retrieval and display of data on behalf of a PM is synchronized relative
to the transfer rate of the outermost zone to ensure that the amount of data produced during
one sweep is equivalent to that consumed. If the display is not delayed, then the PM might
run out of data and incur hiccups. By delaying the display at a PM, the system can avoid
hiccups. In [19], we detail analytical models to compute the duration of a delay based on
the identity ofZX0.

A drawback of recognizing a large number of zones is a higher startup latency. Mitra
can reduce the number of zones by logically treating one or more adjacent zones as a single
logical zone. This is achieved by overlaying a single EVEREST file system on these zones.
Mitra assumes the transfer rate of the slowest participating zone as the transfer rate of the
logical zone to guarantee hiccup-free displays.

3.1.3. PM-driven scheduling. The duration of a time period might exceed the disk service
time to retrieveN blocks on behalf ofN active displays. This is because: 1) Mitra assumes
the transfer rate of a logical zone to equal the transfer rate of the slowest participating phys-
ical zone, and 2) theN retrieved blocks might physically reside in the fastest participating
zone (by luck). When this happens, the Scheduler may either (1) busy-wait until the end of
the time period, (2) employ the idle slot for house keeping activities, i.e., migrate sections
in support of the bounded list length property, or 3) proceed with the retrieval of blocks
that should be retrieved during the next time period. The third approach minimizes the
average startup latency of the system (as demonstrated in Section 4). However, it causes
the Scheduler to produce data at a faster rate on behalf of an active PM. This motivates
an implementation of a PM-driven scheduling paradigm where the Scheduler accepts skip
messages from a PM when the PM starts to run out of memory.

With this paradigm, a PM maintains a data buffer with a low and a high water mark.
These two water marks are a percentage of the total memory available to the PM. Once the
high water mark is reached, the PM generates a skip message to inform the Scheduler that
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it should not produce data on behalf of this PM for a fixed number of time periods (sayY
time periods).Y must be a multiple of the number of logical zones recognized on a disk
(otherwise,Y is rounded tob Y

mc). This is due to the round-robin assignment of blocks of
each object to the zones where a display cannot simply skip one zone whenm > 1. The
number of time periods is dependent on the amount of data that falls between the low and
high water marks, i.e., the number of blocks cached. It must correspond to at least one
sweep of the zones (Tscan) to enable the PM to issue a skip message. During the nextY time
periods, the Scheduler produces no data on behalf of the PM while the display consumes
data from buffers local to the PM. AfterY time periods, the Scheduler starts to produce
data for this PM.

The choice of a value for the low and high water marks at the PM are important. The
difference between the total available memory and the high water mark should be at least
one block due to possible race conditions attributed to networking delays between the
PM and the Scheduler. For example, the Scheduler might produce a block for the PM
at the same time that the PM is generating the skip message. Similarly, the low water
mark should not be zero (its minimum value must be one block). This would eliminate
the possibility of the PM running out of data (resulting in hiccups) due to networking
delays.

3.2. Staggered striping

Staggered striping was originally presented in [3, 14]. This section describes its imple-
mentation in Mitra. With staggered striping, Mitra does not treat all the available disks
(say D disks) as a single logical disk. Instead, it constructsclustersof disks, with each
treated as a single logical disk. Assuming that the database consists ofη media types,
Mitra registers for each media typeMi : (1) the number of disks that constitute a clus-
ter for this media type, termedd(Mi ), and (2) the block size forMi , i.e., B(Mi ). (The
tradeoff associated with alternative values ford(Mi ) andB(Mi ) is reported in Section 4.)
Mitra constructs logical clusters (instead of physical ones) using a fixed stride value (k).
This is achieved as follows. When loading an object (sayX) of media typeMX, the first
block of X (X0) recognizes a cluster as consisting ofd(MX) adjacent disks starting with
an arbitrary disk (say diska). Mitra declustersX0 into d(MX) fragments and assigns each
fragments to a disk starting with diska: diska, disk(a+1) modD, . . . , disk(a+d(MX))modD. For
example, in figure 6,X0 is declustered into three fragmentsd(MX) = 3 and assigned to
a logical cluster starting with disk 4. It places the remaining blocks ofX such that the
first disk that contains the first fragment of blockX j is shiftedk disks to the right rela-
tive to that of blockX j −1. Thus, in our example, the placement ofX1 would start with
diskb whereb = (a + k) mod D. The placement ofX2 starts with disk(b+k) mod D. In
figure 6,k = 1. Thus,X1 is declustered across disks 5, 6, and 7 whileX2 is declustered
across disks 6, 7, and 8. Withm zones per disk, the assignment of blocks to the zones of
clusters continues to follow a round-robin assignment. For example, ifX0 is assigned to
zoneZi of disksa to (a + d(MX)) mod D, X1 is assigned to zoneZ(i +1) modm of disks
b to (b + k) mod D. This process repeats until all blocks ofX are assigned to disks and
zones. One EVEREST file contains all fragments ofX assigned to zonei of disk j . Thus,
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Figure 6. Staggered striping for two media types.

a total of D × m files might represent objectX. Once objectX is loaded, Mitra registers
with the catalog the following information: (1) the disk and zone that the assignment of
X0 started with, (2)X’s media type, and (3) the identity of each file that contains different
fragments ofX.

While the value ofd(Mi ) might differ for the alternative media types,k is a constant for
all media types. For example, in figure 6, the media type of objectX requires the bandwidth
of three disks while that ofY requires four disks. However, the value ofk = 1 for both
objects.

To display an objectX, the Scheduler uses the catalog to determine: (1)X’s media type,
i.e., the value ofd(MX) for this object, (2) the disk that contains the first fragment ofX0 (say
diska), and (3) the zone that containsX0 (sayZX0). Once the active zone equalsZX0 and
d(MX) disks starting with diska (i.e., diska, disk(a+1) modD, . . . , disk(a+d(MX)) modD) have
sufficient bandwidth to retrieve the fragments ofX0, the Scheduler initiates the retrieval of
X0. During the next time period, this display shiftsk disks to the right and the next active
zone to retrieveX1. This process repeats until all blocks ofX have been retrieved and
transmitted to the PM.

4. Performance evaluation

This section presents performance numbers that demonstrate the scalability characteristics
of Mitra. We start with an overview of the experimental design employed for this evaluation.
Next, we focus on a single disk configuration of Mitra to demonstrate the tradeoff associated
with its alternative optimization techniques. Finally, we present the performance of Mitra
as a function of the number of disks in the system and their logical organization as clusters.
In all experiments, the entire system was dedicated to Mitra with no other users accessing
the workstations.
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4.1. Experimental design

A problem when designing this evaluation study was the number of variables that could
be manipulated: block size, number of groups with GSS, mix of media types, mix of
requests, the number of participating disks, the number of disks that constitute a cluster per
media type, the bandwidth of each disk as a function of the number of participating disks,
closed versus open evaluation, the role of the tertiary storage device, the size of database,
frequency of access to objects that constitute the database, etc. We spent weeks analyzing
alternative ways of conducting this study. It was obvious that we had to reduce the number
of manipulated parameters to obtain meaningful results. As a starting point, we decided
to: (1) ignore the role of tertiary storage device and focus on the performance of Mitra
during a steady state where all referenced objects are disk resident, and (2) focus on a single
media type. Moreover, we partitioned this study into two parts. While the first focused
on the performance of a single disk and the implementation techniques that enhance its
performance, the second focuses on the scalability characteristics of Mitra as a function of
additional disks.

The target database and its workload were based on a WWW page that ranks the top
fifty songs every week7. We chose the top 22 songs of January 1995 to construct both the
benchmark database and its workload. (We could not use all fifty because the total size
of the top 22 audio clips exhausted the storage capacity of one disk Mitra configuration.)
Figure 7(a) and (b) shows the frequency of access to the clips and the size of each clip in
seconds, respectively. The size of the database was fixed for all experiments.

We employed a closed evaluation model with a zero think time. With this model, a
workload generator process is aware of the number of simultaneous displays supported by a
configuration of Mitra (sayN ). It dispatchesN requests for object displays to Mitra. (Two
or more requests may reference the same object, see below.) As soon as Mitra is done with
the display of a request, the workload generator issues another request to the Scheduler (zero
think time). The distribution of request references to clips is based on figure 7(a). This is as
follows. We normalized the number of votes to the 22 clips as a function of the total number
of vote for these objects. The workload generator employs this distribution to construct a
queue of requests that reference the 22 clips. This queue of requests is randomized to result
in a non-deterministic reference pattern. However, it might be the case that two or more

Figure 7. Characteristics of the CD audio clips. (a) Number of votes for each clips. (b) Length [in seconds] of
each clip.
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Table 3. Fixed parameters.

Seagate ST31200W

Capacity 1.0 gigabyte

Revolutions per minute 5400

Maximum seek time 21.2 millisecond

Maximum rotational latency 11.1 millisecond

Number of zones 23 (see figure 5)

Database Characteristics
CD Quality Audio

Sampling rate 44,100 per second

Resolution 16 bits

Channels 2 (stereo)

Bandwidth requirement 1.3458 Mbps

requests reference the same clip (e.g., the popular clip) at the same time. In all experiments
Mitra was configuredNOT to multiplex a single stream to service these requests.

This experimental design consists of three states: warmup, steady state, and shutdown.
During the system warmup (shutdown), Mitra starts to become fully utilized (idle). In our
experiments, we focused on the performance of Mitra during a steady state by collecting
no statistics during both system warmup and shutdown.

4.2. One disk configuration

We analyzed the performance of Mitra with a single disk to observe the impact of: 1)
alternative mode of operation with the PM-driven scheduling paradigm, 2) block size, 3)
different number of groups with GSS, and 4) multiple zones. In the first experiment,
we configured the system with 384 KByte block size,g= 1, a single zone, with the low
and high water marks set to 1 and 2 respectively. In theory, the number of guaranteed
simultaneous displays supported by our target disk is 12. This is computed based on the
transfer rate of the slowest zone, i.e., 18 Mbps, to capture the worst case scenario where all
blocks retrieved during a time period reside in this zone. Mitra realized these theoretical
expectations successfully. However, during a time period, the referenced blocks might be
scattered across the disk surface, causing the system to observe the average disk transfer
rate (26 Mbps). This results in a number of idle slots per time period. The PM-driven
scheduling approach to proceed with the retrieval of blocks for the next time period (see
Section 3.1.3) reduces the average latency when compared with busy waiting (0.3 seconds
compared with 2.4 seconds). This paradigm enhances the probability of a new request
locating an idle slot during the current time period.

In the second experiment, we changed the block size from 32 KByte to 64, 128, and 256
KByte. (The remaining parameters are unchanged as compared with the first experiment.)
As the block size increases, Mitra supports a higher number of simultaneous displays
(6, 8, 10, and 12 displays, respectively). The maximum number of simultaneous displays
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supported by the available disk bandwidth is 13 and can be realized with a block size of
625 KByte8. The explanation for this is as follows. With magnetic disks, the block size
impacts the percentage of wasted disk bandwidth attributed to seek and rotational delays.
As the block size increases, the impact of these delays becomes less significant, allowing
the disk to support a higher number of simultaneous displays [9].

The number of groups (g) with GSS impacts the seek times incurred by the disk when
retrieving blocks during a time period. In general, small values ofg minimize the seek
time. The number of groups (g) has an impact with small block sizes where the seek time
is significant. This impact becomes negligible with large block sizes. For example, with
a 64 KByte block size, Mitra supports 6 displays with six groups, 7 displays with three
groups, and 8 displays with one group. However, with a 384 KByte block, Mitra supports
11 displays with eleven groups, and 12 displays with one group. This block size is large
enough to render the seek time insignificant when compared with the transfer time of a block.

In a final experiment, EVEREST was configured to recognize all the 23 zones of the disk.
The block size was 539 KByte to guarantee a continuous display with FIXB. In this case,
Mitra can store only twelve clips (instead of 22) on the disk because once the storage capacity
of the smallest zone is exhausted, no additional clips can be stored (due to a round-robin
assignment of blocks to zones). With this configuration, Mitra supports 17 displays with an
average startup latency of 35.9 seconds. The higher number of simultaneous displays (as
compared to 12 in the previous experiments) is due to the design of FIXB that enables Mitra
to harness the average disk transfer rate. The higher startup latency is because a display
must wait until the zone containing its first block is activated. The number of logical zones
recognized by Mitra is a tradeoff between the number of displays supported by the system,
the average startup latency and the percentage of wasted disk space. We now report on
several experiments that demonstrate this tradeoff. In the first experiment, we configured
EVEREST to recognize two logical zones. The first logical zone consists of zonesZ0 to
Z11 while the second consists of the remaining physical zones. In this case, Mitra can store
15 clips on the disk. With this configuration, while the number of simultaneous displays
is reduced to 14, the average startup latency is reduced to 0.22 seconds. In a second
experiment, we configured EVEREST to recognize one logical zones consisting of only
the nine outermost zones. With this configuration, Mitra can store twelve clips on the disk
because EVEREST has eliminated the storage capacity of the 14 innermost zones. This
increases the transfer rate, allowing Mitra to support 19 displays with an average startup
latency of 2 seconds. The higher startup latency is due to a longer duration of a time period.
In [19], we detail a planner that determines system parameters to satisfy the performance
objectives of an application (it desired throughput and maximum startup latency tolerated
by its clients).

4.3. Multi-disk configuration

In these experiments, the following system parameters are fixed: block size is 384 KByte,
GSS is configured with a single group (g= 1), and a single logical zone spans all 23 physical
zones of each disk. We analyzed the performance of Mitra as a function of additional
disks by varyingD from 1 to 2, 4, 8, and 12. For each configuration, we analyzed the
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Figure 8. Performance of Mitra as a function ofD and d (k = d). (a) Number of simultaneous displays.
(b) Percentage difference between theoretical expectations and obtained results from Mitra.

performance of Mitra as a function of the number of disks that constitute a cluster (i.e.,d).
In all experiments, the stride (k) equals tod. For example, with a 12 disk configuration
(D = 12), a cluster may consist of two disks (d = 2). With this configuration, stride would
also equal to two (k = 2). Obviously, the choice ofd andk has a significant impact on the
obtained results. We analyze the performance of Mitra for those values ofd andk that are
reasonable9. For example, withD = 12, it would be unreasonable to configure Mitra with
d = k = 8 because it would force the bandwidth of four disks to sit idle because the database
consists of a single media type. Withd = k = 8, the performance of Mitra withD = 12
would be reduced to that withD = 8. Figure 8(a) presents the number of simultaneous
displays supported by Mitra as a function ofD andd. In this figure, the number of disks
available to Mitra is varied on they-axis, the number of disks that constitute a cluster is
varied on thex-axis, and the throughput of the system is reported on thez-axis.

As the number of disks in the system (D) increases from 1 to 12 withd = k = 1, the
throughput of the system increases super linearly (the throughput of Mitra withD = 12
is fourteen times higher than that withD = 1). This is because the average transfer rate
of each disk increases as a function ofD. The explanation for this is as follows. In this
experiment, the size of the database is fixed and the EVEREST file system organizes files
on a disk starting with the outermost zone, i.e., fastest zone. The amount of data assigned
to each disk shrinks asD increases. WithD = 1, the innermost zone of the disk contains
data, while withD = 12, only the three outermost zones contain data. The average transfer
rate of the three outermost zones is higher than the average transfer rate of all 23 zones of
a disk (see figure 5).

In figure 8(b), for a given hardware platform (fixedD), the throughput of Mitra drops
asd increases. For example withD = 12, Mitra’s throughput drops from 168 streams to
100 asd increases from 1 to 12. This is because the percentage of wasted disk bandwidth
increases asd increases in value [14]. To observe this, note that both the maximum seek
time and rotational latency are fixed. Moreover, they waste disk bandwidth. The percentage
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of wasted disk bandwidth is a function of these two values along with the amount of data
read from each disk drive per time period. Asd increases in value, the amount of data
retrieved from each disk decreases because a block is declustered across a larger number of
disks. This wastes a higher percentage of disk bandwidth, resulting in a lower throughput.

For each choice ofD, we located the slowest participating zone of the disks that contains
data. This zone is the same for all disks due to the round-robin assignment of blocks of
each object to disks. We computed expected performance of Mitra as a function of this
zone’s transfer rate for each configuration (using the analytical models of [14, 15]). Next,
we examined how closely Mitra approximates these theoretical expectations. Figure 8(b)
presents the percentage difference between the measured results and theoretical expecta-
tions. Each value of this figure is computed based on: 1− Measured

Theory . With D = 1, the
system approximates the theoretical expectation with 100% accuracy. WithD > 1, Mitra’s
performance is anywhere from 10% to 35% lower than its theoretical expectations. Part
of this is due to loss of network packets using UDP and their retransmission with HP-
NOSE. However, there are other factors (e.g., SCSI-2 bus, software overhead, system bus
arbitration, HP-UX scheduling of processes, etc.,) that might contribute to this difference.
These delays are expected with a software based system (based on previous experience with
Gamma [7] and Omega [11]) because the system does not have complete control on the
underlying hardware.

A limitation associated with values ofd smaller thanD is that the placement of data is
constrained with staggered striping. This results in a higher average startup latency (see
figure 9(a)). In addition, it increases the amount of memory required at each PM even with
the PM-driven scheduling paradigm (see figure 9(b)). Consider each observation in turn.
The average startup latency is higher because a display must wait until the cluster containing
its first subobject has sufficient bandwidth to retrieve its referenced block. Similarly, each
PM requires a larger amount of memory because the Scheduler cannot simply skip one time

Figure 9. Startup latency and memory requirement of a PM with Mitra. (a) Average startup latency. (b) Maximum
amount of memory required at a PM.
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period on its behalf. Its next block resides on the cluster adjacent to the currently active
cluster. Assuming the system consists ofC clusters, a PM must cache enough data so that
the Scheduler skips multiples ofC time periods on behalf of this PM.

5. Conclusion and future research directions

Mitra is a scalable storage manager that support the display a mix of continuous media
data types. Its primary contribution is a demonstration of several design concepts and how
they are glued together to attain high performance. Its performance demonstrates that an
implementation can approximate its theoretical expectations.

As part of our future research direction, we are extending Mitra in several novel directions.
First, we have introduced techniques to support on-line re-organization of data when new
disks are added to a system that has been in operation for a while [20]. These technique
modify the placement of data to incorporate new disks (both their storage and bandwidth)
without interrupting service. Second, we are investigating several designs based on request-
migration and object replication to minimize the startup latency of the system [14]. Third, we
are evaluating techniques that speedup the rate of display to support VCR functionalities
such as fast-forward and fast-rewind. These techniques are tightly tied to those of the
second objective that minimize the startup latency of a display. Finally, we are investigating
distributed buffer pool management technique to facilitate sharing of a single stream among
multiple PMs that are displaying the same presentation. The buffer pool is distributed across
the available DMs. However, its content is controlled by the Scheduler.

Appendix A: Admission control with GSS

This appendix details the implementation of the Scheduler’s admission policy with GSS. A
building component is a function, termed seek(# cyl), that estimates the disk seek time. Its
input is the number of cylinders traversed by the seek operation. Its output is an estimate of
the time required to perform the seek operation using the models of [16]. Assuming CYL
cylinders for the disk andn displays assigned to a groupGi , we assume that then blocks
are CYL

n cylinders apart.
The Scheduler maintains the amount of idle time left for each groupGi . With a new

request for objectX, the scheduler retrieves from the catalog the record corresponding toX
to determine its media type,MX. Next, it retrieves from the catalog the record corresponding
to media typeMX to determineB(MX). Starting with the current groupGi , the Scheduler
compares the idle time ofGi with the disk service time to retrieve a block of sizeB(MX).
The disk service time withGi is:

Sdisk(Gi ) = B(MX)

RD
+ max rotational latency+ seek(CYL)

It assumes the maximum seek time (i.e., seek(CYL)) because the blocks to be retrieved
during Gi have already been scheduled and the new request cannot benefit from the scan
policy. Assuming thatGi is servicingn − 1 requests and its idle time can accommodate
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Sdisk(Gi ), its idle time is reduced bySdisk(Gi ). Prior to initiating the retrieval of blocks
that belong to groupGi +1, the scheduler adjusts the idle time of groupGi to reflect that the
active requests can benefit from the scan policy. Thus, the idle time ofGi is adjusted as
follows:

idle(Gi ) = idle(Gi ) −
[
seek(CYL)+ (n − 1) × seek

(
CYL

n − 1

)]
+

[
n × seek

(
CYL

n

)]
The subtracted portion reflects the maximum seek time of the request that was just scheduled
and the seek time ofn − 1 other active requests. The added portion reflects then seeks
incurred during the next time period by this group with eachCYL

n cylinders apart.
If current groupGi has insufficient idle time, the Scheduler proceeds to check the idle

time of other groupsG j where j = (i + 1) modg, 0 < j < g and j 6= i . Assuming that
G j is servicingn − 1 active requests, the disk service time withG j is:

Sdisk(G j ) = B(MX)

RD
+ max rotational latency

+
[
n × seek

(
CYL

n

)]
−

[
(n − 1) × seek

(
CYL

n − 1

)]
If the idle time ofG j is greater thanSdisk(G j ), then the new request is assigned toG j and
its idle time is subtracted bySdisk(G j ).

Notes

1. We do not report on commercial systems due to lack of their implementation detail, see [27] for an overview
of these systems.

2. With the buffered interface of the HP-UX file system, one might read and write a single byte. This functionality
is supported by a buffer pool manager that translates this byte read/write to a1

2 KByte read/write against the
physical device.

3. The size of a page has no impact on the granularity at which a process might read a section. This is detailed
below.

4. To simplify the discussion, assume that the total number of pages is a power ofω. The general case can be
handled similarly and is described below.

5. A lazy variant of this scheme would allow these lists to grow longer and do compaction upon demand, i.e.,
when large contiguous pages are required. This would be complicated as a variety of choices might exist when
merging pages. This would require the system to employ heuristic techniques to guide the search space of
this merging process. However, to simplify the description we focus on an implementation that observes the
invariant described above.

6. We intend to implement VARB in the near future.
7. This web site is maintained by Daniel Tobias (http://www.softdisk.com/comp/hits/). The ranking of the clips

is determined through voting by the Internet community, via E-mail.
8. Thirteen is computed based on the bandwidth of the innermost zone, consumption rate of CD-quality audio,

and maximum seek and rotational latency times.
9. However, the results are presented such that one can estimate the performance of the system with unreasonable

choice ofd andk values.
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