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ABSTRACT

Transductive conformal prediction addresses the simultaneous prediction for mul-
tiple data points. Given a desired confidence level, the objective is to construct a
prediction set that includes the true outcomes with the prescribed confidence. We
demonstrate a fundamental trade-off between confidence and efficiency in trans-
ductive methods, where efficiency is measured by the size of the prediction sets.
Specifically, we derive a strict finite-sample bound showing that any non-trivial
confidence level leads to exponential growth in prediction set size for data with
inherent uncertainty. The exponent scales linearly with the number of samples
and is proportional to the conditional entropy of the data. Additionally, the bound
includes a second-order term, dispersion, defined as the variance of the log condi-
tional probability distribution. We show that this bound is achievable in an ideal-
ized setting. Finally, we examine a special case of transductive prediction where
all test data points share the same label. We show that this scenario reduces to
the hypothesis testing problem with empirically observed statistics and provide an
asymptotically optimal confidence predictor, along with an analysis of the error
exponent.

1 INTRODUCTION

Modern decision systems often need to predict many outcomes at once and act on the joint result.
Examples include certifying components in a quality-control batch, screening biological samples for
pathogens, or approving software changes before release. In such settings, the cost of even a single
error can be high, making distribution-free guarantees on the entire vector of predictions essential.

Conformal prediction (CP) (Vovk et al., 2022) offers a principled framework for constructing pre-
diction sets with finite-sample, distribution-free coverage guarantees under minimal assumptions.
Typically, CP methods operate on individual input–output pairs, where each input X is associated
with a label Y . However, many real-world systems require joint guarantees across multiple pre-
dictions, motivating the study of transductive conformal prediction (TCP). TCP constructs a joint
prediction set for a batch of test inputs X1, . . . , Xn, ensuring that the corresponding label vector
Y1, . . . , Yn lies within the set with a prescribed confidence level (e.g., 95%).

While TCP offers stronger guarantees, it raises a fundamental question: how small can such joint
sets be, on average, while still guaranteeing coverage? This question is not merely practical, it
probes the limits of uncertainty quantification in multi-output prediction. Our paper addresses this
challenge and makes the following contributions:

• Fundamental lower bound: We prove that for any non-trivial confidence level, the ex-
pected size of any valid joint prediction set must grow exponentially with the number of test
points. The growth rate is governed by the conditional entropyH(Y |X) and a second-order
term we call dispersion, which captures the variance of the log-conditional probabilities.

• Achievability: We show that this bound is tight by constructing an idealized predictor
(with oracle access to P (Y |X)) that matches the first and second-order terms.

• Homogeneous-label setting: When all test points share the same label, a scenario relevant
to safety-critical applications, the problem reduces to hypothesis testing with empirically
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observed statistics. We derive an asymptotically optimal confidence predictor based on
thresholding a generalized Jensen–Shannon divergence and characterize its error exponent.

These results hold under minimal assumptions: they apply to any conformity score, extend to a larger
class of efficiency metrics beyond prediction set size, and are validated by experiments showing their
relevance in finite-sample regimes, highlighting inefficiencies in existing transductive methods.

2 TRANSDUCTIVE CONFORMAL PREDICTORS AND HYPOTHESIS TESTING

To prepare for our main results, this section contrasts standard conformal prediction (CP), which of-
fers marginal coverage for individual predictions, with its transductive extension (TCP) that provides
joint guarantees across a batch. We begin by introducing the necessary notation.

Notation. In this paper, the random variables are denoted by capital letters X1, X2, ... and their
realization by x1, x2, . . . , and the vectors and matrices are denoted by bold letters as X,x. Xj

i
denotes the tuple (Xi, . . . , Xj). We use P (Y |X) to denote the conditional distribution of labels
Y given samples X . We use P as well to denote the distribution over X and Y . The logarithms
are all assumed to be natural logarithms, unless otherwise stated. The entropy H(X) is defined as
E[− logP (X)], the conditional entropy defined as H(Y |X) := E[− logP (Y |X)]. The Kullback-
Leibler divergence is defined as D(Q∥P ) := EQ[log dQ/dP ]. Q(·) is the Gaussian Q-function
defined as Q(t) := P(X > t) for X a standard normal distribution.

From Standard to Transductive Conformal Prediction (TCP). Standard conformal prediction
(CP) constructs a per-input prediction set that contains the true label with probability at least 1− α,
under exchangeability. Formally, consider a sequence of labeled examples Zm

1 = ((Xi, Yi) : i ∈
[m]), where Xi ∈ X , Yi ∈ Y with M distinct classes, i.e., |Y| = M , and a test sample Xm+1 with
unknown true label Ym+1. Standard CP produces a set Γα(Xm+1) that satisfy marginal coverage:
P(Ym+1 /∈ Γα(Xm+1)) ≤ α. These sets are obtained by thresholding p-values: for each input, all
labels with p-value above α are included. A popular variant, split CP (Papadopoulos et al., 2002; Lei
et al., 2018), computes these p-values using pretrained predictor and a separate calibration set. More
generally, CP can be formalized through transducers, which map sequences of labeled examples to
p-values in [0, 1], providing a unified view of conformal methods.

While the marginal guarantee of standard CP is often sufficient for isolated decisions, many ap-
plications require system-level guarantees, such as maintaining a global missed-detection con-
straint in autonomous driving or ensuring consistency in ranking tasks (Fermanian et al., 2025).
In these settings, a single error can invalidate the entire outcome, motivating joint guarantees.
Transductive conformal prediction (TCP) addresses this by constructing a joint prediction set for
the whole test batch (Vovk, 2013; Vovk et al., 2022). Given Zm

1 and a batch of test samples
Xm+n

m+1 = (Xm+1, . . . , Xm+n), a (transductive) confidence predictor outputs a set of candidate
label vectors (Ym+1, . . . ,Ym+n) such that the error probability of the predictor Pe is bounded

Pe = P
(
Y m+n
m+1 /∈ Γα(Zm

1 , X
m+n
m+1 )

)
≤ α. (1)

If the predictor satisfies the significance level α, we say it has confidence 1−α. Some works instead
use the False Coverage Proportion (FCP) as the error (Fermanian et al., 2025), which measures the
average per-sample error rather than the joint error over the entire test set. This is a more relaxed
criterion than the one adopted here and in (Vovk et al., 2022) (see Appendix G for details).

Operationally, TCP extends the conformal principle from single examples to sequences: instead of
computing p-values for individual labels, we compute them for entire candidate label sequences
using transductive conformity scores. These scores assess how well a proposed joint labeling fits
the observed data and the test batch. Thresholding these p-values yields a joint confidence set that
guarantees coverage for all test points simultaneously. A common baseline is to aggregate per-
sample p-values via Bonferroni: build Γα/n(Xm+i) for each test point and take the Cartesian prod-
uct
∏n

i=1 Γ
α/n(Xm+i), which satisfies eq. 1 but can be inefficient as n grows (cf. our experiments).

Efficiency vs. Confidence. While eq. 1 guarantees confidence, practitioners also care about ef-
ficiency: how large the joint prediction set is on average. These two objectives are inherently in
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tension, and understanding this trade-off is among the main objectives of this work. To that end,
we measure efficiency by the cardinality of Γα(Zm

1 , X
m+n
m+1 ), though our results extend to other no-

tions of efficiency (see Appendix C). Of particular interest is the efficiency rate, which captures the
exponential growth of the expected prediction set size as the number of test samples n increases.
Definition 2.1. The efficiency rates of a transductive conformal predictor are

γn,m :=
1

n
logE

∣∣Γα(Zm
1 , X

m+n
m+1 )

∣∣, γ+m := lim sup
n→∞

γn,m, γ
−
m := lim inf

n→∞
γn,m.

If these limits coincide, we denote the common value by γm.

Research Questions and Road Map. Building on the formalism above, we revisit the interpreta-
tion in (Correia et al., 2024), where split CP is viewed through the lens of list decoding (Wozencraft,
1958). In this setting, the model output is treated as a noisy observation of the ground truth la-
bel, which enabled the authors to establish information-theoretic inequalities linking the efficiency
of conformal prediction, as measured by the expected size of the prediction set, to the conditional
entropy H(Y |X) of the labeling distribution.

However, two fundamental questions remain open. First, the efficiency-confidence trade-off char-
acterized in (Correia et al., 2024) in terms of H(Y |X) and the logarithm of the expected prediction
set size was not tight. This raises the question: Can we derive tighter bounds on the efficiency-
confidence trade-off, and characterize conditions under which these bounds are achievable?

Second, split CP’s reliance on a separate calibration set underutilizes the available data, as training
samples are discarded for calibration. This motivates a broader question: What is the information-
theoretically optimal way to construct confidence predictors that leverage the entire dataset with-
out sacrificing validity? Addressing this question requires bridging inductive and transductive
paradigms and exploring connections with hypothesis testing under empirically observed statistics.

In the rest of this paper, we tackle these challenges in two steps. First, we establish fundamen-
tal bounds on the efficiency-confidence trade-off in the general transductive setting, capturing both
asymptotic and finite-sample regimes and revealing a phase transition governed by the conditional
entropy. Next, we consider a structured scenario where all test samples share the same label, reduc-
ing the problem to multiple-hypothesis testing. This enables us to design an asymptotically optimal
confidence predictor based on generalized Jensen-Shannon divergence, shedding light on the inter-
play between confidence control and efficiency in practice.

3 FUNDAMENTAL BOUNDS ON EFFICIENCY-CONFIDENCE TRADE-OFF

in (Correia et al., 2024), the authors derived new information-theoretic bounds that connected con-
formal prediction to list decoding. The bounds involved terms related to the efficiency of conformal
prediction and the conditional entropy or KL-divergence terms and leveraged Fano’s inequality and
data processing inequality. In this section, we derive new bounds that can generally lead to tighter
bounds. The proofs are all relegated to Appendix B.

Consider the case where the error probability Pe is not exceeding α, that is
P
(
Y m+n
m+1 /∈ Γα(Zm

1 , X
m+n
m+1 )

)
≤ α. We have the following result.

Theorem 3.1. Consider a transductive conformal predictor Γα(Zm
1 , X

m+n
m+1 ) given a labeled

dataset Zm
1 and test samples Xm+n

m+1 with unknown labels Y m+n
m+1 . If the predictor has the confi-

dence 1− α, then for any β ∈ (0, 1), we have:

P(P (Y m+n
m+1 |Xm+n

m+1 ) ≤ β) ≤ α+ βE(|Γα(Zm
1 , X

m+n
m+1 )|) (2)

We have focused on the prediction set size as the notion of efficiency. It is possible to generalize this
to any measure of efficiency on the prediction set. We show these results in Appendix C.

The proofs are all presented in the Appendix. The original theorem follows from this one using
a counting measure. These theorems can be used to derive bounds for the efficiency-confidence
trade-off for transductive conformal prediction. We start with the following theorem.
Theorem 3.2. Consider a transductive conformal predictor Γα(Zm

1 , X
m+n
m+1 ) with confidence level

1− αn for n test samples. Then, we have:

3
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1. If the asymptotic confidence is non-trivial, i.e., lim infn→∞(1 − αn) > 0, the efficiency
rate satisfies:

γ−m ≥ H(Y |X).

2. If γ−m < H(Y |X), then the confidence vanishes asymptotically to zero:
lim

n→∞
(1− αn) = 0.

Remark 3.3. The theorem states a fundamental asymptotic trade-off between the confidence level
and the prediction set size. Roughly, the prediction set size needs to grow exponentially at least
as enH(Y |X) to avoid a non-trivial confidence level. Another insight is that asymptotically, there
is a phase transition at the efficiency rate H(Y |X) below which it is impossible to get non-trivial
confidence. The result does not indicate anything regarding the impact of the asymptotic confidence
level on the set size. Indeed, it can be seen that lim infn→∞

1
n log(1 − αn) = 0 for any non-trivial

αn. In other words, it seems that asymptotically it suffices to have γ−m ≥ H(Y |X) to get any non-
trivial confidence asymptotically. In case of classical conformal prediction, where the prediction set
of each sample is predicted independently, the result means that the expected prediction set size is
greater than or equal to eH(Y |X). A similar observation was reported in (Correia et al., 2024).

Non-asymptotic results. Similar to the analysis of finite block length in (Polyanskiy et al., 2010),
we can derive a non-asymptotic bound for the efficiency-confidence trade-off using the growth rate
of the average prediction set size.
Theorem 3.4. For a transductive conformal predictor with the confidence level 1− α, consider the
efficiency rate defined as:

γn,m :=
1

n
logE|Γα(Zm

1 , X
m+n
m+1 )|,

which is the growth exponent of the prediction set size. Then for any n, we have:

log∆ + nH(Y |X) +
√
nσQ−1

(
α+

ρ√
nσ3

+∆

)
≤ nγn,m

if α+ ρ√
nσ3 +∆ ∈ [0, 1] where ∆ > 0 and Q(·) is the Gaussian Q-function, and:

σ := Var (logP (Y |X))
1/2

=
(
E (logP (Y |X) +H(Y |X))

2
)1/2

(3)

ρ := E
(
|logP (Y |X) +H(Y |X)|3

)
. (4)

The non-asymptotic results leverage the Berry-Esseen central limit theorem to characterize the sum∑n
i=1 logP(Ym+i|Xm+i) in Theorem 3.1. We call the term σ, the dispersion following a similar

name used in finite block length analysis of information theory (Polyanskiy et al., 2010; Strassen,
1962). Note that these bounds do not assume anything about the underlying predictor, and therefore
do not show any dependence on the number of training samples m. The underlying method might
as well have access to the underlying distributions P (Y |X).

To use the above bound, we provide an approximation by ignoring some constant terms that diminish
with larger n. The approximate bound can be easily computed and is given as follows�



�
	nγn,m ≥ nH(Y |X) +

√
nσQ−1 (α)− log n

2
+O(1). (5)

We provide the derivation details in the Appendix.

On achievability of the bounds. In this part, we argue that the provided bound are achievable.
Suppose that we know the underlying probability distribution P (Y |X), which corresponds to the
idealized setting in (Vovk et al., 2022). Upon receiving test samples X1, . . . , Xn, we can construct
the confidence sets as follows:

Γα(Xn
1 ) :=

{
(y1, . . . , yn) :

n∏
i=1

P (yi|Xi) ≥ β

}
.

Similarly, the efficiency rate is defined as γn := 1
n logE[|Γα(Xn

1 )|]. We show that with proper
choice of β we can achieve the lower bound, ignoring the logarithmic terms, at a given significance
level α. The definition of ρ and the dispersion σ is similar to Theorem 3.4.
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Theorem 3.5. For the confidence set Γα(Xn
1 ) defined above, and for α ≥ ρ/

√
nσ3, there is a

choice of β that achieves the confidence 1− α at the efficiency rate γn satisfying:
nγn ≤ nH(Y |X) +

√
nσQ−1(α) +O(1).

As it can be seen, knowing the underlying probability distribution, the prediction set size can be
bounded, and therefore, the achievability bound matches the first and second order term in the con-
verse bound. For the proof and more details see Section D.

4 HYPOTHESIS TESTING WITH EMPIRICALLY OBSERVED STATISTICS

In the previous section, we studied the case where multiple test samples could have different labels.
In safety-critical applications, however, a single prediction task is often repeated across multiple
samples from the same experiment to enhance robustness. In such cases, it is reasonable to assume
that all test samples share the same label. Formally, we assume a balanced training dataset with M
classes and N samples per class, denoted as Xi = (Xi,1, . . . , Xi,N ) for each i ∈ [M ], resulting in a
total training set size ofm = N ·M . At test time, we receive n samples Xtest = (Xm+1, . . . , Xm+n),
all from a single, unknown class. The goal is to determine the label of these test samples.

Assume that samples Xi,j from class j follow a distinct distribution over X , denoted by Pi for
i = 1, 2, . . . ,M . These distributions are unknown; we only have access to their samples via the
training data. The transductive prediction problem, in this context, reduces to identifying which class
in the training data shares the same distribution as the test samples. This is equivalent to a multiple
hypothesis testing problem with empirically observed statistics (Ziv, 1988; Gutman, 1989; Zhou
et al., 2020), where each hypothesis corresponds to a class label. We consider the hypotheses Hi

for i = 1, 2, . . . ,M where the test sequence Xtest is generated according to the distribution Pi, i.e.,
the same distribution used to generate XN

i . In the context of transductive conformal prediction, the
confidence predictor returns a list of hypotheses. This setup introduces two simplifications compared
to general transductive learning: (1) the training set is balanced, with the same number of samples
N per class, and (2) all test samples Xtest are assumed to originate from the same distribution.

Binary Classification without Confidence - Asymptotic Results. We first review the classical
results. For the rest, we assume N = α · n. In binary classification setup, the decision rule is given
by the mapping ψn : X 2×N × Xn → {H1, H2}. The decision rule partitions the space into 2
disjoint regions without reporting confidence. Two errors corresponding to false alarm (type I) and
missed detection (type II) arise in hypothesis testing, given by:

β1(ψn|P1, P2) = PP1
(ψn(X1,X2,Xtest) = H2), (6)

β2(ψn|P1, P2) = PP2(ψn(X1,X2,Xtest) = H1), (7)
where PPi

means that the test sequence follows the distribution Pi for i = 1, 2. The optimal decision
rule for this problem has been studied in the literature. To state the main result, we will introduce
the following quantity, known as the generalized Jensen-Shannon divergence:

GJS(Pi, Pj , α) = αD

(
Pi

∥∥∥αPi + Pj

1 + α

)
+D

(
Pj

∥∥∥αPi + Pj

1 + α

)
. (8)

For this problem, Gutman suggested the following test in (Gutman, 1989):

ψGutman
n (X1,X2,Xtest) =

{
H1 if GJS(TX1

, TXtest , α) ≤ λ

H2 if GJS(TX1 , TXtest , α) > λ
(9)

where TX is the type of the sequence X, i.e., its empirical probability mass function. See eq. A
for more details. Note that the generalized Jensen-Shannon divergence for types gets the following
form:

GJS(TX1
, TXtest , α) = D(TXtest∥TX1,Xtest) + αD(TX1

∥TX1,Xtest).

This test is known to be asymptotically optimal in the following sense. First, for any distributions
P1 and P2, we have:

lim inf
n→∞

− 1

n
log β1(ψ

Gutman
n |P1, P2) ≥ λ (10)

lim inf
n→∞

− 1

n
log β2(ψ

Gutman
n |P1, P2) = F (P1, P2, α, λ), (11)

5
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where
F (P1, P2, α, λ) := min

(Q1,Q2)∈P(X)2

GJS(Q1,Q2,α)≤λ

D(Q2∥P2) + αD(Q1∥P1). (12)

Next, consider any other decision rule ϕn that uniformly controls the error exponent of
β1(ψn|P1, P2) similar to Gutman, namely

∀(P1, P2) ∈ P(X )2 : lim inf
n→∞

− 1

n
log β1(ψn|P1, P2) ≥ λ.

Then, the second error is always worse than Gutman’s test: β2(ψn|P1, P2) ≥ β2(ψ
Gutman
n |P1, P2).

The proof can be found in (Dembo & Zeitouni, 2009, Theorem 2.1.10) and is based on Sanov’s
theorem. The first conclusion of this result is that with Gutman’s test, we will asymptotically have
prediction sets a single true label in the set, as both probability of errors vanishes. The result in this
sense is not surprising. Asymptotically, we have sufficient samples at both training and test times
(n,N to infty) to estimate the distributions precisely. Note that the prediction set always has the
cardinality of one, so there is no confidence associated with it. Also, asymptotically, the probability
error decreases exponentially, which means that the set of size one is asymptotically achievable with
an arbitrary level of confidence if F (P1, P2, α, λ) ̸= 0. See (Zhou et al., 2020) for non-asymptotic
results and further discussions.

By controlling λ, we can maintain the decay rate of the error of the first type; however, this comes at
the cost of a worse error rate for the error of the second type. This term would dominate the Bayesian
error in which we are interested, namely Pn

e = π1β1(ψn|P1, P2) + π2β2(ψn|P1, P2), where π1, π2
are the prior probabilities of each class. This shows that Gutman’s test cannot assure an arbitrary
level of confidence. As we will see, we can control the decay rate for the average error if we use a
confidence predictor with prediction set sizes bigger than one.

Binary Confidence Predictor - Asymptotic Results. To build the confidence predictor, we mod-
ify the decision rule to provide a subset of the hypothesis, namely Γα

n : X 2×N × Xn → 2{H1,H2}.
The error is defined as:

Pn
e = P(Htest /∈ Γα

n(X1,X2,Xtest)) (13)

where Htest is the hypothesis of the test sequence. We can also write:

Pn
e = π1P(H1 /∈ Γα

n(X1,X2,Xtest)|Xtest) ∼ P1)+π2P(H2 /∈ Γα
n(X1,X2,Xtest)|Xtest) ∼ P2),

where π1, π2 are prior probabilities for H1, H2. If we use Gutman’s test, the error exponent for one
of the conditional probabilities is controlled, namely

P(H1 /∈ Γα
n(X1,X2,Xtest)|Xtest) ∼ P1) = β1(ψ

Gutman
n |P1, P2).

Therefore, to get the confidence guarantee, we can modify Gutman’s test as follows.

Definition 4.1. Gutman’s test with confidence is defined as follows:

• Include H1 if GJS(TX1 , TXtest , α) < λ.

• Include H2 if GJS(TX2 , TXtest , α) < λ.

The decision rule for H1 is the classical Gutman’s test denoted by ψGutman
1,n , while the second rule is

the same test but using TX2
instead of TX1

, and it is denoted by ψGutman
2,n .

We can see that the errors are related to Gutman’s first error:

P(H1 /∈ Γα
n(X1,X2,Xtest)|Xtest ∼ P1) = β1(ψ

Gutman
1,n |P1, P2) (14)

P(H2 /∈ Γα
n(X1,X2,Xtest)|Xtest ∼ P2) = β1(ψ

Gutman
2,n |P1, P2). (15)

We can leverage the result from the classical Gutman’s test to get a bound on the error probability.

Theorem 4.2. The probability of error of Gutman’s test with confidence satisfies the following:

lim sup
n→∞

1

n
logPn

e ≤ −λ.

6
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The proof is given in Section E.1. The theorem shows the error decay rate can be controlled arbi-
trarily, similar to conformal prediction, but at the cost of larger or empty prediction sets. Next, we
characterize the probability of larger set sizes. Let’s look at the following probabilities:

P(|Γα
n(X1,X2,Xtest)| = 0) = P(GJS(TX1

, TXtest , α) ≥ λ, and GJS(TX2
, TXtest , α) ≥ λ) (16)

P(|Γα
n(X1,X2,Xtest)| = 2) = P(GJS(TX1 , TXtest , α) < λ, and GJS(TX2 , TXtest , α) < λ) (17)

The following theorem provides bounds on the error exponent of these probabilities.
Theorem 4.3. We have:

lim
n→∞

1

n
logP(|Γα

n(X1,X2,Xtest)| = 0) ≤ −λ (18)

lim
n→∞

1

n
logP(|Γα

n(X1,X2,Xtest)| = 2) ≤ −min (F (P1, P2, α, λ), F (P2, P1, α, λ)) . (19)

where
F (P1, P2, α, λ) := min

(Q1,Q2)∈P(X)2

GJS(Q1,Q2,α)<λ

D(Q2∥P2) + αD(Q1∥P1). (20)

if λ > min (F (P1, P2, α, λ), F (P2, P1, α, λ)), the equality holds for eq. 19, otherwise for eq. 18.

The proof is presented in Appendix E.2. The high-level idea behind the proof is as follows. Con-
sider the case where Xtest ∼ P1. In this case, the probability of the event GJS(TX1

, TXtest , α) ≥ λ
decreases exponentially with probability O(e−nλ). On the other hand, the probability of the
event GJS(TX2

, TXtest , α) < λ decreases exponentially with probability O(e−nF (P1,P2,α,λ)) us-
ing Sanov’s theorem. Similar arguments can be made for the case Xtest ∼ P2. The theorem follows
from the analysis of the dominant error exponent.

The above theorem implies that it is possible to have a confidence predictor with controlled error that
is asymptotically efficient, which means it yields a set of cardinality one. However, it also reveals
a fundamental trade-off. As we increase λ to have higher confidence, the decay exponent for the
probability of inefficient prediction sets decreases. In the limit, if λ is greater than G(P1, P2, α) or
G(P2, P1, α), the exponent is zero, and the confidence predictor is asymptotically inefficient.

Multi-class Confidence Predictors - Asymptotic Results. The extension to multiple-class clas-
sification follows a similar idea. The decision function for Gutman’s test with confidence is given
as follows:

ΓGutman
n (X1, . . . ,XM ,Xtest) = {Hi,∀i : GJS(TXi

, TXtest , α) < λ}. (21)

The error probability is defined similarly as Pn
e = P

(
Xtest /∈ ΓGutman

n (X1, . . . ,XM ,Xtest)
)
.We can

immediately get the following result.
Theorem 4.4. The probability of error of Gutman’s test with confidence for the M class satisfies
the following:

lim sup
n→∞

1

n
logPn

e ≤ −λ.

We do not present the proof as it is a simple extension of Theorem 4.2 given in Section E.1. Next,
we characterize the probability of different set sizes. We would need to use the generalized Sanov’s
theorem and related analysis.
Theorem 4.5. For any k > 1, the probability that the prediction set has the cardinality k decays
exponentially with the exponent bounded as follows:

lim
n→∞

1

n
logP(

∣∣ΓGutman
n (X1, . . . ,XM ,Xtest)

∣∣ = k) ≤ − inf
l∈[M ]

inf
S⊂[M ],|S|=k

F ({Pi : i ∈ S}, Pl, α, λ)

where:

F ({Pi : i ∈ S}, Pl, α, λ) := inf
((Qi)i∈S/{l},Qt)∈P|S|

GJS(Qi,Qt,α)<λ,∀i∈S/{l}

α
∑

i∈S/{l}

D(Qi∥Pi) +D(Qt∥Pl), l ∈ S

F ({Pi : i ∈ S}, Pl, α, λ) := inf
(Q1,...,QM,Qt)∈PM+1

GJS(Qi,Qt,α)<λ,∀i∈S
GJS(Ql,Qt,α)≥λ

α
∑

i∈S∪{l}

D(Qi∥Pi) +D(Qt∥Pl), l /∈ S.
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The probability of an empty prediction set is bounded as follows, too:

lim
n→∞

1

n
logP(

∣∣ΓGutman
n (X1, . . . ,XM ,Xtest)

∣∣ = 0) ≤ −λ. (22)

The proof is given in Section E.3. Gutman’s test is known to be optimal (Gutman, 1989), in the
sense that it provides the lowest type II error among all tests that uniformly control the type I error.
We will discuss the implications of this optimality as well as non-asymptotic results in Appendix F.

5 RELATED WORKS

Conformal prediction (Vovk et al., 2022) is a framework for confidence predictors with distribution-
free coverage guarantees that rely only on the assumption that the samples are exchangeable. Some
notable examples are split conformal prediction (Papadopoulos et al., 2002; Lei et al., 2018), adap-
tive conformal prediction (Romano et al., 2020), weighted conformal prediction (Tibshirani et al.,
2019; Lei & Candès, 2021) and localized conformal prediction (Guan, 2023)—see (Angelopoulos
& Bates, 2021) for more details. Transdutive learning was introduced in (Gammerman et al., 1998),
while transductive conformal prediction (TCP) was proposed in (Vovk, 2013) to generalize confor-
mal prediction to multiple test examples. It is in this sense that we understand transductive learning.
Vovk (2013) also discussed Bonferroni predictors as an information-efficient approach to transduc-
tive prediction. For a historical anecdote on the variations on the notion of transductive learning,
going back to Vapnik, see 4.8.5 in (Vovk et al., 2022). Applications of transductive learning have
been explored in ranking (Fermanian et al., 2025), which in itself includes many other use cases.
Theoretical aspects of TCP were studied in (Gazin et al., 2024), where the joint distribution of p-
values for general exchangeable scores is derived. Although the applications of transductive learning
are nascent, it provides a more general framework for studying confidence predictors.

Work on conformal prediction has focused on marginal and conditional guarantees, p- and e-value
distributions, and extensions such as handling non-exchangeable samples. (Angelopoulos et al.,
2024; Foygel Barber et al., 2021; Gazin et al., 2024; Vovk, 2012; Bates et al., 2023; Marques F.,
2025; Vovk & Wang, 2024; 2023; Grunwald et al., 2024; Gauthier et al., 2025). In particular, two
open research directions are relevant for this paper: first, the connection with hypothesis testing, and
second, the theoretical bounds on the efficiency of conformal prediction.

The connection of confidence prediction with hypothesis testing is noted, for instance, in (Waudby-
Smith et al., 2025; Wasserman et al., 2020). The authors in (Wasserman et al., 2020) introduced the
split likelihood ratio statistics and used them to build a confidence set that enjoys finite sample guar-
antees and can be applied to a hypothesis testing setup. The intuitive idea is that the likelihood ratio
tests, prevalent in hypothesis testing works, can be modified to build e-value (see eq. 6 in (Wasser-
man et al., 2020)). Statistical classification, on the other hand, has been seen as hypothesis testing
in the past. When the distributions of each class are not given, the problem of predicting the label of
new samples from a training data is seen as hypothesis testing from empirically observed statistics
and was discussed in (Ziv, 1988) for binary classification and in (Gutman, 1989) for multiple hy-
pothesis testing. The goal in these works is to characterize the optimal test and its error exponent in
asymptotic (Gutman, 1989) and non-asymptotic regimes (Zhou et al., 2020; Haghifam et al., 2021).
These results, however, do not address confidence prediction and assume a single output.

In (Correia et al., 2024), confidence prediction is framed as a list decoding problem in information
theory. In that light, confidence predictors can be seen as list decoding for hypothesis testing with
empirically observed statistics. The problem of Bayesian M -ary hypothesis testing with list decod-
ing has been considered in (Asadi Kangarshahi & Guillén i Fàbregas, 2023), but assuming known
probabilities and fixed list sizes. The problem of Bayesian M -ary hypothesis testing with empiri-
cally observed statistics was considered in (Haghifam et al., 2021). The result is asymptotic, does
not consider list decoding, and works on finite alphabets. Method of types is the primary technique
for deriving bounds in the case of empirically observed statistics, which requires the assumption of
a finite alphabet size. An extension to a larger alphabet has been considered in (Kelly et al., 2012).

Finally, on the efficiency of conformal prediction, Correia et al. (2024) used the data processing
inequality for f -divergences to get a lower bound on the logarithm of the expected prediction set
size that mainly depends on the conditional entropy. In this work, we extend this study using a
different class of bounds on hypothesis testing. Numerous information-theoretic bounds exist for
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(a) The finite block length bound for the growth expo-
nent of the prediction set size, namely the inefficiency
versus the number of samples

(b) The comparison of the upper bound with naive
Bonferroni split conformal prediction for transduc-
tive inference - α = 0.1

Figure 1: Numerical Results for the derived theoretical bound

hypothesis testing (Verdu & Han, 1994; Han, 2014; Polyanskiy et al., 2010; Polyanskiy & Verdú,
2010; Poor & Verdu, 1995; Chen & Alajaji, 2012) with applications in finite-block-length analysis
of Shannon capacity and source coding. Our bound in Theorem 3.1 generalizes (Verdu & Han, 1994)
to variable-size list decoding; an extension to fixed-size list decoding is given in (Afser, 2021).

6 NUMERICAL RESULTS

In this section, we conduct a small experiment to illustrate the relevance of the bound. We use the
MNIST dataset (LeCun et al., 1998) with noisy labels to have control over the uncertainty: each
label is kept with probability 1− ϵ and changed to another class with probability ϵ/(N − 1), where
N is the total number of classes. For this setup, we can easily compute H(Y |X) and σ. We plot
the efficiency rate γn,m as a function of the number of test sample n (Theorem 3.4) in Figure 1a.
We plot H(Y |X) + σQ−1 (α) /

√
n − log2 n/2n, omitting constant terms O(1)/n that vanish as

n grows. Note we use the base 2 for the logarithms in the experiments. A first observation is a
persistent gap between conditional entropy (dashed line) and our bound, which closes only slowly:
even for hundreds of samples, our bound provides a better guideline for the efficiency rate.

We compared our bound with a transductive method in Figure 1b. We used Bonferroni predictor
as explained in (Vovk, 2013), which converts per-sample p-values to p-value for transductive pre-
diction - see Section G for the details of Bonferroni predictors. For these experiments, we chose
180 samples in the calibration set to create more granularity. As it can be seen, such Bonferroni
prediction becomes inefficient as n increases. Particularly because the per-test confidence becomes
more stringent. For example, for α = 0.1 and n = 20, we need to have a confidence level of 0.005
per sample. With limited calibration set size, this will soon get to the inefficient set prediction con-
taining most labels. Note that our approximation can be loose for smaller n because of the ignored
constant terms and relaxing the assumption α + ρ/

√
nσ3 +∆ ∈ [0, 1]. In long term, the impact of

these terms diminishes, and our approximate lower bound holds providing a better lower bound than
the conditional entropy. We provide further numerical results in App. H.

7 CONCLUSION

We established new theoretical bounds that rigorously characterize the trade-off between efficiency
and confidence in transductive conformal prediction, offering fundamental insights into their in-
herent limitations. Our analysis further exposes the inefficiency of Bonferroni-based methods and
underscores the need for more principled, efficient transductive predictors. Future work includes
extending these bounds to exchangeable sequences and relaxing assumptions such as identical la-
bel distributions. Additionally, overcoming the reliance on the method of types and finite-alphabet
settings remains a critical step toward broader applicability and practical deployment.

9
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Ehsan Asadi Kangarshahi and Albert Guillén i Fàbregas. Minimum probability of error of list M-ary
hypothesis testing. Information and Inference: A Journal of the IMA, 12(3), 2023. pages 8

Stephen Bates, Emmanuel Candès, Lihua Lei, Yaniv Romano, and Matteo Sesia. Testing for outliers
with conformal p-values. Ann. Stat., 51(1):149–178, 2 2023. pages 8

P Chen and F Alajaji. A generalized poor-verdú error bound for multihypothesis testing. IEEE
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A ELEMENTS OF METHOD OF TYPES AND LARGE DEVIATION

Consider a finite space X , and a random variables Xi ∼ P where P ∈ P(X ). The type of a
sequence X = (X1, . . . , Xn) is defined as

TX(a) :=
1

n

n∑
i=1

1(Xi = a), a ∈ X .

This is the empirical distribution of the sequence. The set of type P is defined as:
T (P ) := {X ∈ Xn : Tx = P}.

Also the set of all types for sequences of length n is denoted by Pn. We summarize the main
properties of types in the following theorem. The proof can be found in (Csiszár & Körner, 2011;
Dembo & Zeitouni, 2009).
Theorem A.1. Consider a finite space X with the set of all probability distributions over X denoted
by P , and the set of all types of the sequences of length n denoted Pn. By P (A), Q(A), . . . , we
denote the probability of set A according to the probability measure P,Q, . . . , and we assume that
for A ⊂ Xn we implicitly use the product measure. We have the following properties for types.

• |Pn| ≤ (n+ 1)|X |

• for all X ∈ T (P ): P (X) = e−nH(P )

• for all X ∈ Xn and P ∈ P: P (X) = e−n(H(TX)+D(TX∥P ))

• for all P ∈ Pn: 1
(n+1)|X| e

nH(P ) ≤ |T (P )| ≤ enH(P )

• for all P ∈ Pn and Q ∈ P: 1
(n+1)|X| e

−nD(P∥Q) ≤ Q (T (P )) ≤ e−nD(P∥Q),

whereH(P ) = −
∑

x∈X P (x) logP (x) is the Shannon entropy of P , andD(P∥Q) is the Kullback-
Leibler divergence.

In many cases, we are interested in establishing a bound on the decay exponent of certain proba-
bilities involving types. The following result from large deviation theory is the key tool for such
derivations. See (Dembo & Zeitouni, 2009) for more details.
Theorem A.2 (Sanov’s theorem). For any set Γα ∈ P(X ), and any random sequence X ∈ Xn

drawn i.i.d. using P , we have:

− inf
Q∈int(Γα)

D(Q∥P ) ≤ lim inf
n→∞

1

n
logP (TX ∈ Γα) ≤ lim sup

n→∞

1

n
logP (TX ∈ Γα) ≤ − inf

Q∈Γα
D(Q∥P ),

(23)

where int(Γα) is the interior of the set Γα. In particular for any set Γα whose closure contains its
interior, we have:

lim
n→∞

1

n
logP (TX ∈ Γα) = − inf

Q∈Γα
D(Q∥P ).

We provide a general version of this theorem with its proof to be self-contained. This version will
be directly useful for our results.
Theorem A.3. Consider the sequences Xi ∈ XNi drawn i.i.d. from Pi for i ∈ [M ] with Ni = αin
for αi ∈ [0, 1], and the types of these sequences are denoted by TXi

. Then for any set of probability
distributions Ω ⊂ PM , we have:

− inf
(Q1,...,QM )∈int(Ω)

M∑
i=1

αiD(Qi∥Pi) ≤ lim inf
n→∞

1

n
logP((TX1 , . . . , TXM

) ∈ Ω)

≤ lim sup
n→∞

1

n
logP((TX1

, . . . , TXM
) ∈ Ω) ≤ − inf

(Q1,...,QM )∈Ω

M∑
i=1

αiD(Qi∥Pi)

(24)

where int(Ω) is the interior of Ω. Besides, if the closure of Ω contains its interior, we have the
equality.
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Proof. We first establish an upper bound using properties of types as follows:

P((TX1
, . . . , TXM

) ∈ Ω) =
∑

(TX1
,...,TXM

)∈Ω∩PM
n

M∏
i=1

Pi(TXi
)

≤
∑

(TX1
,...,TXM

)∈Ω∩PM
n

M∏
i=1

e−NiD(TXi
∥Pi)

≤
M∏
i=1

(Ni + 1)|X | exp

(
−n inf

(TX1
,...,TXM

)∈Ω∩PM
n

M∑
i=1

αiD(TXi
∥Pi)

)

Next, we focus on the lower bound using similar techniques:

P((TX1 , . . . , TXM
) ∈ Ω) =

∑
(TX1

,...,TXM
)∈Ω∩PM

n

M∏
i=1

Pi(TXi)

≥
∑

(TX1
,...,TXM

)∈Ω∩PM
n

M∏
i=1

1

(Ni + 1)|X | e
−NiD(TXi

∥Pi)

≥
M∏
i=1

1

(Ni + 1)|X | e
−NiD(TXi

∥Pi) for all (T1, T2, . . . , TM ) ∈ Ω ∩ PM
n

≥
M∏
i=1

1

(Ni + 1)|X | exp

(
−n inf

(TX1
,...,TXM

)∈Ω∩PM
n

M∑
i=1

αiD(TXi
∥Pi)

)

Using the fact that limn→∞
1
n (n+ 1)|X | = 0, we get the following equalities:

lim sup
n→∞

1

n
logP((TX1

, . . . , TXM
) ∈ Ω) = − lim inf

n→∞
inf

(TX1
,...,TXM

)∈Ω∩PM
n

M∑
i=1

αiD(TXi
∥Pi) (25)

lim inf
n→∞

1

n
logP((TX1

, . . . , TXM
) ∈ Ω) = − lim sup

n→∞
inf

(TX1
,...,TXM

)∈Ω∩PM
n

M∑
i=1

αiD(TXi
∥Pi) (26)

Then since Ω∩PM
n ⊆ Ω, the upper bound is obvious. For the lower bound, we start from the fact for

any point µ in the interior of Ω having the same support as P1×· · ·×PM , we can find a distribution
in Pn with the total variation distance of at most O(1/n) from µ (see Lemma 2.1.2 of (Dembo &
Zeitouni, 2009)). Therefore, we have a sequence of distributions in Ω ∩ Pn that converges to µ.
Using this sequence, we can get a lower bound for each µ in the interior of Ω, which proves the final
lower bound.

B PROOFS OF SECTION 3

The basic idea for deriving the new inequalities is based on a set of results in information theory
and Shannon’s channel coding theorem. In Shannon Theory, it is known that Fano’s inequality
cannot be used to prove strong converse results and establish the phase transition at the Shannon
capacity. Other inequalities in information theory involve the underlying probability distribution or
information density terms (Verdu & Han, 1994; Han, 2014). For example, Theorem 4 in (Verdu &
Han, 1994) states that:

P(P (X|Y ) ≤ β) ≤ ϵ+ β,

where ϵ is the error probability of a code for a channel PY |X and β is an arbitrary number in [0, 1].
These bounds can sometimes lead to tighter results compared to Fano’s inequality, as indicated in
(Polyanskiy et al., 2010). In what follows, we obtain a similar bound for transductive conformal
prediction.
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B.1 PROOF OF THEOREM 3.1

Proof. To simplify the notation for the proof, we denote X := Xm+n
m+1 , Y := Y m+n

m+1 and Z := Zm
1 .

we assume (X,Y ) are drawn from the distribution P . For each X ∈ Xn, define the set:

BX = {Y : P (Y |X) ≤ β}.

P (Y |X) is the conditional distribution induced by P . The proof follows the steps below:

P(P (Y |X) ≤ β) =

∫
P (BX |X)P (X)dX =

∫
P (X, BX)dX =

∫
P (X,Z, BX)dXdZ

=

∫ ∫
P (X,Z, BX ∩ Γα(Z,X)c)dXdZ +

∫ ∫
P (X,Z, BX ∩ Γα(Z,X))dXdZ

≤
∫ ∫

P (X,Z,Γα(Z,X)c)dXdZ +

∫ ∫
P (X,Z, BX ∩ Γα(Z,X))dXdZ

(1)

≤ α+

∫ ∫
P (X,Z, BX ∩ Γα(Z,X))dXdZ

= α+

∫ ∫
P (X,Z)P (BX ∩ Γα(Z,X)|X,Z)dXdZ

= α+

∫ ∫
P (X,Z)

 ∑
Y ,Y ∈BX∩Γα(Z,X)

P (Y |X,Z)

 dXdZ

(2)

≤ α+

∫ ∫
P (X,Z)

 ∑
Y ,Y ∈BX∩Γα(Z,X)

β

 dXdZ

≤ α+

∫
P (X,Z)β|Γα(Z,X)|dXdZ = α+ βE(|Γα(Z,X)|).

The inequality (1) follows from the confidence assumption:

P
(
Y m+n
m+1 /∈ Γα(Zm

1 , X
m+n
m+1 )

)
=

∫ ∫
P (X,Z,Γα(Z,X)c)dXdZ ≤ α.

The inequality (2) follows from the independence of Z and (X,Y ) and the definition of BX .

B.2 PROOF OF THEOREM 3.2

Proof. We use Theorem 3.1 to prove the results. The choice of β can be important. Let’s choose
β = e−n(H(Y |X)−δ) where H(Y |X) is the conditional entropy, and δ is any non-negative number.
With standard manipulations, we obtain the following result from Theorem 3.1:

P
(
1

n
logP (Y m+n

m+1 |Xm+n
m+1 ) ≤ −H(Y |X) + δ

)
≤ αn + e−n(H(Y |X)−δ)E(|Γα(Zm

1 , X
m+n
m+1 )|).

(27)

Since the test samples are i.i.d., the term logP (Y m+n
m+1 |Xm+n

m+1 ) can be decomposed as:

1

n
logP (Y m+n

m+1 |Xm+n
m+1 ) =

1

n

n∑
i=1

logP (Ym+i|Xm+i).

From law of large numbers, as n goes to infinity, the sum converges almost surely to the negative
conditional entropy between the input X and the label Y , namely −H(Y |X). This means that the
probability on the left hand side of eq. 27 goes to one. We have two cases:

• Case 1: if γ−m < H(Y |X), then we have:

lim inf
n→∞

e−n(H(Y |X)−δ)E(|Γα(Zm
1 , X

m+n
m+1 )|) = 0.

This means that limn→∞ αn = 1, which means the confidence goes to zero.
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• Case 2: for non-trivial asymptotic confidence, lim infn→∞ αn is strictly below one. For the
inequality to hold, the second term needs to be non-vanishing, that is γ−m > H(Y |X)− δ,
namely γ−m ≥ H(Y |X).

The proof follows accordingly.

B.3 PROOF OF THEOREM 3.4

Proof. We use Berry-Esseen central limit theorem for the proof.

Theorem B.1 (Berry-Esseen). Let Xi, i ∈ [n] be i.i.d. random variables with E(Xi) =
µ,Var(Xi) = σ2, ρ = E(|Xi − µ|3). Then we have for any t ∈ R:∣∣∣∣∣P

(
1√
n

n∑
i=1

(Xi − µ)

σ
≥ t

)
−Q(t)

∣∣∣∣∣ ≤ ρ√
nσ3

.

We use Theorem 3.1 as starting point:

P
(
P (Y m+n

m+1 |Xm+n
m+1 ) < β

)
= P

(
1√
n
logP (Y m+n

m+1 |Xm+n
m+1 ) ≤

1√
n
log β

)
= P

(
1√
n

n∑
i=1

logP (Ym+i|Xm+i) ≤
1√
n
log β

)

= P

(
1√
n

n∑
i=1

(logP (Ym+i|Xm+i)− µ)

σ
≤ 1

σ
√
n
log β −

√
nµ

σ

)

≥ Q

(
−1

σ
√
n
log β +

√
nµ

σ

)
− ρ√

nσ3

where µ = −H(Y |X) and the last step follows from Berry-Esseen. Now choose β =
exp

(
nµ−Q−1(ϵ)σ

√
n
)
, which implies that:

Q

(
−1

σ
√
n
log β +

√
nµ

σ

)
= ϵ

We get the following simplified inequality for any ϵ:

ϵ ≤ α+
ρ√
nσ3

+ exp
(
nµ−Q−1(ϵ)σ

√
n+ nγn,m

)
choose ϵ = α+ ρ√

nσ3 +∆ for any ∆ > 0, such that ϵ ∈ (0, 1). Then, we get the result:

log∆− nµ+Q−1(α+
ρ√
nσ3

+∆)σ
√
n ≤ nγn,m.

Deriving An Approximate Bound. Note that Q(x) is non-increasing and (1/
√
2π)−Lipschitz

(given that Q′(x) is negative Gaussian density function). Therefore, we have:

Q−1

(
α+

ρ√
nσ3

+∆

)
≥ Q−1 (α)− 1√

2π

(
ρ√
nσ3

+∆

)
,

We can choose ∆ = ∆′/
√
n, and show that there is a constant C0 such that:

Q−1

(
α+

ρ√
nσ3

+∆

)
≥ Q−1 (α)− C0√

n
.

which gives the approximate exponent:

log∆′ − C0σ − 1

2
log n− nµ+Q−1(α)σ

√
n ≤ nγn,m.

The term log∆′ − C0σ is constant and hence O(1). The final result follows as:

nγn,m ≥ nH(Y |X) +
√
nσQ−1 (α)− log n

2
+O(1).
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Remark B.2. Looking at the proof more closely, a precise statement of the bound is as follows:

ϵ ≤ α+
ρ√
nσ3

+ exp
(
nµ−Q−1(ϵ)σ

√
n+ nγn,m

)
.

The choice of ϵ = α + ρ√
nσ3 + ∆ for any ∆ > 0 needs to satisfy ϵ ∈ (0, 1). Our approximation

ignores this condition, which can lead to vacuous results. In certain cases, even α + ρ√
nσ3 can be

outside (0, 1), which yields a vacuous bound, although asymptotically as n → ∞, the term will
always be within the desired range. Another component is ∆, which is between (0, 1). This means
that log∆ < 0, and therefore, the actual bound is smaller that nH(Y |X) +

√
nσQ−1 (α). Again,

as n increases, these impacts vanish, and the bound should be non-vacuous.

C EFFICIENCY-CONFIDENCE TRADE-OFF FOR GENERAL NOTIONS OF
EFFICIENCY

In (Vovk et al., 2022, Section 3.1), various criteria for efficiency has been discussed such as sum,
number, unconfidence, fuzziness, multiple, and excess criterion. Our notion of efficiency based on
the prediction set size is the number criterion in the transductive setting. Here. we can generalize
the result for a general criterion of efficiency that can be expressed by a measure (not necessarily a
probability measure). We start with the following more general result.
Theorem C.1. Consider a transductive conformal predictor Γα(Zm

1 , X
m+n
m+1 ) given a labeled

dataset Zm
1 and test samples Xm+n

m+1 with unknown labels Y m+n
m+1 . If the predictor has the confi-

dence 1− α, then for any positive β and any measure Q, we have:

P(P (Y m+n
m+1 |Xm+n

m+1 ) ≤ βQ(Y m+n
m+1 |Xm+n

m+1 )) ≤

α+ β

∫
P (Xm+n

m+1 , Z
m
1 )Q(Γα(Zm

1 , X
m+n
m+1 )|X

m+n
m+1 )dX

m+n
m+1 dZ

m
1 .

Proof. We follow the idea of the proof given in B.1. Define:

BX := {Y : P (Y |X) ≤ βQ(Y |X)}.
We need to modify the last step the of the proof as follows:

P(P (Y |X) < βQ(Y |X)) =

∫
P (X, BX)dX

≤ α+

∫ ∫
P (X,Z)

 ∑
Y ,Y ∈BX∩Γα(Z,X)

βQ(Y |X)

 dXdZ

≤ α+ β

∫
P (X,Z)Q(Γα(Z,X)|X)dXdZ.

Finally, we can extend the result to the non-asymptotic case. The measure Q can be the one repre-
sented by the model or can be any notion of efficiency as before. A similar trick has been used in
Eq. (102) of (Polyanskiy et al., 2010) in their meta-converse analysis.
Theorem C.2. For a transduction conformal predictor with confidence 1− α. Define:

γ(Q)
n,m :=

1

n
log

∫
P (Xm+n

m+1 , Z
m
1 )Q(Γα(Zm

1 , X
m+n
m+1 )|X

m+n
m+1 )dX

m+n
m+1 dZ

m
1

=
1

n
logEXm+n

m+1 ,Zm
1

(
Q(Γα(Zm

1 , X
m+n
m+1 )|X

m+n
m+1 )

)
,

for any measure Q(Y |X) satisfying Q(Y m+n
m+1 |Xm+n

m+1 ) =
∏n

i=1Q(Ym+i|Xm+i). Then for any n
and ∆ > 0 such that α+ ρ√

nσ3 +∆ ∈ [0, 1], we have:

log∆ + nµ+
√
nσQ−1

(
α+

ρ√
nσ3

+∆

)
≤ nγ(Q)

n,m
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where Q(·) is the Q-function, and:

µ := E
(
log

P (Y |X)

Q(Y |X)

)
(28)

σ := Var

(
log

P (Y |X)

Q(Y |X)

)1/2

=

(
E
(
log

P (Y |X)

Q(Y |X)
− µ

)2
)1/2

(29)

ρ := E

(∣∣∣∣log P (Y |X)

Q(Y |X)
− µ

∣∣∣∣3
)
. (30)

The proof follows the exact same steps as in the proof given B.3, and we omit it.

Note that if Q(·) is a probability measure, the term µ is given by E (DKL (P (Y |X)∥Q(Y |X)) |X).
One insight from the above theorem is that the exponent of the transductive prediction efficiency,
measured using a probability measure, is asymptotically the KL-divergence between the used mea-
sure and ground truth conditional probability.

D DISCUSSION ON ACHIEVABILITY ON NON-ASYMPTOTIC BOUNDS ON
EFFICIENCY

Proof. We start with the following lemma, which gives a bound on the expected set size.

Lemma D.1. Consider two spaces for X and Y with a joint probability distribution P (x, y) defined
over the product space for x ∈ X and y ∈ Y . Define the set Ax for x ∈ X as follows:

Ax = {y : P (y|x) ≥ β}.
Then:

EX [|AX |] ≤ 1

β
.

Proof. The proof is as follows:

P(AX) =
∑

(x,y)∈X×Y

P (x, y)1(y ∈ Ax) (31)

≥
∑

(x,y)∈X×Y

P (x)β1(Y ∈ Ax) (32)

=
∑
x∈X

P (x)
∑
y∈Ax

β1(Y ∈ Ax) (33)

= βE[|AX |], (34)

where we used to inequality P(y|x) ≥ β for y ∈ Ax. Using P(AX) ≤ 1, we get the inequality.

Now, we just need to pick β such that the probability of AX satisfies the required confidence level.
To do so, consider the set of labels:

Γα(xn1 ) := {yn1 : P (yn1 |xn1 ) ≥ β}.
When (Xi, Yi) are independently and identically drawn from P (X,Y ), we can use the Berry-Esseen
central limit theorem, Theorem B.1, to bound the probability of the set Γα(xn1 ). The probability of
error is the probability that the labels Y m+n

m+1 do not belong to the set Γα(Xn
1 ). It can be bounded as

follows.

P (P (Y n
1 |Xn

1 ) ≤ β) = P

(
1√
n

n∑
i=1

(logP (Yi|Xi)− µ)

σ
≤ 1

σ
√
n
log β −

√
nµ

σ

)

≤ Q

(
−1

σ
√
n
log β +

√
nµ

σ

)
+

ρ√
nσ3

.
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As before µ = −H(Y |X), σ is the variance of the log probability, and the last step follows from
Berry-Esseen theorem. To guarantee the confidence level α, we need to choose β as follows:

Q

(
−1

σ
√
n
log β +

√
nµ

σ

)
+

ρ√
nσ3

= α

which yields the following choice of β

β = exp

(
nµ−Q−1(α− ρ√

nσ3
)σ
√
n

)
This is conditioned on α − ρ√

nσ3 ∈ (0, 1), which might not hold for smaller n. Indeed, we need to
have:

n >
( ρ

ασ3

)2
.

The function Q−1(·) is 1/
√
2π-Lipschitz, and we have:

Q−1(α− ρ√
nσ3

) ≤ Q−1(α) +
1

2π

ρ√
nσ3

.

Therefore:

β ≤ exp

(
nµ− σ

√
nQ−1(α) +

1

2π

ρ

σ2

)
With this choice of β, the expected set size is bounded using the above lemma as:

E[|Γα(Xn
1 )|] ≤ exp

(
−nµ+ σ

√
nQ−1(α)− 1

2π

ρ

σ2
,

)
which yields the result.

Our derivation does not contain the logarithmic terms, − 1
2 log n that appears in the lower bound.

We can use a different technique, similar to the one used in (Kontoyiannis & Verdu, 2014) for the
lossless compression case, to get this term as well.

E PROOFS OF SECTION 4

E.1 PROOF OF THEOREM 4.2

We start with the first error. To start, we need to use the following definition of Jensen-Shannon
divergence:

GJS(TX1
, TXtest , α) = (1 + α)H(TX1Xtest)− αH(TX1

)−H(TXtest) (35)

The proof continues as follows using the properties of types reviewed in Appendix A:

P(H1 /∈ Γα
n(X1,X2,Xtest)|Xtest ∼ P1)

=
∑

(X1,X2,Xtest)
GJS(TX1

,TXtest ,α)≥λ

P1(X1)P2(X2)P1(Xtest)

≤
∑

(X1,X2,Xtest)
GJS(TX1

,TXtest ,α)≥λ

e−(N+n)H(TX1Xtest )P2(X2)

≤
∑

(X1,X2,Xtest)
GJS(TX1

,TXtest ,α)≥λ

e−NH(TX1
)P2(X2)e

−nH(TXtest )e−nλ

≤ e−nλ
∑

(TX1
,TXtest )∈PN×Pn

GJS(TX1
,TXtest ,α)≥λ

|TX1
|e−NH(TX1

)|TXt
|P2(X2)e

−nH(TXtest )

≤ e−nλ |PN × Pn| ≤ e−nλ(n+ 1)|X |(N + 1)|X |.
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In the last inequality, we used a bound on the number of sequences of length N for each type T .
The other error follows from a similar analysis. We have shown that the errors β1(ψGutman

1,n |P1, P2)

and β1(ψGutman
2,n |P1, P2) are both bounded by e−nλ̃, where

λ̃ = λ− |X | log(n+ 1)(N + 1)

n
.

This implies:
Pn
e ≤ e−nλ̃,

and establishes the desired result.

E.2 PROOF OF THEOREM 4.3

First note that:

P(|Γα
n(X1,X2,Xtest)| = 2) = P(GJS(TX1

, TXtest , α) < λ, and GJS(TX2
, TXtest , α) < λ) (36)

Let’s start as follows:

P( |Γα
n(X1,X2,Xtest)| = 2) =

π1P(|Γα
n(X1,X2,Xtest)| = 2|Xtest ∼ P1) + π2P(|Γα

n(X1,X2,Xtest)| = 2|Xtest ∼ P2)

Let E1 and E2 denote respectively the events GJS(TX1
, TXtest , α) < λ, and GJS(TX2

, TXtest , α) <
λ. Then, we have:

P(|Γα
n(X1,X2,Xtest)| = 2|Xtest ∼ P1) = P(E1 ∩ E2|Xtest ∼ P1)

From the error analysis of classical Gutman’s decision, we have:

P(E1|Xtest ∼ P1) ≥ 1− e−nλ̃.

Therefore, the probability of cardinality 2 is dominated by the event E2, in the following sense:

P(E2|Xtest ∼ P1)−e−nλ̃ ≤ P(E1|Xtest ∼ P1)+P(E2|Xtest ∼ P1)−1 ≤ P(E1∩E2|Xtest ∼ P1) ≤ P(E2|Xtest ∼ P1)

Now using Theorem A.3, we can characterize the exponent as follows:

lim
n→∞

1

n
logP(E2|Xtest ∼ P1) = − inf

(Q1,Q2)∈P2

GJS(Q1,Q2,α)<λ

D(Q2∥P1)+αD(Q1∥P2) = −F (P2, P1, α, λ),

where, to remind, we had:

F (P1, P2, α, λ) := min
(Q1,Q2)∈P(X)2

GJS(Q1,Q2,α)<λ

D(Q2∥P2) + αD(Q1∥P1). (37)

This, in turn, would imply that:

lim
n→∞

1

n
logP(E1 ∩ E2|Xtest ∼ P1) ≤ −F (P2, P1, α, λ).

Next, we characterize the case Xtest ∼ P2, for which we similarly have:

P(E2|Xtest ∼ P2) ≥ 1− e−nλ̃.

And the even E1 is nothing but the second error of classical Gutman’s test:

lim
n→∞

1

n
logP(E1|Xtest ∼ P2) = − inf

(Q1,Q2)∈P2

GJS(Q1,Q2,α)<λ

D(Q2∥P2)+αD(Q1∥P1) = −F (P1, P2, α, λ),

Putting these results together, we obtain the following:

lim
n→∞

1

n
logP(|Γα

n(X1,X2,Xtest)| = 2) ≤ −min (F (P1, P2, α, λ), F (P2, P1, α, λ)) . (38)

and the equality obtains if min (F (P1, P2, α, λ), F (P2, P1, α, λ)) < λ, as in the lower bound e−nλ̃

vanishes faster.

The probability of having an empty set is controlled similarly, with the difference that the comple-
ment of the above events is considered.
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E.3 PROOF OF THEOREM 4.5

Let Ei denote the event GJS(TXi
, TXtest , α) < λ. We first condition on the event that Xtest follows

the distribution Pl. The key event is the following:

P(|Γα
n(X1, . . . ,Xm,Xtest)| = k|Xtest ∼ Pl) = P

 ⋃
S⊂[M ]:|S|=k

(⋂
i∈S

Ei

)⋂( ⋂
i∈Sc

Ec
i

)∣∣∣∣Xtest ∼ Pl


We will use the union bound, and therefore focus on the following probabilities for l ∈ S and l /∈ S.
We start with l ∈ S, for which we get:

P

((⋂
i∈S

Ei

)⋂( ⋂
i∈Sc

Ec
i

)∣∣∣∣Xtest ∼ Pl

)
≤ P

 ⋂
i∈S,i ̸=l

Ei

∣∣∣∣Xtest ∼ Pl

 , (39)

where the removed events in the upper bound have all probabilities converging to 1. The latter
probability decays exponentially fast with the exponent following from Sanov’s theorem:

lim
n→∞

1

n
logP

 ⋂
i∈S,i ̸=l

Ei

∣∣∣∣Xtest ∼ Pl

 ≤ − inf
(Q1,...,QM,Qt)∈PM+1

GJS(Qi,Qt,α)<λ,∀i∈S/{l}

α

M∑
i=1

D(Qi∥Pi) +D(Qt∥Pl)

= − inf
((Qi)i∈S/{l},Qt)∈P|S|

GJS(Qi,Qt,α)<λ,∀i∈S/{l}

α
∑

i∈S/{l}

D(Qi∥Pi) +D(Qt∥Pl)

Similarly, for l /∈ S, we have:

P

((⋂
i∈S

Ei

)⋂( ⋂
i∈Sc

Ec
i

)∣∣∣∣Xtest ∼ Pl

)
≤ P

((⋂
i∈S

Ei

)⋂
Ec

l

∣∣∣∣Xtest ∼ Pl

)
, (40)

which leads to the following exponent:

lim
n→∞

1

n
logP

((⋂
i∈S

Ei

)⋂
Ec

l

∣∣∣∣Xtest ∼ Pl

)
≤ − inf

(Q1,...,QM,Qt)∈PM+1

GJS(Qi,Qt,α)<λ,∀i∈S
GJS(Ql,Qt,α)≥λ

α

M∑
i=1

D(Qi∥Pi) +D(Qt∥Pl)

= − inf
(Q1,...,QM,Qt)∈PM+1

GJS(Qi,Qt,α)<λ,∀i∈S
GJS(Ql,Qt,α)≥λ

α
∑

i∈S∪{l}

D(Qi∥Pi) +D(Qt∥Pl)

So using the definition of F ({Pi : i ∈ S}, Pl, α, λ), we get:

lim
n→∞

1

n
logP(|Γα

n(X1, . . . ,Xm,Xtest)| = k|Xtest ∼ Pl) ≤ − inf
S⊂[M ],|S|=k

F ({Pi : i ∈ S}, Pl, α, λ)

(41)

which, in turn, implies the final result by finding the smallest exponent for each l.

For the probability of the empty prediction set, we use a simple upper bound that the true label does
not belong to the prediction set. This probability decays exponentially with the exponent −λ.

F DISCUSSION ON OPTIMALITY AND SECOND ORDER ANALYSIS FOR
EMPIRICALLY OBSERVED STATISTICS

Discussion on Optimality. We stated in the paper that the classical Gutman’s test was optimal
(Zhou et al., 2020). To repeat, for any other decision rule ϕn that uniformly controls the error
exponent of β1(ψn|P1, P2) similar to Gutman, namely

∀(P1, P2) ∈ P(X )2 : lim inf
n→∞

− 1

n
log β1(ψn|P1, P2) ≥ λ,
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then, the type-II error is always worse than Gutman’s test:

β2(ψn|P1, P2) ≥ β2(ψ
Gutman
n |P1, P2).

We can use this optimality result to provide a heuristic argument for the efficiency of Gutman’s
test with confidence. Consider all the confidence predictors that satisfy similar error exponents for
β1(ψn|P1, P2). Given the optimality of Gutman’s classical test, the type-II error is higher, which
also means that the probability of having an undesirable term in the set increases. In other words,
the inefficiency of the test increases.

Second Order Analysis. For non-asymptotic results, the following limit is controlled in (Zhou
et al., 2020) for classical tests (no confidence predictor):

λ(n, α, ϵ,P) := sup

{
λ ∈ R+ : ∃ψn s.t. ∀j ∈ [2],∀(P̃1, P̃2) ∈ P(X )2 :

β1(ψn|P1, P2) ≤ exp(−nλ);β2(ψn|P1, P2) ≤ ϵ

}
.

This definition is for binary hypothesis tests, but it can be extended further to multiple hypothesis
test. The following result characterizes the limit.
Theorem F.1 (Theorem 2 (Zhou et al., 2020)). For any ϵ ∈ (0, 1), and any distribution (P1, P2) ∈
P(X )2, the second order limit is characterized as follows:

λ(n, α, ϵ,P) = GJS(P1, P2, α) +

√
V (P1, P2, α)

n
Φ−1(ϵ) +O(

log n

n
),

where Φ(t) = 1 − Q(t) is the cumulative distribution function of the standard normal Gaussian
distribution, and the dispersion function is defined as

V (P1, P2, α) = αVarP1

(
log

(1 + α)P1(X)

αP1(X) + P2(X)

)
+VarP2

(
log

(1 + α)P2(X)

αP1(X) + P2(X)

)
.

Note that this result controls the rate of the second error, which is about yielding the wrong hypoth-
esis, while maximizing the decay rate of the first error. The dual setting of this problem where the
first error is controlled, as desired in our setup, is also studied in (Zhou et al., 2020), Proposition 4.
However, the result is still for asymptotic n, as n goes to infinity. As one can expect, the asymptotic
limit will be based on the error exponent F (P1, P2, α, λ) where λ → 0. This limit turns out to be
the Rényi divergence of order α/(1 + α). In any case, such result is not useful in our context.

We can use still use the result of Theorem F.1 to build a confidence predictor. We provide a
high level idea of such construction. The proofs can be formalized in a similar way to the other
proofs. We combine two tests, one that controls β2(ψ1,n|P1, P2) ≤ ϵ and the other controlling
β1(ψ2,n|P1, P2) ≤ ϵ. We use ψ1,n only to decide on the inclusion of H1 and ψ2,n on the inclusion
of H2. This is a similar procedure to Definition 4.1. Since the second errors are controlled, we can
immediately see that

P(|Γα
n(X1,X2,Xtest)| = 2) ≤ ϵ.

Therefore the efficiency can be effectively controlled in this fashion. However, the confidence can-
not then be arbitrarily controlled. Two exponents control the confidence error GJS(P1, P2, α) +√

V (P1,P2,α)
n Φ−1(ϵ) and GJS(P2, P1, α) +

√
V (P2,P1,α)

n Φ−1(ϵ). The best exponent will be the
minimum of both. Deriving non-asymptotic bounds for the dual setting can be an interesting future
work.

G COMPARISON WITH PRIOR WORKS

Comparison with (Correia et al., 2024). The authors in (Correia et al., 2024) provided infor-
mation theoretic bounds on the efficiency of conformal prediction algorithms. The main bound
on the expected set size is derived from Fano’s inequality for variable size list decoding, given in
Proposition C.7 of the paper:

H(Y |X) ≤ hb(α) + α log |Y|+ E([log |C(x)|]+),
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This is for a single test sample prediction. Since the bound holds for any space Y and X , we can use
it for transductive confidence prediction by choosing the product space Yn and Xn, which yields
the following bound, assuming independent samples:

nH(Y |X) ≤ hb(α) + nα log |Y|+ nE([log |C(X)|]+),

As n→ ∞, and using Jensen’s inequality, we get:

H(Y |X) ≤ α log |Y|+ γ−m.

The result implies that if γ−m < H(Y |X), then

α ≥ H(Y |X)− γ−m
log |Y|

,

which means that the value α cannot be made arbitrarily small (or confidence arbitrarily high). Our
result, as stated in Theorem 3.2 is stronger, as it says that in such case the confidence goes to zero,
or α→ 0.

This is analogous to the results in information theory about weak and strong converses for Shannon
capacity. The weak converse is proven using Fano’s inequality and states that the rates above the
capacity cannot have zero error. The strong converse states that the error goes to one. Fano’s
inequality is known to be loose in certain scenarios, which motivated many works on more efficient
and tighter bounds in information theory (see (Polyanskiy et al., 2010) and references therein.

Transductive conformal prediction in (Vovk, 2013). As shown in (Vovk, 2013), it should be
noted that transductive conformal predictors are a class of transductive confidence predictors. Our
theoretical bounds apply to all confidence predictors, which constitute a larger class. However,
Theorem 3 in (Vovk, 2013) states, there is always a conformal predictor as good as a transductive
one. Therefore, throughout the paper, we used mainly conformal predictors as our focus. However,
the notion of nonconformity score, essential for transductive prediction, was not discussed in the
paper. We review the confidence predictor using nonconformity score.

Transductive conformal predictor as in (Vovk, 2013) is defined using a transductive nonconformity
score A : (X ×Y)∗× (X ×Y)∗ → R where (X ×Y)∗ is the set of all finite sequence with elements
(X,Y ), X ∈ X , Y ∈ Y . A(ζ1, ζ2) does not depend on the ordering of ζ1. The transductive
conformal predictor for A, based on the labeled dataset given as Zm

1 = ((Xi, Yi) : i ∈ [m]),
compute the transductive nonconformity scores for each possible labels v = (vm+1, . . . , vm+n) ∈
Yn of the test sequence Xm+n

m+1 = (Xm+1, . . . , Xm+n) as follows. Construct the labels Y v
m+k =

vm+k for k ∈ [n], Y v
i = Yi for i ∈ [m]. Consider the following definition:

Zv
S = ((Xi, Y

v
i ) : i ∈ S).

Then, for each possible labels v = (vm+1, . . . , vm+n) ∈ Yn and each ordered subset S of [m+ n]
with n entries define:

ξvS := A(Zv
[m+n]\SZ

v
S). (42)

and use to compute p-values:

p(v1, . . . , vn) =
|S : ξvS ≥ ξvv |
(m+ n)!/n!

.

These p-values can be used to construct the prediction sets as follows:

Γα(Zm
1 , X

m+n
m+1 ) = {v = (vm+1, . . . , vm+n) ∈ Yn : p(v1, . . . , vn) ≥ α}.

Such construction comes with theoretical coverage guarantee that the predictor has the confidence
at least 1 − α in the online mode (see Theorem 1 and Corollary 1 of (Vovk, 2013) for further
discussions).

As it can be seen from the above construction, computing all these p-values is computationally
cumbersome. Therefore, one can try to construct transductive nonconformity measures from single
nonconformity measures using another aggregator. Bonferroni predictors compute p-value for each
test sample separately and the combine that using the Bonferroni equation:

p := min(np1, . . . , npn, 1),
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which amounts to the following modified prediction set:

Γα(Zm
1 , X

m+n
m+1 ) =

n∏
i=1

{
vm+i ∈ Y : p(vm+i) ≥

α

n

}
.

Bonferroni predictors have similar coverage guarantees to transductive conformal prediction (see
Theorem 2 in (Vovk, 2013)).

For our experiments, we use Bonferroni predictors for the p-values obtained from split conformal
prediction (SCP). Although the method works based on computing (1 − α)-quantile, there is a 1-1
mapping to a p-value:

s ≤ Quantile(1− α; {Si}ni=1 ∪ {∞}) ⇐⇒ 1

n

n∑
i=1

1(Si ≥ s) > α.

In other words, the term 1
n

∑n
i=1 1(Si ≥ s) is a p-value. Therefore, Bonferroni predictor for SCP

can be obtained by running SCP per test sample using 1 − α
n -quantile and then get the set product

of predicted sets.

H SUPPLEMENTARY EXPERIMENTAL RESULTS

In this section, we present additional numerical results related to our theoretical bound. All exper-
iments are with N = 10 (corresponding to MNIST), and follows a similar setup presented in the
main paper.

Figure 2: The theoretical finite block length bounds for different noise levels, and different confidence α

Simulating Theoretical Bounds. Figures 2, 3, and 4 are all based on simulating the theoretical
bounds for noisy labels given in eq. 5. We would like to observe a few trends, most of them in-
tuitively expected. In Figure 2 and 3, we plot the finite block-length bounds as a function of the
number of test samples n for different level of confidence. As the level of required confidence be-
comes more stringent, namely smaller α, the inefficiency, given by the exponent of the expected
set size, increases. Besides, the finite block length bound approaches slowly toward the asymp-
totic bound, H(Y |X). Figure 2 plots the bounds for two different noise levels, which shows that
changing noise level, i.e. intrinsic uncertainty, has a more drastic impact on the inefficiency.

In Figure 4, we plot the bounds in terms of confidence levels. As we decrease the required confidence
level by choosing larger α, the inefficiency decreases as well. Similar to previous plots, choosing
smaller n increases the bound.
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Figure 3: The theoretical finite block length bounds for different confidence α in terms of n

Figure 4: The theoretical finite block length bounds for different number of test samples n in terms of confi-
dence α

If the full set Y is chosen every time as predicted set, it trivially included the correct label, but it
yields the most inefficient prediction with the expected set size log |Y|. We plot it using the dashed
red line, which shows log2(10) for our experiment. The bound becomes vacuous, whenever it is
above that line. There are a few reasons behind the vacuity of our bound. First of all, certain terms
were ignored in the approximate bound, this includes log∆, as well as a condition on α+ ρ√

nσ3 +∆

being within the interval (0, 1). We discuss these details in Remark B.2.

Numerical Comparisons with Transductive Methods. We provide another plot for the Bonfer-
roni transductive method in Figure 5 for two different levels of confidence α = 0.1 and α = 0.3.
Bonferroni predictors in (Vovk, 2013) were discussed in Section G. The idea is to convert per-sample
p-values to p-value for transductive prediction. To have a transductive prediction of level α for n
samples, we find predictions sets for each sample at the level α/n, and compute the set product. Our
experiment setup remains the same with 180 samples in the calibration set. We observe a similar
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Figure 5: The comparison of the upper bound with naive Bonferroni split conformal prediction for transductive
inference - α = 0.3

inefficiency of Bonferroni prediction as n increases. Besides, as explained, the approximate bound
can be loose for smaller n. In particular, for noisier datasets, the bound takes longer to be non-
vacuous. Another discrepancy between the bound and the experiment is that the bound assumed
full knowledge of the conditional distribution P(Y |X). However, in our experiments, we only have
access to the samples. This is expected to incur an additional gap with the bound. Nonetheless,
these experiments still provide a better bound than H(Y |X) as reported in (Correia et al., 2024),
and highlight the room for improvement in the transductive methods.
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