
FUNDAMENTAL BOUNDS ON EFFICIENCY-CONFIDENCE TRADE-OFF FOR TRANSDUCTIVE CONFORMAL PREDICTION

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 Transductive conformal prediction addresses the simultaneous prediction for mul-
014 tiple data points. Given a desired confidence level, the objective is to construct a
015 prediction set that includes the true outcomes with the prescribed confidence. We
016 demonstrate a fundamental trade-off between confidence and efficiency in trans-
017 ductive methods, where efficiency is measured by the size of the prediction sets.
018 Specifically, we derive a strict finite-sample bound showing that any non-trivial
019 confidence level leads to exponential growth in prediction set size for data with
020 inherent uncertainty. The exponent scales linearly with the number of samples
021 and is proportional to the conditional entropy of the data. Additionally, the bound
022 includes a second-order term, dispersion, defined as the variance of the log condi-
023 tional probability distribution. We show that this bound is achievable in an ideal-
024 ized setting. Finally, we examine a special case of transductive prediction where
025 all test data points share the same label. We show that this scenario reduces to
026 the hypothesis testing problem with empirically observed statistics and provide an
027 asymptotically optimal confidence predictor, along with an analysis of the error
028 exponent.

1 INTRODUCTION

031 Modern decision systems often need to *predict many outcomes at once* and act on the *joint result*.
032 Examples include certifying components in a quality-control batch, screening biological samples for
033 pathogens, or approving software changes before release. In such settings, the cost of even a single
034 error can be high, making *distribution-free guarantees* on the *entire vector of predictions* essential.

035 Conformal prediction (CP) (Vovk et al., 2022) offers a principled framework for constructing pre-
036 diction sets with finite-sample, distribution-free coverage guarantees under minimal assumptions.
037 Typically, CP methods operate on individual input–output pairs, where each input X is associated
038 with a label Y . However, many real-world systems require *joint guarantees* across multiple pre-
039 dictions, motivating the study of *transductive conformal prediction (TCP)*. TCP constructs a joint
040 prediction set for a batch of test inputs X_1, \dots, X_n , ensuring that the corresponding label vector
041 Y_1, \dots, Y_n lies within the set with a prescribed confidence level (e.g., 95%).

042 While TCP offers stronger guarantees, it raises a fundamental question: how small can such joint
043 sets be, on average, while still guaranteeing coverage? This question is not merely practical, it
044 probes the limits of uncertainty quantification in multi-output prediction. Our paper addresses this
045 challenge and makes the following contributions:

- 047 • **Fundamental lower bound:** We prove that for any non-trivial confidence level, the ex-
048 pected size of any valid joint prediction set must grow *exponentially* with the number of test
049 points. The growth rate is governed by the conditional entropy $H(Y|X)$ and a second-order
050 term we call *dispersion*, which captures the variance of the log-conditional probabilities.
- 051 • **Achievability:** We show that this bound is *tight* by constructing an idealized predictor
052 (with oracle access to $P(Y|X)$) that matches the first and second-order terms.
- 053 • **Homogeneous-label setting:** When all test points share the same unknown label, a sce-
054 nario relevant to safety-critical applications, the problem reduces to *hypothesis testing with*

054 *empirically observed statistics.* We derive an *asymptotically optimal confidence predictor*
055 based on thresholding a generalized Jensen–Shannon divergence and characterize its error
056 exponent.
057

058 These results hold under minimal assumptions: they apply to any conformity score, extend to a larger
059 class of efficiency metrics beyond prediction set size, and are validated by experiments showing their
060 relevance in finite-sample regimes, highlighting inefficiencies in existing transductive methods.
061

062 2 TRANSDUCTIVE CONFORMAL PREDICTORS AND HYPOTHESIS TESTING 063

064 To prepare for our main results, this section contrasts standard conformal prediction (CP), which of-
065 fers marginal coverage for individual predictions, with its transductive extension (TCP) that provides
066 joint guarantees across a batch. We begin by introducing the necessary notation.
067

068 **Notation.** In this paper, the random variables are denoted by capital letters X_1, X_2, \dots and their
069 realization by x_1, x_2, \dots , and the vectors and matrices are denoted by bold letters as \mathbf{X}, \mathbf{x} . X_i^j
070 denotes the tuple (X_i, \dots, X_j) . We use $P(Y|X)$ to denote the conditional distribution of labels
071 Y given samples X . We use P as well to denote the distribution over X and Y . The logarithms
072 are all assumed to be natural logarithms, unless otherwise stated. The entropy $H(X)$ is defined as
073 $\mathbb{E}[-\log P(X)]$, the conditional entropy defined as $H(Y|X) := \mathbb{E}[-\log P(Y|X)]$. The Kullback-
074 Leibler divergence is defined as $D(Q||P) := \mathbb{E}_Q[\log dQ/dP]$. $Q(\cdot)$ is the Gaussian Q-function
075 defined as $Q(t) := \mathbb{P}(X > t)$ for X a standard normal distribution.
076

077 **From Standard to Transductive Conformal Prediction (TCP).** Standard conformal prediction
078 (CP) constructs a *per-input* prediction set that contains the true label with probability at least $1 - \alpha$,
079 under exchangeability. Formally, consider a sequence of labeled examples $Z_1^m = ((X_i, Y_i) : i \in$
080 $[m])$, where $X_i \in \mathcal{X}, Y_i \in \mathcal{Y}$ with M distinct classes, i.e., $|\mathcal{Y}| = M$, and a test sample X_{m+1} with
081 unknown true label Y_{m+1} . Standard CP produces a set $\Gamma^\alpha(X_{m+1})$ that satisfy *marginal coverage*:
082 $\mathbb{P}(Y_{m+1} \notin \Gamma^\alpha(X_{m+1})) \leq \alpha$. These sets are obtained by thresholding p-values: for each input, all
083 labels with p-value above α are included. A popular variant, split CP (Papadopoulos et al., 2002; Lei
084 et al., 2018), computes these p-values using pretrained predictor and a separate calibration set. More
085 generally, CP can be formalized through *transducers*, which map sequences of labeled examples to
086 p-values in $[0, 1]$, providing a unified view of conformal methods.
087

088 While the *marginal* guarantee of standard CP is often sufficient for isolated decisions, many ap-
089 plications require system-level guarantees, such as maintaining a global missed-detection con-
090 straint in autonomous driving or ensuring consistency in ranking tasks (Fermanian et al., 2025). In
091 these settings, a single error can invalidate the entire outcome, motivating *joint* guarantees.
092 Transductive conformal prediction (TCP) addresses this by constructing a joint prediction set for
093 the whole test batch (Vovk, 2013; Vovk et al., 2022). Given Z_1^m and a batch of test samples
094 $X_{m+1}^{m+n} = (X_{m+1}, \dots, X_{m+n})$, a (transductive) confidence predictor outputs a set of candidate
095 label vectors $(\mathbf{Y}_{m+1}, \dots, \mathbf{Y}_{m+n})$ such that the error probability of the predictor P_e is bounded
096

$$P_e = \mathbb{P}(Y_{m+1}^{m+n} \notin \Gamma^\alpha(Z_1^m, X_{m+1}^{m+n})) \leq \alpha. \quad (1)$$

097 If the predictor satisfies the significance level α , we say it has confidence $1 - \alpha$. Some works instead
098 use the *False Coverage Proportion (FCP)* as the error (Fermanian et al., 2025), which measures the
099 average per-sample error rather than the joint error over the entire test set. This is a more relaxed
100 criterion than the one adopted here and in (Vovk et al., 2022) (see Appendix G for details).
101

102 Operationally, TCP extends the conformal principle from single examples to sequences: instead of
103 computing p-values for individual labels, we compute them for entire candidate label sequences
104 using *transductive conformity scores*. These scores assess how well a proposed joint labeling fits
105 the observed data and the test batch. Thresholding these p-values yields a joint confidence set that
106 guarantees coverage for all test points simultaneously. A common baseline is to aggregate per-
107 sample p-values via Bonferroni: build $\Gamma^{\alpha/n}(X_{m+i})$ for each test point and take the Cartesian prod-
108 uct $\prod_{i=1}^n \Gamma^{\alpha/n}(X_{m+i})$, which satisfies eq. 1 but can be inefficient as n grows (cf. our experiments).
109

110 **Efficiency vs. Confidence.** While eq. 1 guarantees *confidence*, practitioners also care about *ef-
111 ficiency*: how large the joint prediction set is on average. These two objectives are inherently in
112

108 tension, and understanding this trade-off is among the main objectives of this work. To that end,
 109 we measure efficiency by the cardinality of $\Gamma^\alpha(Z_1^m, X_{m+1}^{m+n})$, though our results extend to other no-
 110 tions of efficiency (see Appendix C). Of particular interest is the *efficiency rate*, which captures the
 111 exponential growth of the expected prediction set size as the number of test samples n increases.

112 **Definition 2.1.** The *efficiency rates* of a transductive conformal predictor are

$$114 \quad \gamma_{n,m} := \frac{1}{n} \log \mathbb{E}|\Gamma^\alpha(Z_1^m, X_{m+1}^{m+n})|, \quad \gamma_m^+ := \limsup_{n \rightarrow \infty} \gamma_{n,m}, \quad \gamma_m^- := \liminf_{n \rightarrow \infty} \gamma_{n,m}.$$

116 If these limits coincide, we denote the common value by γ_m .

118 **Research Questions and Road Map.** Building on the formalism above, we revisit the interpreta-
 119 tion in Correia et al. (2024), where split CP is viewed through the lens of list decoding (Wozencraft,
 120 1958). In this setting, the model output is treated as a noisy observation of the ground truth la-
 121 bel, which enabled the authors to establish information-theoretic inequalities linking the efficiency
 122 of conformal prediction, as measured by the expected size of the prediction set, to the conditional
 123 entropy $H(Y|X)$ of the labeling distribution.

124 However, two fundamental questions remain open. First, the **efficiency-confidence trade-off** char-
 125 acterized in Correia et al. (2024) in terms of $H(Y|X)$ and the logarithm of the expected prediction
 126 set size was not tight. This raises the question: *Can we derive tighter bounds on the efficiency-
 127 confidence trade-off, and characterize conditions under which these bounds are achievable?*

128 Second, split CP's reliance on a separate calibration set underutilizes the available data, as training
 129 samples are discarded for calibration. This motivates a broader question: *What is the information-
 130 theoretically optimal way to construct confidence predictors that leverage the entire dataset with-
 131 out sacrificing validity?* Addressing this question requires bridging inductive and transductive
 132 paradigms and exploring connections with hypothesis testing under empirically observed statistics.

133 In the rest of this paper, we tackle these challenges in two steps. First, we establish fundamen-
 134 tal bounds on the efficiency-confidence trade-off in the general transductive setting, capturing both
 135 asymptotic and finite-sample regimes and revealing a phase transition governed by the conditional
 136 entropy. Next, we consider a structured scenario where all test samples share the same label, reduc-
 137 ing the problem to multiple-hypothesis testing. This enables us to design an asymptotically optimal
 138 confidence predictor based on generalized Jensen-Shannon divergence, shedding light on the inter-
 139 play between confidence control and efficiency in practice.

140 3 FUNDAMENTAL BOUNDS ON EFFICIENCY-CONFIDENCE TRADE-OFF

143 In Correia et al. (2024), the authors derived new information-theoretic bounds that connected con-
 144 formal prediction to list decoding. The bounds involved terms related to the efficiency of conformal
 145 prediction and the conditional entropy or KL-divergence terms and leveraged Fano's inequality and
 146 data processing inequality. In this section, we derive new bounds that can generally lead to tighter
 147 bounds. The proofs are all relegated to Appendix B.

148 Consider the case where the error probability P_e is not exceeding α , that is
 149 $P(Y_{m+1}^{m+n} \notin \Gamma^\alpha(Z_1^m, X_{m+1}^{m+n})) \leq \alpha$. We have the following result.

150 **Theorem 3.1.** Consider a transductive conformal predictor $\Gamma^\alpha(Z_1^m, X_{m+1}^{m+n})$ given a labeled
 151 dataset Z_1^m and test samples X_{m+1}^{m+n} with unknown labels Y_{m+1}^{m+n} . If the predictor has the con-
 152 fidence $1 - \alpha$, then for any $\beta \in (0, 1)$, we have:

$$153 \quad \mathbb{P}(P(Y_{m+1}^{m+n} | X_{m+1}^{m+n}) \leq \beta) \leq \alpha + \beta \mathbb{E}(|\Gamma^\alpha(Z_1^m, X_{m+1}^{m+n})|) \quad (2)$$

155 We have focused on the prediction set size as the notion of efficiency. It is possible to generalize this
 156 to any measure of efficiency on the prediction set. We show these results in Appendix C.

158 The proofs are all presented in the Appendix. The original theorem follows from this one using
 159 a counting measure. These theorems can be used to derive bounds for the efficiency-confidence
 160 trade-off for transductive conformal prediction. We start with the following theorem.

161 **Theorem 3.2.** Consider a transductive conformal predictor $\Gamma^\alpha(Z_1^m, X_{m+1}^{m+n})$ with confidence level
 162 $1 - \alpha_n$ for n test samples. Then, we have:

162 1. If the asymptotic confidence is non-trivial, i.e., $\liminf_{n \rightarrow \infty} (1 - \alpha_n) > 0$, the efficiency
 163 rate satisfies:

$$\gamma_m^- \geq H(Y|X).$$

164 2. If $\gamma_m^- < H(Y|X)$, then the confidence vanishes asymptotically to zero:

$$\lim_{n \rightarrow \infty} (1 - \alpha_n) = 0.$$

165 **Remark 3.3.** The theorem states a fundamental asymptotic trade-off between the confidence level
 166 and the prediction set size. Roughly, the prediction set size needs to grow exponentially at least
 167 as $e^{nH(Y|X)}$ to avoid a non-trivial confidence level. Another insight is that asymptotically, there
 168 is a phase transition at the efficiency rate $H(Y|X)$ below which it is impossible to get non-trivial
 169 confidence. The result does not indicate anything regarding the impact of the asymptotic confidence
 170 level on the set size. Indeed, it can be seen that $\liminf_{n \rightarrow \infty} \frac{1}{n} \log(1 - \alpha_n) = 0$ for any non-trivial
 171 α_n . In other words, it seems that it suffices to have $\gamma_m^- \geq H(Y|X)$ to get any non-trivial confidence
 172 *asymptotically*. In the case of classical conformal prediction, where the prediction set of each sample
 173 is predicted independently, the result means that the expected prediction set size is greater than or
 174 equal to $e^{H(Y|X)}$. A similar observation was reported in Correia et al. (2024).

175 **Non-asymptotic results.** Similar to the analysis of finite block length in Polyanskiy et al. (2010),
 176 we can derive a non-asymptotic bound for the efficiency-confidence trade-off using the growth rate
 177 of the average prediction set size.

178 **Theorem 3.4.** For a transductive conformal predictor with the confidence level $1 - \alpha$, consider the
 179 efficiency rate defined as:

$$\gamma_{n,m} := \frac{1}{n} \log \mathbb{E}|\Gamma^\alpha(Z_1^m, X_{m+1}^{m+n})|,$$

180 which is the growth exponent of the prediction set size. Then for any n , we have:

$$\log \Delta + nH(Y|X) + \sqrt{n}\sigma Q^{-1} \left(\alpha + \frac{\rho}{\sqrt{n}\sigma^3} + \Delta \right) \leq n\gamma_{n,m}$$

181 if $\alpha + \frac{\rho}{\sqrt{n}\sigma^3} + \Delta \in [0, 1]$ where $\Delta > 0$ and $Q(\cdot)$ is the Gaussian Q -function, and:

$$\sigma := (\text{Var}(\log P(Y|X)))^{1/2} = \left(\mathbb{E}(\log P(Y|X) + H(Y|X))^2 \right)^{1/2} \quad (3)$$

$$\rho := \mathbb{E}(|\log P(Y|X) + H(Y|X)|^3). \quad (4)$$

182 The non-asymptotic results leverage the Berry-Esseen central limit theorem to characterize the sum
 183 $\sum_{i=1}^n \log \mathbb{P}(Y_{m+i}|X_{m+i})$ in Theorem 3.1. We call the term σ , the dispersion following a similar
 184 name used in finite block length analysis of information theory (Polyanskiy et al., 2010; Strassen,
 185 1962). Note that these bounds do not assume anything about the underlying predictor, and therefore
 186 do not show any dependence on the number of training samples m . The underlying method might
 187 as well have access to the underlying distributions $P(Y|X)$.

188 To use the above bound, we provide an approximation by ignoring some constant terms that diminish
 189 with larger n . The approximate bound can be easily computed and is given as follows

$$\boxed{n\gamma_{n,m} \geq nH(Y|X) + \sqrt{n}\sigma Q^{-1}(\alpha) - \frac{\log n}{2} + O(1).} \quad (5)$$

190 We provide the derivation details in the Appendix.

191 **On achievability of the bounds.** In this part, we argue that the provided bound are achievable.
 192 Suppose that we know the underlying probability distribution $P(Y|X)$, which corresponds to the
 193 idealized setting in Vovk et al. (2022). Upon receiving test samples X_1, \dots, X_n , we can construct
 194 the confidence sets as follows:

$$\Gamma^\alpha(X_1^n) := \left\{ (y_1, \dots, y_n) : \prod_{i=1}^n P(y_i|X_i) \geq \beta \right\}.$$

195 Similarly, the efficiency rate is defined as $\gamma_n := \frac{1}{n} \log \mathbb{E}[|\Gamma^\alpha(X_1^n)|]$. We show that with proper
 196 choice of β we can achieve the lower bound, ignoring the logarithmic terms, at a given significance
 197 level α . The definition of ρ and the dispersion σ is similar to Theorem 3.4.

216 **Theorem 3.5.** For the confidence set $\Gamma^\alpha(X_1^n)$ defined above, and for $\alpha \geq \rho/\sqrt{n}\sigma^3$, there is a
 217 choice of β that achieves the confidence $1 - \alpha$ at the efficiency rate γ_n satisfying:

$$218 \quad 219 \quad n\gamma_n \leq nH(Y|X) + \sqrt{n}\sigma Q^{-1}(\alpha) + O(1).$$

220 As it can be seen, knowing the underlying probability distribution, the prediction set size can be
 221 bounded, and therefore, the achievability bound matches the first and second order term in the con-
 222 verse bound. For the proof and more details see Section D.

224 4 HYPOTHESIS TESTING WITH EMPIRICALLY OBSERVED STATISTICS

226 In the previous section, we studied the case where multiple test samples could have different labels.
 227 In safety-critical applications, however, a single prediction task is often repeated across multiple
 228 samples from the same experiment to enhance robustness. In such cases, it is reasonable to assume
 229 that all test samples share the same label. Formally, we assume a balanced training dataset with M
 230 classes and N samples per class, denoted as $\mathbf{X}_i = (X_{i,1}, \dots, X_{i,N})$ for each $i \in [M]$, resulting in a
 231 total training set size of $m = N \cdot M$. At test time, we receive n samples $\mathbf{X}_{\text{test}} = (X_{m+1}, \dots, X_{m+n})$,
 232 all from a single, unknown class. The goal is to determine the label of these test samples.

233 Assume that samples $X_{i,j}$ from class j follow a distinct distribution over \mathcal{X} , denoted by P_i for
 234 $i = 1, 2, \dots, M$. These distributions are unknown; we only have access to their samples via the
 235 training data. The transductive prediction problem, in this context, reduces to identifying which class
 236 in the training data shares the same distribution as the test samples. This is equivalent to a multiple
 237 hypothesis testing problem with empirically observed statistics (Ziv, 1988; Gutman, 1989; Zhou
 238 et al., 2020), where each hypothesis corresponds to a class label. We consider the hypotheses H_i
 239 for $i = 1, 2, \dots, M$ where the test sequence \mathbf{X}_{test} is generated according to the distribution P_i , i.e.,
 240 the same distribution used to generate X_i^N . In the context of transductive conformal prediction, the
 241 confidence predictor returns a list of hypotheses. This setup introduces two simplifications compared
 242 to general transductive learning: (1) the training set is balanced, with the same number of samples
 243 N per class, and (2) all test samples \mathbf{X}_{test} are assumed to originate from the same distribution.

244 **Binary Classification without Confidence - Asymptotic Results.** We first review the classical
 245 results. For the rest, we assume $N = \alpha \cdot n$. In binary classification, the decision rule is given by
 246 the mapping $\psi_n : \mathcal{X}^{2 \times N} \times \mathcal{X}^n \rightarrow \{H_1, H_2\}$. The decision rule partitions the space into 2 disjoint
 247 regions without reporting confidence. Two errors corresponding to false alarm (type I) and missed
 248 detection (type II) arise in hypothesis testing, given by:

$$249 \quad \beta_1(\psi_n|P_1, P_2) := \mathbb{P}_{P_1}(\psi_n(\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_{\text{test}}) = H_2), \quad (6)$$

$$250 \quad \beta_2(\psi_n|P_1, P_2) := \mathbb{P}_{P_2}(\psi_n(\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_{\text{test}}) = H_1), \quad (7)$$

251 where \mathbb{P}_{P_i} means that the test sequence follows the distribution P_i for $i = 1, 2$. The optimal decision
 252 rule for this problem has been studied in the literature. To state the main result, we will introduce
 253 the following quantity, known as the generalized Jensen-Shannon divergence:

$$254 \quad 255 \quad \text{GJS}(P_i, P_j, \alpha) = \alpha D\left(P_i \middle\| \frac{\alpha P_i + P_j}{1 + \alpha}\right) + D\left(P_j \middle\| \frac{\alpha P_i + P_j}{1 + \alpha}\right). \quad (8)$$

257 For this problem, Gutman suggested the following test in Gutman (1989):

$$258 \quad 259 \quad \psi_n^{\text{Gutman}}(\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_{\text{test}}) = \begin{cases} H_1 & \text{if } \text{GJS}(T_{\mathbf{X}_1}, T_{\mathbf{X}_{\text{test}}}, \alpha) \leq \lambda \\ H_2 & \text{if } \text{GJS}(T_{\mathbf{X}_1}, T_{\mathbf{X}_{\text{test}}}, \alpha) > \lambda \end{cases} \quad (9)$$

261 where $T_{\mathbf{X}}$ is the type of the sequence \mathbf{X} , i.e., its empirical probability mass function. See eq. A
 262 for more details. Note that the generalized Jensen-Shannon divergence for types gets the following
 263 form:

$$264 \quad \text{GJS}(T_{\mathbf{X}_1}, T_{\mathbf{X}_{\text{test}}}, \alpha) = D(T_{\mathbf{X}_{\text{test}}} \parallel T_{\mathbf{X}_1, \mathbf{X}_{\text{test}}}) + \alpha D(T_{\mathbf{X}_1} \parallel T_{\mathbf{X}_1, \mathbf{X}_{\text{test}}}).$$

265 This test is known to be asymptotically optimal in the following sense. First, for any distributions
 266 P_1 and P_2 , we have:

$$267 \quad \liminf_{n \rightarrow \infty} -\frac{1}{n} \log \beta_1(\psi_n^{\text{Gutman}}|P_1, P_2) \geq \lambda \quad (10)$$

$$268 \quad 269 \quad \liminf_{n \rightarrow \infty} -\frac{1}{n} \log \beta_2(\psi_n^{\text{Gutman}}|P_1, P_2) = F(P_1, P_2, \alpha, \lambda), \quad (11)$$

270 where

$$271 \quad F(P_1, P_2, \alpha, \lambda) := \min_{\substack{(Q_1, Q_2) \in \mathcal{P}(\mathcal{X})^2 \\ \text{GJS}(Q_1, Q_2, \alpha) \leq \lambda}} D(Q_2 \| P_2) + \alpha D(Q_1 \| P_1). \quad (12)$$

274 Next, consider any other decision rule ϕ_n that *uniformly* controls the error exponent of
275 $\beta_1(\psi_n | P_1, P_2)$ similar to Gutman, namely

$$276 \quad \forall (P_1, P_2) \in \mathcal{P}(\mathcal{X})^2 : \liminf_{n \rightarrow \infty} -\frac{1}{n} \log \beta_1(\psi_n | P_1, P_2) \geq \lambda.$$

279 Then, the second error is always worse than Gutman's test: $\beta_2(\psi_n | P_1, P_2) \geq \beta_2(\psi_n^{\text{Gutman}} | P_1, P_2)$.
280 The proof can be found in Dembo & Zeitouni (2009, Theorem 2.1.10) and is based on Sanov's
281 theorem. The first conclusion of this result is that with Gutman's test, we will asymptotically have
282 prediction sets with a single true label in the set, as both probability of errors vanishes. The result
283 in this sense is not surprising. Asymptotically, we have sufficient samples at both training and test
284 times ($n, N \rightarrow \infty$) to estimate the distributions precisely. Note that the prediction set always has the
285 cardinality of one, so there is no confidence associated with it. Also, asymptotically, the probability
286 error decreases exponentially, which means that the set of size one is asymptotically achievable with
287 an arbitrary level of confidence if $F(P_1, P_2, \alpha, \lambda) \neq 0$. See Zhou et al. (2020) for non-asymptotic
288 results and further discussions.

289 By controlling λ , we can maintain the decay rate of the error of the first type; however, this comes at
290 the cost of a worse error rate for the error of the second type. This term would dominate the Bayesian
291 error in which we are interested, namely $P_e^n = \pi_1 \beta_1(\psi_n | P_1, P_2) + \pi_2 \beta_2(\psi_n | P_1, P_2)$, where π_1, π_2
292 are the prior probabilities of each class. This shows that Gutman's test cannot assure an arbitrary
293 level of confidence. As we will see, we can control the decay rate for the average error if we use a
294 confidence predictor with prediction set sizes bigger than one.

295 **Binary Confidence Predictor - Asymptotic Results.** To build the confidence predictor, we modify
296 the decision rule to provide a subset of the hypothesis, namely $\Gamma_n^\alpha : \mathcal{X}^{2 \times N} \times \mathcal{X}^n \rightarrow 2^{\{H_1, H_2\}}$.
297 The error is defined as:

$$298 \quad P_e^n = \mathbb{P}(H_{\text{test}} \notin \Gamma_n^\alpha(\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_{\text{test}})) \quad (13)$$

299 where H_{test} is the hypothesis of the test sequence. We can also write:

$$300 \quad P_e^n = \pi_1 \mathbb{P}(H_1 \notin \Gamma_n^\alpha(\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_{\text{test}}) | \mathbf{X}_{\text{test}}) \sim P_1) + \pi_2 \mathbb{P}(H_2 \notin \Gamma_n^\alpha(\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_{\text{test}}) | \mathbf{X}_{\text{test}}) \sim P_2),$$

302 where π_1, π_2 are prior probabilities for H_1, H_2 . If we use Gutman's test, the error exponent for one
303 of the conditional probabilities is controlled, namely

$$304 \quad \mathbb{P}(H_1 \notin \Gamma_n^\alpha(\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_{\text{test}}) | \mathbf{X}_{\text{test}}) \sim P_1) = \beta_1(\psi_n^{\text{Gutman}} | P_1, P_2).$$

306 Therefore, to get the confidence guarantee, we can modify Gutman's test as follows.

307 **Definition 4.1.** Gutman's test with confidence is defined as follows:

- 309 • Include H_1 if $\text{GJS}(T_{\mathbf{X}_1}, T_{\mathbf{X}_{\text{test}}}, \alpha) < \lambda$.
- 310 • Include H_2 if $\text{GJS}(T_{\mathbf{X}_2}, T_{\mathbf{X}_{\text{test}}}, \alpha) < \lambda$.

312 The decision rule for H_1 is the classical Gutman's test denoted by $\psi_{1,n}^{\text{Gutman}}$, while the second rule is
313 the same test but using $T_{\mathbf{X}_2}$ instead of $T_{\mathbf{X}_1}$, and it is denoted by $\psi_{2,n}^{\text{Gutman}}$.

315 We can see that the errors are related to Gutman's first error:

$$317 \quad \mathbb{P}(H_1 \notin \Gamma_n^\alpha(\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_{\text{test}}) | \mathbf{X}_{\text{test}} \sim P_1) = \beta_1(\psi_{1,n}^{\text{Gutman}} | P_1, P_2) \quad (14)$$

$$318 \quad \mathbb{P}(H_2 \notin \Gamma_n^\alpha(\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_{\text{test}}) | \mathbf{X}_{\text{test}} \sim P_2) = \beta_1(\psi_{2,n}^{\text{Gutman}} | P_1, P_2). \quad (15)$$

320 We can leverage the result from the classical Gutman's test to get a bound on the error probability.

321 **Theorem 4.2.** *The probability of error of Gutman's test with confidence satisfies the following:*

$$323 \quad \limsup_{n \rightarrow \infty} \frac{1}{n} \log P_e^n \leq -\lambda.$$

The proof is given in Section E.1. The theorem shows the error decay rate can be controlled arbitrarily, similar to conformal prediction, but at the cost of larger or empty prediction sets. Next, we characterize the probability of larger set sizes. Let's look at the following probabilities:

$$\mathbb{P}(|\Gamma_n^\alpha(\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_{\text{test}})| = 0) = \mathbb{P}(\text{GJS}(T_{\mathbf{X}_1}, T_{\mathbf{X}_{\text{test}}}, \alpha) \geq \lambda, \text{ and } \text{GJS}(T_{\mathbf{X}_2}, T_{\mathbf{X}_{\text{test}}}, \alpha) \geq \lambda) \quad (16)$$

$$\mathbb{P}(|\Gamma_n^\alpha(\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_{\text{test}})| = 2) = \mathbb{P}(\text{GJS}(T_{\mathbf{X}_1}, T_{\mathbf{X}_{\text{test}}}, \alpha) < \lambda, \text{ and } \text{GJS}(T_{\mathbf{X}_2}, T_{\mathbf{X}_{\text{test}}}, \alpha) < \lambda) \quad (17)$$

The following theorem provides bounds on the error exponent of these probabilities.

Theorem 4.3. *We have:*

$$\lim_{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}(|\Gamma_n^\alpha(\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_{\text{test}})| = 0) \leq -\lambda \quad (18)$$

$$\lim_{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}(|\Gamma_n^\alpha(\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_{\text{test}})| = 2) \leq -\min(F(P_1, P_2, \alpha, \lambda), F(P_2, P_1, \alpha, \lambda)). \quad (19)$$

where

$$F(P_1, P_2, \alpha, \lambda) := \min_{\substack{(\mathbf{Q}_1, \mathbf{Q}_2) \in \mathcal{P}(\mathcal{X})^2 \\ \text{GJS}(\mathbf{Q}_1, \mathbf{Q}_2, \alpha) < \lambda}} D(\mathbf{Q}_2 \| P_2) + \alpha D(\mathbf{Q}_1 \| P_1). \quad (20)$$

if $\lambda > \min(F(P_1, P_2, \alpha, \lambda), F(P_2, P_1, \alpha, \lambda))$, the equality holds for eq. 19, otherwise for eq. 18.

The proof is presented in Appendix E.2. The high-level idea behind the proof is as follows. Consider the case where $\mathbf{X}_{\text{test}} \sim P_1$. In this case, the probability of the event $\text{GJS}(T_{\mathbf{X}_1}, T_{\mathbf{X}_{\text{test}}}, \alpha) \geq \lambda$ decreases exponentially with probability $O(e^{-n\lambda})$. On the other hand, the probability of the event $\text{GJS}(T_{\mathbf{X}_2}, T_{\mathbf{X}_{\text{test}}}, \alpha) < \lambda$ decreases exponentially with probability $O(e^{-nF(P_1, P_2, \alpha, \lambda)})$ using Sanov's theorem. Similar arguments can be made for the case $\mathbf{X}_{\text{test}} \sim P_2$. The theorem follows from the analysis of the dominant error exponent.

The above theorem implies that it is possible to have a confidence predictor with controlled error that is asymptotically efficient, which means it yields a set of cardinality one. However, it also reveals a fundamental trade-off. As we increase λ to have higher confidence, the decay exponent for the probability of inefficient prediction sets decreases. In the limit, if λ is greater than $G(P_1, P_2, \alpha)$ or $G(P_2, P_1, \alpha)$, the exponent is zero, and the confidence predictor is asymptotically inefficient.

Multi-class Confidence Predictors - Asymptotic Results. The extension to multiple-class classification follows a similar idea. The decision function for Gutman's test with confidence is given as follows:

$$\Gamma_n^{\text{Gutman}}(\mathbf{X}_1, \dots, \mathbf{X}_M, \mathbf{X}_{\text{test}}) = \{H_i, \forall i : \text{GJS}(T_{\mathbf{X}_i}, T_{\mathbf{X}_{\text{test}}}, \alpha) < \lambda\}. \quad (21)$$

The error probability is defined similarly as $P_e^n = \mathbb{P}(\mathbf{X}_{\text{test}} \notin \Gamma_n^{\text{Gutman}}(\mathbf{X}_1, \dots, \mathbf{X}_M, \mathbf{X}_{\text{test}}))$. We can immediately get the following result.

Theorem 4.4. *The probability of error of Gutman's test with confidence for M classes satisfies the following:*

$$\limsup_{n \rightarrow \infty} \frac{1}{n} \log P_e^n \leq -\lambda.$$

We do not present the proof as it is a simple extension of Theorem 4.2 given in Section E.1. Next, we characterize the probability of different set sizes. We would need to use the generalized Sanov's theorem and related analysis.

Theorem 4.5. *For any $k > 1$, the probability that the prediction set has the cardinality k decays exponentially with the exponent bounded as follows:*

$$\lim_{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}(|\Gamma_n^{\text{Gutman}}(\mathbf{X}_1, \dots, \mathbf{X}_M, \mathbf{X}_{\text{test}})| = k) \leq -\inf_{l \in [M]} \inf_{S \subset [M], |S|=k} F(\{P_i : i \in S\}, P_l, \alpha, \lambda)$$

where:

$$F(\{P_i : i \in S\}, P_l, \alpha, \lambda) := \inf_{\substack{((Q_i)_{i \in S \setminus \{l\}}, Q_t) \in \mathcal{P}^{|S|} \\ \text{GJS}(Q_i, Q_t, \alpha) < \lambda, \forall i \in S \setminus \{l\}}} \alpha \sum_{i \in S \setminus \{l\}} D(Q_i \| P_i) + D(Q_t \| P_l), \quad l \in S$$

$$F(\{P_i : i \in S\}, P_l, \alpha, \lambda) := \inf_{\substack{(\mathbf{Q}_1, \dots, \mathbf{Q}_M, Q_t) \in \mathcal{P}^{M+1} \\ \text{GJS}(Q_i, Q_t, \alpha) < \lambda, \forall i \in S \\ \text{GJS}(Q_l, Q_t, \alpha) \geq \lambda}} \alpha \sum_{i \in S \cup \{l\}} D(Q_i \| P_i) + D(Q_t \| P_l), \quad l \notin S.$$

378 The probability of an empty prediction set is bounded as follows, too:
379

380
$$\lim_{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}(|\Gamma_n^{Gutman}(\mathbf{X}_1, \dots, \mathbf{X}_M, \mathbf{X}_{test})| = 0) \leq -\lambda. \quad (22)$$

381

382 The proof is given in Section E.3. Gutman’s test is known to be optimal (Gutman, 1989), in the
383 sense that it provides the lowest type II error among all tests that uniformly control the type I error.
384 We will discuss the implications of this optimality as well as non-asymptotic results in Appendix F.
385

386

5 RELATED WORKS

387

388 Conformal prediction (Vovk et al., 2022) is a framework for confidence predictors with distribution-
389 free coverage guarantees that rely only on the assumption that the samples are exchangeable. Some
390 notable examples are split conformal prediction (Papadopoulos et al., 2002; Lei et al., 2018), adaptive
391 conformal prediction (Romano et al., 2020), weighted conformal prediction (Tibshirani et al.,
392 2019; Lei & Candès, 2021) and localized conformal prediction (Guan, 2023)—see Angelopoulos &
393 Bates (2021) for more details. Transductive learning was introduced in Gammerman et al. (1998),
394 while transductive conformal prediction (TCP) was proposed in Vovk (2013) to generalize conformal
395 prediction to multiple test examples. It is in this sense that we understand transductive learning.
396 Vovk (2013) also discussed Bonferroni predictors as an information-efficient approach to transductive
397 prediction. For a historical anecdote on the variations on the notion of transductive learning,
398 going back to Vapnik, see 4.8.5 in Vovk et al. (2022). Applications of transductive learning have been
399 explored in ranking (Fermanian et al., 2025), which in itself includes many other use cases. Theoretical
400 aspects of TCP were studied in Gazin et al. (2024), where the joint distribution of p -values
401 for general exchangeable scores is derived. Although the applications of transductive learning are
402 nascent, it provides a more general framework for studying confidence predictors.
403

404 Work on conformal prediction has focused on marginal and conditional guarantees, p - and e -value
405 distributions, and extensions such as handling non-exchangeable samples. (Angelopoulos et al.,
406 2024; Foygel Barber et al., 2021; Gazin et al., 2024; Vovk, 2012; Bates et al., 2023; Marques F.,
407 2025; Vovk & Wang, 2024; 2023; Grunwald et al., 2024; Gauthier et al., 2025). In particular, two
408 open research directions are relevant for this paper: first, the connection with hypothesis testing, and
409 second, the theoretical bounds on the efficiency of conformal prediction.
410

411 The connection of confidence prediction with hypothesis testing is noted, for instance, in (Waudby-
412 Smith et al., 2025; Wasserman et al., 2020). The authors in (Wasserman et al., 2020) introduced
413 the split likelihood ratio statistics and used them to build a confidence set that enjoys finite sample
414 guarantees and can be applied to a hypothesis testing setup. The intuitive idea is that the likelihood
415 ratio tests, prevalent in hypothesis testing works, can be modified to build e -value (see eq. 6 in
416 (Wasserman et al., 2020)). Statistical classification, on the other hand, has been seen as hypothesis
417 testing in the past. When the distributions of each class are not given, the problem of predicting the
418 label of new samples from a training data is seen as hypothesis testing from empirically observed
419 statistics and was discussed in Ziv (1988) for binary classification and in Gutman (1989) for multiple
420 hypothesis testing. The goal in these works is to characterize the optimal test and its error exponent
421 in asymptotic (Gutman, 1989) and non-asymptotic regimes (Zhou et al., 2020; Haghifam et al.,
422 2021). These results, however, do not address confidence prediction and assume a single output.
423

424 In (Correia et al., 2024), confidence prediction is framed as a list decoding problem in information
425 theory. In that light, confidence predictors can be seen as list decoding for hypothesis testing with
426 empirically observed statistics. The problem of Bayesian M -ary hypothesis testing with list decoding
427 has been considered in Asadi Kangarshahi & Guillén i Fàbregas (2023), but assuming known
428 probabilities and fixed list sizes. The problem of Bayesian M -ary hypothesis testing with empirically
429 observed statistics was considered in Haghifam et al. (2021). The result is asymptotic, does
430 not consider list decoding, and works on finite alphabets. Method of types is the primary technique
431 for deriving bounds in the case of empirically observed statistics, which requires the assumption of
432 a finite alphabet size. An extension to a larger alphabet has been considered in Kelly et al. (2012).
433

434 Finally, on the efficiency of conformal prediction, Correia et al. (2024) used the data processing
435 inequality for f -divergences to get a lower bound on the logarithm of the expected prediction set
436 size that mainly depends on the conditional entropy. In this work, we extend this study using a
437 different class of bounds on hypothesis testing. Numerous information-theoretic bounds exist for
438

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
(a) The finite block length bound for the growth exponent of the prediction set size, namely the inefficiency versus the number of samples

446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
(b) The comparison of the upper bound with naive Bonferroni split conformal prediction for transductive inference - $\alpha = 0.1$

Figure 1: Numerical Results for the derived theoretical bound

hypothesis testing (Verdu & Han, 1994; Han, 2014; Polyanskiy et al., 2010; Polyanskiy & Verdú, 2010; Poor & Verdu, 1995; Chen & Alajaji, 2012) with applications in finite-block-length analysis of Shannon capacity and source coding. Our bound in Theorem 3.1 generalizes Verdu & Han (1994) to variable-size list decoding; an extension to fixed-size list decoding is given in Afser (2021).

6 NUMERICAL RESULTS

In this section, we conduct a small experiment to illustrate the relevance of the bound. We use the MNIST dataset (LeCun et al., 1998) with noisy labels to have control over the uncertainty: each label is kept with probability $1 - \epsilon$ and changed to another class with probability $\epsilon/(N - 1)$, where N is the total number of classes. For this setup, we can easily compute $H(Y|X)$ and σ . We plot the efficiency rate $\gamma_{n,m}$ as a function of the number of test sample n (Theorem 3.4) in Figure 1a. We plot $H(Y|X) + \sigma Q^{-1}(\alpha) / \sqrt{n} - \log_2 n / 2n$, omitting constant terms $O(1)/n$ that vanish as n grows. Note we use the base 2 for the logarithms in the experiments. A first observation is a persistent gap between conditional entropy (dashed line) and our bound, which closes only slowly: even for hundreds of samples, our bound provides a better guideline for the efficiency rate.

We compared our bound with a transductive method in Figure 1b. We used Bonferroni predictor as explained in Vovk (2013), which converts per-sample p -values to p -value for transductive prediction - see Section G for the details of Bonferroni predictors. For these experiments, we chose 180 samples in the calibration set to create more granularity. As it can be seen, such Bonferroni prediction becomes inefficient as n increases. Particularly because the per-test confidence becomes more stringent. For example, for $\alpha = 0.1$ and $n = 20$, we need to have a confidence level of 0.005 per sample. With limited calibration set size, this will soon get to the inefficient set prediction containing most labels. Note that our approximation can be loose for smaller n because of the ignored constant terms and relaxing the assumption $\alpha + \rho / \sqrt{n} \sigma^3 + \Delta \in [0, 1]$. In long term, the impact of these terms diminishes, and our approximate lower bound holds providing a better lower bound than the conditional entropy. We provide further numerical results in App. H.

7 CONCLUSION

We established new theoretical bounds that rigorously characterize the trade-off between efficiency and confidence in transductive conformal prediction, offering fundamental insights into their inherent limitations. Our analysis further exposes the inefficiency of Bonferroni-based methods and underscores the need for more principled, efficient transductive predictors. Future work includes extending these bounds to exchangeable sequences and relaxing assumptions such as identical label distributions. Additionally, overcoming the reliance on the method of types and finite-alphabet settings remains a critical step toward broader applicability and practical deployment.

486 REFERENCES
487

488 Huseyin Afser. Statistical classification via robust hypothesis testing: Non-asymptotic and simple
489 bounds. *IEEE Signal Processing Letters*, 28:2112–2116, 2021. Publisher: IEEE. pages 9

490 Anastasios N. Angelopoulos and Stephen Bates. A gentle introduction to conformal prediction and
491 distribution-free uncertainty quantification. *arXiv preprint arXiv:2107.07511*, 2021. pages 8

492

493 Anastasios N Angelopoulos, Rina Foygel Barber, and Stephen Bates. Theoretical foundations of
494 conformal prediction. *arXiv [math.ST]*, 11 2024. pages 8

495

496 Ehsan Asadi Kangarshahi and Albert Guillén i Fàbregas. Minimum probability of error of list M-ary
497 hypothesis testing. *Information and Inference: A Journal of the IMA*, 12(3), 2023. pages 8

498 Stephen Bates, Emmanuel Candès, Lihua Lei, Yaniv Romano, and Matteo Sesia. Testing for outliers
499 with conformal p-values. *Ann. Stat.*, 51(1):149–178, 2 2023. pages 8

500

501 P Chen and F Alajaji. A generalized poor-verdú error bound for multihypothesis testing. *IEEE
502 Trans. Inf. Theory*, 58(1):311–316, January 2012. pages 9

503

504 Alvaro Correia, Fabio Valerio Massoli, Christos Louizos, and Arash Behboodi. An information
505 theoretic perspective on conformal prediction. In *The Thirty-eighth Annual Conference on Neural
506 Information Processing Systems*, 12 2024. pages 3, 4, 8, 25, 29

507

508 Imre Csiszár and János Körner. *Information theory: coding theorems for discrete memoryless sys-
509 tems*. Cambridge University Press, Cambridge ; New York, 2nd ed edition, 2011. pages 13

510

511 Amir Dembo and Ofer Zeitouni. *Large Deviations Techniques and Applications*. Springer, 2009.
512 pages 6, 13, 14

513

514 Jean-Baptiste Fermanian, Pierre Humbert, and Gilles Blanchard. Transductive conformal inference
515 for ranking. *arXiv [cs.LG]*, 1 2025. pages 2, 8

516

517 Rina Foygel Barber, Emmanuel J Candes, Aaditya Ramdas, and Ryan J Tibshirani. The limits of
518 distribution-free conditional predictive inference. *Information and Inference: A Journal of the
519 IMA*, 10(2):455–482, 2021. pages 8

520

521 A Gammerman, V Vovk, and V Vapnik. Learning by transduction. In *Proceedings of the Fourteenth
522 conference on Uncertainty in artificial intelligence*, UAI’98, pp. 148–155, San Francisco, CA,
523 USA, 7 1998. Morgan Kaufmann Publishers Inc. pages 8

524

525 Etienne Gauthier, Francis Bach, and Michael I Jordan. E-values expand the scope of conformal
526 prediction. *arXiv [stat.ML]*, 3 2025. pages 8

527

528 Ulysse Gazin, Gilles Blanchard, and Etienne Roquain. Transductive conformal inference with adap-
529 tive scores. In *International Conference on Artificial Intelligence and Statistics*, pp. 1504–1512.
530 PMLR, 4 2024. pages 8

531

532 Peter Grunwald, Tyron Lardy, Yunda Hao, S Bar-Lev, and Martijn de Jong. Optimal E-values for
533 exponential families: The simple case. *arXiv [stat.ML]*, 4 2024. pages 8

534

535 Leying Guan. Localized conformal prediction: a generalized inference framework for conformal
536 prediction. *Biometrika*, 110(1):33–50, 2 2023. pages 8

537

538 Michael Gutman. Asymptotically optimal classification for multiple tests with empirically observed
539 statistics. *IEEE Transactions on Information Theory*, 35(2):401–408, 1989. Publisher: IEEE.
540 pages 5, 8

541

542 Mahdi Haghifam, Vincent YF Tan, and Ashish Khisti. Sequential classification with empirically
543 observed statistics. *IEEE Transactions on Information Theory*, 67(5):3095–3113, 2021. pages 8

544

545 Te Sun Han. *Information-spectrum methods in information theory*. Springer, New York, NY, 9 2014.
546 pages 9, 14

540 Benjamin G. Kelly, Aaron B. Wagner, Thitidej Tularak, and Pramod Viswanath. Classification of
541 homogeneous data with large alphabets. *IEEE transactions on information theory*, 59(2):782–
542 795, 2012. Publisher: IEEE. pages 8

543

544 Ioannis Kontoyiannis and Sergio Verdu. Optimal lossless data compression: Non-asymptotics and
545 asymptotics. *IEEE Trans. Inf. Theory*, 60(2):777–795, February 2014. pages 20

546

547 Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
548 document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998. pages 9

549

550 J Lei. Classification with confidence. *Biometrika*, 101(4):755–769, 1 December 2014. pages 26

551

552 Jing Lei and Larry Wasserman. Distribution-free prediction bands for non-parametric regression. *J.
R. Stat. Soc. Series B Stat. Methodol.*, 76(1):71–96, 1 January 2014. pages 26

553

554 Jing Lei, James Robins, and Larry Wasserman. Distribution free prediction sets. *J. Am. Stat. Assoc.*,
555 108(501):278–287, 15 March 2013. pages 26

556

557 Jing Lei, Alessandro Rinaldo, and Larry Wasserman. A conformal prediction approach to explore
functional data. *Ann. Math. Artif. Intell.*, 74(1-2):29–43, June 2015. pages 26

558

559 Jing Lei, Max G’Sell, Alessandro Rinaldo, Ryan J Tibshirani, and Larry Wasserman. Distribution-
560 free predictive inference for regression. *Journal of the American Statistical Association*, 113
(523):1094–1111, 2018. pages 2, 8

561

562 Lihua Lei and Emmanuel J. Candès. Conformal inference of counterfactuals and individual treat-
563 ment effects. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 2021.
564 Publisher: Wiley Online Library. pages 8

565

566 Paulo C Marques F. Universal distribution of the empirical coverage in split conformal prediction.
Stat. Probab. Lett., 219(110350):110350, 4 2025. pages 8

567

568 Harris Papadopoulos, Kostas Proedrou, Volodya Vovk, and Alex Gammerman. Inductive confi-
569 dence machines for regression. In *Lecture Notes in Computer Science*, Lecture notes in computer
570 science, pp. 345–356. Springer Berlin Heidelberg, Berlin, Heidelberg, 2002. pages 2, 8

571

572 Yury Polyanskiy and Sergio Verdú. Arimoto channel coding converse and Rényi divergence. In
573 *2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton)*,
pp. 1327–1333. IEEE, 2010. pages 9

574

575 Yury Polyanskiy, H. Vincent Poor, and Sergio Verdu. Channel Coding Rate in the Finite Blocklength
576 Regime. *IEEE Transactions on Information Theory*, 56(5):2307–2359, May 2010. pages 4, 9, 14,
18, 25

577

578 H V Poor and S Verdu. A lower bound on the probability of error in multihypothesis testing. *IEEE
Trans. Inf. Theory*, 41(6):1992–1994, 1995. pages 9

579

580 Yaniv Romano, Matteo Sesia, and Emmanuel Candes. Classification with valid and adaptive cover-
581 age. *Advances in Neural Information Processing Systems*, 33:3581–3591, 2020. pages 8

582

583 Mauricio Sadinle, Jing Lei, and Larry Wasserman. Least ambiguous set-valued classifiers with
584 bounded error levels. *Journal of the American Statistical Association*, 114(525):223–234, 2019.
585 pages 21, 26

586

587 Volker Strassen. Asymptotische abschätzungen in shannon’s informationstheorie. In *Transactions
of the Third Prague Conference on Information Theory etc, 1962. Czechoslovak Academy of Sci-
588 ences, Prague*, pp. 689–723, 1962. pages 4

589

590 Ryan J. Tibshirani, Rina Foygel Barber, Emmanuel Candes, and Aaditya Ramdas. Conformal pre-
591 diction under covariate shift. *Advances in neural information processing systems*, 32, 2019. pages
592 8

593 S. Verdu and Te Sun Han. A general formula for channel capacity. *IEEE Transactions on Information
Theory*, 40(4):1147–1157, July 1994. pages 9, 14

594 Vladimir Vovk. Conditional validity of inductive conformal predictors. In *Asian Conference on*
595 *Machine Learning*, pp. 475–490. PMLR, 11 2012. pages 8
596

597 Vladimir Vovk. Transductive conformal predictors. In *IFIP Advances in Information and Commu-*
598 *nication Technology*, IFIP advances in information and communication technology, pp. 348–360.
599 Springer Berlin Heidelberg, Berlin, Heidelberg, 2013. pages 2, 8, 9, 25, 26, 29

600 Vladimir Vovk and Ruodu Wang. Confidence and discoveries with e-values. *Stat. Sci.*, 38(2):
601 329–354, 2023. pages 8
602

603 Vladimir Vovk and Ruodu Wang. Merging sequential e-values via martingales. *Electron. J. Stat.*,
604 18(1), 1 2024. pages 8
605

606 Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. *Algorithmic Learning in a Random*
607 *World*. Springer International Publishing, 2022. pages 1, 2, 4, 8, 17, 18
608

609 Larry Wasserman, Aaditya Ramdas, and Sivaraman Balakrishnan. Universal inference. *Proc. Natl.*
610 *Acad. Sci. U. S. A.*, 117(29):16880–16890, 7 2020. pages 8
611

612 Ian Waudby-Smith, Ricardo Sandoval, and Michael I Jordan. Universal log-optimality for general
613 classes of e-processes and sequential hypothesis tests. *arXiv [math.ST]*, 4 2025. pages 8
614

615 John M. Wozencraft. *List decoding*. PhD thesis, Research Laboratory of Electronics, MIT, Cam-
616 bridge, MA, USA, January 1958. Publisher: Research Laboratory of Electronics, MIT. pages
617 3
618

619 Lin Zhou, Vincent Y F Tan, and Mehul Motani. Second-order asymptotically optimal statistical
620 classification. *Information and Inference: A Journal of the IMA*, 9(1):81–111, March 2020. ISSN
621 2049-8772. pages 5, 6, 8, 24, 25, 29
622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A ELEMENTS OF METHOD OF TYPES AND LARGE DEVIATION 649

650 Consider a finite space \mathcal{X} , and a random variables $X_i \sim P$ where $P \in \mathcal{P}(\mathcal{X})$. The type of a
651 sequence $\mathbf{X} = (X_1, \dots, X_n)$ is defined as

$$652 \quad 653 \quad 654 \quad T_{\mathbf{X}}(a) := \frac{1}{n} \sum_{i=1}^n \mathbf{1}(X_i = a), a \in \mathcal{X}.$$

655 This is the empirical distribution of the sequence. The set of type P is defined as:

$$656 \quad T(P) := \{\mathbf{X} \in \mathcal{X}^n : T_{\mathbf{X}} = P\}.$$

657 Also the set of all types for sequences of length n is denoted by \mathcal{P}_n . We summarize the main
658 properties of types in the following theorem. The proof can be found in (Csiszár & Körner, 2011;
659 Dembo & Zeitouni, 2009).

660 **Theorem A.1.** *Consider a finite space \mathcal{X} with the set of all probability distributions over \mathcal{X} denoted
661 by \mathcal{P} , and the set of all types of the sequences of length n denoted \mathcal{P}_n . By $P(A), Q(A), \dots$, we
662 denote the probability of set A according to the probability measure P, Q, \dots , and we assume that
663 for $A \subset \mathcal{X}^n$ we implicitly use the product measure. We have the following properties for types.*

- 664 • $|\mathcal{P}_n| \leq (n+1)^{|\mathcal{X}|}$
- 665 • for all $\mathbf{X} \in T(P)$: $P(\mathbf{X}) = e^{-nH(P)}$
- 666 • for all $\mathbf{X} \in \mathcal{X}^n$ and $P \in \mathcal{P}$: $P(\mathbf{X}) = e^{-n(H(T_{\mathbf{X}}) + D(T_{\mathbf{X}} \| P))}$
- 667 • for all $P \in \mathcal{P}_n$: $\frac{1}{(n+1)^{|\mathcal{X}|}} e^{nH(P)} \leq |T(P)| \leq e^{nH(P)}$
- 668 • for all $P \in \mathcal{P}_n$ and $Q \in \mathcal{P}$: $\frac{1}{(n+1)^{|\mathcal{X}|}} e^{-nD(P \| Q)} \leq Q(T(P)) \leq e^{-nD(P \| Q)}$,

669 where $H(P) = -\sum_{x \in \mathcal{X}} P(x) \log P(x)$ is the Shannon entropy of P , and $D(P \| Q)$ is the Kullback-
670 Leibler divergence.

671 In many cases, we are interested in establishing a bound on the decay exponent of certain probabilities involving types. The following result from large deviation theory is the key tool for such derivations. See (Dembo & Zeitouni, 2009) for more details.

672 **Theorem A.2** (Sanov's theorem). *For any set $\Gamma^\alpha \in \mathcal{P}(\mathcal{X})$, and any random sequence $\mathbf{X} \in \mathcal{X}^n$ drawn i.i.d. using P , we have:*

$$673 \quad - \inf_{Q \in \text{int}(\Gamma^\alpha)} D(Q \| P) \leq \liminf_{n \rightarrow \infty} \frac{1}{n} \log P(T_{\mathbf{X}} \in \Gamma^\alpha) \leq \limsup_{n \rightarrow \infty} \frac{1}{n} \log P(T_{\mathbf{X}} \in \Gamma^\alpha) \leq - \inf_{Q \in \Gamma^\alpha} D(Q \| P), \quad (23)$$

674 where $\text{int}(\Gamma^\alpha)$ is the interior of the set Γ^α . In particular for any set Γ^α whose closure contains its
675 interior, we have:

$$676 \quad \lim_{n \rightarrow \infty} \frac{1}{n} \log P(T_{\mathbf{X}} \in \Gamma^\alpha) = - \inf_{Q \in \Gamma^\alpha} D(Q \| P).$$

677 We provide a general version of this theorem with its proof to be self-contained. This version will
678 be directly useful for our results.

679 **Theorem A.3.** *Consider the sequences $\mathbf{X}_i \in \mathcal{X}^{N_i}$ drawn i.i.d. from P_i for $i \in [M]$ with $N_i = \alpha_i n$
680 for $\alpha_i \in [0, 1]$, and the types of these sequences are denoted by $T_{\mathbf{X}_i}$. Then for any set of probability
681 distributions $\Omega \subset \mathcal{P}^M$, we have:*

$$682 \quad - \inf_{(Q_1, \dots, Q_M) \in \text{int}(\Omega)} \sum_{i=1}^M \alpha_i D(Q_i \| P_i) \leq \liminf_{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}((T_{\mathbf{X}_1}, \dots, T_{\mathbf{X}_M}) \in \Omega) \\ 683 \quad \leq \limsup_{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}((T_{\mathbf{X}_1}, \dots, T_{\mathbf{X}_M}) \in \Omega) \leq - \inf_{(Q_1, \dots, Q_M) \in \Omega} \sum_{i=1}^M \alpha_i D(Q_i \| P_i) \quad (24)$$

684 where $\text{int}(\Omega)$ is the interior of Ω . Besides, if the closure of Ω contains its interior, we have the
685 equality.

702 *Proof.* We first establish an upper bound using properties of types as follows:
703

$$\begin{aligned}
704 \quad \mathbb{P}((T_{\mathbf{X}_1}, \dots, T_{\mathbf{X}_M}) \in \Omega) &= \sum_{(T_{\mathbf{X}_1}, \dots, T_{\mathbf{X}_M}) \in \Omega \cap \mathcal{P}_n^M} \prod_{i=1}^M P_i(T_{\mathbf{X}_i}) \\
705 \\
706 \quad &\leq \sum_{(T_{\mathbf{X}_1}, \dots, T_{\mathbf{X}_M}) \in \Omega \cap \mathcal{P}_n^M} \prod_{i=1}^M e^{-N_i D(T_{\mathbf{X}_i} \| P_i)} \\
707 \\
708 \quad &\leq \prod_{i=1}^M (N_i + 1)^{|\mathcal{X}|} \exp \left(-n \inf_{(T_{\mathbf{X}_1}, \dots, T_{\mathbf{X}_M}) \in \Omega \cap \mathcal{P}_n^M} \sum_{i=1}^M \alpha_i D(T_{\mathbf{X}_i} \| P_i) \right) \\
709 \\
710 \quad &\quad \vdots \\
711 \quad &\quad \vdots \\
712 \quad &\quad \vdots \\
713
\end{aligned}$$

714 Next, we focus on the lower bound using similar techniques:
715

$$\begin{aligned}
716 \quad \mathbb{P}((T_{\mathbf{X}_1}, \dots, T_{\mathbf{X}_M}) \in \Omega) &= \sum_{(T_{\mathbf{X}_1}, \dots, T_{\mathbf{X}_M}) \in \Omega \cap \mathcal{P}_n^M} \prod_{i=1}^M P_i(T_{\mathbf{X}_i}) \\
717 \\
718 \quad &\geq \sum_{(T_{\mathbf{X}_1}, \dots, T_{\mathbf{X}_M}) \in \Omega \cap \mathcal{P}_n^M} \prod_{i=1}^M \frac{1}{(N_i + 1)^{|\mathcal{X}|}} e^{-N_i D(T_{\mathbf{X}_i} \| P_i)} \\
719 \\
720 \quad &\geq \prod_{i=1}^M \frac{1}{(N_i + 1)^{|\mathcal{X}|}} e^{-N_i D(T_{\mathbf{X}_i} \| P_i)} \text{ for all } (T_1, T_2, \dots, T_M) \in \Omega \cap \mathcal{P}_n^M \\
721 \\
722 \quad &\geq \prod_{i=1}^M \frac{1}{(N_i + 1)^{|\mathcal{X}|}} \exp \left(-n \inf_{(T_{\mathbf{X}_1}, \dots, T_{\mathbf{X}_M}) \in \Omega \cap \mathcal{P}_n^M} \sum_{i=1}^M \alpha_i D(T_{\mathbf{X}_i} \| P_i) \right) \\
723 \\
724 \quad &\quad \vdots \\
725 \quad &\quad \vdots \\
726 \quad &\quad \vdots \\
727
\end{aligned}$$

728 Using the fact that $\lim_{n \rightarrow \infty} \frac{1}{n} (n + 1)^{|\mathcal{X}|} = 0$, we get the following equalities:
729

$$730 \quad \limsup_{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}((T_{\mathbf{X}_1}, \dots, T_{\mathbf{X}_M}) \in \Omega) = - \liminf_{n \rightarrow \infty} \inf_{(T_{\mathbf{X}_1}, \dots, T_{\mathbf{X}_M}) \in \Omega \cap \mathcal{P}_n^M} \sum_{i=1}^M \alpha_i D(T_{\mathbf{X}_i} \| P_i) \quad (25)$$

$$733 \quad \liminf_{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}((T_{\mathbf{X}_1}, \dots, T_{\mathbf{X}_M}) \in \Omega) = - \limsup_{n \rightarrow \infty} \inf_{(T_{\mathbf{X}_1}, \dots, T_{\mathbf{X}_M}) \in \Omega \cap \mathcal{P}_n^M} \sum_{i=1}^M \alpha_i D(T_{\mathbf{X}_i} \| P_i) \quad (26)$$

736 Then since $\Omega \cap \mathcal{P}_n^M \subseteq \Omega$, the upper bound is obvious. For the lower bound, we start from the fact for
737 any point μ in the interior of Ω having the same support as $P_1 \times \dots \times P_M$, we can find a distribution
738 in \mathcal{P}_n with the total variation distance of at most $\tilde{O}(1/n)$ from μ (see Lemma 2.1.2 of (Dembo &
739 Zeitouni, 2009)). Therefore, we have a sequence of distributions in $\Omega \cap \mathcal{P}_n$ that converges to μ .
740 Using this sequence, we can get a lower bound for each μ in the interior of Ω , which proves the final
741 lower bound. \square
742

743 B PROOFS OF SECTION 3

744 The basic idea for deriving the new inequalities is based on a set of results in information theory
745 and Shannon's channel coding theorem. In Shannon Theory, it is known that Fano's inequality
746 cannot be used to prove strong converse results and establish the phase transition at the Shannon
747 capacity. Other inequalities in information theory involve the underlying probability distribution or
748 information density terms (Verdu & Han, 1994; Han, 2014). For example, Theorem 4 in (Verdu &
749 Han, 1994) states that:
750

$$751 \quad \mathbb{P}(P(X|Y) \leq \beta) \leq \epsilon + \beta,$$

752 where ϵ is the error probability of a code for a channel $P_{Y|X}$ and β is an arbitrary number in $[0, 1]$.
753 These bounds can sometimes lead to tighter results compared to Fano's inequality, as indicated in
754 (Polyanskiy et al., 2010). In what follows, we obtain a similar bound for transductive conformal
755 prediction.

756 B.1 PROOF OF THEOREM 3.1
 757

758 *Proof.* To simplify the notation for the proof, we denote $\mathbf{X} := X_{m+1}^{m+n}$, $\mathbf{Y} := Y_{m+1}^{m+n}$ and $\mathbf{Z} := Z_1^m$.
 759 we assume (\mathbf{X}, \mathbf{Y}) are drawn from the distribution P . For each $\mathbf{X} \in \mathcal{X}^n$, define the set:

760
$$B_{\mathbf{X}} = \{\mathbf{Y} : P(\mathbf{Y}|\mathbf{X}) \leq \beta\}.$$

 761

762 $P(\mathbf{Y}|\mathbf{X})$ is the conditional distribution induced by P . The proof follows the steps below:

763
$$\begin{aligned} 764 \mathbb{P}(P(\mathbf{Y}|\mathbf{X}) \leq \beta) &= \int P(B_{\mathbf{X}}|\mathbf{X})P(\mathbf{X})d\mathbf{X} = \int P(\mathbf{X}, B_{\mathbf{X}})d\mathbf{X} = \int P(\mathbf{X}, \mathbf{Z}, B_{\mathbf{X}})d\mathbf{X}d\mathbf{Z} \\ 765 &= \int \int P(\mathbf{X}, \mathbf{Z}, B_{\mathbf{X}} \cap \Gamma^{\alpha}(\mathbf{Z}, \mathbf{X})^c)d\mathbf{X}d\mathbf{Z} + \int \int P(\mathbf{X}, \mathbf{Z}, B_{\mathbf{X}} \cap \Gamma^{\alpha}(\mathbf{Z}, \mathbf{X}))d\mathbf{X}d\mathbf{Z} \\ 766 &\leq \int \int P(\mathbf{X}, \mathbf{Z}, \Gamma^{\alpha}(\mathbf{Z}, \mathbf{X})^c)d\mathbf{X}d\mathbf{Z} + \int \int P(\mathbf{X}, \mathbf{Z}, B_{\mathbf{X}} \cap \Gamma^{\alpha}(\mathbf{Z}, \mathbf{X}))d\mathbf{X}d\mathbf{Z} \\ 767 &\stackrel{(1)}{\leq} \alpha + \int \int P(\mathbf{X}, \mathbf{Z}, B_{\mathbf{X}} \cap \Gamma^{\alpha}(\mathbf{Z}, \mathbf{X}))d\mathbf{X}d\mathbf{Z} \\ 768 &= \alpha + \int \int P(\mathbf{X}, \mathbf{Z})P(B_{\mathbf{X}} \cap \Gamma^{\alpha}(\mathbf{Z}, \mathbf{X})|\mathbf{X}, \mathbf{Z})d\mathbf{X}d\mathbf{Z} \\ 769 &= \alpha + \int \int P(\mathbf{X}, \mathbf{Z}) \left(\sum_{\mathbf{Y}, \mathbf{Y} \in B_{\mathbf{X}} \cap \Gamma^{\alpha}(\mathbf{Z}, \mathbf{X})} P(\mathbf{Y}|\mathbf{X}, \mathbf{Z}) \right) d\mathbf{X}d\mathbf{Z} \\ 770 &\stackrel{(2)}{\leq} \alpha + \int \int P(\mathbf{X}, \mathbf{Z}) \left(\sum_{\mathbf{Y}, \mathbf{Y} \in B_{\mathbf{X}} \cap \Gamma^{\alpha}(\mathbf{Z}, \mathbf{X})} \beta \right) d\mathbf{X}d\mathbf{Z} \\ 771 &\leq \alpha + \int P(\mathbf{X}, \mathbf{Z})\beta|\Gamma^{\alpha}(\mathbf{Z}, \mathbf{X})|d\mathbf{X}d\mathbf{Z} = \alpha + \beta\mathbb{E}(|\Gamma^{\alpha}(\mathbf{Z}, \mathbf{X})|). \end{aligned}$$

 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783

784 The inequality (1) follows from the confidence assumption:

785
$$P(Y_{m+1}^{m+n} \notin \Gamma^{\alpha}(Z_1^m, X_{m+1}^{m+n})) = \int \int P(\mathbf{X}, \mathbf{Z}, \Gamma^{\alpha}(\mathbf{Z}, \mathbf{X})^c)d\mathbf{X}d\mathbf{Z} \leq \alpha.$$

 786

787 The inequality (2) follows from the independence of \mathbf{Z} and (\mathbf{X}, \mathbf{Y}) and the definition of $B_{\mathbf{X}}$. \square
 788

789 *Remark B.1.* Note that Theorem 3.1 can be written as:

790
$$\sup_{\beta \in [0,1]} \frac{\mathbb{P}(P(Y_{m+1}^{m+n}|X_{m+1}^{m+n}) \leq \beta) - \alpha}{\beta} \leq \mathbb{E}(|\Gamma^{\alpha}(Z_1^m, X_{m+1}^{m+n})|) \quad (27)$$

 791
 792

793 This bound means that the prediction set size is large even if for a single β , the left hand side
 794 is large. As an example, suppose that the conditional probability distribution is not concentrated
 795 around a point and has large spread. In other words, the uncertainty is high, and we can find many
 796 labels with equally high but numerically small probabilities. In this case, we can choose a small
 797 β that yields a very high probability of $P(Y_{m+1}^{m+n}|X_{m+1}^{m+n}) \leq \beta$. Therefore, the prediction set size
 798 scales mainly with $1/\beta$ and is expected to be large as β is small. Intuitively, the left hand side
 799 of Theorem 3.1 measures the intrinsic uncertainty and right hand side measures the prediction set
 800 size.

801
 802 B.2 PROOF OF THEOREM 3.2
 803

804 *Proof.* We use Theorem 3.1 to prove the results. The choice of β can be important. Let's choose
 805 $\beta = e^{-n(H(Y|X)-\delta)}$ where $H(Y|X)$ is the conditional entropy, and δ is any non-negative number.
 806 With standard manipulations, we obtain the following result from Theorem 3.1:

807
$$\mathbb{P} \left(\frac{1}{n} \log P(Y_{m+1}^{m+n}|X_{m+1}^{m+n}) \leq -H(Y|X) + \delta \right) \leq \alpha_n + e^{-n(H(Y|X)-\delta)}\mathbb{E}(|\Gamma^{\alpha}(Z_1^m, X_{m+1}^{m+n})|). \quad (28)$$

 808
 809

810 Since the test samples are i.i.d., the term $\log P(Y_{m+1}^{m+n} | X_{m+1}^{m+n})$ can be decomposed as:
811

$$812 \quad \frac{1}{n} \log P(Y_{m+1}^{m+n} | X_{m+1}^{m+n}) = \frac{1}{n} \sum_{i=1}^n \log P(Y_{m+i} | X_{m+i}).
813$$

814 From law of large numbers, as n goes to infinity, the sum converges almost surely to the negative
815 conditional entropy between the input X and the label Y , namely $-H(Y|X)$. This means that the
816 probability on the left hand side of eq. 28 goes to one. We have two cases:
817

- 818 • Case 1: if $\gamma_m^- < H(Y|X)$, then we have:
819

$$820 \quad \liminf_{n \rightarrow \infty} e^{-n(H(Y|X) - \delta)} \mathbb{E}(|\Gamma^\alpha(Z_1^m, X_{m+1}^{m+n})|) = 0.
821$$

822 This means that $\lim_{n \rightarrow \infty} \alpha_n = 1$, which means the confidence goes to zero.
823

- 824 • Case 2: for non-trivial asymptotic confidence, $\liminf_{n \rightarrow \infty} \alpha_n$ is strictly below one. For the
825 inequality to hold, the second term needs to be non-vanishing, that is $\gamma_m^- > H(Y|X) - \delta$,
826 namely $\gamma_m^- \geq H(Y|X)$.
827

828 The proof follows accordingly. \square
829

830 B.3 PROOF OF THEOREM 3.4

831 *Proof.* We use Berry-Esseen central limit theorem for the proof.
832

833 **Theorem B.2** (Berry-Esseen). *Let X_i , $i \in [n]$ be i.i.d. random variables with $\mathbb{E}(X_i) = \mu$, $\text{Var}(X_i) = \sigma^2$, $\rho = \mathbb{E}(|X_i - \mu|^3)$. Then we have for any $t \in \mathbb{R}$:*
834

$$835 \quad \left| \mathbb{P} \left(\frac{1}{\sqrt{n}} \sum_{i=1}^n \frac{(X_i - \mu)}{\sigma} \geq t \right) - Q(t) \right| \leq \frac{\rho}{\sqrt{n}\sigma^3}.
836$$

838 We use Theorem 3.1 as starting point:
839

$$840 \quad \mathbb{P} (P(Y_{m+1}^{m+n} | X_{m+1}^{m+n}) < \beta) = \mathbb{P} \left(\frac{1}{\sqrt{n}} \log P(Y_{m+1}^{m+n} | X_{m+1}^{m+n}) \leq \frac{1}{\sqrt{n}} \log \beta \right)
841
842 \quad = \mathbb{P} \left(\frac{1}{\sqrt{n}} \sum_{i=1}^n \log P(Y_{m+i} | X_{m+i}) \leq \frac{1}{\sqrt{n}} \log \beta \right)
843
844 \quad = \mathbb{P} \left(\frac{1}{\sqrt{n}} \sum_{i=1}^n \frac{(\log P(Y_{m+i} | X_{m+i}) - \mu)}{\sigma} \leq \frac{1}{\sigma\sqrt{n}} \log \beta - \frac{\sqrt{n}\mu}{\sigma} \right)
845
846 \quad \geq Q \left(\frac{-1}{\sigma\sqrt{n}} \log \beta + \frac{\sqrt{n}\mu}{\sigma} \right) - \frac{\rho}{\sqrt{n}\sigma^3}
847$$

848 where $\mu = -H(Y|X)$ and the last step follows from Berry-Esseen. Now choose $\beta = \exp(n\mu - Q^{-1}(\epsilon)\sigma\sqrt{n})$, which implies that:
849

$$850 \quad Q \left(\frac{-1}{\sigma\sqrt{n}} \log \beta + \frac{\sqrt{n}\mu}{\sigma} \right) = \epsilon$$

856 We get the following simplified inequality for any ϵ :
857

$$858 \quad \epsilon \leq \alpha + \frac{\rho}{\sqrt{n}\sigma^3} + \exp(n\mu - Q^{-1}(\epsilon)\sigma\sqrt{n} + n\gamma_{n,m})$$

859 choose $\epsilon = \alpha + \frac{\rho}{\sqrt{n}\sigma^3} + \Delta$ for any $\Delta > 0$, such that $\epsilon \in (0, 1)$. Then, we get the result:
860

$$861 \quad \log \Delta - n\mu + Q^{-1}(\alpha + \frac{\rho}{\sqrt{n}\sigma^3} + \Delta)\sigma\sqrt{n} \leq n\gamma_{n,m}.
862$$

863 \square

864 **Deriving An Approximate Bound.** Note that $Q(x)$ is non-increasing and $(1/\sqrt{2\pi})$ -Lipschitz
865 (given that $Q'(x)$ is negative Gaussian density function). Therefore, we have:
866

$$867 \quad Q^{-1}\left(\alpha + \frac{\rho}{\sqrt{n}\sigma^3} + \Delta\right) \geq Q^{-1}(\alpha) - \frac{1}{\sqrt{2\pi}}\left(\frac{\rho}{\sqrt{n}\sigma^3} + \Delta\right),$$

869 We can choose $\Delta = \Delta'/\sqrt{n}$, and show that there is a constant C_0 such that:
870

$$871 \quad Q^{-1}\left(\alpha + \frac{\rho}{\sqrt{n}\sigma^3} + \Delta\right) \geq Q^{-1}(\alpha) - \frac{C_0}{\sqrt{n}}.$$

873 which gives the approximate exponent:
874

$$875 \quad \log \Delta' - C_0\sigma - \frac{1}{2} \log n - n\mu + Q^{-1}(\alpha)\sigma\sqrt{n} \leq n\gamma_{n,m}.$$

876 The term $\log \Delta' - C_0\sigma$ is constant and hence $O(1)$. The final result follows as:
877

$$878 \quad n\gamma_{n,m} \geq nH(Y|X) + \sqrt{n}\sigma Q^{-1}(\alpha) - \frac{\log n}{2} + O(1).$$

879 *Remark B.3.* Looking at the proof more closely, a precise statement of the bound is as follows:
880

$$881 \quad \epsilon \leq \alpha + \frac{\rho}{\sqrt{n}\sigma^3} + \exp(n\mu - Q^{-1}(\epsilon)\sigma\sqrt{n} + n\gamma_{n,m}).$$

883 The choice of $\epsilon = \alpha + \frac{\rho}{\sqrt{n}\sigma^3} + \Delta$ for any $\Delta > 0$ needs to satisfy $\epsilon \in (0, 1)$. Our approximation
884 ignores this condition, which can lead to vacuous results. In certain cases, even $\alpha + \frac{\rho}{\sqrt{n}\sigma^3}$ can be
885 outside $(0, 1)$, which yields a vacuous bound, although asymptotically as $n \rightarrow \infty$, the term will
886 always be within the desired range. Another component is Δ , which is between $(0, 1)$. This means
887 that $\log \Delta < 0$, and therefore, the actual bound is smaller than $nH(Y|X) + \sqrt{n}\sigma Q^{-1}(\alpha)$. Again,
888 as n increases, these impacts vanish, and the bound should be non-vacuous.
889

890 C EFFICIENCY-CONFIDENCE TRADE-OFF FOR GENERAL NOTIONS OF 891 EFFICIENCY

893 In (Vovk et al., 2022, Section 3.1), various criteria for efficiency has been discussed such as sum,
894 number, unconfidence, fuzziness, multiple, and excess criterion. Our notion of efficiency based on
895 the prediction set size is the number criterion in the transductive setting. Here, we can generalize
896 the result for a general criterion of efficiency that can be expressed by a measure (not necessarily a
897 probability measure). We start with the following more general result.
898

899 **Theorem C.1.** Consider a transductive conformal predictor $\Gamma^\alpha(Z_1^m, X_{m+1}^{m+n})$ given a labeled
900 dataset Z_1^m and test samples X_{m+1}^{m+n} with unknown labels Y_{m+1}^{m+n} . If the predictor has the confi-
901 dence $1 - \alpha$, then for any positive β and any measure Q , we have:
902

$$903 \quad \mathbb{P}(P(Y_{m+1}^{m+n}|X_{m+1}^{m+n}) \leq \beta Q(Y_{m+1}^{m+n}|X_{m+1}^{m+n})) \leq \\ 904 \quad \alpha + \beta \int P(X_{m+1}^{m+n}, Z_1^m) Q(\Gamma^\alpha(Z_1^m, X_{m+1}^{m+n})|X_{m+1}^{m+n}) dX_{m+1}^{m+n} dZ_1^m.$$

906 *Proof.* We follow the idea of the proof given in B.1. Define:
907

$$908 \quad B_{\mathbf{X}} := \{\mathbf{Y} : P(\mathbf{Y}|\mathbf{X}) \leq \beta Q(\mathbf{Y}|\mathbf{X})\}.$$

909 We need to modify the last step the of the proof as follows:
910

$$911 \quad \mathbb{P}(P(\mathbf{Y}|\mathbf{X}) < \beta Q(\mathbf{Y}|\mathbf{X})) = \int P(\mathbf{X}, B_{\mathbf{X}}) d\mathbf{X} \\ 912 \quad \leq \alpha + \int \int P(\mathbf{X}, \mathbf{Z}) \left(\sum_{\mathbf{Y}, \mathbf{Y} \in B_{\mathbf{X}} \cap \Gamma^\alpha(\mathbf{Z}, \mathbf{X})} \beta Q(\mathbf{Y}|\mathbf{X}) \right) d\mathbf{X} d\mathbf{Z} \\ 913 \quad \leq \alpha + \beta \int P(\mathbf{X}, \mathbf{Z}) Q(\Gamma^\alpha(\mathbf{Z}, \mathbf{X})|\mathbf{X}) d\mathbf{X} d\mathbf{Z}.$$

914 \square

Finally, we can extend the result to the non-asymptotic case. The measure Q can be the one represented by the model or can be any notion of efficiency as before. A similar trick has been used in Eq. (102) of (Polyanskiy et al., 2010) in their meta-converse analysis.

Theorem C.2. *For a transduction conformal predictor with confidence $1 - \alpha$. Define:*

$$\begin{aligned}\gamma_{n,m}^{(Q)} &:= \frac{1}{n} \log \int P(X_{m+1}^{m+n}, Z_1^m) Q(\Gamma^\alpha(Z_1^m, X_{m+1}^{m+n}) | X_{m+1}^{m+n}) dX_{m+1}^{m+n} dZ_1^m \\ &= \frac{1}{n} \log \mathbb{E}_{X_{m+1}^{m+n}, Z_1^m} (Q(\Gamma^\alpha(Z_1^m, X_{m+1}^{m+n}) | X_{m+1}^{m+n})),\end{aligned}$$

for any measure $Q(Y|X)$ satisfying $Q(Y_{m+1}^{m+n} | X_{m+1}^{m+n}) = \prod_{i=1}^n Q(Y_{m+i} | X_{m+i})$. Then for any n and $\Delta > 0$ such that $\alpha + \frac{\rho}{\sqrt{n}\sigma^3} + \Delta \in [0, 1]$, we have:

$$\log \Delta + n\mu + \sqrt{n}\sigma Q^{-1} \left(\alpha + \frac{\rho}{\sqrt{n}\sigma^3} + \Delta \right) \leq n\gamma_{n,m}^{(Q)}$$

where $Q(\cdot)$ is the Q -function, and:

$$\mu := \mathbb{E} \left(\log \frac{P(Y|X)}{Q(Y|X)} \right) \quad (29)$$

$$\sigma := \text{Var} \left(\log \frac{P(Y|X)}{Q(Y|X)} \right)^{1/2} = \left(\mathbb{E} \left(\log \frac{P(Y|X)}{Q(Y|X)} - \mu \right)^2 \right)^{1/2} \quad (30)$$

$$\rho := \mathbb{E} \left(\left| \log \frac{P(Y|X)}{Q(Y|X)} - \mu \right|^3 \right). \quad (31)$$

The proof follows the exact same steps as in the proof given B.3, and we omit it.

Note that if $Q(\cdot)$ is a probability measure, the term μ is given by $\mathbb{E} (D_{KL} (P(Y|X) \| Q(Y|X)) | X)$. One insight from the above theorem is that the exponent of the transductive prediction efficiency, measured using a probability measure, is asymptotically the KL-divergence between the used measure and ground truth conditional probability.

Other efficiency metrics. Various other efficiency metrics are used in the literature. Most of these are discussed in Chapter 3 of Vovk et al. (2022). Two categories are noteworthy. One is called observed criteria where the efficiency is measured based on the observation of the data label. The other category of criteria measures the efficiency using the prediction set only. Our derivation here can be applied to observed criterion of efficiency assuming the ratios are well defined. We consider some of these measures here.

Consider first N-criterion (N for number), defined as:

$$Q(\Gamma^\alpha(X_{m+1}^{m+n})) = \frac{1}{n} \sum_{i=1}^n |\Gamma_i^\alpha(X_{m+1}^{m+n})|,$$

where $\Gamma_i^\alpha(X_{m+1}^{m+n})$ is defined as the set of different labels predicted in $\Gamma_i^\alpha(X_{m+1}^{m+n})$ for the sample $m+i$. For this choice of Q , we get:

$$Q(Y_{m+1}^{m+n} | X_{m+1}^{m+n}) = \frac{1}{n} \sum_{i=1}^n 1 = 1.$$

This means that for this choice, it is still the best to simply threshold the conditional probability. The fundamental bounds on the efficiency rate, therefore, remains very similar.

Next, consider S-criterion (S for sum). This is defined as sum of p -values for all the labels across test samples. We consider a modified version defined as:

$$Q(\Gamma^\alpha(X_{m+1}^{m+n})) = \sum_{y_{m+1}^{m+n} \in \Gamma^\alpha(X_{m+1}^{m+n})} p_{y_{m+1}^{m+n}},$$

972 where $p_{y_{m+1}^{m+n}}$ is computed given the calibration set Z_1^m and X_{m+1}^{m+n} . In this case, we have:
 973

$$974 \quad Q(Y_{m+1}^{m+n} | X_{m+1}^{m+n}) = p(Y_{m+1}^{m+n} | X_{m+1}^{m+n}), \\ 975$$

976 where we made the conditioning of p -value on the test data explicit in the notation. In this case, the
 977 fundamental limits will be determined by the following ration:

$$978 \quad \log \frac{P(Y|X)}{p(Y|X)}, \\ 979 \\ 980$$

981 where the small p represents the p -value of Y given X . p -values are between 0 and 1 but not a
 982 probability measure.

983 We introduce a third efficiency criterion called R-criterion (R for risk). This notion measures the
 984 risk of the labels in the prediction set. Let's consider the autonomous driving use case and the
 985 object detection application. Different objects can lead to different course of actions, each incurring
 986 different costs. Therefore, we might want to measure the average risk incurred by the prediction set
 987 using a risk measure. This application corresponds to the weighted set size as the efficiency measure
 988 where the weight of each label is proportional to its risk. We define this risk as:

$$989 \quad R(\Gamma^\alpha(X_{m+1}^{m+n})) = \sum_{y \in \Gamma^\alpha(X_{m+1}^{m+n})} R(y). \\ 990 \\ 991$$

992 We leave the risk function $R(\cdot)$ quite general so it can apply to a single label or a sequence of labels.
 993 We can replace Q with R in the above result. Note that $R(Y|X) = R(Y)$. The fundamental limits,
 994 in this case, are the moments of the following ratio:
 995

$$996 \quad \log \frac{P(Y|X)}{R(Y)}. \\ 997$$

998 In other words, the conditional probability needs to be scaled with the risk function for optimal
 999 performance.
 1000

1001 D DISCUSSION ON ACHIEVABILITY ON NON-ASYMPTOTIC BOUNDS ON 1002 EFFICIENCY

1005 *Proof.* We start with the following lemma, which gives a bound on the expected set size.

1006 **Lemma D.1.** *Consider two spaces for \mathcal{X} and \mathcal{Y} with a joint probability distribution $P(x, y)$ defined
 1007 over the product space for $x \in \mathcal{X}$ and $y \in \mathcal{Y}$. Define the set A_x for $x \in \mathcal{X}$ as follows:*

$$1009 \quad A_x = \{y : P(y|x) \geq \beta\}.$$

1010 *Then:*

$$1011 \quad \mathbb{E}_X [|A_x|] \leq \frac{1}{\beta}. \\ 1012 \\ 1013$$

1015 *Proof.* The proof is as follows:

$$1017 \quad \mathbb{P}(A_X) = \sum_{(x,y) \in \mathcal{X} \times \mathcal{Y}} P(x, y) \mathbf{1}(y \in A_x) \quad (32) \\ 1018$$

$$1019 \quad \geq \sum_{(x,y) \in \mathcal{X} \times \mathcal{Y}} P(x) \beta \mathbf{1}(Y \in A_x) \quad (33) \\ 1020$$

$$1022 \quad = \sum_{x \in \mathcal{X}} P(x) \sum_{y \in A_x} \beta \mathbf{1}(Y \in A_x) \quad (34) \\ 1023$$

$$1024 \quad = \beta \mathbb{E}[|A_X|], \quad (35) \\ 1025$$

where we used to inequality $\mathbb{P}(y|x) \geq \beta$ for $y \in A_x$. Using $\mathbb{P}(A_X) \leq 1$, we get the inequality. \square

Now, we just need to pick β such that the probability of A_X satisfies the required confidence level. To do so, consider the set of labels:

$$\Gamma^\alpha(x_1^n) := \{y_1^n : P(y_1^n|x_1^n) \geq \beta\}.$$

When (X_i, Y_i) are independently and identically drawn from $P(X, Y)$, we can use the Berry-Esseen central limit theorem, Theorem B.2, to bound the probability of the set $\Gamma^\alpha(x_1^n)$. The probability of error is the probability that the labels Y_{m+1}^{m+n} do not belong to the set $\Gamma^\alpha(x_1^n)$. It can be bounded as follows.

$$\begin{aligned} \mathbb{P}(P(Y_1^n|X_1^n) \leq \beta) &= \mathbb{P}\left(\frac{1}{\sqrt{n}} \sum_{i=1}^n \frac{(\log P(Y_i|X_i) - \mu)}{\sigma} \leq \frac{1}{\sigma\sqrt{n}} \log \beta - \frac{\sqrt{n}\mu}{\sigma}\right) \\ &\leq Q\left(\frac{-1}{\sigma\sqrt{n}} \log \beta + \frac{\sqrt{n}\mu}{\sigma}\right) + \frac{\rho}{\sqrt{n}\sigma^3}. \end{aligned}$$

As before $\mu = -H(Y|X)$, σ is the variance of the log probability, and the last step follows from Berry-Esseen theorem. To guarantee the confidence level α , we need to choose β as follows:

$$Q\left(\frac{-1}{\sigma\sqrt{n}} \log \beta + \frac{\sqrt{n}\mu}{\sigma}\right) + \frac{\rho}{\sqrt{n}\sigma^3} = \alpha$$

which yields the following choice of β

$$\beta = \exp\left(n\mu - Q^{-1}(\alpha - \frac{\rho}{\sqrt{n}\sigma^3})\sigma\sqrt{n}\right)$$

This is conditioned on $\alpha - \frac{\rho}{\sqrt{n}\sigma^3} \in (0, 1)$, which might not hold for smaller n . Indeed, we need to have:

$$n > \left(\frac{\rho}{\alpha\sigma^3}\right)^2.$$

The function $Q^{-1}(\cdot)$ is $1/\sqrt{2\pi}$ -Lipschitz, and we have:

$$Q^{-1}(\alpha - \frac{\rho}{\sqrt{n}\sigma^3}) \leq Q^{-1}(\alpha) + \frac{1}{2\pi} \frac{\rho}{\sqrt{n}\sigma^3}.$$

Therefore:

$$\beta \leq \exp\left(n\mu - \sigma\sqrt{n}Q^{-1}(\alpha) + \frac{1}{2\pi} \frac{\rho}{\sigma^2}\right)$$

With this choice of β , the expected set size is bounded using the above lemma as:

$$\mathbb{E}[|\Gamma^\alpha(x_1^n)|] \leq \exp\left(-n\mu + \sigma\sqrt{n}Q^{-1}(\alpha) - \frac{1}{2\pi} \frac{\rho}{\sigma^2}\right)$$

which yields the result. \square

Our derivation does not contain the logarithmic terms, $-\frac{1}{2} \log n$ that appears in the lower bound. We can use a different technique, similar to the one used in (Kontoyiannis & Verdu, 2014) for the lossless compression case, to get this term as well.

Achievability for approximate distributions. Suppose that we have access to the approximation of the conditional distribution $P(y|X)$, given by $Q(y|x)$, and the transductive confidence sets are constructed using Q as follows:

$$\Gamma_Q^\alpha(x_1^n) := \{y_1^n : Q(y_1^n|x_1^n) \geq \beta\}.$$

We can provide a bound on the confidence sets constructed in this way. The bound contains different divergences between $P(Y|X)$ and $Q(Y|X)$.

Theorem D.2. Consider the confidence set $\Gamma_Q^\alpha(x_1^n)$ defined above. Then, there is a choice of β that achieves the confidence $1 - \alpha$ at the efficiency rate γ_n satisfying:

$$n\gamma_n \leq \log(1 + n\mathbb{E}[TV(P(\cdot|X), Q(\cdot|X))]) + nH(Y|X) + n\mathbb{E}[D(P(\cdot|X)\|Q(\cdot|X))] + \sqrt{n}\sigma Q^{-1}(\alpha) + O(1),$$

1080 assuming $\alpha \geq \rho/\sqrt{n}\sigma^3$, and:

$$\begin{aligned}\sigma &= (\text{Var}(\log Q(Y|X)))^{1/2} \\ \rho &= \mathbb{E}(|\log Q(Y|X) - \mu|^3).\end{aligned}$$

1085 All expectations are w.r.t. data distribution P .

1088 *Proof.* First, we can use Lemma D.1 to see that:

$$1090 \quad |\Gamma_Q^\alpha(x_1^n)| \leq \frac{Q^n(\Gamma_Q^\alpha(x_1^n))}{\beta}. \\ 1091 \\ 1092$$

1093 Then:

$$1094 \quad Q(\Gamma_Q^\alpha(x_1^n)) \leq P(\Gamma_Q^\alpha(x_1^n)) + |Q(\Gamma_Q^\alpha(x_1^n)) - P(\Gamma_Q^\alpha(x_1^n))| \leq P(\Gamma_Q^\alpha(x_1^n)) + \text{TV}(P(\cdot|x_1^n), Q(\cdot|x_1^n)), \\ 1095$$

1096 which implies that:

$$1098 \quad \mathbb{E}[|\Gamma_Q^\alpha(X_1^n)|] \leq \frac{P(\Gamma_Q^\alpha(X_1^n)) + \mathbb{E}[\text{TV}(P(\cdot|X_1^n), Q(\cdot|X_1^n))]}{\beta}. \\ 1099 \\ 1100$$

1101 where all the expectations are w.r.t. the data distribution P . We can simplify the total variation
1102 distance further as follows:

$$1103 \quad \mathbb{E}[\text{TV}(P(\cdot|X_1^n), Q(\cdot|X_1^n))] \leq n\mathbb{E}[\text{TV}(P(\cdot|X), Q(\cdot|X))]. \\ 1104$$

1105 We can now characterize the probability of the confidence set using the central limit theorem in a
1106 similar way:

$$1108 \quad \mathbb{P}(Q(Y_1^n|X_1^n) \leq \beta) \leq Q\left(\frac{-1}{\sigma\sqrt{n}}\log\beta + \frac{\sqrt{n}\mu}{\sigma}\right) + \frac{\rho}{\sqrt{n}\sigma^3}. \\ 1109 \\ 1110$$

1111 The only difference is that the moments are computed for $\log Q(Y_i|X_i)$. We will come back to their
1112 computation later. First see that β can be chosen in a way to guarantee the confidence level we are
1113 interested in:

$$1114 \quad \beta \leq \exp\left(n\mu - \sigma\sqrt{n}Q^{-1}(\alpha) + \frac{1}{2\pi}\frac{\rho}{\sigma^2},\right) \\ 1115$$

1116 which we use to bound the expected set size

$$1118 \quad \mathbb{E}[|\Gamma_Q^\alpha(X_1^n)|] \leq (1 + n\mathbb{E}[\text{TV}(P(\cdot|X), Q(\cdot|X))]) \exp\left(-n\mu + \sigma\sqrt{n}Q^{-1}(\alpha) - \frac{1}{2\pi}\frac{\rho}{\sigma^2}\right). \\ 1119 \\ 1120$$

1121 As last step we compute the moments as follows:

$$\begin{aligned}1122 \quad \mu &= \mathbb{E}[\log Q(Y|X)] = -H(Y|X) - \mathbb{E}[D(P(\cdot|X)\|Q(\cdot|X))] \\ 1123 \quad \sigma &= (\text{Var}(\log Q(Y|X)))^{1/2} \\ 1124 \quad \rho &= \mathbb{E}(|\log Q(Y|X) - \mu|^3).\end{aligned}$$

1127 \square
1128
1129

1130 The key penalty for the distribution mismatch is the expected KL-divergence term
1131 $\mathbb{E}[D(P(\cdot|X)\|Q(\cdot|X))]$. This result also shows that one can directly try to approximate the
1132 conditional distribution if the error can be suitably controlled. For example, in Sadinle et al. (2019), the
1133 authors used k-Nearest Neighbors, local polynomial estimator and Regularized multinomial logistic
regression to approximate the conditional distributions.

1134
1135

E PROOFS OF SECTION 4

1136
1137

E.1 PROOF OF THEOREM 4.2

1138
1139

We start with the first error. To start, we need to use the following definition of Jensen-Shannon divergence:

1140
1141

$$\text{GJS}(T_{\mathbf{X}_1}, T_{\mathbf{X}_{\text{test}}}, \alpha) = (1 + \alpha)H(T_{\mathbf{X}_1} \mathbf{x}_{\text{test}}) - \alpha H(T_{\mathbf{X}_1}) - H(T_{\mathbf{X}_{\text{test}}}) \quad (36)$$

1142

The proof continues as follows using the properties of types reviewed in Appendix A:

1143

1144
1145

$$\mathbb{P}(H_1 \notin \Gamma_n^\alpha(\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_{\text{test}}) | \mathbf{X}_{\text{test}} \sim P_1)$$

1146

$$= \sum_{\substack{(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_{\text{test}}) \\ \text{GJS}(T_{\mathbf{X}_1}, T_{\mathbf{X}_{\text{test}}}, \alpha) \geq \lambda}} P_1(\mathbf{X}_1) P_2(\mathbf{X}_2) P_1(\mathbf{X}_{\text{test}})$$

1147

$$\leq \sum_{\substack{(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_{\text{test}}) \\ \text{GJS}(T_{\mathbf{X}_1}, T_{\mathbf{X}_{\text{test}}}, \alpha) \geq \lambda}} e^{-(N+n)H(T_{\mathbf{X}_1} \mathbf{x}_{\text{test}})} P_2(\mathbf{X}_2)$$

1148

$$\leq \sum_{\substack{(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_{\text{test}}) \\ \text{GJS}(T_{\mathbf{X}_1}, T_{\mathbf{X}_{\text{test}}}, \alpha) \geq \lambda}} e^{-NH(T_{\mathbf{X}_1})} P_2(\mathbf{X}_2) e^{-nH(T_{\mathbf{X}_{\text{test}}})} e^{-n\lambda}$$

1149

$$\leq e^{-n\lambda} \sum_{\substack{(T_{\mathbf{X}_1}, T_{\mathbf{X}_{\text{test}}}) \in \mathcal{P}_N \times \mathcal{P}_n \\ \text{GJS}(T_{\mathbf{X}_1}, T_{\mathbf{X}_{\text{test}}}, \alpha) \geq \lambda}} |T_{\mathbf{X}_1}| e^{-NH(T_{\mathbf{X}_1})} |T_{\mathbf{X}_2}| P_2(\mathbf{X}_2) e^{-nH(T_{\mathbf{X}_{\text{test}}})}$$

1150

$$\leq e^{-n\lambda} |\mathcal{P}_N \times \mathcal{P}_n| \leq e^{-n\lambda} (n+1)^{|\mathcal{X}|} (N+1)^{|\mathcal{X}|}.$$

1151

In the last inequality, we used a bound on the number of sequences of length N for each type T . The other error follows from a similar analysis. We have shown that the errors $\beta_1(\psi_{1,n}^{\text{Gutman}} | P_1, P_2)$ and $\beta_1(\psi_{2,n}^{\text{Gutman}} | P_1, P_2)$ are both bounded by $e^{-n\tilde{\lambda}}$, where

1152

$$\tilde{\lambda} = \lambda - \frac{|\mathcal{X}| \log(n+1)(N+1)}{n}.$$

1153

This implies:

1154

$$P_e^n \leq e^{-n\tilde{\lambda}},$$

1155

and establishes the desired result.

1156

E.2 PROOF OF THEOREM 4.3

1157

First note that:

1158

$$\mathbb{P}(|\Gamma_n^\alpha(\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_{\text{test}})| = 2) = \mathbb{P}(\text{GJS}(T_{\mathbf{X}_1}, T_{\mathbf{X}_{\text{test}}}, \alpha) < \lambda, \text{ and } \text{GJS}(T_{\mathbf{X}_2}, T_{\mathbf{X}_{\text{test}}}, \alpha) < \lambda) \quad (37)$$

1159

Let's start as follows:

1160

$$\mathbb{P}(|\Gamma_n^\alpha(\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_{\text{test}})| = 2) =$$

1161

$$\pi_1 \mathbb{P}(|\Gamma_n^\alpha(\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_{\text{test}})| = 2 | \mathbf{X}_{\text{test}} \sim P_1) + \pi_2 \mathbb{P}(|\Gamma_n^\alpha(\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_{\text{test}})| = 2 | \mathbf{X}_{\text{test}} \sim P_2)$$

1162

Let E_1 and E_2 denote respectively the events $\text{GJS}(T_{\mathbf{X}_1}, T_{\mathbf{X}_{\text{test}}}, \alpha) < \lambda$, and $\text{GJS}(T_{\mathbf{X}_2}, T_{\mathbf{X}_{\text{test}}}, \alpha) < \lambda$. Then, we have:

1163

$$\mathbb{P}(|\Gamma_n^\alpha(\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_{\text{test}})| = 2 | \mathbf{X}_{\text{test}} \sim P_1) = \mathbb{P}(E_1 \cap E_2 | \mathbf{X}_{\text{test}} \sim P_1)$$

1164

From the error analysis of classical Gutman's decision, we have:

1165

$$\mathbb{P}(E_1 | \mathbf{X}_{\text{test}} \sim P_1) \geq 1 - e^{-n\tilde{\lambda}}.$$

1166

Therefore, the probability of cardinality 2 is dominated by the event E_2 , in the following sense:

1167

$$\mathbb{P}(E_2 | \mathbf{X}_{\text{test}} \sim P_1) - e^{-n\tilde{\lambda}} \leq \mathbb{P}(E_1 | \mathbf{X}_{\text{test}} \sim P_1) + \mathbb{P}(E_2 | \mathbf{X}_{\text{test}} \sim P_1) - 1 \leq \mathbb{P}(E_1 \cap E_2 | \mathbf{X}_{\text{test}} \sim P_1) \leq \mathbb{P}(E_2 | \mathbf{X}_{\text{test}} \sim P_1)$$

1188 Now using Theorem A.3, we can characterize the exponent as follows:
1189

$$1190 \lim_{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}(E_2 | \mathbf{X}_{\text{test}} \sim P_1) = - \inf_{\substack{(Q_1, Q_2) \in \mathcal{P}^2 \\ \text{GJS}(Q_1, Q_2, \alpha) < \lambda}} D(Q_2 \| P_1) + \alpha D(Q_1 \| P_2) = -F(P_2, P_1, \alpha, \lambda),$$

1192 where, to remind, we had:
1193

$$1194 F(P_1, P_2, \alpha, \lambda) := \min_{\substack{(Q_1, Q_2) \in \mathcal{P}(\mathcal{X})^2 \\ \text{GJS}(Q_1, Q_2, \alpha) < \lambda}} D(Q_2 \| P_2) + \alpha D(Q_1 \| P_1). \quad (38)$$

1197 This, in turn, would imply that:
1198

$$1198 \lim_{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}(E_1 \cap E_2 | \mathbf{X}_{\text{test}} \sim P_1) \leq -F(P_2, P_1, \alpha, \lambda).$$

1200 Next, we characterize the case $\mathbf{X}_{\text{test}} \sim P_2$, for which we similarly have:
1201

$$1202 \mathbb{P}(E_2 | \mathbf{X}_{\text{test}} \sim P_2) \geq 1 - e^{-n\tilde{\lambda}}.$$

1203 And the even E_1 is nothing but the second error of classical Gutman's test:
1204

$$1205 \lim_{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}(E_1 | \mathbf{X}_{\text{test}} \sim P_2) = - \inf_{\substack{(Q_1, Q_2) \in \mathcal{P}^2 \\ \text{GJS}(Q_1, Q_2, \alpha) < \lambda}} D(Q_2 \| P_2) + \alpha D(Q_1 \| P_1) = -F(P_1, P_2, \alpha, \lambda),$$

1207 Putting these results together, we obtain the following:
1208

$$1209 \lim_{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}(|\Gamma_n^\alpha(\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_{\text{test}})| = 2) \leq -\min(F(P_1, P_2, \alpha, \lambda), F(P_2, P_1, \alpha, \lambda)). \quad (39)$$

1211 and the equality obtains if $\min(F(P_1, P_2, \alpha, \lambda), F(P_2, P_1, \alpha, \lambda)) < \lambda$, as in the lower bound $e^{-n\tilde{\lambda}}$
1212 vanishes faster.

1213 The probability of having an empty set is controlled similarly, with the difference that the comple-
1214 ment of the above events is considered.
1215

1216 E.3 PROOF OF THEOREM 4.5

1218 Let E_i denote the event $\text{GJS}(T_{\mathbf{X}_i}, T_{\mathbf{X}_{\text{test}}}, \alpha) < \lambda$. We first condition on the event that \mathbf{X}_{test} follows
1219 the distribution P_l . The key event is the following:
1220

$$1221 \mathbb{P}(|\Gamma_n^\alpha(\mathbf{X}_1, \dots, \mathbf{X}_m, \mathbf{X}_{\text{test}})| = k | \mathbf{X}_{\text{test}} \sim P_l) = \mathbb{P} \left(\bigcup_{S \subset [M]: |S|=k} \left(\bigcap_{i \in S} E_i \right) \cap \left(\bigcap_{i \in S^c} E_i^c \right) \middle| \mathbf{X}_{\text{test}} \sim P_l \right)$$

1224 We will use the union bound, and therefore focus on the following probabilities for $l \in S$ and $l \notin S$.
1225 We start with $l \in S$, for which we get:
1226

$$1227 \mathbb{P} \left(\left(\bigcap_{i \in S} E_i \right) \cap \left(\bigcap_{i \in S^c} E_i^c \right) \middle| \mathbf{X}_{\text{test}} \sim P_l \right) \leq \mathbb{P} \left(\left(\bigcap_{i \in S, i \neq l} E_i \right) \middle| \mathbf{X}_{\text{test}} \sim P_l \right), \quad (40)$$

1229 where the removed events in the upper bound have all probabilities converging to 1. The latter
1230 probability decays exponentially fast with the exponent following from Sanov's theorem:
1231

$$1232 \lim_{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P} \left(\left(\bigcap_{i \in S, i \neq l} E_i \right) \middle| \mathbf{X}_{\text{test}} \sim P_l \right) \leq - \inf_{\substack{(Q_1, \dots, Q_M, Q_t) \in \mathcal{P}^{M+1} \\ \text{GJS}(Q_i, Q_t, \alpha) < \lambda, \forall i \in S \setminus \{l\}}} \alpha \sum_{i=1}^M D(Q_i \| P_i) + D(Q_t \| P_l)$$

$$1233 = - \inf_{\substack{((Q_i)_{i \in S \setminus \{l\}}, Q_t) \in \mathcal{P}^{|S|} \\ \text{GJS}(Q_i, Q_t, \alpha) < \lambda, \forall i \in S \setminus \{l\}}} \alpha \sum_{i \in S \setminus \{l\}} D(Q_i \| P_i) + D(Q_t \| P_l)$$

1238 Similarly, for $l \notin S$, we have:
1239

$$1240 \mathbb{P} \left(\left(\bigcap_{i \in S} E_i \right) \cap \left(\bigcap_{i \in S^c} E_i^c \right) \middle| \mathbf{X}_{\text{test}} \sim P_l \right) \leq \mathbb{P} \left(\left(\bigcap_{i \in S} E_i \right) \cap E_l^c \middle| \mathbf{X}_{\text{test}} \sim P_l \right), \quad (41)$$

1242 which leads to the following exponent:
1243

$$\begin{aligned}
1244 \lim_{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P} \left(\left(\bigcap_{i \in S} E_i \right) \cap E_l^c \mid \mathbf{X}_{\text{test}} \sim P_l \right) &\leq - \inf_{\substack{(Q_1, \dots, Q_M, Q_t) \in \mathcal{P}^{M+1} \\ \text{GJS}(Q_i, Q_t, \alpha) < \lambda, \forall i \in S \\ \text{GJS}(Q_l, Q_t, \alpha) \geq \lambda}} \alpha \sum_{i=1}^M D(Q_i \| P_i) + D(Q_t \| P_l) \\
1245 &= - \inf_{\substack{(Q_1, \dots, Q_M, Q_t) \in \mathcal{P}^{M+1} \\ \text{GJS}(Q_i, Q_t, \alpha) < \lambda, \forall i \in S \\ \text{GJS}(Q_l, Q_t, \alpha) \geq \lambda}} \alpha \sum_{i \in S \cup \{l\}} D(Q_i \| P_i) + D(Q_t \| P_l)
\end{aligned}$$

1251 So using the definition of $F(\{P_i : i \in S\}, P_l, \alpha, \lambda)$, we get:
1252

$$1253 \lim_{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}(|\Gamma_n^\alpha(\mathbf{X}_1, \dots, \mathbf{X}_m, \mathbf{X}_{\text{test}})| = k \mid \mathbf{X}_{\text{test}} \sim P_l) \leq - \inf_{S \subset [M], |S|=k} F(\{P_i : i \in S\}, P_l, \alpha, \lambda) \quad (42)$$

1256 which, in turn, implies the final result by finding the smallest exponent for each l .
1257

1258 For the probability of the empty prediction set, we use a simple upper bound that the true label does
1259 not belong to the prediction set. This probability decays exponentially with the exponent $-\lambda$.
1260

1261 F DISCUSSION ON OPTIMALITY AND SECOND ORDER ANALYSIS FOR 1262 EMPIRICALLY OBSERVED STATISTICS

1264 **Discussion on Optimality.** We stated in the paper that the classical Gutman's test was optimal
1265 (Zhou et al., 2020). To repeat, for any other decision rule ϕ_n that *uniformly* controls the error
1266 exponent of $\beta_1(\psi_n | P_1, P_2)$ similar to Gutman, namely

$$1267 \forall (P_1, P_2) \in \mathcal{P}(\mathcal{X})^2 : \liminf_{n \rightarrow \infty} -\frac{1}{n} \log \beta_1(\psi_n | P_1, P_2) \geq \lambda,$$

1269 then, the type-II error is always worse than Gutman's test:
1270

$$1271 \beta_2(\psi_n | P_1, P_2) \geq \beta_2(\psi_n^{\text{Gutman}} | P_1, P_2).$$

1272 We can use this optimality result to provide a heuristic argument for the efficiency of Gutman's
1273 test with confidence. Consider all the confidence predictors that satisfy similar error exponents for
1274 $\beta_1(\psi_n | P_1, P_2)$. Given the optimality of Gutman's classical test, the type-II error is higher, which
1275 also means that the probability of having an undesirable term in the set increases. In other words,
1276 the inefficiency of the test increases.
1277

1278 **Second Order Analysis.** For non-asymptotic results, the following limit is controlled in (Zhou
1279 et al., 2020) for classical tests (no confidence predictor):

$$1280 \lambda(n, \alpha, \epsilon, \mathbf{P}) := \sup \left\{ \lambda \in \mathbb{R}_+ : \exists \psi_n \text{ s.t. } \forall j \in [2], \forall (\tilde{P}_1, \tilde{P}_2) \in \mathcal{P}(\mathcal{X})^2 : \right. \\
1281 \left. \beta_1(\psi_n | P_1, P_2) \leq \exp(-n\lambda); \beta_2(\psi_n | P_1, P_2) \leq \epsilon \right\}.$$

1285 This definition is for binary hypothesis tests, but it can be extended further to multiple hypothesis
1286 test. The following result characterizes the limit.
1287

Theorem F.1 (Theorem 2 (Zhou et al., 2020)). *For any $\epsilon \in (0, 1)$, and any distribution $(P_1, P_2) \in \mathcal{P}(\mathcal{X})^2$, the second order limit is characterized as follows:*

$$1289 \lambda(n, \alpha, \epsilon, \mathbf{P}) = \text{GJS}(P_1, P_2, \alpha) + \sqrt{\frac{V(P_1, P_2, \alpha)}{n}} \Phi^{-1}(\epsilon) + O\left(\frac{\log n}{n}\right),$$

1292 where $\Phi(t) = 1 - Q(t)$ is the cumulative distribution function of the standard normal Gaussian
1293 distribution, and the dispersion function is defined as

$$1294 V(P_1, P_2, \alpha) = \alpha \text{Var}_{P_1} \left(\log \frac{(1+\alpha)P_1(X)}{\alpha P_1(X) + P_2(X)} \right) + \text{Var}_{P_2} \left(\log \frac{(1+\alpha)P_2(X)}{\alpha P_1(X) + P_2(X)} \right).$$

1296 Note that this result controls the rate of the second error, which is about yielding the wrong hypothesis,
1297 while maximizing the decay rate of the first error. The dual setting of this problem where the
1298 first error is controlled, as desired in our setup, is also studied in (Zhou et al., 2020), Proposition 4.
1299 However, the result is still for asymptotic n , as n goes to infinity. As one can expect, the asymptotic
1300 limit will be based on the error exponent $F(P_1, P_2, \alpha, \lambda)$ where $\lambda \rightarrow 0$. This limit turns out to be
1301 the Rényi divergence of order $\alpha/(1 + \alpha)$. In any case, such result is not useful in our context.

1302 We can use still use the result of Theorem F.1 to build a confidence predictor. We provide a
1303 high level idea of such construction. The proofs can be formalized in a similar way to the other
1304 proofs. We combine two tests, one that controls $\beta_2(\psi_{1,n}|P_1, P_2) \leq \epsilon$ and the other controlling
1305 $\beta_1(\psi_{2,n}|P_1, P_2) \leq \epsilon$. We use $\psi_{1,n}$ only to decide on the inclusion of H_1 and $\psi_{2,n}$ on the inclusion
1306 of H_2 . This is a similar procedure to Definition 4.1. Since the second errors are controlled, we can
1307 immediately see that

$$1308 \mathbb{P}(|\Gamma_n^\alpha(\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_{\text{test}})| = 2) \leq \epsilon.$$

1309 Therefore the efficiency can be effectively controlled in this fashion. However, the confidence can-
1310 not then be arbitrarily controlled. Two exponents control the confidence error $\text{GJS}(P_1, P_2, \alpha) +$
1311 $\sqrt{\frac{V(P_1, P_2, \alpha)}{n}}\Phi^{-1}(\epsilon)$ and $\text{GJS}(P_2, P_1, \alpha) + \sqrt{\frac{V(P_2, P_1, \alpha)}{n}}\Phi^{-1}(\epsilon)$. The best exponent will be the
1312 minimum of both. Deriving non-asymptotic bounds for the dual setting can be an interesting future
1313 work.

1315 G COMPARISON WITH PRIOR WORKS

1316 **Comparison with (Correia et al., 2024).** The authors in (Correia et al., 2024) provided infor-
1317 mation theoretic bounds on the efficiency of conformal prediction algorithms. The main bound
1318 on the expected set size is derived from Fano's inequality for variable size list decoding, given in
1319 Proposition C.7 of the paper:

$$1322 H(Y|X) \leq h_b(\alpha) + \alpha \log |\mathcal{Y}| + \mathbb{E}([\log |\mathcal{C}(x)|]^+),$$

1323 This is for a single test sample prediction. Since the bound holds for any space \mathcal{Y} and \mathcal{X} , we can use
1324 it for transductive confidence prediction by choosing the product space \mathcal{Y}^n and \mathcal{X}^n , which yields
1325 the following bound, assuming independent samples:

$$1327 nH(Y|X) \leq h_b(\alpha) + n\alpha \log |\mathcal{Y}| + n\mathbb{E}([\log |\mathcal{C}(X)|]^+),$$

1328 As $n \rightarrow \infty$, and using Jensen's inequality, we get:

$$1330 H(Y|X) \leq \alpha \log |\mathcal{Y}| + \gamma_m^-.$$

1331 The result implies that if $\gamma_m^- < H(Y|X)$, then

$$1333 \alpha \geq \frac{H(Y|X) - \gamma_m^-}{\log |\mathcal{Y}|},$$

1335 which means that the value α cannot be made arbitrarily small (or confidence arbitrarily high). Our
1336 result, as stated in Theorem 3.2 is stronger, as it says that in such case the confidence goes to zero,
1337 or $\alpha \rightarrow 0$.

1338 This is analogous to the results in information theory about weak and strong converses for Shannon
1339 capacity. The weak converse is proven using Fano's inequality and states that the rates above the
1340 capacity cannot have zero error. The strong converse states that the error goes to one. Fano's
1341 inequality is known to be loose in certain scenarios, which motivated many works on more efficient
1342 and tighter bounds in information theory (see (Polyanskiy et al., 2010) and references therein).

1344 **Transductive conformal prediction in (Vovk, 2013).** As shown in (Vovk, 2013), it should be
1345 noted that transductive conformal predictors are a class of transductive confidence predictors. Our
1346 theoretical bounds apply to all confidence predictors, which constitute a larger class. However,
1347 Theorem 3 in (Vovk, 2013) states, there is always a conformal predictor as good as a transductive
1348 one. Therefore, throughout the paper, we used mainly conformal predictors as our focus. However,
1349 the notion of nonconformity score, essential for transductive prediction, was not discussed in the
paper. We review the confidence predictor using nonconformity score.

1350 Transductive conformal predictor as in (Vovk, 2013) is defined using a *transductive nonconformity*
 1351 *score* $A : (\mathcal{X} \times \mathcal{Y})^* \times (\mathcal{X} \times \mathcal{Y})^* \rightarrow \mathbb{R}$ where $(\mathcal{X} \times \mathcal{Y})^*$ is the set of all finite sequences with elements
 1352 (X, Y) , $X \in \mathcal{X}, Y \in \mathcal{Y}$. $A(\zeta_1, \zeta_2)$ does not depend on the ordering of ζ_1 . The transductive
 1353 conformal predictor for A , based on the labeled dataset given as $Z_1^m = ((X_i, Y_i) : i \in [m])$,
 1354 compute the transductive nonconformity scores for each possible labels $\mathbf{v} = (v_{m+1}, \dots, v_{m+n}) \in$
 1355 \mathcal{Y}^n of the test sequence $X_{m+1}^{m+n} = (X_{m+1}, \dots, X_{m+n})$ as follows. Construct the labels $Y_{m+k}^{\mathbf{v}} =$
 1356 v_{m+k} for $k \in [n]$, $Y_i^{\mathbf{v}} = Y_i$ for $i \in [m]$. Consider the following definition:

$$\mathbf{Z}_S^{\mathbf{v}} = ((X_i, Y_i^{\mathbf{v}}) : i \in S).$$

1357 Then, for each possible labels $\mathbf{v} = (v_{m+1}, \dots, v_{m+n}) \in \mathcal{Y}^n$ and each ordered subset S of $[m+n]$
 1358 with n entries define:

$$\xi_S^{\mathbf{v}} := A(\mathbf{Z}_{[m+n] \setminus S}^{\mathbf{v}} \mathbf{Z}_S^{\mathbf{v}}). \quad (43)$$

1362 and use to compute p -values:

$$1363 \quad p(v_1, \dots, v_n) = \frac{|S : \xi_S^{\mathbf{v}} \geq \xi_{\mathbf{v}}^{\mathbf{v}}|}{(m+n)!/n!}.$$

1366 These p -values can be used to construct the prediction sets as follows:

$$1367 \quad \Gamma^{\alpha}(Z_1^m, X_{m+1}^{m+n}) = \{\mathbf{v} = (v_{m+1}, \dots, v_{m+n}) \in \mathcal{Y}^n : p(v_1, \dots, v_n) \geq \alpha\}.$$

1369 Such construction comes with theoretical coverage guarantee that the predictor has the confidence
 1370 at least $1 - \alpha$ in the online mode (see Theorem 1 and Corollary 1 of (Vovk, 2013) for further
 1371 discussions).

1372 As it can be seen from the above construction, computing all these p -values is computationally
 1373 cumbersome. Therefore, one can try to construct transductive nonconformity measures from single
 1374 nonconformity measures using another aggregator. Bonferroni predictors compute p -value for each
 1375 test sample separately and the combine that using the Bonferroni equation:

$$1376 \quad p := \min(np_1, \dots, np_n, 1),$$

1378 which amounts to the following modified prediction set:

$$1379 \quad \Gamma^{\alpha}(Z_1^m, X_{m+1}^{m+n}) = \prod_{i=1}^n \left\{ v_{m+i} \in \mathcal{Y} : p(v_{m+i}) \geq \frac{\alpha}{n} \right\}.$$

1382 Bonferroni predictors have similar coverage guarantees to transductive conformal prediction (see
 1383 Theorem 2 in (Vovk, 2013)).

1384 For our experiments, we use Bonferroni predictors for the p -values obtained from split conformal
 1385 prediction (SCP). Although the method works based on computing $(1 - \alpha)$ -quantile, there is a 1-1
 1386 mapping to a p -value:

$$1388 \quad s \leq \text{Quantile}(1 - \alpha; \{S_i\}_{i=1}^n \cup \{\infty\}) \iff \frac{1}{n} \sum_{i=1}^n \mathbf{1}(S_i \geq s) > \alpha.$$

1390 In other words, the term $\frac{1}{n} \sum_{i=1}^n \mathbf{1}(S_i \geq s)$ is a p -value. Therefore, Bonferroni predictor for SCP
 1391 can be obtained by running SCP per test sample using $1 - \frac{\alpha}{n}$ -quantile and then get the set product
 1392 of predicted sets.

1394 **On Optimal Confidence Predictors.** The prior works considered the efficiency-confidence trade-
 1395 off in context of confidence prediction (Lei, 2014; Lei & Wasserman, 2014; Lei et al., 2013; 2015;
 1396 Sadinle et al., 2019). In (Lei, 2014), the case of binary classification is discussed where the prediction
 1397 sets are constructed based on the thresholding of the conditional probability. Using Neyman-
 1398 Pearson lemma, it is shown that such prediction sets achieve optimal efficiency. When the
 1399 conditional probability is not given, its empirical version is used, which is shown to asymptotically
 1400 achieve the optimal confidence prediction. Their analysis excludes the empty prediction sets. The
 1401 optimal classifier of multi-class classifiers was discussed in (Sadinle et al., 2019). The solution is
 1402 similarly based on the thresholding of the conditional probability. Our work is the general derivation
 1403 of lower and upper bound on the optimal prediction sets in transductive setting, and is connected to
 1404 information theoretic quantities as well.

1404 H SUPPLEMENTARY EXPERIMENTAL RESULTS

1405
1406 In this section, we present additional numerical results related to our theoretical bound. All experiments are with $N = 10$ (corresponding to MNIST), and follows a similar setup presented in the
1407 main paper.

1429 **Figure 2:** The theoretical finite block length bounds for different noise levels, and different confidence α

1450 **Figure 3:** The theoretical finite block length bounds for different confidence α in terms of n

1451
1452
1453 **Simulating Theoretical Bounds.** Figures 2, 3, and 4 are all based on simulating the theoretical
1454 bounds for noisy labels given in eq. 5. We would like to observe a few trends, most of them in-
1455 tuitively expected. In Figure 2 and 3, we plot the finite block-length bounds as a function of the
1456 number of test samples n for different level of confidence. As the level of required confidence be-
1457 comes more stringent, namely smaller α , the inefficiency, given by the exponent of the expected
1458 set size, increases. Besides, the finite block length bound approaches slowly toward the asymp-

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
22210
22211
22212
22213
22214
22215
22216
22217
22218
22219
22220
22221
22222
22223
22224
22225
22226
22227
22228
22229
222210
222211
222212
222213
222214
222215
222216
222217
222218
222219
222220
222221
222222
222223
222224
222225
222226
222227
222228
222229
2222210
2222211
2222212
2222213
2222214
2222215
2222216
2222217
2222218
2222219
2222220
2222221
2222222
2222223
2222224
2222225
2222226
2222227
2222228
2222229
22222210
22222211
22222212
22222213
22222214
22222215
22222216
22222217
22222218
22222219
22222220
22222221
22222222
22222223
22222224
22222225
22222226
22222227
22222228
22222229
222222210
222222211
222222212
222222213
222222214
222222215
222222216
222222217
222222218
222222219
222222220
222222221
222222222
222222223
222222224
222222225
222222226
222222227
222222228
222222229
2222222210
2222222211
2222222212
2222222213
2222222214
2222222215
2222222216
2222222217
2222222218
2222222219
2222222220
2222222221
2222222222
2222222223
2222222224
2222222225
2222222226
2222222227
2222222228
2222222229
22222222210
22222222211
22222222212
22222222213
22222222214
22222222215
22222222216
22222222217
22222222218
22222222219
22222222220
22222222221
22222222222
22222222223
22222222224
22222222225
22222222226
22222222227
22222222228
22222222229
222222222210
222222222211
222222222212
222222222213
222222222214
222222222215
222222222216
222222222217
222222222218
222222222219
222222222220
222222222221
222222222222
222222222223
222222222224
222222222225
222222222226
222222222227
222222222228
222222222229
2222222222210
2222222222211
2222222222212
2222222222213
2222222222214
2222222222215
2222222222216
2222222222217
2222222222218
2222222222219
2222222222220
2222222222221
2222222222222
2222222222223
2222222222224
2222222222225
2222222222226
2222222222227
2222222222228
2222222222229
22222222222210
22222222222211
22222222222212
22222222222213
22222222222214
22222222222215
22222222222216
22222222222217
22222222222218
22222222222219
22222222222220
22222222222221
22222222222222
22222222222223
22222222222224
22222222222225
22222222222226
22222222222227
22222222222228
22222222222229
222222222222210
222222222222211
222222222222212
222222222222213
222222222222214
222222222222215
222222222222216
222222222222217
222222222222218
222222222222219
222222222222220
222222222222221
222222222222222
222222222222223
222222222222224
222222222222225
222222222222226
222222222222227
222222222222228
222222222222229
2222222222222210
2222222222222211
2222222222222212
2222222222222213
2222222222222214
2222222222222215
2222222222222216
2222222222222217
2222222222222218
2222222222222219
2222222222222220
2222222222222221
2222222222222222
2222222222222223
2222222222222224
2222222222222225
2222222222222226
2222222222222227
2222222222222228
2222222222222229
22222222222222210
22222222222222211
22222222222222212
22222222222222213
22222222222222214
22222222222222215
22222222222222216
22222222222222217
22222222222222218
22222222222222219
22222222222222220
22222222222222221
22222222222222222
22222222222222223
22222222222222224
22222222222222225
22222222222222226
22222222222222227
22222222222222228
22222222222222229
222222222222222210
222222222222222211
222222222222222212
222222222222222213
222222222222222214
222222222222222215
222222222222222216
222222222222222217
222222222222222218
222222222222222219
222222222222222220
222222222222222221
222222222222222222
222222222222222223
222222222222222224
222222222222222225
222222222222222226
222222222222222227
222222222222222228
222222222222222229
2222222222222222210
2222222222222222211
2222222222222222212
2222222222222222213
2222222222222222214
2222222222222222215
2222222222222222216
2222222222222222217
2222222222222222218
2222222222222222219
2222222222222222220
2222222222222222221
2222222222222222222
2222222222222222223
2222222222222222224
2222222222222222225
2222222222222222226
2222222222222222227
2222222222222222228
2222222222222222229
22222222222222222210
22222222222222222211
22222222222222222212
22222222222222222213
22222222222222222214
22222222222222222215
22222222222222222216
22222222222222222217
22222222222222222218
22222222222222222219
22222222222222222220
22222222222222222221
22222222222222222222
22222222222222222223
22222222222222222224
22222222222222222225
22222222222222222226
22222222222222222227
22222222222222222228
22222222222222222229
222222222222222222210
222222222222222222211
222222222222222222212
222222222222222222213
222222222222222222214
222222222222222222215
222222222222222222216
222222222222222222217
222222222222222222218
222222222222222222219
222222222222222222220
222222222222222222221
222222222222222222222
222222222222222222223
222222222222222222224
222222222222222222225
222222222222222222226
222222222222222222227
222222222222222222228
222222222222222222229
2222222222222222222210
2222222222222222222211
2222222222222222222212
2222222222222222222213
2222222222222222222214
2222222222222222222215
2222222222222222222216
2222222222222222222217
2222222222222222222218
2222222222222222222219
2222222222222222222220
2222222222222222222221
2222222222222222222222
2222222222222222222223
2222222222222222222224
2222222222222222222225
2222222222222222222226
2222222222222222222227
2222222222222222222228
2222222222222222222229
22222222222222222222210
22222222222222222222211
22222222222222222222212
22222222222222222222213
22222222222222222222214
22222222222222222222215
22222222222222222222216
22222222222222222222217
22222222222222222222218
22222222222222222222219
22222222222222222222220
22222222222222222222221
22222222222222222222222
22222222222222222222223
22222222222222222222224
22222222222222222222225
22222222222222222222226
22222222222222222222227
22222222222222222222228
22222222222222222222229
222222222222222222222210
222222222222222222222211
222222222222222222222212
222222222222222222222213
222222222222222222222214
222222222222222222222215
222222222222222222222216
222222222222222222222217
222222222222222222222218
222222222222222222222219
222222222222222222222220
222222222222222222222221
222222222222222222222222
222222222222222222222223
222222222222222222222224
222222222222222222222225
222222222222222222222226
222222222222222222222227
222222222222222222222228
222222222222222222222229
2222222222222222222222210
2222222222222222222222211
2222222222222222222222212
2222222222222222222222213
222222222222222222222221

(a) The error probability of the test as a function of the data size

(b) The average prediction set size as a function of the data size

Figure 6: Numerical Results for the confidence based Gutman's test

Numerical Comparisons with Transductive Methods. We provide another plot for the Bonferroni transductive method in Figure 5 for two different levels of confidence $\alpha = 0.1$ and $\alpha = 0.3$. Bonferroni predictors in (Vovk, 2013) were discussed in Section G. The idea is to convert per-sample p -values to p -value for transductive prediction. To have a transductive prediction of level α for n samples, we find predictions sets for each sample at the level α/n , and compute the set product. Our experiment setup remains the same with 180 samples in the calibration set. We observe a similar inefficiency of Bonferroni prediction as n increases. Besides, as explained, the approximate bound can be loose for smaller n . In particular, for noisier datasets, the bound takes longer to be non-vacuous. Another discrepancy between the bound and the experiment is that the bound assumed full knowledge of the conditional distribution $\mathbb{P}(Y|X)$. However, in our experiments, we only have access to the samples. This is expected to incur an additional gap with the bound. Nonetheless, these experiments still provide a better bound than $H(Y|X)$ as reported in (Correia et al., 2024), and highlight the room for improvement in the transductive methods.

Numerical Simulation of Confidence Gutman's test. We conduct experiments using the same setup as Zhou et al. (2020). We have chosen the binary classification task where two classes correspond to Bernoulli distributed sequences with parameters 0.2 and 0.6. We have selected the ratio of training to test samples as 0.2, namely $N = 0.2n$. The number of test samples are chosen as $\{100, 200, \dots, 1000\}$. We selected the confidence level 0.01. The experiments are averaged over 10^6 runs. The results can be seen in Figure 6 where we plotted the average prediction set size and the error probability as a function of the dataset size. As predicted by the theory, the proposed test quickly converges to the average prediction set size of one, while the error probability lies below the prescribed confidence level 0.01, and will go down as well with n .