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Abstract
While multilingual training is now an essen-001
tial ingredient in machine translation (MT) sys-002
tems, recent work has demonstrated that it has003
different effects in different multilingual set-004
tings, such as many-to-one, one-to-many, and005
many-to-many learning. These training set-006
tings expose the encoder and the decoder in a007
machine translation model with different data008
distributions. In this paper, we examine how009
different varieties of multilingual training con-010
tribute to learning these two components of the011
MT model. Specifically, we compare bilingual012
models with encoders and/or decoders initial-013
ized by multilingual training. We show that014
multilingual training is beneficial to encoders015
in general, while it only benefits decoders for016
low-resource languages (LRLs). We further017
find the important attention heads for each lan-018
guage pair and compare their correlations dur-019
ing inference. Our analysis sheds light on how020
multilingual translation models work and also021
enables us to propose methods to improve per-022
formance by training with highly related lan-023
guages. Our many-to-one models for high-024
resource languages and one-to-many models025
for LRL outperform the best results reported026
by Aharoni et al. (2019).1027

1 Introduction028

Multilingual training regimens (Dong et al., 2015;029

Firat et al., 2016; Ha et al., 2016) are now a key ele-030

ment of natural language processing, especially for031

low-resource languages (LRLs) (Neubig and Hu,032

2018; Aharoni et al., 2019). These algorithms are033

presumed to be helpful because they leverage syn-034

tactic or semantic similarities between languages,035

and transfer processing abilities across language036

boundaries.037

In general, English is used as a central language038

due to its data availability, and three different multi-039

lingual training settings are considered: (1) one-to-040

many: training a model with languages pairs from041

1We will release our scripts once accepted.

English to many other languages. (2) many-to-one: 042

training a model with languages pairs from many 043

languages to English (3) many-to-many: training 044

a model with the union of the above two settings’ 045

data. (1) and (3) can be used for English to other 046

(En-X) translation, while (2) and (3) can be used 047

for other to English (X-En) translation. 048

However, multilingual training has not proven 049

equally helpful in every setting. Arivazhagan et al. 050

(2019) showed that many-to-one training improves 051

performance over bilingual baselines more than 052

one-to-many does. In this paper we consider this re- 053

sult from the point of view of the components of the 054

MT model. In the many-to-one setting, inputs of 055

the model are from different language distributions 056

so the encoder can be considered a multi-domain 057

model, whereas the decoder is trained on a single 058

distribution. In the one-to-many setting, it is the 059

opposite: the encoder shares data, and the decoder 060

is multi-domain. While there are recent studies ana- 061

lyzing multilingual translation models (Kudugunta 062

et al., 2019; Voita et al., 2019a; Aji et al., 2020; 063

Mueller et al., 2020), in general they do not (1) ex- 064

amine the impact of different multilingual training 065

settings such as one-to-many and many-to-one, and 066

(2) they do not examine the different components 067

such as encoder and the decoder separately. 068

This motivates us to ask “how do various types 069

of multilingual training interact with learning of 070

the encoder and decoder?” To answer this ques- 071

tion, we set up controlled experiments that decou- 072

ple the contribution to the encoder and the decoder 073

in various training settings. We first train multilin- 074

gual models using many-to-one, one-to-many, or 075

many-to-many training paradigms. We then com- 076

pare training bilingual models with and without 077

initializing the encoder or the decoder with param- 078

eters learnt by multilingual training. We find that, 079

for LRLs, multilingual training is beneficial to both 080

the encoder and the decoder. However, surprisingly, 081

for high-resource languages (HRL), we found mul- 082
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Lang. az be gl sk ar de he it

Size (K) 6 5 10 61 214 168 212 205

Table 1: Training data size.

tilingual training only beneficial to encoder but not083

to the decoder.084

To further analyze the result, we examine "to085

what degree are the learnt parameters shared086

across languages?". We use the head importance087

estimation method proposed by Michel et al. (2019)088

as a tool to identify the important attention heads089

in the model, and measure the consistency between090

the heads sets that are important for different lan-091

guage pairs. The results suggest that the encoder092

does share parameters across different languages093

in all settings. On the other hand, the decoder094

can treat the representation from the encoder in a095

language-agnostic way for X-En translation, and096

less parameter sharing is observed for En-X trans-097

lation. Our analyses on parameter sharing also098

provides a possible explanation of Kudugunta et al.099

(2019)’s observation that the representation from100

the encoder is target-language-dependent .101

Our investigation of how multilingual training102

works leads us to a method for improving MT mod-103

els. With the comprehensive experiments in mul-104

tilingual settings, for translation in HRL (Ar-En,105

De-En, He-En, It-En), we discover that fine-tuning106

multilingual model with target bilingual data out-107

performs the best results in Aharoni et al. (2019)108

by 2.99 to 4.63 BLEU score . With the analy-109

sis on the parameter sharing in the decoder, we110

are able to identify related languages. Fine-tuning111

jointly with the identified related languages boosts112

low-resource translation (En-Az, En-Be, En-Go,113

En-Sk) over the best results in Aharoni et al. (2019)114

by 1.66 to 4.44 BLEU score. Compared to Neubig115

and Hu (2018), our method does not require lin-116

guist knowledge, and thus may be more useful for117

less-studied low-resource languages.118

In sum, our contributions are in three-fold. First,119

our experiments can be used as a diagnostic tool120

for multilingual translation to investigate how an121

encoder and a decoder benefit from multilingual122

training. Second, our results provide insights into123

how multilingual translation works. Third, we im-124

prove the translation models based on the findings125

from our analysis, showing a promising path for fu-126

ture research on multilingual machine translation.127

2 Experimental Settings for Multilingual 128

Training 129

Before stepping into our analysis, we first explain 130

our experimental setup. Following the setting in 131

Aharoni et al. (2019) and Neubig and Hu (2018), 132

we use the publicly available TED Talks Dataset 133

(Qi et al., 2018) is used to train all our machine 134

translation models. Following Neubig and Hu 135

(2018), we break words into subwords with BPE 136

jointly learnt over all source languages using the 137

sentencepiece toolkit. The vocabulary size is 138

32000. We perform experiments with the Trans- 139

former architecture (Vaswani et al., 2017) using the 140

hyper parameters same as in (Arivazhagan et al., 141

2019) 2. All models are implemented and trained 142

using Fairseq 0.10.0 (Ott et al., 2019). We trained 143

multilingual translation models with 60 different 144

languages on the TED Talks Dataset with the three 145

settings described in Section 1: one-to-many, many- 146

to-one and many-to-many. For one-to-many and 147

many-to-many settings, we add a special language 148

token to the input of the encoder to indicate the tar- 149

get language. Following Aharoni et al. (2019), we 150

evaluate our models with BLEU score (Papineni 151

et al., 2002; Post, 2018) on the selected 8 languages. 152

They are representative for different language fam- 153

ilies (Qi et al., 2018). The size of the training is 154

shown in Table 1. 155

3 How Multilingual Training Benefits 156

Each Component 157

Previous studies have shown that the multilingual 158

training results are generally stronger than the bilin- 159

gual training (Arivazhagan et al., 2019). To under- 160

stand how multilingual training benefits NMT, we 161

analyze the effect of multilingual training on dif- 162

ferent components of an NMT model, specifically, 163

the encoder and decoder. 164

3.1 Experiments Design 165

To study how multilingual training benefits each 166

component, we train models on bilingual data with 167

components initialized differently as follows: 168

• Bilingual Only: Models trained from scratch 169

with no components initialized with parame- 170

ters learnt from multilingual training. 171

26 layers in both the encoder and the decoder, 8 atten-
tion head, state dimension=512, ffn dimension=2048, label
smoothing=0.1
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Model → en

az be gl sk ar de he it

All-All (Aharoni et al., 2019) 12.8 21.7 30.7 29.5 28.3 33.0 33.2 35.1

All-En 9.1 15.2 27.4 25.4 23.9 28.3 27.9 31.5
All-All 8.1 12.6 22.8 24.6 21.7 27.1 26.1 31.1

Bilingual Only 2.1 1.4 2.8 18.5 28.5 32.0 34.8 35.7

All-En

Load Enc. 2.8 1.8 5.9 18.1 30.6 35.5 36.9 35.7
Load Dec. 2.5 1.8 5.7 17.8 27.2 30.3 33.2 35.7

Freeze Enc. 5.0 6.0 19.3 26.3 28.4 33.0 33.6 36.4
Freeze Dec. 3.4 4.1 16.9 24.7 28.1 31.4 33.4 33.6
Load Both 11.5 19.0 29.9 28.00 30.4 33.1 36.2 36.7

All-All

Load Enc. 5.4 7.0 20.6 28.0 30.9 35.7 37.1 38.1
Load Dec. 1.4 0.5 0.9 20.4 28.9 32.2 34.0 35.3

Freeze Enc. 3.3 5.0 9.3 23.8 25.9 32.4 32.2 34.2
Freeze Dec. 2.0 6.2 20.1 26.9 30.1 34.4 35.9 36.8
Load Both 11.3 19.4 31.8 29.6 31.3 36.0 37.8 38.7

Table 2: Results of translating to English. All in the model name refers to using all 59 languages.

• Load encoder/decoder: Models with train-172

able parameters of either encoder or decoder173

initialized with parameters learnt from multi-174

lingual training.175

• Load both: Models with parameters of both176

encoder and decoder initialized with param-177

eters learnt from multilingual training. This178

can be seen as fine-tuning the multilingual179

model on bilingual data.180

The motivation for this paradigm is that if mul-181

tilingual training is beneficial to a component,182

then initializing the parameters of that component183

should result in improvements over random ini-184

tialization and training on only bilingual data. If185

load encoder outperforms bilingual only, then we186

can say that multilingual training is beneficial for187

the encoder, and if load decoder outperforms we188

can make the analogous conclusion for the decoder.189

Thus comparing these models reveals how each190

component benefit from multilingual training.191

We also consider a load and freeze setting192

(Thompson et al., 2018), where we initialize a com-193

ponent from a multilingual model and freeze its194

weights when fine-tuning on bilingual data. For195

example, in the load decoder setting, we train the196

loaded decoder with a randomly initialized encoder.197

We suspect that learning with randomly initialized198

component might ruin the other component which199

is well-trained with multilingual data, especially in200

the beginning of the training. Thus, we addition-201

ally experiment with this load and freeze setting to202

ensure the multilingual-trained component is not203

deteriorated.204

3.2 Results and Discussion 205

The overall results of X-En and En-X are shown in 206

Table 2 and Table 3, respectively. The difference 207

between the numbers reported in Aharoni et al. 208

(2019) and ours is due to the different batch size 209

and learning rate schedule we use. In the following 210

section we will discuss the results of our study. 211

Because they are highly dependent on the training 212

data size (Table 1), we discuss the results in two 213

groups: HRL (HRL; referring to ar, de, he, and it) 214

and LRL (LRL; referring to az, be, gl, sk).3 215

3.2.1 Low-Resource Language Results 216

For LRLs, we find that multilingual training is 217

generally beneficial to both the encoders and the 218

decoders in all of the three multilingual models. 219

Both load encoder and load and freeze decoder can 220

achieve performance better than the bilingual base- 221

line. This suggests that the parameters in the en- 222

coder and the decoder learnt by multilingual train- 223

ing do contain information that is not effectively 224

learnt from the smaller bilingual data. 225

The results also suggest that multilingual train- 226

ing is more beneficial for the encoders than for the 227

decoders. In all cases, either load encoder or freeze 228

encoder outperforms both load decoder and load 229

and freeze decoder. However, multilingual training 230

of the encoder and the decoder are complementary; 231

loading both the encoder and the decoder can usu- 232

ally improve the performance over loading only 233

one component. 234

3sk has intermediate size, and its behavior is not always
consistent with the other LRL.
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Model en →

az be gl sk ar de he it

All-En (Aharoni et al., 2019) 5.1 10.7 26.6 24.5 16.7 30.5 27.6 35.9

En-All 4.9 9.0 24.2 21.9 15.1 27.9 24.1 33.3
All-All 3.1 6.2 20.5 18.4 12.7 24.5 21.1 30.5

Bilingual Baseline 1.3 1.9 3.9 13.1 15.6 27.1 25.4 32.0

En-All

Load Enc. 3.0 5.6 16.7 21.7 17.2 30.0 27.5 34.6
Load Dec. 1.3 2.0 8.1 17.4 16.0 26.7 25.8 32.6

Freeze Enc. 2.7 4.6 14.7 21.1 9.7 24.4 22.6 33.4
Freeze Dec. 1.9 3.7 14.5 17.6 16.2 28.0 25.9 33.3

Load All 6.4 14.7 26.9 23.5 17.1 31.1 28.2 34.9

All-All

Load Enc. 2.4 5.0 16.9 21.4 16.9 29.8 27.4 34.4
Load Dec. 1.1 2.2 7.0 17.5 16.0 28.1 25.6 32.5

Freeze Enc. 2.1 0.5 12.6 19.4 10.2 24.4 24.3 33.1
Freeze Dec. 0.9 4.7 15.0 18.8 15.1 27.5 24.9 32.4

Load All 6.1 13.0 26.4 23.2 17.0 30.3 27.9 34.6

Table 3: Results of translating from English. All in the model name refers to using all 59 languages.

3.2.2 High-Resource Language Results235

On HRLs, we find that multilingual training is gen-236

erally beneficial to the encoders in all of the three237

multilingual models, while it is not beneficial for238

the decoders in some settings. Load encoder al-239

ways outperform the baseline models, but for the240

All-En model on X-En translation, and the All-All241

model on En-X translation, neither load decoder242

nor load and freeze decoder outperform the base-243

line model.244

We also observe that multilingual training is gen-245

erally more beneficial to the encoders than to the246

decoders. In all of the cases, load encoder can247

achieve performance competitive to load both (bet-248

ter or less by within 1 BLEU score). However, in249

all of the cases, both load decoder and load and250

freeze decoder have performance worse than load251

both. Therefore, multilingual training is not as252

beneficial to the decoders as to the encoders.253

3.3 Discussion254

For LRL, because the size of bilingual training255

data is small, it is not surprising that multilingual256

training is beneficial for both the encoder and the257

decoder. However, our results are somewhat more258

surprising for HRL — it is not trivial that multi-259

lingual training is not as beneficial. In the next260

section, we focus on explaining the phenomena261

observed on HRL by investigating how parameters262

are shared across languages.263

4 How Multilingual Parameters are 264

Shared in Each Component 265

Given the previous results, we are interested in 266

exactly how parameters are shared among differ- 267

ent language pairs. Given that we are using the 268

Transformer architecture, for which multi-head at- 269

tention is a fundamental component, we use the 270

attention heads as a proxy to analyze how multi- 271

lingual models work differently when translating 272

between different languages. Specifically, we ana- 273

lyze our models by identifying the attention heads 274

that are important when translating a language pair. 275

Measuring the consistency between the sets of im- 276

portant attention heads for two language pairs gives 277

us hints on the extent of parameter sharing. 278

4.1 Head Importance Estimation 279

First, we provide some background on head impor- 280

tance estimation, specifically the method proposed 281

by Michel et al. (2019). 282

Given a set of multi-head attention modules, 283

each of which can be written as 284

MHAtt(x) =
Nh∑
h=1

ξhAtt
W

(h)
q ,W

(h)
k ,W

(h)
v

(x), (1) 285

where Nh is the number of attention heads, and 286

ξh = 1 for all h. 287

The importance of a head can be estimated as 288

Ĩh = Ex∼X

∣∣∣∣∂L(x)∂ξh

∣∣∣∣ . (2) 289

given a loss function L and input X . Then, the im- 290

portance score of each head in an attention module 291
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is normalized292

Ih =
Ĩh√∑Nh
i I2h

. (3)293

Note that when the input X is different, the esti-294

mated importance score can be different. Therefore,295

when different language pairs are fed in, the impor-296

tant heads identified can be different. We denote297

the set of attention head scores estimated on trans-298

lation from language la to language lb as H(la, lb).299

We denote the scores of attention heads in a com-300

ponent by using superscript. For example, Henc301

represents the scores of the heads in a encoder.302

4.2 Measuring Parameter Sharing by303

Correlation of Head Scores304

With the attention head importance scores esti-305

mated by Equation 3, we can investigate how pa-306

rameters are shared across languages. For each307

of the En-All, All-En, All-All multilingual mod-308

els, we estimated a set of head-importance scores309

H(la, lb) for each language pair (la, lb) in the train-310

ing setting. We calculate the head scores with the311

training loss function (MLE with label smoothing)312

and 100K randomly sampled sentences in the train-313

ing set.314

To investigate how much parameters are shared315

by two pairs of languages (la, lb) and (lc, ld),316

we measure the agreement between H(la, lb) and317

H(lc, ld). If a head is important for both of (la, lb)318

and (lc, ld), then important parameters for translat-319

ing are shared. Thus high agreement suggests high320

parameter sharing.321

To quantify the agreement between two score322

sets, we use Spearman’s rank correlation (Spear-323

man, 1987). A rank-based correlation metric is324

used because the importance estimation was origi-325

nally proposed to order attention heads in a model.326

Higher correlation implies higher agreement and327

thus implies higher parameter sharing. For each328

of the En-All, All-En, All-All models, we calcu-329

late the correlation between H(la, lb) and H(lc, ld)330

for all language pairs (la, lb) and (lc, ld) that are331

used to train the model. The detailed correlation332

computation process can be found in Appendix A.333

We plot the correlation matrices of the head scores334

(included in appendix) and summarize them in Ta-335

ble 10. We also compare the top-10 most important336

heads for every language pairs with F1 scores, and337

observe similar results. We include the statistics in338

appendix.339

Model Lang. Pair Henc Hdec

All-En X-En .871 (.086) .973 (.023)
En-All En-X .806 (.153) .720 (.150)
All-All X-En .898 (.073) .967 (.029)
All-All En-X .813 (.126) .762 (.141)

Table 4: Correlation between the attention head scores
when estimated using different language pairs.

4.3 How Multilingual Translation Models 340

Share 341

Results in Table 10 combined with Section 3 pro- 342

vides the insights into how multilingual translation 343

models work with respect to cross-lingual sharing: 344

Encoder for En-X: It is natural that the encoder 345

from En-X likely benefit from multilingual train- 346

ing because it can generate representations tailored 347

for different target languages with shared param- 348

eters. En-X is a set of language pairs where the 349

source language is always English. Therefore, if 350

the prepended target language token is ignored, the 351

inputs of the encoders for all pairs in En-X are 352

from one identical distribution. This is in contrast 353

to X-En pairs, where the inputs are in different lan- 354

guages. However, for the encoders, we observe 355

from Table 10 that the average correlation scores 356

of En-X pairs (0.806 and 0.813), are lower than the 357

correlation scores of X-En pairs (0.871 and 0.898). 358

Kudugunta et al. discovers that the representation 359

of the encoder is target-language-dependent. Thus 360

we conjecture that some parameters may be used to 361

generate representation tailored for the target lan- 362

guages. At the same time, since the inputs are from 363

a single distribution (English) for different target 364

languages, a large portion of parameters may still 365

be shareable across target languages. Therefore, in 366

this case, multilingual training is beneficial. 367

Encoder for X-En: For X-En language pairs, the 368

input of the encoder is multilingual, which means 369

the input from different X-En language pairs has 370

distinct distribution. However, the correlation be- 371

tween different source languages is still high. It 372

shows that high parameters sharing in the encoder 373

is possible. 374

Decoder for En-X: The decoders for En-X have 375

the lowest correlation. From the correlation matrix, 376

we do see some parameter sharing between some 377

language pairs. However, larger model capacity 378

might be required for a model to be proficient in 379
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all the languages.380

Decoder for X-En: The decoder have average381

correlation as high as 0.973 and 0.967 for All-En382

and All-All models respectively. This suggests that383

to decode intermediate representation encoded by384

the encoder, the decoder use almost the same set385

of parameters. However, Kudugunta et al. shows386

that the representation encoded by the encoder is387

not language-agnostic. A possible explanation is388

that the important parameters of the decoder are389

highly determined by the target output, which is390

always in English. Therefore, even though the391

encoder representation is not language-agnostic, it392

is still difficult to learn parameters reflecting the393

difference. It suggests why multilingual training394

does not benefit the decoder in the X-En setting.395

The set of English sentences is almost the same396

for all the HRL pairs in the TED Talks dataset,397

so multilingual training can hardly provide more398

unique English sentences than bilingual training399

does. If the decoder is dedicated for generation,400

multilingual training cannot expose the decoder to401

more diverse data. Therefore the multilingually402

trained decoder does not perform better than the403

bilingual one.404

5 Improving Translation Based on the405

Degree of Parameter Sharing406

Insights from the previous section provide us with407

a new way to choose languages for multilingual408

training. In previous work (Lin et al., 2019; On-409

cevay et al., 2020), choosing on languages with410

similar linguistic properties is a popular practice.411

However, Mueller et al. (2020) found the effect412

is highly language-dependent. Sometimes train-413

ing with similar languages might be worse than414

training on a set of unrelated languages. Here we415

otherwise propose an entirely model-driven way416

to find related languages to improve multilingual417

translation models. We explore choosing languages418

where parameters can be better shared.419

5.1 Improving X-En by Related En-X Pairs420

In the All-All model, we notice low parameter shar-421

ing between En-X and X-En pairs. The average cor-422

relation between Henc(En,X) and Henc(X,En)423

is 0.44 (std: 0.17). The average correlation between424

Hdec(En,X) andHdec(X,En) is 0.49 (std: 0.13).425

It provides a possible explanation why training with426

both the En-X and the X-En pairs only brings little427

improvement over training with only En-X alone 428

or with X-En alone. 429

The low correlation combined with results in 430

Section 3 motivate us to experiment on improv- 431

ing X-En with related En-X pairs. Section 3 432

shows that the multilingual decoder has less ad- 433

vantage than the encoder. This may suggest the 434

inefficiency of parameter sharing in the decoder. 435

Therefore we experiment on choosing a set of re- 436

lated languages based on the degree of parame- 437

ter in the decoder. We choose the language set 438

L such that for all l ∈ L, the average correla- 439

tion 1
60

∑60
li=1Corr(H

dec(En, l), Hdec(li, En)) is 440

higher than 0.60. 441

Results are shown in Table 5. Even though fine- 442

tuning on related languages improves the overall 443

performance, it is not better than fine-tuning on the 444

All-En pairs only. Also, the average correlation 445

between Hdec(En, la) and Hdec(lb, En) is not im- 446

proved. Our experiment demonstrates the difficulty 447

of sharing parameters between All-En pairs and En- 448

All pairs. We leave this problem for future work. 449

5.2 Improving En-X by Language Clusters 450

The low correlation between attention head scores 451

of language pairs motivates us to improve the per- 452

formance of En-X using related language pairs. As 453

shown in Table 10, the decoders have the lowest 454

correlation scores. We conjecture that it is due to 455

the difficulty of sharing parameters between dis- 456

tant languages. Thus, we seek for finding related 457

language sets, in each of which parameters can be 458

shared. 459

Again, we resort to the attention head importance 460

scores to find the related languages. Our intuition 461

is that related languages would share many parame- 462

ters in between and training a model on related lan- 463

guages would be helpful. As a sanity check of our 464

idea, we first use t-SNE (Maaten and Hinton, 2008) 465

to reduce the dimension of head-importance scores 466

H(la, lb). We only focus on heads in the decoders, 467

because the correlation score between H(En,lc) and 468

H(En,ld) is lower in average for the decoders. The 469

result visualized in Figure 1 illustrates that, the 470

distance between H(En,lc) and H(En,ld) tend to be 471

shorter if languages lc and ld are linguistically re- 472

lated. Hence, determining related languages with 473

head score H(En,l) should be reasonable. 474

We then fine-tune multilingual models on related 475

language clusters. Related languages clusters are 476

determined by k-mean++ (Arthur and Vassilvitskii, 477
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Model az be gl sk ar de he it

All-All 8.1 12.6 22.8 24.6 21.7 27.1 26.1 31.1
+ f.t. on All-En 10.5 17.5 29.7 28.1 25.9 31.3 30.5 34.0
+ f.t. on All-En & related 10.5 17.4 28.3 27.0 25.1 30.0 29.9 32.7

Table 5: Performance of All-All model fine-tuned on All-En pairs and fine-tuned on the union of All-En pairs and
related En-All languages.

Model az be gl sk ar de he it

En-All (Aharoni et al., 2019) 5.1 10.7 26.6 24.5 16.7 30.5 27.6 35.9

Bilingual Baseline 1.3 1.9 3.9 13.1 15.6 27.1 25.4 32.0
All-All 3.1 6.2 20.5 18.4 12.7 24.5 21.1 30.5
All-All w/ f.t. on related clusters 7.9 12.8 27.5 24.9 - 30.2 27.0 35.4
All-All w/ f.t. on random groups 6.9 13.3 22.5 24.3 - - 27.5 35.2
En-All 4.9 9.00 24.2 21.9 15.1 27.9 24.1 33.3
En-All w/ f.t. on related clusters 7.9 13.9 21.0 26.2 16.7 30.4 27.1 35.4
En-All w/ f.t. on random groups 7.0 13.1 23.1 24.7 - - 27.6 35.2
Load En-All w/ f.t. on closest 7.8 15.2 28.6

Table 6: Performance of En-All model without and with fine-tuning on language clusters.

2007) with k = 5. We consider clusters that cover478

all of the four low-resource languages. For the All-479

All model, one of the cluster we consider contains480

Be, Gl, De, He, It, and the other one contains Az.481

For the En-All model, we also experiment with482

two clusters. One includes Ar, De, He, It, and483

the other includes Az, Be, Gl, Sk. As a baseline,484

we also experiment with random groups. They485

are groups generated by randomly splitting the 59486

target languages.487

The results are shown in Table 6. For both the488

En-All and the All-All model, except En-Gl, fine-489

tuning on clusters can improve performance on all490

the considered language pairs consistently. For491

LRLs, fine-tuning on related language clusters is492

also better than fine-tuning on random groups in493

general. To verify whether this improvement is494

brought by increased parameter sharing in the de-495

coders, we check the correlation between Hdec af-496

ter fine-tuning. The results shown in Table 7 shows497

improvements after fine-tuning on the clusters.498

For low-resource language pairs En-Az, En-Be,499

En-Sk on the En-All model, we notice that only few500

languages are highly correlated with them (with501

correlation > 0.80). Therefore, we also experiment502

with fine-tuning the En-All model with only the lan-503

guage pairs with high correlation scores (> 0.80)504

for each of the three pairs , which boosts the per-505

formance of En-Be to 15.2 and En-Sk to 28.6.506
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Figure 1: Visualization of the En-All decoder head
scores of languages by t-SNE.
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Model Hdec w/o f.t. Hdec w/ f.t.

All-All .762 (.141) .894 (.069)
En-All (HL) .855 (.066) .866 (.065)
En-All (LL) .826 (.096) .834 (.091)

Table 7: Correlation between the decoder attention
head scores when estimated using the language pairs
in the cluster. HL and LL represent the cluster that in-
cludes HRL and the one that includes LRL respectively.

6 Related Work507

The early attempts of multilingual training for ma-508

chine translation use a single model to translate509

between multiple languages (Dong et al., 2015; Fi-510

rat et al., 2016; Ha et al., 2016). Those works find511

multilingual NMT models are appealing because512

they not only give us a simple paradigm to han-513

dle mapping between multiple languages, but also514

improve performance on low and zero-resource515

languages pairs (Gu et al., 2018). However, how516

multilingual training contributes to components in517

the translation model still remains unknown.518

There are some attempts at analyzing and ex-519

plaining the translation models. Thompson et al.520

(2018) analyze the contribution of different com-521

ponents of NMT model to domain adaptation by522

freezing the weights of components during contin-523

ued training. Arivazhagan et al. (2019) provide an524

comprehensive study on the state-of-the-art multi-525

lingual NMT model in different training and testing526

scenarios. Sachan and Neubig (2018) experiment527

with different parameter sharing strategies in Trans-528

former models, showing that sharing parameters529

of embedding, key and query performs well for530

one-to-many settings. Artetxe et al. (2020) shows531

the strong transferability of monolingual represen-532

tation to different languages. The intermediate rep-533

resentation of BERT can be language-agnostic if534

we freeze the embeddings during training. The de-535

ficiency of the one-to-many setting is explored in536

(Johnson et al., 2017). They find only the many-to-537

one setting consistently improves the performance538

across languages. Wang et al. (2018) also explore539

problems of the one-to-many setting, and show540

language-specific components are effective to im-541

prove the performance. Voita et al. (2019a) an-542

alyzes how generated sentences of NMT models543

are influenced by context in the encoder and de-544

coder. The attempt to investigate encoder and de-545

coder separately is similar to our work. Rothe et al.546

(2020) explores how pretrained checkpoints can 547

benefit the encoder and the decoder in a translation 548

model. Zhang et al. (2021) investigate the trade-off 549

between language-specific and shared capacity of 550

layers in a multilingual NMT model. 551

Multi-head attention has been shown effective 552

in different NLP tasks. Beyond improving perfor- 553

mance, multi-head attention can help with subject- 554

verb agreement (Tang et al., 2018), and some heads 555

are predictive of dependency structures (Raganato 556

and Tiedemann, 2018). Htut et al. (2019) and Clark 557

et al. (2019) report that heads in BERT attend sig- 558

nificantly more to words in certain syntactic po- 559

sition. They show some heads seem to special- 560

ize in certain types of syntactic relations. Michel 561

et al. (2019), Voita et al. (2019b), and Behnke and 562

Heafield (2020) study the importance of different 563

attention heads in NMT models, and suggest that 564

we can prune those attention heads which are less 565

important. Brix et al. (2020) also shows pruning 566

NMT models can improve the sparsity level to op- 567

timize the memory usage and inference speed. 568

However, all previous works do not directly in- 569

vestigate how encoder and decoder of NMT models 570

benefit from multilingual training, which is the key 571

question of why multilingual training works. To 572

our best knowledge, we are the first to tackle the 573

question, and our analysis can be used to further 574

improve multilingual NMT models. 575

7 Conclusion 576

In this work, we have the following findings: 1) In 577

Section 3, we examine how multilingual training 578

contributes to each of the components in a machine 579

translation model. We discover that, while mul- 580

tilingual training is beneficial to the encoders, it 581

is less beneficial to the decoders. 2) In Section 4, 582

our analysis of important attention heads provides 583

insight into the behavior of multilingual compo- 584

nents. Results suggest that the encoder in the En- 585

All model may generate target-language-specific 586

representation, while the behavior of the decoder of 587

the All-En model may be source-language-agnostic. 588

In addition, in the All-All model, we observe indi- 589

cations of lower parameter sharing between X-En 590

pairs and En-X pairs. 3) In Section 5, we explore 591

approaches to improve the model based on our find- 592

ings. On En-X translation, we outperform the best 593

results in (Aharoni et al., 2019). With our proposed 594

analysis as diagnostic tools, future work may fur- 595

ther improve the multilingual systems. 596
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Code Name Code Name

ar Arabic ku Kurdish
az Azerbaijani lt Lithuanian
be Belarusian mk Macedonian
bg Bulgarian mn Mongolian
bn Bengali mr Marathi
bs Bosnian ms Malay
cs Czech my Burmese
da Danish nb Norwegian Bokmål
de German nl Dutch
el Greek pl Polish
eo Esperanto pt Portuguese
es Spanish pt-br Portuguese
et Estonian ro Romanian
eu Basque ru Russian
fa Persian sk Slovak
fi Finnish sl Slovenian
fr French sq Albanian
fr-ca French sr Serbian
gl Galician sv Swedish
he Hebrew ta Tamil
hi Hindi th Thai
hr Croatian tr Turkish
hu Hungarian uk Ukrainian
hy Armenian ur Urdu
id Indonesian vi Vietnamese
it Italian zh Chinese
ja Japanese zh-cn Chinese
ka Georgian zh-tw Chinese

Table 8: Languages in the Ted Talk Dataset

A Correlation of Head Scores827

Here we detail the computation of the correlation828

of head scores for two pairs of languages (la, lb)829

and (lc, ld). The steps are as follow:830

1. The the two language pairs’ head importance831

scores H(la, lb) and H(lc, ld) are estimated832

with Equation 3. Since there are many heads833

in a Transformer model, both H(la, lb) and834

H(lc, ld) are vectors.835

2. We flatten the scores inH(la, lb) andH(lc, ld)836

into two arrays of scalars. We treat the two837

arrays as the observations of two variables.838

Then we use Spearman correlation to com-839

pute the correlation between the two variables.840

In other words, the input of the Spearman cor-841

relation function is the two arrays.842

B Related Related Language Pairs 843

The related language pairs used in Section 5 are: 844

en-zh_cn en-it en-es en-vi en-zh_tw en-nl en-fr 845

en-fr_ca en-th en-pt_br en-ru. 846

C Language Clusters 847

En-All model: 848

• en-ja en-ko en-zh en-zh-cn en-zh-tw 849

• en-az en-be en-bs en-cs en-da en-eo en-et en- 850

eu en-fi en-gl en-hr en-hu en-lt en-mk en-nb 851

en-pl en-sk en-sl en-sq en-sr en-sv en-tr en-uk 852

• en-bn en-hi en-hy en-ka en-ku en-mr en-my 853

en-ta en-th en-ur 854

• en-ar en-bg en-de en-el en-es en-fa en-fr en-fr- 855

ca en-he en-id en-it en-ms en-nl en-pt en-pt-br 856

en-ro en-ru en-vi 857

• en-kk en-mn 858

All-All: 859

• en-be, en-bg, en-bs, en-cs, en-de, en-el, en-es, 860

en-fr, en-fr-ca, en-gl, en-he, en-hr, en-it, en- 861

lt, en-mk, en-pl, en-pt, en-pt-br, en-ro, en-ru, 862

en-sk, en-sl, en-sq, en-sr, en-uk 863

• en-ar, en-fa, en-ja, en-ko, en-th, en-vi, en-zh, 864

en-zh-cn, en-zh-tw 865

• en-bn, en-hi, en-hy, en-ka, en-ku, en-mr, en- 866

my, en-ur 867

• en-az, en-da, en-eo, en-et, en-fi, en-hu, en-id, 868

en-ms, en-nb, en-nl, en-sv, en-tr 869

• en-eu, en-kk, en-mn, en-ta 870

D Random Clusters 871

• en-pt en-fa en-fr en-kk en-hi en-da en-hu en- 872

de en-nl en-ar en-hy en-zh-cn 873

• en-sr en-fi en-be en-ko en-ru en-ur en-it en-id 874

en-el en-eu en-sq en-zh en-bs en-bn en-sv en- 875

bg en-my en-ro en-ta en-sl en-et en-ku en-mn 876

en-uk en-he en-tr 877

• en-mk en-mr 878

• en-ms en-pl en-pt-br en-cs en-zh-tw en-es 879

• en-vi en-eo en-hr en-nb en-fr-ca en-az en-sk 880

en-ka en-lt en-th en-ja en-gl 881
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Figure 2: Correlation matrix between language pairs. The top-left corner is the correlation between the encoder
head scores Henc, while the bottom-right corner is the correlation between the decoder head scores Hdec. The
top matrix is the correlation matrix of the All-All model, while the bottom-left and the bottom-right ones are the
correlation matrices of the All-En and the En-All models respectively.

Figure 3: Correlation matrix between language pairs after fine-tuning on related languages. The top-left corner is
the correlation between the encoder head scoresHenc, while the bottom-right corner is the correlation between the
decoder head scores Hdec.
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Model Lang. Pair Henc Hdec Hcross Hself

All-En X-En .871 (.086) .973 (.023) .978 (.024) .959 (.024)
En-All En-X .806 (.153) .720 (.150) .662 (.204) .771 (.115)
All-All X-En .898 (.073) .967 (.029) .980 (.018) .948 (.046)
All-All En-X .813 (.126) .762 (.141) .677 (.236) .810 (.101)

Table 9: Correlation between the attention head scores when estimated using different language pairs. Hcross is
the scores for heads across the encoder and the decoder, and Hself is the scores for the self-attention head in the
decoder.

Model Lang. Pair Henc Hdec Hcross Hself

All-En X-En .683 (.190) .925 (.064) .886 (.099) .959 (.024)
En-All En-X .839 (.187) .679 (.145) .585 (.207) .771 (.115)
All-All X-En .704 (.169) .803 (.124) .787 (.129) .948 (.046)
All-All En-X .664 (.213) .690 (.160) .545 (.216) .810 (.101)

Table 10: The results of comparing language pairs by comparing their top-10 most important attention heads. Let
S(a,b) and S(c,d) be the top-10 most important heads for language pair (la, lb), and S(c,d) respectively. We calculate
the F1 score between S(a,b) and S(c,d) to measure their similarity. The number in the table is the average F1 scores.

Theses random clusters are generated by (1) shuf-882

fling the 59 languages, (2) randomly selecting po-883

sitions. The results 5 segments separated by the 4884

positions are the 5 clusters.885

E Closest Languages886

The closest languages used in Section ?? are:887

• Az: en-az en-eu en-fi en-tr888

• Be: en-be en-it en-uk889

• Gl: en-gl en-pt en-es en-lt en-it en-pt_br890

F Experimental Details891

• Infrastructure: All the experiments can be con-892

ducted on one single RTX 2080Ti GPU.893

• Evaluation: We report the BLEU score calcu-894

lated by FairSeq.895

• Version of FairSeq: We use v0.10.0896

(https://github.com/pytorch/897

fairseq/tree/v0.10.0)898

• Dataset: It can be downloaded from899

https://github.com/neulab/900

word-embeddings-for-nmt.901
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Figure 4: Correlation matrix between language pairs af-
ter fine-tuning on the languages clusters. The first fig-
ure is the matrix of the fine-tuned All-All model. The
second and the third ones are the matrix of the En-All
model fine-tuned on the language clusters containing
the high-resource and the LRL respectively. The top-
left corner is the correlation between the encoder head
scoresHenc, while the bottom-right corner is the corre-
lation between the decoder head scores Hdec.
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