
RECAL: Sample-Relation Guided Confidence Calibration over
Tabular Data

Haotian Wang1 Zhen Zhang1 Mengting Hu1∗ Qichao Wang2 Liang Chen2

Yatao Bian3 Bingzhe Wu3

1 College of Software, Nankai University
2 School of Computer Science and Engineering, Sun Yat-Sen University, 3 Tencent AI Lab

wanght@mail.nankai.edu.cn, mthu@nankai.edu.cn

Abstract
Tabular-format data is widely adopted in vari-
ous real-world applications. Various machine
learning models have achieved remarkable suc-
cess in both industrial applications and data-
science competitions. Despite these successes,
most current machine learning methods for tab-
ular data lack accurate confidence estimation,
which is needed by some high-risk sensitive
applications such as credit modeling and finan-
cial fraud detection. In this paper, we study
the confidence estimation of machine learning
models applied to tabular data. The key find-
ing of our paper is that a real-world tabular
dataset typically contains implicit sample re-
lations, and this can further help to obtain a
more accurate estimation. To this end, we in-
troduce a general post-training confidence cali-
bration framework named RECAL to calibrate
the predictive confidence of current machine
learning models by employing graph neural net-
works to model the relations between different
samples. We perform extensive experiments
on tabular datasets with both implicit and ex-
plicit graph structures and show that RECAL
can significantly improve the calibration quality
compared to the conventional method without
considering the sample relations.

1 Introduction

Tabular-format data widely exists in various real-
world applications such as healthcare (Avati et al.,
2020), credit modeling (Clements et al., 2020), and
finical fraud detection (Ngai et al., 2011). Various
machine learning models (Huang et al., 2020; Chen
et al., 2019) are proposed for modeling tabular-
format data, ranging from the traditional model
such as GBDT (Friedman, 2001) to advanced deep
models such as Transformer (Vaswani et al., 2017).
These methods have achieved remarkable progress
in both industrial applications (Fu et al., 2019)
and data science competitions (Vanschoren et al.,
2014).
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(a) Conventional calibration (b) RECAL

Figure 1: While conventional calibration methods focus
only on the test sample itself, RECAL focuses on the
relations between different samples.

Despite these progresses, the reliability of cur-
rent models trained on tabular data still remains
largely unexplored. Specifically, the predictive con-
fidence of the model is the key aspect of reliability,
which measures the probability that predictions
will be correct. A high-quality confidence esti-
mator is desired to deploy these ML models to
risk-sensitive scenarios such as finance and health-
care (Amodei et al., 2016). A natural way to con-
struct the predictive confidence is based on the max-
imum value of the output probability vector (Guo
et al., 2017). Unfortunately, current ML models are
prone to output inaccurate predictive distributions,
which further lead low-quality confidence estima-
tion. For example, as prior work shows (Kumar
et al., 2018), Transformer models typically pro-
duce over-confident predictions (Mao et al., 2021).
Besides, even for traditional ML models such as
GBDT and random forests, we also show that there
is room for improvement in their predictive confi-
dence quality.

To provide accurate predictive confidence esti-
mation of ML models, numerous post-hoc calibra-
tion techniques are presented for improving the con-
fidence estimation in the post-training stage with-
out modifying the original training procedure (Platt
et al., 1999; Wang et al., 2021). The core idea of



these techniques is to transform the original predic-
tive probability into the calibrated one with some
learnable transformation parameters. One common
method is temperature scaling (Guo et al., 2017),
which has been widely adopted for calibrating both
deep and traditional ML models (Huang et al.,
2017; Abdar et al., 2021). However, most of these
methods are designed for general settings without
considering the unique properties of tabular-data
format.

This paper aims to improve previous calibration
techniques over tabular-format data by consider-
ing the implicit relations between different sam-
ples. The motivation behind our work is based on
the natural observation that real-world data tables
contain implicit sample relationships, which can
often be reconstructed by mining feature similar-
ities. Figure 1 shows a real-world tabular dataset
used for house price forecasting. In general, the
prices of houses with similar latitude and longitude
are always correlated. In other words, home prices
are more closely related to their location. These
sample relationships can be further used to improve
the model confidence. Based on this observation,
we introduce a general calibration method for ML
models — RECAL, which provides a confidence
calibration model with the ability to aggregate po-
tentially correlated data across the table as clues
for calibration. To integrate the implicit sample re-
lation with the confidence, we build an undirected
graph on top of them, where nodes are the sam-
ples in the table and edges represent the connec-
tions between them. A Graph Neural Network
(GNN) is employed to aggregate logits from differ-
ent samples, calibrating confidence. RECAL learns
a unique temperature t for each sample for scaling,
hence retaining the accuracy of the basic model.
By incorporating these implicit sample relations
into the calibration process, we empirically show
that the quality of estimated confidence has been
consistently improved. Moreover, RECAL demon-
strates remarkable robustness and stability against
data noise and distribution shift. In a summary, the
main contribution of this paper is as follows:

• To the best of our knowledge, we are the first
to explore how to leverage the sample relation
to improve the model confidence calibration
over the tabular dataset.

• For the above problem, we present a GNN-
based calibration framework named RECAL

• We demonstrate the effectiveness of RECAL

on a wide range of ML models and tabular
datasets with both implicit and explicit graph
structures.

2 Related Work

Graph Neural Networks. Graph Neural Net-
works (GNNs) learn latent representations of node
v through graph structure and features of nodes for
tasks such as regression and classification (Kipf and
Welling, 2016). It performs well when node fea-
tures have homophily properties (Wu et al., 2020).
Graph Convolutional Networ (GCN) is an impor-
tant branch of GNN. Referring to CNNs, modern
GCNs are based on the spectrum of graph Lapla-
cian and learn local and global structural patterns
of graphs by designing convolution and readout
functions (Bruna et al., 2014). Current popular
GCN networks typically use a neighborhood aggre-
gation approach, also known as a message-passing
mechanism, in which each node’s representation
is represented by a nonlinear aggregation function
applied to its neighbors representation (Fey and
Lenssen, 2019). A GCN model usually consists
of multiple layers, each representing a nonlinear
message-passing function to aggregate the local
neighborhood of nodes.

Confidence Calibration. Confidence Calibra-
tion has been gaining more and more attention
recently. Given a class prediction Ŷ and a data
set X, the model being perfectly calibrated should
satisfy:

P(Ŷ = Y | P(Ŷ | X) = p) = p,∀p ∈ [0, 1]. (1)

Thus, confidence calibration changes the predic-
tive distribution (also called logits) of the original
model. For the tree-based model, Malinin et al.
(2021) uses Stochastic Gradient Boosting (SGB)
or Stochastic Gradient Langevin Boosting (SGLB)
to generate ensembles of GBDT models. NGBoost
(Duan et al., 2020) is based on natural gradients
and uses the parameters of the conditional distri-
bution as the target for Multi-parameter boosting.
All of the above methods require to retraining the
basic model from scratch. In deep learning, Order-
Preserving Functions (Rahimi et al., 2020) train the
calibration function on the basic models using a
post-hoc method through a held-out dataset. Scal-
ing is the commonly used post-hoc confidence cali-
bration technique. On the binary model, Platt scal-



Figure 2: The process of constructing a graph from a
table. A GBDT model is pre-trained using the valida-
tion set to select the feature with the largest contribution,
and nodes are divided into different sets based on the
selected feature. Edges exist between nodes in the same
set. M indicates that the categorical feature has M dif-
ferent possible values. N indicates the total number of
nodes.

ing (Platt et al., 1999) transforms logits by predict-
ing two scalar parameters. Temperature scaling and
Matrix scaling (Guo et al., 2017) are multiclassifi-
cation extensions of Platt scaling. CaGCN (Wang
et al., 2021) uses neural networks as nonlinear post-
hoc calibration functions. However, how to find
implicit sample relations from the tabular data and
construct a generic calibration model for tabular
data independent of the basic model remains to be
studied.

3 Methodology

In this section, we introduce a post-hoc calibration
method called RECAL to calibrate the model ap-
plied to the tabular data. Assume in a tabular clas-
sification task, we have a basic model M, which
can classify each row into K classes. Yet M is
not well-calibrated, indicating its confidence can-
not accurately reflect its performance. Our pur-
pose is post-calibration, which indicates that the
training data is unavailable at this stage. Only
a small held-out dataset can be used (Guo et al.,
2017). Therefore, we aim to train another calibra-
tion model, i.e. RECAL C, with the held-out dataset
R = {r1, r2, ..., rN}, where N indicates the num-
ber of samples in R. RECAL achieves calibration
for each sample by leveraging the graph structure
built from implicit sample relations.

Specifically, as depicted in Figure 3, RECAL first
pre-trains a feature selection model and constructs

a graph structure implicit in the table based on
the selected feature (§3.1). Then we use GNN as
a non-linear calibration function to characterize
the topology on the graph (§3.2). Finally RECAL

outputs a unique temperature t for each sample and
calibrates samples using a scaling-based approach
(§3.3).

3.1 Sample-Relation Modeling
Tabular datasets are widely used in machine learn-
ing models for training and inference purposes.
They exhibit a highly structured format, where each
column represents a specific feature or variable,
and the values in different rows of the same col-
umn are treated as independent entities. However,
it is important to acknowledge that each column
often carries its own physical significance, and cer-
tain features may have a more intuitive impact on
the predictive outcomes. For instance, in the con-
text of house price forecasting, houses located in
similar geographic regions tend to exhibit similar
prices. Hence, it is hypothesized that implicit rela-
tions exist between samples in the dataset, which
could potentially enhance the confidence and accu-
racy of predictions. Motivated by this, we model
the sample relations in the held-out dataset to build
a graph. The process is depicted in Figure 2.

Pre-train GBDT Specifically, we pre-train a Gra-
dient Boosting Decision Tree (GBDT) model using
the validation set in the dataset. The utilization
of the validation set is motivated by the consider-
ation of post-hoc calibration scenarios (Guo et al.,
2017). In this way, the original training data and
the basic model M remain black boxes during
the calibration process, thus ensuring user privacy
protection. Additionally, the adoption of GBDT
is appropriate due to its rapid convergence, low
training overhead, and its efficacy as an auxiliary
decision-maker. Moreover, GBDT exhibits high in-
terpretability, accurately expressing the importance
of different features (Friedman, 2001).

Graph Construction Based on the good explain-
ability of GBDT, we select the feature that con-
tributes the most significantly to the GBDT results
as the foundation for our graph construction. If
the selected feature is categorical, we establish con-
nections between nodes sharing the same categori-
cal value for that feature. For continuous features,
each sample is connected to the top-k samples that
demonstrate proximity. By incorporating these im-
plicit relations into the model, our objective is to



Figure 3: The overall framework of RECAL. The ranking of classes is unchanged after being calibrated.

enhance the model’s ability to generate more reli-
able predictions for tabular datasets. As depicted
in Figure 2, we now derive G from a table, where
the adjacency matrix is denoted by A ∈ RN×N .

3.2 Nonlinear Calibration Function
To explore the structured knowledge in G, we adopt
Graph Convolutional Network (GCN) to propa-
gate node features along the network topology and
smooth the information between neighboring nodes
through a nonlinear aggregation function (Gian-
nakis et al., 2018). Firstly, the basic model M is
adopted to compute logit for each sample in the
held-out dataset before the softmax layer,

vi = M(ri), (2)

where i ∈ [1, N ] and V = [v1, . . . ,vN] is ob-
tained.

Then, we use Eq.3 to calculate the symmetric
normalized Laplacian matrix:

Lsys = D−1/2LD−1/2 = I - D−1/2AD−1/2, (3)

where D ∈ RN×N is the degree matrix of graph
G, and I is the unit matrix. For a K-classification
task, the logit v′

i and the prediction probability zi
for sample i after calibration can be calculated as:

V′ = LsysV(l)W(l) = [v′
1, . . . ,v

′
N]⊤,

zi = [σSM (v′i,1), . . . , σSM (v′i,K)]⊤,
(4)

where W(l) is the weight matrix of l-th layer in
GCN, σSM (vi,k) =

exp(vi,k)∑K
j=1 exp(vi,j)

is the softmax

operation, and the calibrated confidence is p̂i =
max zi, k ∈ {1, . . . ,K}. v′i,k can be any value
so that p̂i can traverse the interval ( 1

K , 1), and the
model can be calibrated correctly.

In summary, RECAL takes the logits V and the
sample-relation graph G as inputs to calibrate V.
During training, we use the validation set as the
held-out calibration set R. Then, V and G are used
to train the calibration model C. During testing, we
consider the real-time online scenario where the
data to be calibrated comes in a streaming fash-
ion with only a few samples at a time. To ob-
tain more comprehensive graph structure informa-
tion, we aggregate each incoming sample with the
calibration set to construct a new graph structure
Gtest

j ,∀j ∈ 1, . . . ,
∣∣Rtest

∣∣.
3.3 Element-Wise Temperature Scaling
Now, we have a nonlinear calibration function to
characterize the topological relations on the graph.
However, the output of GCN directly as a cali-
brated logit cannot meet the requirement of accu-
racy maintenance. Temperature scaling is currently
the most effective calibration method to maintain
constant prediction accuracy. But, the temperature
scaling performs the same linear transformation for
each input data, which does not express the graph’s
topology. To this end, we propose element-wise
temperature scaling to generate a unique tempera-
ture t for each node in G.

As shown in Figure 3, RECAL first takes the out-
put V and the sample-relation graph G as input and
outputs a temperature vector t, where ti is unique
for vi. Then, we use ti to transform the original
logit vi through scaling methods to obtain the cal-
ibrated logit v′

i. Finally, the calibrated prediction
result p̂i is given by:

t = σ+(LsysV(l)W(l)) = [t1, . . . , tN ]⊤,

v′
i = vi/ti,

p̂i = maxσSM
(
v′
i

)
,

(5)



where σ+(ti) = log(1 + exp(ti)) is known as
element-wise softplus activation, which guarantees
that ti ∈ R is always greater than zero. When
ti → 0, the predicted probability is infinitely close
to 1. When ti → ∞, the probability p̂i has the
greatest uncertainty, and the predicted probability
approaches 1

K . Thus, RECAL can output any value
on ( 1

K , 1), and the basic model M can theoretically
be perfectly calibrated.

RECAL is optimized with negative log-
likelihood (NLL) (Hastie et al., 2009). This
is a common indicator for measuring probabilis-
tic models, minimizing NLL loss benefits uncer-
tainty calibration. Given the one-hot label yi =
[yi,1, . . . , yi,K ]⊤ and the prediction probability zi,
the NLL loss over the calibration set can be calcu-
lated as:

Lnll = −
N∑
i=1

K∑
k=1

yi,k log(zi,k). (6)

Inspired by Wang et al. (2021), we also add a
regularization term

Lcal =
1

n
(

|cor|∑
i=1

1− zcori,m + zcori,s

+

|err|∑
i=1

zerri,m − zerri,s ),

(7)

where |cor| and |err| are the number of samples
correctly and incorrectly predicted and zi,m and zi,s
are the max and submax prediction probability, to
the loss function to explicitly reduce the confidence
level of misclassified samples. The overall loss
function is defined as:

LRECAL = Lnll + λLcal, (8)

where λ is a hyperparameter to balance the effects
of the regularization term.

4 Experiments

4.1 Datasets
To validate the effectiveness of RECAL, we con-
duct experiments on seven datasets with both im-
plicit and explicit graph structures from the real-
world —Bank Marketing (Moro et al., 2014), Qsar-
Biodeg (Huang et al., 2020), Seismic-Bumps (Man-
souri et al., 2013), County (Jia and Benson, 2020),
House_Class (Pace and Barry, 1997), DBLP (Ren
and Liu, 2020) and SLAP (Xiao et al., 2019). The

Dataset Datapoints Features N labels Type

Bank Marketing 45211 16 2 Dense
Qsar-Biodeg 1055 41 2 Dense

Seismic-Bumps 2583 18 2 Dense
County 3217 7 4 Dense

House_Class 20640 6 5 Dense
DBLP 14475 5002 4 Sparse
SLAP 20419 2701 15 Sparse

Table 1: Summary of datasets. It is worth noting that
DBLP and SLAP datasets have an explicitly global
graph structure, respectively. Yet in other datasets, we
need to build graph by implicit relations.

data is split into training, validation, and testing
sets in a ratio of 80%, 10%, and 10%, respectively.
The details of the dataset are outlined in Table 1.
To fully explain the graph construction process on
each dataset, we have provided further instructions
in Appendix A.2.

4.2 Experimental Settings

ECE (Naeini et al., 2015) and Brier Score as
the evaluation metrics and the classical post-hoc
method temperature scaling (TS) (Guo et al., 2017)
as the baseline method. In addition, we compare a
variant of our method, RECAL-MLP, which turns
the GCN into a fully connected neural network.
This is equivalent to a more complex matrix scal-
ing (Guo et al., 2017). Appendix A.1 provides a
more detailed description.

To demonstrate the generalizability of our
method, we chose the classical machine learning
method Logistic Regression (Wright, 1995), GBDT
(Friedman, 2001), and a deep learning model called
TabTransformer (Huang et al., 2020) as the basic
model.

For Logistic Regression, we use scikit-learn’s 1

official interface (Kramer, 2016) and modify the
source code to ensure that the returned prediction
distribution is the value before the softmax layer.
We use the CatBoost (Prokhorenkova et al., 2018)
as an implementation of GBDT. For each decision
tree in CatBoost, we set its depth to 6, the early
stopping rounds is 100, the number of epochs is
1000, ||λ||2 = 0. TabTransformer’s implementa-
tion and parameter selection are consistent with
(Huang et al., 2020). The implementation of tem-
perature scaling is based on the original author’s
implementation (Guo et al., 2017). For our RECAL,
we build a 2-layer GCN with the hidden layer of
dimension 16. We set the learning rate as {0.001,

1https://scikit-learn.org/stable/

https://scikit-learn.org/stable/


Dataset Calibration
Logistic GBDT Tab Transformer

NLL(↓) ECE(↓) BS(↓) NLL(↓) ECE(↓) BS(↓) NLL(↓) ECE(↓) BS(↓)

Bank Marketing

Uncal 0.26032.9 0.02483.4 0.15390.8 0.20822.3 0.01593.7 0.12812.2 0.21191.4 0.01413.1 0.13913.1
TS 0.26024.4 0.02352.7 0.15391.0 0.20713.0 0.01583.1 0.12742.1 0.21051.7 0.00903.3 0.13872.4

RECAL- MLP 0.25912.5 0.02082.4 0.15320.15320.15320.9 0.20644.1 0.01474.3 0.12764.1 0.21022.3 0.00984.2 0.13870.13870.13873.5
RECAL (ours) 0.25370.25370.25372.1 0.01840.01840.01841.6 0.15492.2 0.20630.20630.20633.9 0.01270.01270.01272.5 0.12720.12720.12724.0 0.20870.20870.20872.1 0.00750.00750.00752.3 0.13883.6

Qsar-Biodeg

Uncal 0.29912.4 0.06084.1 0.17253.5 0.30612.6 0.09334.9 0.18333.3 0.28955.2 0.08166.7 0.16521.9
TS 0.29820.7 0.05803.3 0.17162.8 0.29103.5 0.07375.0 0.17653.9 0.28034.1 0.07043.8 0.15802.3

RECAL- MLP 0.29611.5 0.05194.7 0.16832.0 0.28473.2 0.06386.3 0.17323.7 0.28694.0 0.07252.2 0.16331.5
RECAL (ours) 0.29290.29290.29291.2 0.05040.05040.05043.6 0.16740.16740.16743.7 0.28160.28160.28163.0 0.05020.05020.05025.4 0.17170.17170.17172.8 0.28610.28610.28615.7 0.06000.06000.06007.6 0.15200.15200.15202.1

Seismic-Bumps

Uncal 0.17392.8 0.02994.2 0.08990.9 0.17113.3 0.03175.0 0.08721.4 0.18034.0 0.03994.8 0.08861.6
TS 0.17831.3 0.03522.6 0.09080.2 0.17263.8 0.03284.1 0.08751.0 0.17324.1 0.03245.9 0.08782.1

RECAL- MLP 0.17310.3 0.02263.5 0.08980.08980.08980.1 0.16756.7 0.02839.2 0.08680.08680.08682.2 0.16933.9 0.03404.6 0.08651.3
RECAL (ours) 0.17240.17240.17240.5 0.02160.02160.02163.4 0.08990.2 0.16740.16740.16744.3 0.02430.02430.02431.1 0.08730.1 0.16380.16380.16384.6 0.02120.02120.02125.6 0.08570.08570.08571.9

County

Uncal 1.20802.9 0.05099.2 0.66132.7 0.98662.3 0.04985.1 0.56163.0 1.13005.1 0.05185.1 0.68022.4
TS 1.20801.1 0.04325.3 0.66140.7 0.98442.0 0.04994.7 0.56113.4 1.12715.8 0.04123.8 0.67972.7

RECAL- MLP 1.20860.4 0.03916.8 0.66141.5 0.98843.3 0.06236.2 0.56192.7 1.12774.1 0.04114.9 0.67961.8
RECAL (ours) 1.20791.20791.20791.0 0.03850.03850.03857.8 0.66080.66080.66081.4 0.98280.98280.98282.8 0.04150.04150.04153.5 0.56040.56040.56041.9 1.12411.12411.12414.2 0.03890.03890.03893.6 0.67820.67820.67821.7

House_Class

Uncal 1.19163.1 0.01787.2 0.60080.8 1.09832.6 0.03665.5 0.56904.5 1.45773.4 0.02202.1 0.73921.3
TS 1.19362.3 0.02755.7 0.60510.6 1.09044.0 0.01786.0 0.56643.2 1.45603.1 0.01891.8 0.73901.6

RECAL- MLP 1.18291.18291.18294.2 0.01536.2 0.60051.0 1.08991.9 0.01574.1 0.56663.8 1.45852.9 0.02362.3 0.74071.4
RECAL (ours) 1.18868.1 0.01410.01410.01414.5 0.59640.59640.59641.2 1.08801.08801.08803.3 0.01540.01540.01543.8 0.56530.56530.56532.6 1.45401.45401.45402.0 0.01730.01730.01731.9 0.73710.73710.73711.3

DBLP

Uncal 0.64062.1 0.07104.2 0.24801.2 0.58375.7 0.18718.3 0.29011.7 1.18613.8 0.12031.8 0.63973.1
TS 0.62361.7 0.09205.5 0.25531.6 0.47484.2 0.06844.3 0.24171.1 1.18453.7 0.08915.0 0.64263.9

RECAL- MLP 0.50240.50240.50243.0 0.07144.9 0.24451.1 0.46284.0 0.04056.9 0.23401.2 1.17702.8 0.09737.3 0.63943.5
RECAL (ours) 0.50892.6 0.05840.05840.05844.5 0.24150.24150.24151.3 0.45690.45690.45693.9 0.03770.03770.03773.4 0.23010.23010.23011.6 1.16771.16771.16775.9 0.07180.07180.07182.6 0.63340.63340.63344.7

SLAP

Uncal 0.699224 0.275712 0.33143.1 0.15335.1 0.08173.3 0.06061.7 0.901621 0.19337.9 0.47985.1
TS 0.645413 0.21449.0 0.26557.7 0.08734.2 0.02341.8 0.05011.3 0.901422 0.19268.7 0.47855.8

RECAL- MLP 0.342917 0.08968.6 0.16114.3 0.06883.8 0.00830.9 0.04502.1 0.863028 0.09326.0 0.39226.3
RECAL (ours) 0.32310.32310.323119 0.06270.06270.06276.2 0.15980.15980.15984.8 0.06590.06590.06593.7 0.00610.00610.00610.3 0.04410.04410.04412.0 0.85810.85810.858136 0.09010.09010.09017.6 0.37650.37650.37654.8

Table 2: Summary of results using different calibration methods on different basic models and different datasets.
Uncal indicates the basic models without calibration, BS represents the Brier Score, RECAL- MLP is the ablation
study, and bold indicates the best result, the subscript of each result refers to the standard deviation (×10−3).

0.01}, weight decay to 5e-3 for all datasets, k is
5 in top-k. Our evaluation metrics are NLL loss,
ECE, and Brier Score, all using official realizations
(Naeini et al., 2015; Brier et al., 1950).

We use the validation set as the held-out calibra-
tion set. In the real world, models often need to
predict consistently from streaming data. There-
fore, we calibrate each row of data in the test set
individually and construct a unique graph for each
test sample by aggregating it with the validation
set.

4.3 Main Results

The evaluation results of our model and all base-
lines are summarized in Table 2. The uncalibrated
model usually has the highest values on all met-
rics, with ECE is typically between 1.4% to 20%,
which indicates that the model used to predict the
tabular data is poorly calibrated. This is not based
on a specific basic model: we observed miscali-
bration on linear models, tree-based models, and
transformer-based deep neural networks. In partic-
ular, the values of ECE are significantly worse on
DBLP and SLAP, two sparse datasets with signifi-

cant graph structure.
It can be observed that TS performs well on

TabTransformer which is due to the fact that the
miscalibration of neural networks tends to be low-
dimensional (Guo et al., 2017). But, it does not
perform consistently enough on the traditional ma-
chine learning methods like GBDT and Logistic
Regression (only 4 out of 7 datasets are success-
fully calibrated). This suggests that TS is unreliable
for calibrating traditional machine learning meth-
ods. To explore the effect of the implicit sample
relations between the data on the calibration results,
we propose a variant RECAL-MLP of RECAL, in
which the 2-layer GCN is replaced with a 2-layer
MLP. On TabTransformer, TS performs better than
RECAL-MLP. However, on the machine learning
method, RECAL-MLP performs better than TS.
This shows that applying an identical change to all
logits on traditional machine learning methods is
not enough.

Our method achieves the best results on all
datasets. In particular, compared to the temper-
ature scaling, our method reduces the ECE by
20%, 32%, 26%, 13%, 17%, 45%, and 74% on the



(a) County-Uncal (b) DBLP-Uncal

(c) County-RECAL (d) DBLP-RECAL

Figure 4: Reliability diagrams for GBDT before and af-
ter confidence calibration on County and DBLP datasets.
Any deviation from a perfect(i.e., the gap) diagonal rep-
resents miscalibration.

Bank, Qsar-Biodeg, Seismic-Bump, House_Class,
County, DBLP, SLAP datasets, respectively, on the
GBDT model. On TabTransformer, compared to
the temperature scaling, our method reduces the
ECE by 17%, 15%, 35%, 8%, 6%, 19%, and 45%,
respectively. On Logistic Regression, compared to
the temperature scaling, our method reduces the
ECE by 22%, 17%, 39%, 49%, 11%, 37%, and
71%, respectively. NLL and Brier Score show the
same trend. In brief, our method outperforms the
baseline method and the graphs provide valuable
information for confidence calibration.

4.4 Reliability Diagrams

We further depict the reliability diagrams (Guo
et al., 2017) to evaluate the quality of uncertainty
estimation. As shown in Figure 4, the confidence
range is equally divided into 20 bins. Then we cal-
culate the average accuracy of each bin. The red
diagonal represents the perfectly calibrated line,
and its confidence indicates the probability of the
model predicting correctly. For example, the mean
value of the diagonal function in the bin [0.95, 1.0]
is 0.97, and then the classification accuracy of the
nodes in this bin should be 97%.

We can see that the average precision of most
boxes of the uncalibrated model is higher than the
diagonal, indicating that GBDT always outputs
a low confidence, i.e., GBDT are usually under-
confident. Compared with uncalibrated GBDT, RE-

Dataset Calibraction
Noise Rate %

0 10 20 30 50

Bank Marketing
TS 0.0158 0.0248 0.0347 0.0467 0.0672

RECAL 0.01270.01270.0127 0.02120.02120.0212 0.03150.03150.0315 0.04570.04570.0457 0.06460.06460.0646

County
TS 0.0499 0.0524 0.0592 0.0551 0.0815

RECAL 0.04150.04150.0415 0.04760.04760.0476 0.04640.04640.0464 0.05250.05250.0525 0.06770.06770.0677

House_Class
TS 0.0178 0.0311 0.0623 0.0845 0.1326

RECAL 0.01540.01540.0154 0.02960.02960.0296 0.05660.05660.0566 0.08170.08170.0817 0.12650.12650.1265

Table 3: ECE of RECAL and TS with noisy data on
GBDT.

Dataset TabTransformer

Uncal TS RECAL

Bank Marketing 0.0397 0.0488 0.03170.03170.0317
Seismic-Bump 0.0352 0.0525 0.02980.02980.0298

Table 4: ECE of RECAL and TS with distribution
shift on TabTransformer.

CAL most closely recovers the desired diagonal
function, and each of the bins are well calibrated.
This suggests that RECAL can yield better confi-
dence estimates, showing it is more trustworthy.

4.5 The Robustness of RECAL

We further explored the robustness of RECAL to
noisy data and distribution shift against the baseline
TS.

Noisy Data. To obtain the noisy data, we first
select the coninuous feature that has the largest im-
pact on the tree-base model among all features. In
CatBoost, the impact factor of each feature can be
obtained from model.feature_importances_. Next,
on the test set, we contaminate the data by replac-
ing a number of values with random ones in the
selected columns. We input the noisy streamed
data into the trained GBDT model to obtain the
output and calibrate it using the trained RECAL

model. Table 3 gives the results of the calculations
on three different datasets. As the noisy rate in-
creases, RECAL performs better in ECE and thus
is more robust than temperature scaling. We con-
jecture that the graph brings robustness because
its topology dilutes the effect of noise to a certain
extent.

Distribution Shift. Distribution shift refers to
the change in the underlying data distribution be-
tween training and testing phases in machine learn-
ing, which can affect model performance when
the model encounters data that differs significantly
from what it has learned during training. We first
partition the dataset into two parts with different



Dataset
Logistic GDBT TabTransformer

online offline online offline online offline

Bank Marketing 0.0184 0.01780.01780.0178 0.0127 0.01060.01060.0106 0.00750.00750.0075 0.0081

Qsar-Biodeg 0.0504 0.04470.04470.0447 0.05020.05020.0502 0.0511 0.0600 0.04790.04790.0479

Seismic-Bumps 0.0216 0.01750.01750.0175 0.0243 0.01950.01950.0195 0.0212 0.02030.02030.0203

County 0.0385 0.03610.03610.0361 0.0415 0.03850.03850.0385 0.03890.03890.0389 0.0413

House_Class 0.01410.01410.0141 0.0148 0.0154 0.01470.01470.0147 0.0173 0.01350.01350.0135

DBLP 0.05840.05840.0584 0.0608 0.0377 0.02950.02950.0295 0.07180.07180.0718 0.0835

SLAP 0.0627 0.06260.06260.0626 0.0061 0.00510.00510.0051 0.0901 0.08900.08900.0890

Table 5: ECE of RECAL in online and offline scenarios.

distributions based on an artificially chosen feature.
We conduct experiments on Bank and Seismic-
Bumps. For Bank, we divide it into two subsets
with and without houses based on housing. For
Seismic-Bumps, we partition the dataset according
to seismic, which grades the hazard of the detected
seismic waves. We make the training and valida-
tion sets have the same distribution, and the test set
obeys a different distribution. Then, we train the
basic model using the training set, train RECAL

utilizing the validation set, and test it using the test
set. Results on the two datasets are presented in
Table 4. We can see the same conclusion as in the
case of noisy data, i.e. that RECAL shows excellent
stability and can still calibrate the model, while TS
cannot handle this case.

4.6 Offline Test Scenario

Further, we conduct an experiment to show that
RECAL is equally effective in the offline scenario.
In this scenario, uncalibrated samples arrive at the
same time. We also use the validation set to train
the RECAL. Unlike the online scenario that gener-
ates a unique graph for each test sample, we use all
the test samples to construct one graph and get the
calibration results for the whole test set by forward
propagation once. As shown in Table 5, RECAL

works equally well in the offline scenario and per-
forms better than online in most cases. We believe
this is because building the graph on the test set
allows for a more accurate characterization of its
sample relation.

4.7 Why RECAL Achieves Well Calibration?

To validate the effectiveness of the graph guided by
implicit sample relations in enhancing confidence
calibration, we perform the following experiment.
We utilize temperature scaling as the calibration
function and calculate the total change in confi-
dence, which represents the cumulative difference
in confidence values between adjacent nodes within

Dataset Logistic

Uncal TS RECAL

Qsar-Biodeg 136.5013 129.5814 119.8235119.8235119.8235
Bank Marketing 6802.1870 6750.9567 6548.15976548.15976548.1597

County 57.3955 56.5735 53.524653.524653.5246
SLAP 7.7824 5.0452 0.06530.06530.0653

Table 6: Total variation of confidence before and after
calibration for four datasets on Logistic Regression.
Uncal indicates uncalibrated, TS indicates temperature
scaling and bold indicates the best result.

the graph G. Table 6 presents the results compar-
ing the total confidence change before and after
calibration. Our research findings demonstrate that
applying temperature scaling decreases the total
change in confidence. This observation supports
the assertion that well-calibrated basic models re-
sult in increased similarity in confidence levels be-
tween nodes with the defined relation after cali-
bration. GNN performs massage passing along its
topology, making it smoother between neighbor-
ing nodes.Thus, our approach of incorporating im-
plicit sample relations into the graph construction
facilitates more reliable predictions and improves
confidence calibration for tabular datasets.

5 Conclusion

In this paper, we exploit the implicit sample rela-
tion on tabular data and propose a post-hoc cali-
bration framework RECAL, which improves the
confidence of the model while maintaining clas-
sification accuracy. It is worth noting that our
approach is general and applicable to both deep
learning models and traditional machine learning
models. RECAL uses the GCN as a nonlinear cali-
bration function so that the confidence can be prop-
agated along the graph between the sample. In
addition, RECAL generates a unique temperature
for each sample to be calibrated using the scaling
method, which has the accuracy-preserving prop-
erty. We perform detailed experiments on binary
and multi-classified tabular datasets with implicit
and explicit graph. Empirically results demonstrate
that RECAL has a better performance compared to
traditional calibration models. In addition, exper-
iments demonstrate that RECAL has remarkable
robustness against data noise and distribution shift.
An interesting future research work would be to
use embedding of samples to guide the discovery
of graph G. This extension would enable the appli-
cation of RECAL not only to tabular data but also
to textual and image data.



Limitations

Our work is the first attempt to use graph struc-
tures to represent the relation between samples in
tabular data for improving the reliability of tabular
model. Using sample-relation graph, RECAL out-
puts a unique temperature t for each sample, and
then finely calibrates each sample using a scaling-
based method to make the model more trustworthy.
Further work can apply the idea of modeling im-
plicit sample relations from datasets to enhance the
task to more domains.

In our analysis, we select a specific feature by
a GBDT model pre-trained on a calibration set as
the basis for our definition of implicit sample re-
lations. However, in real scenarios, large tables
with hundreds or thousands of features may exist.
Meanwhile, the method of traversing each node to
connect neighboring nodes makes the overhead of
building the graph large. In future research, this can
be done by expressing each sample as an embed-
ding vector and then using a clustering algorithm
(MacQueen, 1967; Ashraf et al., 2021) to build a
graph on the dataset. With the use of embedding,
the method is also no longer limited to tabular data,
which opens up new ideas for improving the trust-
worthiness of machine learning.
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A Appendix

A.1 Evaluation Metrics and Baseline
Evaluation Metrics. The expected calibration
error, also called ECE divides the prediction
into B equally spaced bins (Naeini et al.,
2015). It calculates the weighted average of the
accuracy\confidence difference of the samples in
each bin. We use ECE as the most important eval-
uation indicator. The calculation equation is as
follows:

ECE =

B∑
i=1

|Bi|
|Rtest|

|acc(Bi)− conf(Bi)| , (9)

where |Rtest| is the total number of test sets, Bi

represents the i-th bin, |Bi| represents the num-
ber of samples in the i-th bin.acc(Bi) denotes the
accuracy,conf(Bi) represents the average of confi-
dences in the i-th bin. The Brier Score (Brier et al.,
1950) is also a measure of the degree of calibration.
It portrays the difference in predicted probability
from the true label. More precisely,

BS =
1

|Rtest|

|Rtest|∑
n=1

(p̂n − yn)
2, (10)

where yn is the label of the n-th sample.

Baseline. As a comparison, we select the classi-
cal post-hoc method temperature scaling (TS) (Guo
et al., 2017) as our baseline, which is given by

p̂i = maxσSM (vi/t). (11)

A.2 Dataset Details
Here, we provide a detailed description of the
dataset used in this paper, as well as the basis for
creating the graphs.

• Bank Marketing (Moro et al., 2014) is re-
lated to the direct marketing activities of a
Portuguese banking institution, which con-
tains 45211 samples, and the classification
goal is to predict if the client will subscribe
(yes/no) a term deposit. Guided by the pre-
trained GBDT, we select month as the basis
for building the graph. Since it is a categorical
feature, we connect samples with the same
value.

• Seismic-Bumps (Huang et al., 2020) predict
whether a high energy seismic bump will oc-
cur in the next shift by using the detection data

in the mine, which contains 2583 samples. It
is a binary dataset. Based on the contribution
to the classification results, we use gpuls, the
number of pulses recorded by the most active
geophones in the previous transformation, to
build a graph with each node connecting the
five closest nodes according to the value of
gpuls.

• Qsar-Biodeg (Mansouri et al., 2013) dataset
counts the chemical structure of molecules
to predict whether they are readily biodegrad-
able (RB/NRB), which contains 1058 samples.
By pre-training a GBDT model using the val-
idation set, we use SpMax_B as the basis for
building the graph.

• House_Class (Pace and Barry, 1997) is col-
lected from the 1990 census, which contains
20640 samples. The original dataset is a re-
gression dataset with the predicted outcome
being the price of the property. To construct
a multi-classification tabular dataset, we di-
vide the prediction results into five intervals
[1, 1.5, 2, 2.5] (Ivanov and Prokhorenkova,
2021). For each block, connect the five closest
blocks within a given distance, measured by
latitude and longitude.

• County (Jia and Benson, 2020) is a county-
level map dataset containing 3217 samples.
We divide the unemployment rate into four
boxes as prediction labels, <0.4, 0.4-0.5, 0.5-
0.7, >0.7. Each node is a county, and if two
nodes border each other, they are connected.

• SLAP (Xiao et al., 2019) is a sparse multi-
node-type dataset in the domain of bioinfor-
matics with node types including genes, dis-
eases, chemical compounds, etc. Our goal is
to predict one of the 15 gene types. It contains
20419 samples. We use the same graph struc-
ture as Ivanov and Prokhorenkova (2021).

• DBLP (Ren and Liu, 2020) is a sparse clas-
sification dataset with 14475 samples. It pre-
dicts the author’s research direction and is di-
vided into four groups(database, information
retrieval, data mining, and machine learning).
We use the same graph structure as Ivanov and
Prokhorenkova (2021).


