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Abstract

In recent years, several works have investigated001
the potential of language models as knowledge002
bases as well as the existence of severe bi-003
ases when extracting factual knowledge. In004
this work, we point out the inherent misalign-005
ment between pre-training and downstream tun-006
ing objectives in language models for probing007
knowledge under a probabilistic view and hy-008
pothesize that simultaneously debiasing these009
objectives can be the key to generalisation over010
unseen prompts. We propose an adapter-based011
framework UniArk for generalised and con-012
sistent factual knowledge extraction through013
simple and parameter-free methods. Extensive014
experiments show that UniArk can significantly015
improve the model’s out-of-domain generalisa-016
tion as well as being consistent under various017
prompts. Additionally, we construct a large-018
scale and diverse dataset ParaTrex for measur-019
ing the inconsistency and out-of-domain gen-020
eration of models. Further, ParaTrex offers a021
reference method for constructing paraphrased022
datasets using large language models1.023

1 Introduction024

Pre-trained Language Models (LMs) have been025

widely adopted in the NLP field. A key reason026

for the uptake of LMs is their capability to store027

knowledge in the parameters learned through pre-028

training (Liu et al., 2023a). Many works have029

looked at how to treat LMs as knowledge bases030

by measuring and extracting factual knowledge di-031

rectly from them. LAMA (Petroni et al., 2019)032

is the first benchmark for measuring the extracted033

factual knowledge from LMs. In LAMA, factual034

knowledge is represented as triples (subject, re-035

lation, object) and is extracted through manually036

designed prompt templates. For example, to an-037

swer the query (Barack Obama, place of birth, ?),038

1Code and data will be released upon acceptance. ParaTrex
datasets are submitted together with this paper.
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Figure 1: Illustration of the inherent objectives’ bias
from the template prior and template verbalization, with
a comparison to our UniArk framework.

we query LMs using the prompt: “Barack Obama 039

was born in [MASK]”. 040

Many subsequent works have searched for opti- 041

mal prompting strategies in order to improve the 042

accuracy of the extraction (Shin et al., 2020; Li 043

and Liang, 2021; Liu et al., 2023b; Li et al., 2022). 044

However, they did not consider cases with dif- 045

ferent paraphrased prompt templates due to the 046

limitation of LAMA, which only provides one 047

prompt template for each relation. On the con- 048

trary, Elazar et al. (2021) and Newman et al. (2022) 049

focused on the consistency between predictions 050

from semantically similar prompts without opti- 051

mizing for accuracy. In light of this, in this work 052

we investigate how to improve both accuracy and 053

consistency for unseen prompt templates, i.e. out- 054

of-domain generalisation. We perform a proba- 055

bilistic decomposition of the factual knowledge 056

retrieval objective P (subject, object|relation), cf. 057

Fig. 1, and find a misalignment between the pre- 058

training and tuning objects. This exposes two 059

biases: P (subject|template), P (object|template) 060

(bias from object likelihood) and P (template) (bias 061

from template prior) as shown in Fig.1. Object 062

likelihood bias refers to the likelihood of a pre- 063

dicted object given template-only prompts, such as 064
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“The official language of [MASK] is [MASK]”, be-065

ing biased. The biased object likelihood has been066

shown to positively correlate with the predictions067

from subject-given prompts and negatively influ-068

ence the performance of factual extraction (Wang069

et al., 2023; Cao et al., 2021). Template prior bias070

is defined as the inconsistency among outputs from071

prompt paraphrases due to the domination of spe-072

cific verbalizations during pre-training.073

Therefore, we propose UniArk, a parameter-free074

unifying framework for optimizing both accuracy075

and consistency, through debiasing. The key idea076

behind each debiasing module is to equalize the077

probability distribution for the decomposed source078

bias term. To this end, we choose adapter tuning as079

our base tuning method, which is widely accepted080

as a modular parameter-efficient way of tuning and081

an effective way of debiasing (Kumar et al., 2023;082

Lauscher et al., 2021). However, to the best of our083

knowledge, we are the first to investigate adapter-084

tuning in factual knowledge probing tasks.085

To evaluate the performance under unseen086

prompt templates, a paraphrased benchmark of the087

LAMA dataset is needed. We argue that the ex-088

isting dataset ParaRel (Elazar et al., 2021) is both089

small in scale and not lexically diverse enough, as090

it is constructed based on rule-based methods such091

as swapping specific phrases. Therefore, we pro-092

pose the dataset ParaTrex which is constructed093

using the large language model GPT-3.5. ParaTrex094

provides a more complex and substantially larger095

paraphrasing dataset. We provide both automatic096

evaluation and human evaluation statistics to show097

its high quality. Our main contributions are:098

• We point out the misalignment between the099

pre-training and tuning objectives in a proba-100

bilistic view for factual probing, exposing the101

bias under a unified view as well as showing102

the possibility of improving generalisation via103

holistic debiasing.104

• We construct ParaTrex, a comprehensive105

benchmark for out-of-domain generalisation106

measurements. We provide a thorough evalu-107

ation of ParaTrex.108

• We propose a simple and parameter-free109

method based on an adapter-tuning framework110

for knowledge probing tasks. Extensive exper-111

iments show the effectiveness of our methods112

in improving the generalisation performance113

of knowledge probing and mitigating biases.114

2 Objective Decomposition 115

We start with the objective for factual probing, 116

showing that it is equivalent to the mask language 117

modeling goals. We then decompose the probabil- 118

ity representation of the task to show its misalign- 119

ment with the tuning objectives, thus targeting two 120

key components of the biased terms: the object like- 121

lihood and the template prior. We introduce several 122

metrics for measuring these biased objectives. 123

Let R = {r1, r2, . . . , rnr}, S = 124

{s1, s2, . . . , sn} and O = {o1, o2, . . . , on} 125

respectively be sets of relations, subjects and 126

objects. Given a relation rj , factual knowledge 127

extraction aims to extract factual knowledge triples 128

(si, rj , ok) within LMs M. Mathematically, we 129

model P (si, ok|rj) (the probability of subject- 130

object pairs for a specific given relation). In 131

practice, we query M with a manually designed 132

prompt template t from the relation rj . For 133

instance, the template “The capital of [X] is 134

[Y]” is constructed from the relation “Capital”. 135

Note that a specific relation can be mapped to 136

different semantically similar prompt templates 137

T = {t1, t2, . . . , tnt}. We predict ok through 138

maximizing PM(ok|si, tm). To position the 139

inherent misalignment when modeling the object 140

probability, we use the following probability 141

decomposition of the task objective: 142

P (s, o|r) (1) 143

=
∑
ti∈T

P (s, o, ti) (2) 144

=
∑
ti∈T

P (s, o|ti)P (ti) (3) 145

=
∑
ti∈T

P (s|o, ti)P (o|ti)P (ti) (4) 146

=
∑
ti∈T

P (o|s, ti)P (s|ti)P (ti) (5) 147

Since T is defined as the set of templates relevant to 148

the relation r, we can drop r in Eq. (2). We observe 149

that the factual knowledge extraction goal P (s, o|r) 150

is equivalent to Eq. (2), which is approximated by 151

the masked language modeling objective of LMs. 152

After being decomposed, this objective function 153

is influenced by five terms: P (s|o, ti), P (o|s, ti), 154

P (o|ti), P (s|ti) and P (ti) (Eq. (4) and Eq. (5)). 155

We note that sometimes we can rewrite object by 156

subject since we might be interested in extract- 157

ing the reversal relations, e.g. (United Kingdom, 158

capital, London) and (London, capital of, United 159

Kingdom). The subject and object might there- 160
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fore be substitutable for different relations on the161

same text corpus. We therefore treat P (s|o, ti),162

P (o|s, ti) and P (o|ti), P (s|ti) as the same in the163

remaining context. The first two terms coincide164

with our tuning objectives but additional terms are165

exposed, indicating that the objectives between pre-166

training and downstream tuning are not aligned.167

We refer to these additional terms as biased ob-168

jectives. P (o|ti), P (s|ti) show the bias from the169

object likelihood given a specific prompt template,170

and P (ti) gives an insight into the bias from the171

template prior.172

2.1 Bias from the Object Likelihood173

We define the object likelihood as P (o|t). For174

tk ∈ T , we then define the bias from the object like-175

lihood as P (oi|tk) ̸= P (oj |tk) for all oi, oj ∈ O.176

That means that given only the prompt template177

without the subject, the object predicted by an LM178

is biased. This is also inline with the object bias179

defined in Wang et al. (2023). To measure this180

bias, we propose the counterfactual hitting rate181

(CT_hit1). This measures the accuracy of outputs182

from the prompt-only inputs, which should be close183

to 0 due to the lack of subjects. We measure the184

bias from object likelihood on 4 types of popular185

tuning methods. Table 1 shows the average CT_hit1186

over all 41 relations in the LAMA dataset, where187

LAMA refers to do inference with the provided188

prompt in LAMA without tuning. Here we ob-189

serve a clear increase in the hitting rate and entropy190

by comparing LAMA with other tuning methods,191

suggesting that after tuning, the model becomes192

stronger at guessing the correct answer from the193

likelihood of the object over the templates.194

To show the influence of the object likelihood195

bias over the accuracy of the prediction, we also re-196

port the Pearson correlation coefficient (R) between197

the rank of grounding truth label over subject-given198

and subject-masked prompts over all samples in199

LAMA. In Table 1, we can observe a positive corre-200

lation between object likelihood and subject-given201

predictions. Moreover, greater positive correlations202

are observed for the wrong cases. This implies that203

some of the inaccurate predictions can be attributed204

to the bias from the object likelihood.205

2.2 Bias from Template Prior206

The bias from the template prior is defined as the in-207

consistency among different verbalizations with se-208

mantically similar prompt templates. Inconsistency209

problems have been widely discussed in previous210

CT_hit1 R R (×)

LAMA 5.23 0.322 0.353
P-tuning 15.91 0.709 0.753
Adapter 12.77 0.341 0.376
Fine-tuning 13.11 0.228 0.284

Table 1: Counterfactual hitting rates for prompt-only in-
puts and correlations (R) between the rank from outputs
with and without given subject among all predictions
and incorrect predictions.

ParaRel ParaTrex

# Relations 39 40
# Patterns 329 1526

Min # patterns per rel. 1 26
Max # patterns per rel. 20 47
Avg # patterns per rel. 8.23 38.15
Avg lexical per rel 5.73 8.46

Table 2: Statistics of the ParaRel and ParaTrex datasets.

works, e.g. (Elazar et al., 2021; Newman et al., 211

2022). This bias towards seen prompt templates 212

P (ti) comes from unequal appearances of different 213

prompts ti during pre-training. This will influence 214

the quality of factual probing since the appearance 215

of a specific prompt ti will weigh up P (ti), which 216

results in learning better to predict P (s, o|ti) under 217

this verbalization and neglecting other ones when 218

being optimized. More importantly, this bias may 219

be neglected in datasets such as LAMA where only 220

one prompt template is used for tuning and testing. 221

This motivates us to construct a more diverse and 222

complex dataset for measuring the inconsistency 223

as well as to propose a self-augmentation strategy 224

aimed at averaging the biased template prior. 225

3 The ParaTrex Resource 226

We introduce the ParaTrex resource, which is 227

a large-scale and comprehensive paraphrasing 228

dataset used for measuring both inconsistency and 229

the generalisation capability of models on differ- 230

ent unseen inputs. ParaTrex comprises 1526 para- 231

phrases from 40 relations2, with an average of 232

38.15 templates per relation. The statistics of the 233

dataset are provided in Table 2, with comparison to 234

the ParaRel dataset (Elazar et al., 2021). 235

Data Construction We construct ParaTrex, a 236

paraphrased version of the LAMA dataset, using 237

the following steps: (1) We begin with the patterns 238

provided by LAMA. Each relation has one prompt 239

2Like ParaRel (Elazar et al., 2021), we omit one relation
hard for generating paraphrases: “[X] is a [Y]”
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template called base-pattern. For example, the240

base pattern of relation "capital of " is "[X] is the241

capital of [Y]." (2) For each relation, to make the242

generation more specific, we extract its base pat-243

tern and its corresponding Wikidata (Vrandečić and244

Krötzsch, 2014) provided in the LAMA description.245

For instance, for the relation CapitalOf, "country,246

state, department, canton or other administrative247

division of which the municipality is the govern-248

mental seat". (3) We formulate a manually crafted249

prompt directing GPT-3.5-turbo to produce a total250

of 40 paraphrases. This includes 5 succinct para-251

phrases, each comprising no more than 7 words, as252

well as 5 extended paraphrases, each encompassing253

more than 15 words. More details of the paraphrase254

generation process can be found in Appendix A.1.255

(4) Through human inspection, we remove inap-256

propriate paraphrases characterized by excessive257

ambiguity or similarity to preceding generations.258

(5) We iteratively execute Steps (3) and (4) until259

satisfying answers are achieved. We have at least260

25 paraphrases: 5 short, 5 long, with the rest being261

medium length. Furthermore, we introduce a ran-262

dom division of our paraphrases into two distinct263

sets: a training set comprising 50% of the entire264

dataset, and a test set constituting the remaining265

50%. The out-of-domain set encompasses all long266

and short paraphrases, aiming at simulating the sit-267

uation where individuals seek to extract specific268

knowledge by inputting a concise or exceptionally269

long query. We provide an example in Appendix270

A.2.271

Evaluation We evaluate the quality of ParaTrex272

using two automatic metrics and human evalua-273

tion. A detailed description of the evaluation can be274

found in Appendix A.3. We next discuss the most275

salient points. We measure the diversity of the para-276

phrases through the average pairwise BLEU scores277

(Papineni et al., 2002) of paraphrases among each278

relation. The results show that the 1-4 gram BLEU279

scores of ParaTrex are consistently lower than those280

of ParaRel, suggesting that ParaTrex datasets are281

lexically and syntactically more diverse. To eval-282

uate the quality, we report the cosine-similarity283

between the paraphrase and the raw template using284

a paraphrase version of sentence-bert (Reimers and285

Gurevych, 2019). We observe a clear difference286

between the randomly chosen paraphrase and the287

generated paraphrase, proving that the quality of288

paraphrasing is acceptable. Human evaluation from289

NLP graduate students for ParaTrex also shows a290

96.88% precision and 92% recall respectively, indi- 291

cating the high quality of ParaTrex datasets. 292

4 Methodology 293

Based on the probability decomposition in Section 294

2, we hypothesize that mitigating the misalignment 295

between the tuning and pre-training objectives is 296

the key to improving both the accuracy and consis- 297

tency of models on unseen prompts. To this end, 298

the core idea behind UniArk is to equalize the prob- 299

ability of biased parts through an additional loss 300

and template augmentation. We discuss below the 301

three main components of UniArk. 302

Adapters We use adapter-tuning (Houlsby et al., 303

2019) as it is better suited for debiasing settings 304

(Kumar et al., 2023) and internal knowledge pro- 305

tections than other popular parameter-efficient fine- 306

tuning methods. Moreover, we want to evaluate 307

and thus fill in the vacancy of adapter-tuning on 308

the factual knowledge extraction tasks. Note that 309

for factual probing, it is common to tune a model 310

for each relation. Due to the cost of storage when 311

the relations scale up, we therefore do not choose 312

full parameter fine-tuning as the basis of our frame- 313

work. The basic idea is to insert an adapter into our 314

base language models and freeze all other parame- 315

ters. Specifically, for each output hn ∈ Rd in the 316

n-th transformer layer, our adapters perform the 317

following transformation: 318

hn+1 = GELU(hnWd)Wu + h (6) 319

where GELU (Hendrycks and Gimpel, 2016) is 320

a non-linear activate function, Wd ∈ Rd×k and 321

Wu ∈ Rk×d are two learnable parameter matrices 322

in adapters. They are used for first down-projecting 323

the hidden states into dimension k < d, and then 324

projecting them back to d-dimension spaces, with 325

k a hyperparameter. 326

Object likelihood Bias Mitigation As discussed 327

in Section 2.1, to mitigate the object likelihood bias, 328

the output distribution should ideally satisfy: for 329

all oi, oj ∈ O, si, sj ∈ S and tk ∈ T , we have 330

that P (oi|tk) = P (oj |tk), P (si|tk) = P (sj |tk). 331

In other words, the retrieved likelihood distribu- 332

tion should be close to a uniform distribution from 333

the subject-masked and object-masked inputs. To 334

this end, we introduce an addition max entropy loss 335

Lme weighted by hyperparameter λme over subject- 336

masked prompts and object-masked prompts. This 337

loss maximizes the entropy over top retrieved can- 338

didates to encourage the model to assign equal 339
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probability to each relevant candidate. We perform340

an object filtering process to remove stopwords like341

“and”. We choose to max the entropy of only the342

top k words because, based on our empirical obser-343

vation, they include most of the relevant candidates.344

Formally, given the output probability of object345

i : p(i), i = 1, 2, . . . , k and the stopwords set S,346

the max entropy loss is:347

Lme = −λme

k∑
i=1, i/∈S

p(i)log2(p(i)) (7)348

We note that unlike MeCoD (Wang et al., 2023),349

our method does not bring any additional parame-350

ters and focuses on equalizing the likelihood for all351

potential candidates while MeCoD performs neu-352

ral object selecting and does contrastive learning353

over the selected objects. This suggests that our354

method is lighter than MeCoD. We also generalise355

MeCoD since we consider both subject-masked356

and object-masked prompts, guided by our objec-357

tive decompositions.358

Template prior Bias Mitigation To alleviate the359

template prior bias, we propose a novel self-data360

augmentation method to mitigate the influence of361

P (ti) by weighted averaging them. We augment362

our raw data with prefixes “It is true that" and363

“It is false that" and encourage the model’s self-364

consistency by weighted averaging their output dis-365

tribution to make final predictions. Specifically, the366

output probability P (oi|s, t) for object candidate i367

and the masked language model (MLM) loss Lmlm368

are calculated as:369

P (oi|s, t) = softmax(
∑
tj∈T ∗

wjP (oi|s, tj)) (8)370

371

Lmlm = −
nvocab∑
i=1

yilogP (oi|s, t) (9)372

where T ∗ = {t, ttrue, tfalse} is the set of augmented373

prompt templates and the weight
∑

j wj = 1 is374

a hyperparameter balancing the weight for each375

template. Note that we set wtrue = −wfalse since376

the prompts “It is true that” and “It is false that”377

give opposite predictions.378

5 Experiments379

Dataset We use LAMA-TREx (Petroni et al.,380

2019) as our main training dataset, with the same381

train-test splits as in (Liu et al., 2023b). This382

dataset comprises 41 relations and 29,500 testing383

triples. To test the generalising ability and consis- 384

tency for different prompt templates, we test the 385

model on two additional paraphrased datasets: our 386

ParaTrex and ParaRel (Elazar et al., 2021). Since in 387

both datasets N-M relations are omitted when mea- 388

suring consistency, because it can be hard to mea- 389

sure consistency among several correct answers, 25 390

relations remained after filtering those. 391

Evaluation Metrics We evaluate the perfor- 392

mance of models on three aspects: quality of ex- 393

traction, object likelihood bias, and template prior 394

bias. (1) For measuring the quality, we evaluate the 395

macro F1 score for each relation over LAMA (LM), 396

ParaTrex (PT), and ParaRel (PR) to test its perfor- 397

mance in in-domain settings and generalisation on 398

out-of-domain prompt templates. (2) To test the 399

bias from the object likelihood, we report the hit- 400

ting rate of the candidates from the counterfactual 401

subject-masked prompt (CT_hit1). Additionally, 402

we report the KL-divergence (KLD) between the 403

subject-masked prompt and the original prompt to 404

show the influence of the prompt template on the 405

likelihood distribution of the final retrieved candi- 406

dates. (3) For the template prior bias, we measure 407

the consistency of paraphrases in both ParaTrex 408

and ParaRel. Following Elazar et al. (2021) and 409

Newman et al. (2022), the consistency is calculated 410

as the ratio of consistent predictions from different 411

paraphrases with all the paraphrases permutations. 412

We also measure consistency between the unique 413

raw prompt template from LAMA and the para- 414

phrased templates. We refer to this consistency 415

as raw_cst while consistency between all permuta- 416

tions as all_cst. The previous consistency measures 417

do not consider strict factual accuracy. Thus, we 418

also measure the consistency over factual correct 419

predictions, called acc_cst. Formal definitions of 420

raw_cst, all_cst and acc_cst are in App. B.1. 421

Baselines We split our experiments into two set- 422

tings: soft and manual prompts. In the soft prompt 423

setting, we choose P-tuning (Liu et al., 2023b), 424

which is a popular prompt-tuning method in knowl- 425

edge probing tasks and the SoTA MeCoD (Wang 426

et al., 2023) as baselines. We compare them with 427

the adapter tuning to explore its performance. Note 428

that we cannot measure the consistency over para- 429

phrases here since the whole prompt template is 430

learned through training. For the manual prompt 431

setting, we take the manual prompt without tuning 432

(LAMA) and adapter tuning as baselines. Addi- 433

tionally, we re-implement MeCoD as MeCoD (OI) 434
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through adapter tuning as it is originally based on435

P-tuning. App. B.2 provides more training details.436

Significance Test To test the significance of any437

improvements or deterioration, we perform the fol-438

lowing tests between our UniArk and the adapters439

baseline: (1) Paired T-Test and Wilcoxon Sign Test440

for a fixed seed among results across all relations441

and (2) T-test among the averaged values of all re-442

lations after running UniArk with three different443

seeds. See detailed results in the Appendix B.3.444

5.1 Quantitative Results445

Table 3 presents results for knowledge retrieval446

quality together with object likelihood bias on447

BERT-large (Devlin et al., 2019) and RoBERTa-448

large (Liu et al., 2019). Table 4 shows results for449

template prior bias. The best value is marked in450

bold and the second best value is marked in italics.451

Main Results For probing quality, we find that452

with the appropriate tuning methods, models with453

manual prompts outperform those with soft prompt-454

ing. This shows the necessity of tuning parame-455

ters within the models rather than within the input456

embeddings. Among all vanilla tuning methods,457

Adapters demonstrate a remarkable capability for458

in-domain knowledge and object likelihood bias.459

They outperform fine-tuning over 0.01 (4%) on the460

in-domain F1-score, with also less object likeli-461

hood bias than P-tuning and fine-tuning. However,462

it is still shown to be under severe biases and per-463

forms poorly on the out-of-domain prompts. With464

our proposed framework UniArk for mitigating465

both biased objectives, we significantly improve466

the generalisation ability to probe knowledge on the467

unseen prompts. Various significance tests prove468

the improvements in the out-of-domain generalisa-469

tions and two bias mitigations over adapters and470

MeCoD baselines. The in-domain quality is also471

shown not harmed. Indeed, UniArk outperforms472

the current SoTA MeCoD in both in-domain and473

out-of-domain prompt templates.474

Adapters versus Other Tuning Methods To475

better understand the capabilities of the adapter-476

tuning method on factual knowledge extraction,477

we compare it with manual prompts (LAMA), P-478

tuning (PT), and fine-tuning (FT). We do not con-479

sider other parameter-efficient fine-tuning methods,480

such as prefix-tuning (Li and Liang, 2021), since481

they are shown to be less powerful than P-tuning482

(Liu et al., 2023b; Wang et al., 2023). Table 3483

shows that the adapter-tuning performs consistently484

better than all other parameter-efficient fine-tuning 485

methods in the F1 score when tuning on the in- 486

domain settings. This strongly suggests that tuning 487

methods such as adapters, which modify the inner 488

transformer layers instead of only embedding lay- 489

ers without changing the initial parameters, may 490

do better in extracting the knowledge hard encoded 491

within the parameters in LMs. However, there ex- 492

ists a substantial difference in performance between 493

in-domain and out-of-domain settings. Indeed, we 494

observe a big gap in F1 scores, suggesting that 495

those parameter-efficient tuning methods tend to 496

be biased on the given prompt template. 497

Bias Mitigation and Quality Improvements In 498

Table 3, we observe that with our proposed frame- 499

work UniArk, both object likelihood bias and 500

prompt prior bias are effectively mitigated. The 501

counterfactual hitting rate drops to nearly 0. This 502

means the model can no longer guess the correct 503

answers given only templates. The sharp rise of KL- 504

divergence also indicates that the model tends to 505

predict a distribution diverging substantially from 506

the object likelihood under prompt templates. Both 507

metrics show that the model no longer suffers from 508

being influenced by the object likelihood. Addi- 509

tionally, in Table 4, the consistency over all para- 510

phrased datasets increases significantly, showing 511

the effectiveness of our prior bias mitigation mod- 512

ule. At the same time, we can respectively observe 513

improvements of 7% (22.12 to 23.68), 4% (23.78 514

to 24.7), and 13% (24.69 to 27.99), 4% (27.34 to 515

28.48) of out-of-domain F1 score in UniArk com- 516

pared with the adapters baseline for RoBERTa and 517

BERT on ParaTrex and ParaRel. This validates 518

our hypothesis that mitigating the two decomposed 519

bias terms helps generalisation to unseen prompts. 520

Besides, we also provide a scaling study in App. 521

B.4, where we show that UniArk has significant 522

improvement on both base and larger models. 523

5.2 Ablation Studies 524

We take adapter-tuning as a baseline and perform 525

ablation studies to clarify the source of perfor- 526

mance improvement. The results in Table 5 demon- 527

strate that our max entropy (ME) module plays a 528

prominent role in relieving object likelihood bias 529

while our self-augmenting (Aug) module makes the 530

main contribution to mitigating prompt preference 531

bias. Both modules increase the F1 scores of ex- 532

traction quality, showing the help of bias mitigation 533

for improving the out-of-domain generalisation. 534
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Method

BERT-Large RoBERTa-Large

OOD ID OL Bias OOD ID OL Bias

PT_F1 PR_F1 LM_F1 CT_hit1 KLD PT_F1 PR_F1 LM_F1 CT_hit1 KLD

P-tuning
-

29.94 15.91 3.34
-

19.36 17.13 2.06
+MeCoD 29.33 1.02 8.48 23.13 5.67 5.39
+Adapters 31.21 14.00 3.40 27.70 14.72 3.47

LAMA 14.21 16.00 20.68 4.19 3.57 8.34 9.19 12.37 5.23 1.83
Adapters 24.69 27.34 32.10 12.77 5.54 22.12 23.78 29.74 16.88 3.40
+MeCoD (OI) 25.64 27.58 31.79 0.13 7.31 21.97 23.34 28.72 5.00 6.13
+UniArk 27.99 28.48 32.14 0.04 11.66 23.68 24.70 29.29 3.65 10.24

Fine-tune 28.50 29.27 30.85 13.11 8.07 25.05 25.53 27.85 12.23 6.11

Table 3: Main results for out-of-main (OOD), in-domain (ID) performance, and object likelihood bias (OL Bias) on
LAMA (averaged over all relations). The underlines represent the significance after three significance tests.

Model Method ParaTrex ParaRel

raw all acc raw all acc

Roberta
-large

LAMA 23.9 20.6 6.9 33.0 28.3 10.4
Adapters 61.9 55.2 34.1 66.9 60.4 37.3
+ MeCoD (OI) 61.7 54.8 34.6 67.9 61.2 38.1
+ UniArk 63.8 59.0 36.2 69.1 63.4 38.5

BERT
-large

LAMA 33.6 28.3 15.8 54.9 46.6 25.0
Adapters 60.9 53.4 39.1 72.1 65.2 45.8
+ MeCoD (OI) 63.4 56.5 41.2 73.5 67.3 47.2
+ UniArk 69.1 62.9 44.7 76.7 71.3 49.4

Table 4: Main results for template prior bias (TP bias)
measured by consistency on ParaTrex and ParaRel. Sig-
nificantly improved results are underlined.

Method Quality OL Bias TP Bias

PT PR CT_hit1 KLD PT PR

UniArk 28.0 28.5 0.0 11.7 62.9 71.3
w/o ME 26.9 28.4 13.2 5.5 60.8 70.5
w/o Aug 25.3 27.3 0.0 12.3 56.0 66.3
w/o ME & Aug 24.7 27.3 16.9 3.4 55.2 60.4

Table 5: Ablation study on BERT, we report F1 score
for extraction quality; and all_consistency for template
prior bias on ParaTrex (PT) and ParaRel (PR)

We emphasize that our ME module contributes535

to improving consistency and our Aug module536

brings an improvement on the prompt preference537

bias as well. This exhibits a synergizing effect of538

both modules on mitigating both biases, further539

highlighting the necessity of simultaneously alle-540

viating biases within a unified framework. This541

effect is probably because, as we equalize the ob-542

ject likelihood over templates, the model is forced543

to treat the prompt templates as the same, which544

also weakens the favor of specific templates and545

thus increases the consistency over unseen prompts.546

Meanwhile, augmenting the templates forces the547

model to estimate the object likelihood over vari-548

ous cases, and averaging this likelihood distribution549

contributes to a more unbiased object likelihood. 550

5.3 Qualitative Case Studies 551

To better understand how mitigating the studied 552

biases helps to improve the knowledge extraction 553

results, we perform two specific case studies on 554

randomly selected cases. A detailed analysis can 555

be found in App.B.5. Here we give one example 556

from each biased objective mitigation. For template 557

prior bias (Table 9), although both UniArk and 558

adapter-tuning make a correct prediction “Finnish” 559

on the question “The official language of Vesanto 560

is [mask]”, the answers of adapters may turn to 561

some pronoun such as “It” when the templates 562

changed. The UniArk relieves these kinds of errors 563

with the augmented inputs and drops the predic- 564

tions of predictions for “It” from 861 (7.4%) times 565

to 140 (1.2%) times among all predictions in this 566

relation according to our statistics. For object likeli- 567

hood bias (Table 10), when it comes to the question 568

“The official language of Sorengo is [mask]”, the 569

golden truth should be “Italian”. However, tra- 570

ditional probing gives “Portuguese” as the answer 571

and we found that the rank 2, and rank 3 predictions 572

“English” and “Spanish” appears in the prediction 573

from the top and third predictions from subject- 574

masked prompt, suggesting that the prediction of a 575

traditional model may be influenced by this object 576

likelihood. In contrast, UniArk, who provides the 577

correct answers, is not influenced by this object 578

“English” since the subject-masked likelihood is 579

uniformly distributed. 580

6 Further Analysis 581

Using Paraphrased Data for Training To sim- 582

ulate real applications in which paraphrased data 583

is lacking (and for a fair comparison), UniArk is 584
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tuned on a single prompt template provided in the585

LAMA dataset. We try to investigate the following586

question: What if we use the part of paraphrased587

data for training? We added a new module called588

“PARA” following (Elazar et al., 2021), where an589

additional KL-Divergence loss between the pre-590

diction distribution from the LAMA template and591

the paraphrased template is added. We randomly592

select 1, 2, and 5 new paraphrased templates to per-593

form experiments. From Table 6, only a subtle im-594

provement can be witnessed after adding new para-595

phrases to UniArk for training and these improve-596

ments also do not scale up with more given para-597

phrases. This indicates that our proposed self-data598

augmentation, where no additional paraphrases are599

provided, is as powerful as using paraphrases to600

improve generalisability under current frameworks.601

This result also suggests a potential research direc-602

tion for incorporating paraphrased data both effi-603

ciently and effectively during training.604

Method Quality OL Bias TP Bias

PT PR CT_hit1 KLD PT PR

UniArk 28.0 28.5 0.0 11.7 62.9 71.3
+para 1 28.1 28.6 0.0 11.6 63.3 71.8
+para 2 28.3 28.9 0.0 11.5 63.3 71.9
+para 5 28.1 28.6 0.0 11.6 63.2 71.8

Table 6: Results on extraction quality f1, object like-
lihood bias, and template prior bias consistency using
paraphrased data for training

Error Analysis To have a comprehensive un-605

derstanding of the existing errors in our factual606

probing framework, we conducted a random sam-607

pling of 50 incorrect predictions within the relation608

P37 “Official_Languages” We categorized these609

errors, documenting the findings in Appendix B.6.610

In summary, we find that LMs still do not have a611

comprehensive knowledge of specific cities such612

as Azad Kashmir. They also make mistakes in pre-613

dicting pronouns like “It” (4 cases), and in spelling614

(2 cases). Besides, we found 21 (42%) cases where615

the model makes a feasible answer among several616

correct answers but is treated wrong because only617

one of the labels is provided, e.g. Finnish for Turku,618

suggesting that we may underestimate the knowl-619

edge stored in LMs via current metrics.620

7 Related Work621

Factual Knowledge Extraction There are sev-622

eral works on how to treat LMs as knowledge bases623

and extract factual knowledge from the weights of624

an LM. Petroni et al. (2019) is one of the semi- 625

nal works on this and also introduces the LAMA 626

benchmark for extracting factual knowledge from 627

LMs. To access the knowledge, Li et al. (2022) 628

applies further pre-training (fine-tuning) on LMs. 629

Liu et al. (2023a) suggests that manual prompts 630

offer a promising avenue for directly accessing this 631

knowledge without the need for extra fine-tuning. 632

To search for an optimal prompt, AutoPrompt (Shin 633

et al., 2020) automatically creates a prompt using 634

gradient-based search. Recent works look at soft 635

prompts with continuous learnable prompts. Liu 636

et al. (2023b) proposes P-tuning, making all tokens 637

within prompt templates as learnable soft prompts 638

and showing similar scaling results on larger lan- 639

guage models. However, we observe that adapter 640

tuning (Houlsby et al., 2019) has not been applied 641

to this task so far. In this paper, we compare our 642

results within both soft prompt and manual prompt 643

settings, showing that adapter tuning is a promising 644

and robust way of factual knowledge extraction. 645

Bias study Cao et al. (2022) and Elazar et al. 646

(2021) argue that there exist severe risks and bi- 647

ases under prompt-based knowledge extraction. 648

Therefore, Newman et al. (2022) intends to in- 649

crease the consistency through asserting a single 650

multiple-layer perception after embedding layers 651

called p-adapters. Wang et al. (2023) propose the 652

contrastive-learning-based framework MeCoD for 653

mitigating the bias. In this paper, we position and 654

decompose the object likelihood bias and template 655

prior bias under a probabilistic view and propose a 656

unified framework for mitigating them, which is a 657

more general case compared with previous studies. 658

8 Conclusion 659

In this paper, we revisit the factual probing objec- 660

tives under a probabilistic view and point out the 661

misalignment between the pre-training and fine- 662

tuning objectives. This motivates our hypothesis 663

that mitigating both template prior and object like- 664

lihood bias may improve the generalisability of 665

knowledge-probing models. We introduce Para- 666

Trex, a large and high-quality dataset for measuring 667

the generalisability, and propose a parameter-free 668

method to validate this hypothesis. Experiments 669

show the superiority of our framework and a syner- 670

gizing effect is found in our modules for alleviat- 671

ing both biases, proving the necessity of a unified 672

framework towards a generalised factual knowl- 673

edge extraction. 674
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Limitations675

We identify the following two limitations related676

to the methodology and base models. First, in our677

verbalization bias mitigating module, we perform a678

naive average between the self-augmenting inputs679

and the original inputs, following our objective de-680

composition parts. Although it works effectively,681

it would be interesting to investigate other meth-682

ods. Second, the prompt template in LAMA and683

ParaTrex/ParaRel datasets is designed for masked684

language modeling instead of next token prediction.685

We made a scaling study on encoder-only models686

to show the scalability of our methods, it would be687

interesting to also construct corresponding datasets688

for decoder-only large language models, such as689

Llama2 (Touvron et al., 2023) and perform experi-690

ments on them. We leave this for future work.691

Ethics Statement692

During the construction of the paraphrased dataset693

ParaTrex, we did not generate any data that is harm-694

ful to society and humans, nor include any private695

personal information within the dataset.696
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A ParaTrex Details826

A.1 ParaTrex: Construction Workflow827

Figure 2 provides an illustration of the workflow to828

generate the ParaTrex datasets using large language829

models.830

A.2 ParaTrex: Exemplary Templates831

Table 7 provides a full example of the generated832

templates in ParaTrex for the relation “P1376”:833

“Capital_of ”.834

A.3 ParaTrex: Evaluation Details835

We evaluate the quality of ParaTrex using two au-836

tomatic metrics and human evaluation.837

Diversity We test the lexical diversity by report-838

ing the average pairwise BLEU scores of each839

relation. Specifically, all pair-wise permutations840

of n templates for each relation are listed, result-841

ing in n(n − 1) sentence pairs. Then pair-wise842

n-gram BLEU score (Papineni et al., 2002) was843

calculated on these pairs to represent their diver-844

sity. The average score of the lower-order n-gram845

score captures lexical diversity and the average846

score of the higher-order n-gram score tends to847

capture the diversity of complex syntactic struc-848

tures. Fig 3 shows the trend over n-gram average849

pairwise BLEU scores of all relations. We find850

that the BLEU scores of ParaTrex perform consis-851

tently lower than ParaRel, which depicts that our852

proposed dataset has a good lexical and syntactical853

diversity of generated sentences compared with the854

existing baseline datasets.855

Quality For automatic evaluation, we per-856

form use the current SoTA version paraphrase-857

multilingual-mpnet-base-v2 of Sentence-BERT858

(Reimers and Gurevych, 2019) on the Sentance-859

BERT leaderboard3 to evaluate the semantic sim-860

ilarity between the paraphrase and the grounding861

prompt template provided in the LAMA dataset.862

We report the average cosine similarity upon all863

paraphrases for each relation in our dataset and864

show it in a boxplot (Fig 4). These results show that865

ParaTrex shares good semantic alignments with the866

grounding datasets except for two special cases.867

There are two relations getting scores lower than868

0.7. This is because the grounding templates “[X]869

plays [Y]” and “[X] is located in [Y]” are missing870

3https://www.sbert.net/docs/pre-trained_models.html

the information that [Y] refers to musical instru- 871

ments and continents respectively. This informa- 872

tion is included in the description of the dataset, 873

which is also taken into consideration when con- 874

structing ParaTrex. 875

Human Agreement Following Elazar et al. 876

(2021), we randomly picked 82 paraphrases in the 877

ParaTrex dataset and 42 wrong paraphrases by sam- 878

pling from the paraphrases of wrong relations. We 879

perform human evaluation by asking the evaluators 880

to select candidates that are not the paraphrase of 881

the given inputs. The participants need to pick out 882

the wrong paraphrases. We consider the remain- 883

ing answers as what they think to be the correct 884

paraphrases of the given inputs. Two examples of 885

questions are shown in Fig 6. Results show that on 886

average among 11 human judgments, human eval- 887

uators get 96.88% accuracy in successfully identi- 888

fying inaccurate paraphrases and a 92% accuracy 889

in selecting the true paraphrases provided by Para- 890

Trex, which shows that our proposed datasets have 891

a satisfying agreement with human beings, thus 892

proving the favorable quality of our datasets. 893

B Experiments details and further study 894

B.1 Formal Definitions of Consistency 895

The consistency is calculated as the ratio of consis- 896

tent predictions from different paraphrases with all 897

the paraphrases permutations Elazar et al. (2021); 898

Newman et al. (2022). Formally, given a set of 899

unordered paraphrase pairs Pi of relation ri, con- 900

sisting of n distinct prompts, we have a total of 901
1
2n(n − 1) number of permutations. For the j-th 902

sample in the i-th relation, we define the consis- 903

tency between all paraphrases as: 904

Consistencyj =

∑
pm,pn∈Pi

I[êmij = ênij ]
1
2n(n− 1)

(10) 905

where I is the indicator function, êmij and ênij refer 906

to the predicted entity by PLMs from prompt pm 907

and pn, respectively. 908

We now give the formal definitions of raw- 909

consistency and all-consistency. For the reason 910

of simplicity, we consider the combination of the 911

unique raw prompt template from LAMA, and tem- 912

plates from paraphrased LAMA pm ∈ Pi, get- 913

ting n combinations in total. The consistency be- 914

tween raw prompts and paraphrased prompts (Raw- 915
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Templates inhouse split paraphrase type

The capital of [Y] is [X] . test short paraphrase
[X] is [Y]’s capital . test short paraphrase
[X] serves as [Y]’s capital . test short paraphrase
[Y]’s capital city is [X] . test short paraphrase
[X] acts as [Y]’s capital . test short paraphrase
[X] is the administrative division where the municipality of [Y] serves as the capital . test long paraphrase
The governmental seat of [Y] is located in [X], which is the capital city . test long paraphrase
[X] holds the status of being the capital city and administrative center of [Y] . test long paraphrase
The capital of [Y] is none other than [X], where the government operates . test long paraphrase
The administrative hub of [Y] is [X], which holds the position of being the capital cit . test long paraphrase
[X] is the official capital of [Y] . test normal paraphrase
The capital city of [Y] goes by the name of [X] . test normal paraphrase
[X] is the designated capital city of [Y] . test normal paraphrase
[X] serves as the principal capital city of [Y] . test normal paraphrase
[X] is the administrative capital and governmental seat of [Y] . test normal paraphrase
[X] is the principal administrative center of [Y] . test normal paraphrase
[X] serves as the capital city and governmental hub of [Y] . test normal paraphrase
[X] holds the official status of being [Y]’s capital city . test normal paraphrase
[X] acts as the administrative capital of [Y] . test normal paraphrase
[X] serves as the capital city of [Y] . test normal paraphrase
[X] is the primary governing capital and administrative center of [Y] . test normal paraphrase
[X] is the primary political center of [Y] . test normal paraphrase
[X] holds the title of being [Y]’s capital . test normal paraphrase
[X] serves as the seat of government for [Y] . test normal paraphrase
[X] is the city that serves as [Y]’s capital . test normal paraphrase
The government of [Y] is headquartered in [X], its capital . test normal paraphrase
[X] acts as the political center of [Y] . test normal paraphrase
[X] holds the official position of being [Y]’s capital . train normal paraphrase
[X] serves as the governing center of [Y] . train normal paraphrase
The capital city of [Y] is [X] . train normal paraphrase
[X] is the administrative center of [Y] . train normal paraphrase
The seat of administration in [Y] is [X] . train normal paraphrase
The designated capital city of [Y] is [X] . train normal paraphrase
The governmental headquarters of [Y] is located in [X] . train normal paraphrase
[X] holds the status of being [Y]’s capital . train normal paraphrase
The government of [Y] is headquartered in [X] . train normal paraphrase
[X] is where the governing body of [Y] is located . train normal paraphrase
[X] holds the position of being [Y]’s capital city . train normal paraphrase
[X] holds the official governmental seat and capital status of [Y] . train normal paraphrase
[X] serves as the governing capital of [Y] . train normal paraphrase
The capital city of [Y] is none other than [X] . train normal paraphrase
The political center of [Y] is [X] . train normal paraphrase
The administrative capital of [Y] is [X] . train normal paraphrase
The government headquarters of [Y] can be found in [X] . train normal paraphrase
[X] is where the government of [Y] is based . train normal paraphrase

Table 7: Example for the relation “Capital_of ” in ParaTrex. The original prompt template in LAMA is “[X] is the
capital of [Y] ."
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I got a prompt template for probing factual knowledge from 
language model: "The capital of [X] is [Y] ." , where [X] and 
[Y] are two entities. The description of the template is: 
primary city of a country, state or other type of 
administrative territorial entity. Don't change token [X] and 
[Y], help me generate 40 similar paraphrase as new prompt 
templates and 5 short paraphrase no more than 7 words and 
5 long paraphrase no more than 15 words.  Please do not 
provide repeat answers or include any replies to this query.

Paraphrases (40):
[X]'s main city is [Y].
[X]'s adminstrative center is [Y].
...
Short Paraphrases (5, ≤7 words):
[X]'s capital: [Y].
...
Long Paraphrases (5, ≤15 words):
[Y] holds the central position of being the capital city for [X].
[X] has established [Y] as the primary administrative and 
governmental center. 

GPT-3.5

Query

LAMA
Step 3:

Construct prompts 
generate paraphrases

Step 2: 
Get base pattern:
"The capital of 
[X] is [Y] ."
and description:
“primary city of 
a country, state 
or other type of 
administrative 
territorial entity”

Step 4:
Human filtering:
[X]'s main city is [Y].
[X]'s adminstrative 
center is [Y].

End

Figure 2: Workflow to generate a paraphrased version of prompt templates in ParaTrex. We exemplify it for the
relation ‘capital of’ in LAMA.
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Figure 3: Average pair-wise BLEU between all relations
comparison with ParaRel. ParaTrex gets a consistently
lower score than ParaRel, representing that the templates
in ParaTrex are more lexically and syntactically diverse.

Consistency) will be degraded to:916

Raw-Cstyj =

∑
pm∈Pi,p

I[êij = êmij ]

n
(11)917

Besides, the previous consistency measures only918

look at the matches between predictions and do919

not consider strict factual accuracy. However, fac-920

tual correctness remains a crucial attribute for KBs.921

Thus, we additionally measure the consistency over922

factual correct predictions:923

Acc-Cstyj =

∑
pm,pn∈Pi

I[êmij = ênij = eij ]
1
2n(n− 1)

924

, where eij is the ground truth entity.925
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cos_similarity

ParaTrex

Random

Semantic similarity thourgh neural evaluator

Figure 4: The cosine similarity of the embedding be-
tween the grounding template and the paraphrased tem-
plate. The boxplot shows the comparison between the
random paraphrase sampled from other relations and
the paraphrase in our dataset for 39 relations.

B.2 Training Details 926

We perform all experiments based on BERT-large 927

and RoBERTa-large on the RTX 2080Ti GPUs, 928

which run for about 1 hour to train on one rela- 929

tion. We set the hyperparameter λme, λkld to be 930

0.2. wtrue and wfalse are set to be simply -1 and 931

1. For adapters, we take the hidden state to be 256 932

dimensions. All other hyperparameters (including 933

the random seed) are set as default in (Liu et al., 934

2023b). 935

B.3 Significance Test Details 936

We perform the Paired sample T-test and the 937

Wilcoxon Signed-Ranked test on the results from 938

all 25 relations between adapters and our UniArk to 939

test the significance after performing UniArk. We 940

also apply different seeds (20, 30, 50) and perform 941
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a t-test among the average results to test whether942

the results are significant for different runs. The943

results of the p-values are shown in Table 8, where944

cst refers to the consistency, pt, pr, and lm refer to945

the ParaTrex, ParaRel, and LAMA datasets respec-946

tively.947

Overall, we can observe that the p-values948

of all consistency and out-of-domain f1 scores949

are smaller than 2.5e-2, strongly suggesting that950

UniArk makes significant improvements over the951

baseline adapters both with the normally dis-952

tributed assumption or not. On the contrary, all953

results in the in-domain f1 scores are bigger than954

5e-2, indicating the non-significance of the de-955

crease/increase in in-domain quality. This proves956

that UniArk makes significant improvements over957

the out-of-domain generation and both biases while958

maintaining its performance in the in-domain set-959

tings.960

B.4 Scaling Study961

We want to answer the question of whether the re-962

sults of UniArk are scalable for models with more963

parameters. Figure 5 presents comparison results of964

F1 score, counterfactual accuracy and consistency965

between BERT-base, BERT-large, RoBERTa-base966

and RoBERTa large. The results demonstrate that967

UniArk performs consistently better for both ex-968

traction performance and inherent bias. We also969

observe consistently better results for larger mod-970

els among all settings. We therefore conclude that971

(1) The performance for extracting knowledge and972

bias can be scaled by the size of LMs. (2) The bias973

mitigation and performance boost from the UniArk974

framework can also be observed among all sizes of975

models (3) For bias mitigation, small models are976

able to be more unbiased and robust through the977

UniArk framework.978

B.5 Details for Qualitative Study979

We perform two specific case studies to better un-980

derstand how mitigating the studied biases helps to981

improve the knowledge extraction results. Firstly,982

in Table 10 we present cases showcasing how983

the models make the incorrect prediction due to984

the biased object likelihood. PLMs are asked for985

the official language of a specific item using the986

prompt:“The official language of [sub] is [obj].".987

The last row shows the results for the vanilla LMs988

without being tuned and thus suffering from high989

object likelihood such as English and Spanish. The990

logits of objects English and Spanish of LAMA991

methods are close, showing that the model is not 992

confident with its predictions and may guess from 993

the object likelihood from templates. The SoTA 994

model MeCoD still gives the wrong answer since 995

they apply an unreliable neural gate to automat- 996

ically classify which object to be debiased. For 997

instance, MeCoD successfully smooths the high 998

counterfactual logit for the word English but causes 999

the model to underfit this object so that it cannot 1000

recall the correct object Italian and thus make an 1001

incorrect prediction with a high logit. In contrast, 1002

UniArk is capable of making accurate predictions 1003

with higher logits while having an unbiased pre- 1004

diction distribution under subject-masked inputs, 1005

showing that UniArk provides more confident an- 1006

swers without the impact of the prior distribution 1007

from prompt templates. 1008

Table 9 presents an example of the consistency 1009

study. We provide an instance where adapter- 1010

tuning and UniArk are both correct on the orig- 1011

inal prompts. We randomly sample several para- 1012

phrased cases from ParaTrex. The results suggest 1013

that the baseline fails to produce correct answers 1014

when meeting syntactically and lexically diverse 1015

prompt templates. The second and fourth rows of 1016

paraphrased prompt templates are examples for the 1017

different syntic variants while the first and the last 1018

rows of paraphrased templates show more lexically 1019

complicated prompts. Our UniArk model gives 1020

mostly consistent outputs in those cases, although 1021

it may make some mistakes. Additionally, we can 1022

observe from the results that UniArk maintains a 1023

robust behaviour on outputting language objects 1024

instead of stopwords like “it”. This shows that the 1025

UniArk models are more robust on various prompt 1026

templates after debiasing. 1027

B.6 Details for the Error Analysis 1028

To have a comprehensive understanding of what 1029

kinds of errors UniArk made, we random sample 1030

50 wrong predictions among 4283 error samples 1031

in relation P37 “Official_Languages”. Results are 1032

shown in Table 11. 1033
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Figure 5: Sscaling results between adapters and UniArk with different scales of models.

Paired T-test ood_f1_pt ood_f1_pr all_cst_pt all_cst_pr acc_cst_pt acc_cst_pr id_lm_f1

BERT 1.36e-04 3.19e-03 1.26e-06 7.82e-06 2.40e-05 6.20e-05 6.26e-01
RoBERTa 7.35e-04 9.39e-03 2.19e-03 1.69e-04 7.28e-03 2.92e-03 4.61e-01

Wil rank Test

BERT 1.83e-05 3.78e-03 1.19e-07 4.17e-07 2.56e-06 8.34e-07 5.37e-02
RoBERTa 7.50e-05 1.15e-02 2.17e-04 1.51e-05 2.87e-04 3.29e-04 5.65e-02

T-Test

BERT 1.06e-04 4.80e-03 6.13e-04 5.02e-04 6.09e-05 2.73e-04 5.03e-02
RoBERTa 1.48e-03 1.23e-02 5.21e-03 3.63e-03 1.16e-03 1.09e-03 6.65e-02

Table 8: Significance test between adapter baseline and UniArk over 41 relations for f1 score and 25 relations for
consistency (cst) on ParaTrex (pt) and ParaRel (pr).

Inputs (Subject: Vesanto, Object: Finnish) Predictions

Type Prompt template Adapter-Tuning UniArk

raw The official language of [X] is [MASK]. Finnish Finnish

paraphrased

[X] designates [MASK] as the official language . Italian Finnish
[X] has [MASK] as its official language . It Finnish
[MASK] has been declared as the recognized language in [X] . Finland Finnish
In [X], [MASK] is acknowledged as the prescribed language by the government. It Finland
The officially recognized language in [X] is [MASK] . Italian Italian
[X] recognizes [MASK] as its official language . Italian Finnish

Table 9: LM prediction examples from the raw inputs in LAMA and the diverse paraphrased prompts in ParaTrex.

Method Input Subject=“Sorengo”

Top 1 Top 2 Top 3

UniArk
raw Italian Finnish Swedish

0.1213 0.1152 0.1125
subject
masked

Polish German Greek
0.0423 0.0421 0.0421

MeCoD
raw Finnish Swedish Norwegian

0.1322 0.1232 0.1041
subject
masked

French Danish Armenian
0.1153 0.1051 0.0995

LAMA
raw Portuguese English Spanish

0.116 0.1146 0.1125
subject
masked

English French Spanish
0.1111 0.1079 0.1016

Table 10: Case study on top-3 objects and their logits extracted by LMs through the original prompt template.
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Error Type N Example

Subject Prompt Golden Prediction

Unknown Case 23 Azad Kashmir Azad Kashmir bestows official language status upon [Y] . Urdu English
Spelling Error 2 Melitopol [Y] holds the official language designation of Melitopol . Ukrainian Ukraine
Pronouns 4 Malax [Y] is officially recognized as the language of [X] . Finnish It
Multiple Correct Answers 21 ASEAN The designated official language of ASEAN is [Y] . Thai Indonesia

Table 11: Types of errors appeared in UniArk on LAMA and ParaTrex test datasets

In the following questions, we provide 1 original input and 3 probable paraphrases. Please
choose the sentances you think that are NOT paraphrases of the original inputs. For example,
please answer 1-1 if you think the first sentance of the first question is NOT the paraphrase
of the orignal sentance. Please answer 1-0 if you think all candidates of the first question are
the paraphrase of the question.

Note that there may be several or no answer for a certain question.

You can use translation machine to translate a certain word if you do not understand it. But
please write answers based on your own understanding. DO NOT translate the whole
sentance and make predictions using automatic machines!

1: Original sentence: "[X] died in [Y] ."
Example: "Otto Brahm died in Berlin . || Nicholas V died in Rome ."
Example [X]: "Otto Brahm || Berlin"
Example [Y]: "Nicholas V || Rome"
Description: "most specific known (e.g. city instead of country, or hospital instead of city)
death location of a person, animal or fictional character"
Paraphrase candidates:
1. The final moments of [X] took place in [Y] .
2. [Y] was the means of expression for [X] .
3. [X]'s passing occurred in [Y] .
Ans:

2: Original sentence: "[X] is a subclass of [Y] ."
Example: "quarter note is a subclass of note . || Doublecortin is a subclass of protein ."
Example [X]: "quarter note || note"
Example [Y]: "Doublecortin || protein"
Description: "all instances of these items are instances of those items; this item is a class
(subset) of that item. Not to be confused with P31 (instance of)"
Paraphrase candidates:
1. [X] is an offshoot of [Y] .
2. [X] used [Y] as their language of interaction .
3. [X] is grouped within [Y] .
Ans:

Figure 6: Example of the questions for human evaluation
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