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Abstract

Regret minimization has played a key role in online learning, equilibrium
computation in games, and reinforcement learning (RL). In this paper,
we describe a general model-free RL method for no-regret learning based
on repeated reconsideration of past behavior: Advantage Regret-Matching
Actor-Critic (ARMAC). Rather than saving past state-action data, AR-
MAC saves a buffer of past policies, replaying through them to reconstruct
hindsight assessments of past behavior. These retrospective value estimates
are used to predict conditional advantages which, combined with regret
matching, produces a new policy. In particular, ARMAC learns from sam-
pled trajectories in a centralized training setting, without requiring the
application of importance sampling commonly used in Monte Carlo counter-
factual regret (CFR) minimization; hence, it does not suffer from excessive
variance in large environments. In the single-agent setting, ARMAC shows
an interesting form of exploration by keeping past policies intact. In the
multiagent setting, ARMAC in self-play approaches Nash equilibria on
some partially-observable zero-sum benchmarks. We provide exploitability
estimates in the significantly larger game of betting-abstracted no-limit
Texas Hold’em.

1 Introduction

The notion of regret is a key concept in the design of many decision-making algorithms.
Regret minimization drives most bandit algorithms, is often used as a metric for performance
of reinforcement learning (RL) algorithms, and for learning in games (3). When used in
algorithm design, the common application is to accumulate values and/or regrets and derive
new policies based on these accumulated values. One particular approach, counterfactual
regret (CFR) minimization (35), has been the core algorithm behind super-human play in
Computer Poker research (4; 25; 6; 8). CFR computes an approximate Nash equilibrium by
having players minimize regret in self-play, producing an average strategy that is guaranteed
to converge to an optimal solution in two-player zero-sum games and single-agent games.

We investigate the problem of generalizing these regret minimization algorithms over large
state spaces in the sequential setting using end-to-end function approximators, such as
deep networks. There have been several approaches that try to predict the regret, or
otherwise, simulate the regret minimization: Regression CFR (RCFR) (34), advantage
regret minimization (17), regret-based policy gradients (30), Deep Counterfactual Regret
minimization (5), and Double Neural CFR (22). All of these approaches have focused either
on the multiagent or single-agent problem exclusively, some have used expert features, while
others tree search to scale. Another common approach is based on fictitious play (15; 16;
21; 24), a simple iterative self-play algorithm based on best response. A common technique
is to use reservoir sampling to maintain a buffer that represents a uniform sample over
past data, which is used to train a classifier representing the average policy. In Neural
Fictitious Self-Play (NFSP), this produced competitive policies in limit Texas Hold’em (16),
and in Deep CFR this method was shown to approach an approximate equilibrium in a large
subgame of Hold’em poker. A generalization of fictitious play, policy-space response oracles
(PSRO) (21), stores past policies and a meta-distribution over them, replaying policies
against other policies, incrementally adding new best responses to the set, which can be
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seen as a population-based learning approach where the individuals are the policies and
the distribution is modified based on fitness. This approach only requires simulation of the
policies and aggregating data; as a result, it was able to scale to a very large real-time strategy
game (33). In this paper, we describe an approximate form of CFR in a training regime that
we call retrospective policy improvement. Similar to PSRO, our method stores past policies.
However, it does not store meta-distributions or reward tables, nor do the policies have
to be approximate best responses, which can be costly to compute or learn. Instead, the
policies are snapshots of those used in the past, which are retrospectively replayed to predict
a conditional advantage, which used in a regret matching algorithm produces the same
policy as CFR would do. In the single-agent setting, ARMAC is related to Politex (1),
except that it is based on regret-matching (14) and it predicts average quantities rather than
explicitly summing over all the experts to obtain the policy. In the multiagent setting, it is a
sample-based, model-free variant of RCFR with one important property: it uses trajectory
samples to estimate quantities without requiring importance sampling as in standard Monte
Carlo CFR (20), hence it does not suffer from excessive variance in large environments. This
is achieved by using critics (value estimates) of past policies that are trained off-policy using
standard policy evaluation techniques. In particular, we introduce a novel training regime
that estimates a conditional advantageWi(s, a), which is the cumulative counterfactual regret
Ri(s, a), scaled by factor B(s) that depends on the information state s only; hence, using
regret-matching over this quantity yields the policy that CFR would compute when applying
regret-matching to the same (unscaled) regret values. By doing this entirely from sampled
trajectories, the algorithm is model-free and can be done using any black-box simulator of
the environment; hence, ARMAC inherits the scaling potential of PSRO without requiring
a best-response training regime, driven instead by regret minimization.

Problem Statement. CFR is a tabular algorithm that enumerates the entire state space,
and has scaled to large games through domain-specific (hand-crafted) state space reductions.
The problem is to define a model-free variant of CFR using only sampled trajectories and
general (domain-independent) generalization via functional approximation, without the use of
importance sampling commonly used in Monte Carlo CFR, as it can cause excessive variance
in large domains.

2 Background

In this section, we describe the necessary terminology. Since we want to include the (partially-
observable) multiagent case and we build on algorithms from regret minimization we use
extensive-form games notations (29). A single-player game represents the single-agent case
where histories are aggregated appropriately based on the Markov property.

A game is a tuple (N ,A,S,H,Z, u, τ), where N = {1, 2, · · · , n} is the set of players. By
convention we use i ∈ N to refer to a player, and −i for the other players (N − {i}). There
is a special player c called chance (or nature) that plays with a fixed stochastic strategy
(chance’s fixed strategy determines the transition function). A is a finite set of actions. Every
game starts in an initial state, and players sequentially take actions leading to histories
of actions h ∈ H. Terminal histories, z ∈ Z ⊂ H, are those which end the episode. The
utility function ui(z) denotes the player i′s return over episode z. The set of states S is a
partition of H where histories are grouped into information states s = {h, h′, . . .} such
that the player to play at s, τ(s), cannot distinguish among the possible histories (world
states) due to private information only known by other players 1. Let ∆(X) represent all
distributions over X: each player’s (agent’s) goal is to learn a policy πi : Si → ∆(A), where
Si = {s | s ∈ S, τ(s) = i}. For some state s, we denote A(s) ⊆ A as the legal actions at
state s, and all valid state policies π(s) assign probability 0 to illegal actions a 6∈ A(s).

We now show a diagram to illustrate the key ideas. Kuhn poker, shown in Figure 1 is a
poker game with a 3-card deck: Jack (J), Queen (Q), and King (K). Each player antes a
single chip and has one more chip to bet with, then gets a single priavte card at random
and one is left face down, and players proceed to bet (b) or pass (p). Initially the game

1Information state is the belief about the world that a given player can infer based on her limited
observations and may correspond to many possible histories (world states)
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starts in the empty history h0 = ∅ where no actions have been taken, and it is chance’s turn
to play. Suppose chance samples, according to a fixed distribution, one of its six actions,
which corresponding to one of the size-2 permutations of deals (one card to each player).
For example, suppose outcome 1Q2J is sampled, corresponding to the first player getting
the queen and second player getting the jack. This would correspond to a new history
h = (1Q2J). Label the information state corresponding to this history as s depicted by the
grey joined circles: h′ = (1Q2K). At this information state s = {h, h′}, it is the fist player’s
turn (τ(s) = 1) and it includes every history consistent with their information (namely, that
they were dealt the jack).

Figure 1: A part of Kuhn poker. Terminal utilities shown for the first player.

The legal actions are now A(s) = {p, b}. Suppose the first player chooses p and the second
player chooses b, then the history is part of s′, the second information state shown in the
figure. Finally, suppose the first player chooses to bet (call), then the first player would win
gaining 2 chips since they have the higher ranking card. Each player i’s goal is to compute πi
that achieves maximal reward in expectation, where the expectation is taken over all players’
policies, even though player i controls only their own policy. Hence, ideally, the player would
learn a safe policy that guarantees the best worst-case scenario.

Let π denote a joint policy. Define the state-value vπ,i(s) as the expected (undiscounted)
return for player i given that state s is reached and all players follow π. Let qπ,i be defined
similarly except also conditioned on player τ(s) taking action a at s. Formally, vπ,i(s) =∑

(h,z)∈Z(s) η
π(h|s)ηπ(h, z)ui(z), where Z(s) are all terminal histories paired with their

prefixes that pass through s, ηπ(h|s) = ηπ(h)
ηπ(s) , where η

π(s) =
∑
h′∈s η

π(h′), and ηπ(h, z) is
the product of probabilities of each action taken by the players’ policies along h to z. The state-
action values qπ,i(s, a) are defined analogously. Standard value-based RL algorithms estimate
these quantities for policy evaluation. Regret minimization in zero-sum games uses a different
notion of value, the counterfactual value: vcπ,i(s) =

∑
(h,z)∈Z(s) η

π
−i(h)ηπ(h, z)ui(z), where

ηπ−i(h) is the product of opponents’ policy probabilities along h. We also write ηπi (h) the
product of player i’s own probabilities along h. Under the standard assumption of perfect
recall, we have that for any h, h′ ∈ s, ηπi (h) = ηπi (h′). Thus counterfactual values are formally
related to the standard values (30): vπ,i(s) =

vcπ,i(s)

β−i(π,s)
, where β−i(π, s) =

∑
h∈s η

π
−i(h). Also,

qcπ,i(s, a) is defined similarly except over histories (ha, z) ∈ Z(s), where ha is history h
concatenated with action a.

Counterfactual regret minimization (CFR) is a tabular policy iteration algorithm that
has facilitated many advances in Poker AI (35). On each iteration t, CFR computes
counterfactual values qcπ,i(s, a) and vcπ,i(s) for each state s and action a ∈ A(s) and the
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regret of not choosing action a (or equivalently the advantage of choosing action a at state s,
rt(s, a) = qcπt,i(s, a)− vcπt,i(s). CFR tracks the cumulative regrets for each state and action,
RT (s, a) =

∑T
t=1 r

t(s, a). Define (x)+ = max(0, x); regret-matching then updates the policy
of each action a ∈ A(s) as follows (14):

πT+1(s, a) = NormalizedReLU(RT , s, a) =

{
RT,+(s,a)∑

b∈A(s) R
T,+(s,b)

if
∑
b∈A(s)R

T,+(s, b) > 0
1

|A(s)| otherwise
,

(1)
In two-player zero-sum games, the mixture policy π̄T converges to the set of Nash equilibria
as T →∞.

Traditional (off-policy) Monte Carlo CFR (MCCFR) is a generic family of sampling vari-
ants (20). In outcome sampling MCCFR, a behavior policy µi is used by player i, while
players −i use π−i, a trajectory ρ ∼ (µi, π−i) is sampled, and the sampled counterfactual
value is computed:

q̃cπ,i(s, a | ρ) =
1

η
(µi,π−i)
i (z)

η
(µi,π−i)
i (ha, z)ui(z), (2)

if (s, a) ∈ ρ, or 0 otherwise. q̃cπ,i(s, a | ρ) is an unbiased estim. of qcπ,i(s, a) (20, Lemma 1).

However, since these quantities are divided by η(µ,π−i)i (z), the product of player i’s probabil-
ities, (i) there can be significant variance introduced by sampling, especially in problems
involving long sequences of decisions, and (ii) the ranges of the ṽci can vary wildly (and
unboundedly if the exploration policy is insufficiently mixed) over iterations and states,
which could make approximating the values in a general way particularly challenging (34).
Deep CFR and Double Neural CFR are successful large-scale implementations of CFR with
function approximation, and they get around this variance issue by using external sampling
or a robust sampling technique, both of which require a perfect game model and enumeration
of the tree. This is unfeasible in very large environments or in the RL setting where full
trajectories are generated from beginning to the end without having access to a generative
model which could be used to generate transitions from any state.

2.1 Equilibria, Exploitability, and NashConv

In two-player zero-sum games (and, trivially, single-agent games) a Nash equilibrium policy is
optimal because it maximizes a player’s worst-case payoff (29). Success in Poker AI, leading
to super-human ability, has largely been driven by computing approximate equilibria and
playing the strategies against humans.

A Nash equilibrium is a joint policy π∗ = (π∗1 , π
∗
2) such that no player has incen-

tive to deviate from their respective policy because there is no policy that can achieve
higher utility against the opponent’s policy. A best response for player i is bi(π−i) =
argmaxπ′i ui(π

′
i, π−i). Finally define player i’s incentive to deviate (to a best response) as

δi(π) = ui(bi(π−i), π−i)− ui(π). Then, π is a Nash equilibrium if and only if deviating to a
best response does not raise a player’s utility:

∀i, δi(π) = 0.

Here, the zero on the right-hand side represents not having any incentive to deviate. However,
how about if there is a small amount of incentive? The definition naturally extends to the
approximate case where the right-hand size is non-zero. An empirical metric to compute
how far an aribtrary policy is to a Nash equilibrium is then the sum over players:

NashConv(π) =
∑
i

δi(π) ≥ 0.

Note that the maximal value for NashConv is twice the utility range (this would occur if
each player uses a policy achieving the minimum utility, and there exists a best response
which gets the maximum utility). In the poker literature there is a commonly metric called
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exploitability which computes the average rather than the sum: Exploitability(π) =∑
i δi(π)

2 .

These metrics measure the empirical distance to equilibrium over time leading to an assessment
of an algorithm’s convergence rate in practice.

3 The Advantage Regret-Matching Actor-Critic

Algorithm 1: Advantage Regret-Matching Actor-Critic

input : initial set of parameters θ0, num. players n
Set initial learning player i← 1
for epoch t ∈ {0, 1, 2, · · · } do

reset D ← ∅
Let πt(s) = NormalizedReLU(W̄θt(s))
Let vθt(h) =

∑
a∈A(h) π

t(h, a)qθt(h, a)

Let µti be a behavior policy for player i
for episode k ∈ {1, . . . ,Kact} do

i← (i+ 1) mod n
Sample j ∼ Unif({0, 1, · · · , t− 1})
Sample trajectory ρ ∼ (µi, π

j
−i)

let d← (i, j, {ui(ρ)}i∈N )
for history h ∈ ρ where player i acts do

let s be the state containing h
let ~r = {qθj (h, a′)− vθj (h)}a′∈A(s)

let a be the action that was taken in ρ
append (h, s, a, ~r, πj(s)) to d

end
add d to D

end
for learning step k ∈ {1, . . . ,Klearn} do

Sample a random episode/batch d ∼ Unif(D):
for history and corresponding state (h, s) ∈ d
do
Use TB(λ) to train critic qθt(h, a)

If τ(s) = i: train W̄θt to predict A(h, a)
If τ(s) ∈ −i: train π̄θt to predict πt(s)

end
end
Save θt for future retrospective replays; θt+1 ← θt

end

ARMAC is a model-free RL al-
gorithm motivated by CFR. Like
algorithms in the CFR framework,
ARMAC uses a centralized train-
ing setup and operates in epochs
that correspond to CFR iterations.
Like RCFR, ARMAC uses func-
tion approximation to generate
policies. ARMAC was designed
so that as the number of sam-
ples per epoch increases and the
expressiveness of the function ap-
proximator approaches a lookup ta-
ble, the generated sequence of poli-
cies approaches that of CFR. In-
stead of accumulating cumulative
regrets– which is problematic for
a neural network– the algorithm
learns a conditional advantage es-
timate W̄ (s, a) by regression to-
ward a history-dependent advan-
tage A(h, a), for h ∈ s, and uses
it to derive the next set of joint
policies that CFR would produce.
Indeed we show that W̄ (s, a) is an
estimate of the cumulative regret
R(s, a) up to a multiplicative fac-
tor which is a function of the infor-
mation state s only, and thus can-
cels out during the regret-matching
step. ARMAC is a Monte Carlo
algorithm in the same sense as MC-
CFR: value estimates are trained
from full episodes. It uses off-policy
learning for training the value esti-
mates (i.e. critics), which we show
is sufficient to derive W̄ . However,
contrary to MCCFR, it does not use importance sampling. ARMAC is summarized in
Algorithm 1.

ARMAC runs over multiple epochs t and produces a joint policies πt+1 at the end of
each epoch. Each epoch starts with an empty data set D and simulates a variety of
joint policies executing multiple training iterations of relevant function approximators.
ARMAC trains several estimators which can be either heads on the same neural network,
or separate neural networks. The first one estimate the history-action values qπt,i(h, a) =∑
z∈Z(h,a) η

πt(h, z)ui(z). This estimator2 can be trained on all previous data by using

2In practice, rather than using h as input to our approximators, we use a concatenation of all
players’ observations, i.e. an encoding of the augmented information states or action-observation
histories (9; 18). In some games this is sufficient to recover a full history. In others there is hidden
state from all players, we can consider any chance event to be delayed until the first observation
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any off-policy policy evaluation algorithm from experiences stored in replay memory (we
use Tree-Backup(λ) (26)). If trained until zero error, this quantity would produce the
same history value estimates as recursive CFR computes in its tree pass. Secondly, the
algorithm also trains a state-action network W̄ t

i (s, a) that estimates the expected advantage
Aµt,i(h, a) = qµt,i(h, a)− vµt,i(h) conditioned on h ∈ s when following some mixture policy
µt (which will be precisely defined in Section B). It happens that W̄ t

i (s, a) is an estimate
of the cumulative regret Rt(s, a) multiplied by a (non-negative) function which depends
on the information state s only, thus does not impact the policy improvement step by
regret-matching (see Lemma 1). Once W̄ t

i (s, a) is trained, the next joint policy πt+1(s, a)
can be produced by normalizing the positive part as in Eq. 1. After each training epoch the
joint policy πt is saved into a past policy reservoir, as it will have to be loaded and played
during future epochs. Lastly, an average policy head π̄t is also trained via a classification
loss to predict the policy πt

′
over all time steps t′ ≤ t. We explain its use in Section 4.

Using a history-based critic allows ARMAC to avoid using importance weight (IW) based off-
policy correction as is the case in MCCFR, but at the cost of higher bias due to inaccuracies
that the critic has. Using IW may be especially problematic for long games. For large games
the critic will inevitably rely on generalization to produce history-value estimates.

To save memory, reservoir sampling with buffer of size of 1024 was used to prune past policies.

The algorithm also works in a single agent case by treating all opponent reach probabilities
as 1. More details and results are given in Appendix in Sections C.1 and D.

Our main theoretical result is that ARMAC learns a function WT which is a stand-in
replacement for the cumulative regrets of CFR, RT . See Appendix B for an analysis of
ARMAC’s theoretical properties.

A worked out example is given in Appendix in Section A.

3.1 Adaptive Policy Selection

(a) Goofspiel (b) Leduc Poker (c) Liars Dice

Figure 2: An average reward per modulations scored against opponent π̄t as a function of time
(measured in acting steps). The brown curve is a random uniform policy (i). Cyan, orange and blue
are (ii) with ε ∈ 0.0, 0.01, 0.05 respectively. Pink, green and yellow are (iii) with ε ∈ 0.0, 0.01, 0.05.

ARMAC dynamically switches between what policy to use based on estimated returns.
For every t there is a pool of candidate policies, all based on the following four policies:
(i) random uniform policy. (ii) several policies defined by applying Eq 1 over the current
epoch’s regret only (qθt(h, a)− vθt(h)), with different levels of random uniform exploration:
ε ∈ 0.0, 0.01, 0.05 . (iii) several policies defined by the mean regret, πt as stated in Algorithm 1,
also with the same level of exploration. (iv) the average policy π̄t trained via classification.
ARMAC generates experiences using those policies is to facilitate the problem of exploration
and to help produce meaningful data at initial stages of learning before average regrets

of its effects by any of the players in the game. Thus, the critics represent an expectation over
those hidden outcomes. Since this does not affect the theoretical results, we choose this notation for
simplicity. Importantly, ARMAC remains model-free: we never enumerate chance moves explicitly
nor evaluate their probabilities which may be complex for many practical applications.
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are learnt. Each epoch, the candidate policies are ranked by cumulative return against an
opponent playing π̄θt . The one producing highest rewards is used half of the times. When
sub-optimal policies are run for players −i, they are not used to train mean regrets for player
i, but are used to train the critic. Typically, (ii) produces the best policy initially and allows
to bootstrap the learning process with the best data (Fig. 2). In later stages of learning, (iii)
with the smallest of ε yields better policies and gets consistently picked over other policies.
The more complex the game is, the longer it takes for (iii) to take over (ii).

Exploratory policy µTi is constructed by taking the most recent neural network with 50%
probability or otherwise sampling one of the past neural networks uniformly and modulating
it by the above described method.

3.2 Network architecture

ARMAC can be used with both feed-forward (FF) and recurrent neural networks (RNN)
(Fig. 6(a)). For small games where information states can be easily represented, FF networks
were used. For larger games, where consuming observations rather than information states is
more natural, RNNs were used. More details can be found in Appendix in Section F.

4 Empirical Evaluation

For partially-observable multiagent environments, we investigate Imperfect Information (II-)
Goofspiel, Liar’s Dice, and Leduc Poker and betting-abstracted no-limit Texas Hold’em poker
(in Section 4.1). Goofspiel is a bidding card game where players spend bid cards collect
points from a deck of point cards. Liar’s dice is a 1-die versus 1-die variant of the popular
game where players alternate bidding on the dice values. Leduc poker is a two-round poker
game with a 6-card deck, fixed bet amounts, and a limit on betting. Longer descriptions
of each games can be found in (24). We use OpenSpiel (19) implementations with default
parameters for Liar’s Dice and Leduc poker, and a 5-card deck and descending points order
for II-Goofspiel. To show empirical convergence, we use NashConv, the sum over each
player’s incentive to deviate to their best response unilaterally (21), which can be interpreted
as an empirical distance from Nash equilibrium (reaching Nash at 0).

104 105 106 107

Episodes

100

Na
sh

Co
nv

0.49

0.18

Leduc poker 2p
MCRCFR
NFSP

(a) Leduc baselines.

104 105 106 107

Episodes

100

0.58

0.13

Goofspiel 2p
MCRCFR
NFSP

(b) Goofspiel baselines.

104 105 106 107

Episodes

100

3 × 10 1

4 × 10 1

6 × 10 1

0.69

0.28

Liars dice 2p
MCRCFR
NFSP

(c) Liars Dice baselines.

Figure 3: NFSP and MC-RCFR on the Leduc Poker, II-GoofSpiel with 5 cards and Liars Dice

We compare empirical convergence to approximate Nash equilibria using a model-free sampled
form of regression CFR (34) (MC-RCFR). Trajectories are obtained using outcome sampling
MCCFR (20), which uses off-policy importance sampling to obtain unbiased estimates of
immediate regrets r̂, and average strategy updates ŝ, and individual (learned) state-action
baselines (27) to reduce variance. A regressor then predicts ˆ̄R and a policy is obtained
via Eq. 1, and similarly for the average strategy. Each episode, the learning player i plays
with an ε-on-policy behavior policy (while opponent(s) play on-policy) and adds every
datum (s, r̂, π( ˆ̄R)) to a data set, D, with a retention rule based on reservoir sampling so
it approximates a uniform sample of all the data ever seen. MC-RCFR is related, but not
equivalent to, a variant of DeepCFR (5) based on outcome sampling (OS-DeepCFR) (31).
Oufar results differ significantly from the OS-DeepCFR results reported in (31), and we
discuss differences in assumptions and experimental setup from previous work in Appendix C.
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(a) NashConv on Leduc Poker (b) NashConv on Goofspiel. (c) NashConv on Liars Dice

Figure 4: ARMAC results on Leduc, II-Goofspiel, and Liar’s Dice. The y-axis is NashConv of the
average strategy π̄t. The x-axis is number of epochs. One epoch consists of 100 learning steps. Each
learning step processes 64 trajectories of length 32 sampled from replay memory. The final value
reached by the best runs are 0.18 (Leduc), 0.5 (II-Goofspiel), and 0.095 (Liar’s Dice).

As with ARMAC, the input is raw bits with no expert features. We use networks with
roughly the same number of parameters as the ARMAC experiments: feed-forward with
4 hidden layers of 128 units with concatenated ReLU (28) activations, and train using the
Adam optimizer. We provide details of the sweep over hyper-parameters in Appendix C.

Next we compare ARMAC to NFSP (16), which combines fictitious play with deep neural
network function approximators. Two data sets, DRL and DSL, store transitions of sampled
experience for reinforcement learning and supervised learning, respectively. DRL is a sliding
window used to train a best response policy to π̄−i via DQN. DSL uses reservoir sampling
to train π̄i, an average over all past best response policies. During play, each agent mixes
between its best response policy and average policy. This stabilizes learning and enables
the average policies to converge to an approximate Nash equilibrium. Like ARMAC and
MC-RCFR, NFSP does not use any expert features.

Convergence plots for MC-RCFR and NFSP are shown in Figure 3, and for ARMAC in
Figure 4. NashConv values of ARMAC are lower (Liar’s Dice) and higher (Goofspiel)
than NFSP, but significantly lower than MC-RCFR in all cases. MC-RCFR results are
consistent with the outcome sampling results in DNCFR (22). Both DNCFR and Deep CFR
compensate for this problem by instead using external and robust sampling, which require a
forward model. So, next we investigate the performance of ARMAC in a much larger game.

4.1 No-Limit Texas Hold’em

Figure 5: ARMAC results in No-Limit Texas Hold’em trained with FCPA action abstraction
evaluated using LBR-FC metric. The y-axis represents the amount LBR-FC wins agains the
ARMAC-trained policy. The x-axis indicate days of training. The left graph shows the learning
curve in a linear scale, while the right one shows the same curve in a log-log scale.

We ran ARMAC on no-limit Texas Hold’em poker, using the common { Fold, Call, Pot,
All-in } (FCPA) action/betting abstraction. This game is orders of magnitude larger than
games used above (≈ 4.42 · 1013 information states). Action abstraction techniques were
used by all of the state-of-the-art Poker AI bots up to 2017. Modern search-based techniques
of DeepStack (25) and Libratus (6) still include action abstraction in the search tree.
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Computing the NashConv requires traversing the whole game and querying the network
at each information state. This becomes infeasible for large games. Instead, we use local
best-response (LBR) (23). LBR is an exploiter agent that produces a lower-bound on the
exploitability: given some policy π−i it does a shallow search using the policy at opponent
nodes, and a poker-specific heuristic evaluation at the frontier of the search. LBR found
that previous competition-winning abstraction-based Poker bots were far more exploitable
than first expected. In our experiments, LBR was limited to the betting abstractions:
FCPA, and FC. We used three versions of LBR: LBR-FCPA, which uses all 4 actions
within the abstraction, LBR-FC, which uses a more limited action set of { Fold, Call } and
LBR-FC12-FCPA34 which uses { Fold, Call } for the first two rounds and FCPA for the rest.

We first computed the average return that an ARMAC-trained policy achieves against
uniform random. Over 200000 episodes, the mean value was 516 (chips) ± 25 (95% c.i.).
Similarly, we evaluated the policy against LBR-FCPA; it won 519 ± 81 (95% c.i.) per episode.
Hence, LBR-FCPA was unable to exploit the policy. ARMAC also beat LBR-FC12-FCPA34
by 867 ± 87 (95% c.i.) . Interestingly, ARMAC learned to beat those two versions of LBR
surprisingly quickly. A randomly initialized ARMAC network lost against LBR-FCPA by
-704 ± 191 (95% c.i.) and against LBR-FC12-FCPA34 by -230 ± 222 (95% c.i.), but was
beating both after a mere 1 hour of training by 561 ± 163 (95% c.i.) and 427 ± 140 (95%
c.i.) respectively ( 3 million acting steps, 11 thousand learning steps).

Counter-intuitively, ARMAC was exploited by LBR-FC which uses a more limited action set.
ARMAC scored -46 ± 26 (95% c.i.) per episode after 18 days of training on a single GPU, 1.3
billion acting steps (rounds), 5 million learning steps, 50000 CFR epochs (Figure 5). To the
best of our knowledge, this is the first time LBR has been used to approximate exploitability
in any form of no-limit Texas Hold’em among this class of algorithms.

5 Conclusion and Future Work

ARMAC was demonstrated to work on both single agent and multi-agent benchmarks. It is
brings back ideas from computational game theory to address exploration issues while at the
same time being able to handle learning in non-stationary environments. As future work, we
intend to apply it to more general classes of multiagent games; ARMAC has the appealing
property that it already stores the joint policies and history-based critics, which may be
sufficient for convergence one of the classes of extensive-form correlated equilibria (10; 12; 11).
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Appendices

A Worked-out Example

We now show an example of how ARMAC works on the simple game of Kuhn poker, shown
in Figure 1.

Suppose ARMAC has already run for t = 50 epochs, so 50 networks have been saved,
and the exploring player is the first player i = 1. The first player uses an exploratory
behavior policy µti as described above. The second player uses network j = 17 sampled from
Unif({0, 1, · · · , 49}). For this episode, chance samples 1Q2K. This happens with probability
one sixth, so η−i(h) = 1

6 (chance is always seen as an opponent with a fixes policy) whereas
player 1 has not taken any actions so ηi(h) = 1. Along this episode ρ, the first player samples
actions according to µi and the second player according to π17

−i. Suppose then player 1
samples bet and player 2 samples bet (call) leading to u1(ρ) = −2 for player 1 and u2(ρ) = 2
for player 2. There are two histories traversed, call them h and h′ respectively. For each one,
the regret vectors ~r are determined by the critics qθj (h, a′)− vθj (h), where a′ is one the two
legal actions. Trajectory ρ is added to the buffer D and many similar episodes take place.

Finally, in the learning phase: ARMAC uses all the data collected to train the critics using
standard `2 regression losses on the TD error defined by TB(λ); all the data can be used
because TB is off-policy, allowing the exploratory behavior µ50

i . Suppose examples from the
first trajectory ρ are sampled: only data from the first player (history h) are used to train
W̄θt on the advantage A(h, a) using standard regression loss; this is because to asymptotically
approach CFR only the exploring player can train regrets leading to a scaling constant that
is a function only of the information state (for more detail, see Appendix B). Finally, only
the second player’s actions are used to train the average network π̄ using a classification loss,
as the second player in ρ was playing according to CFR’s average policy across 50 epochs
(due to sampling j uniformly and then playing πj−i without exploration).

B Theoretical Properties

Each epoch t estimates qπt,i(h, a) =
∑
z∈Z(h,a) η

πt(h, z)ui(z) and value vπt,i(h) =∑
a π

t(h, a)qπt,i(h, a) for the current policies (πt). Let us write the advantages Aπt,i(h, a) =
qπt,i(h, a)− vπt,i(h). Notice that we learn functions of the history h and not state s.

At epoch T , in order to deduce the next policy, πT+1, CFR applies regret-matching using
the cumulative counterfactual regret RTi (s, a). As already discussed, directly estimating
RTi using sampling suffers from high variance due to the inverse probability η(µ,π−i)i (z) in
(2). Instead, ARMAC trains a network W̄T

i (s, a) that estimates a conditional advantage
along trajectories generated in the following way: For player i we select a behavior policy
µTi providing a good state-space coverage, e.g. a mixture of past policies (πti)t≤T , with some
added exploration (Section 3.1 provides more details). For the other players −i, for every
trajectory, we choose one of the previous opponent policies πj−i played at some epoch j

chosen uniformly at random from {1, 2, · · ·T}. Thus at epoch T , several trajectories ρj are
generated by following policy (µTi , π

j
−i), where j ∼ U({1, 2, · · ·T}).

Then at each step (h, a) along these trajectory ρj , the neural network estimate W̄T
i (s, a)

(where s 3 h) is trained to predict the advantage Aπj ,i(h, a) using the empirical `2 loss:
L̂ =

[
W̄T
i (s, a)−Aπj ,i(h, a)

]2. Thus the corresponding average loss is

L =
1

T

T∑
j=1

Eρj∼(µTi ,πj−i)
[
L̂
]

=
1

T

T∑
j=1

∑
s∈Si

∑
h∈s

η(µ
T
i ,π

j
−i)(h)µTi (s, a)

[
W̄T
i (s, a)−Aπj ,i(h, a)

]2
.

If the network has sufficient capacity, it will minimize this average loss, and W̄T
i (s, a) will

converge (when the number of trajectories goes to ∞) in each state-action pair (s, a), such
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that the reach probability 1
T

∑
t η

(µTi ,π
t
−i)(s)µTi (s, a) > 0, to the conditional expectation

WT
i (s, a) =

∑
h∈s

1
T

∑T
j=1 η

(µTi ,π
j
−i)(h)Aπk,i(h, a)

1
T

∑T
j=1 η

(µTi ,π
t
−i)(s)

=︸︷︷︸
perfect recall

∑
h∈s

1
T

∑T
j=1 η

πj

−i(h)Aπk,i(h, a)

1
T

∑T
j=1 η

πt
−i(s)

(3)

Notice that WT
i does not depend on the exploratory policy µTi for player i chosen in round

T . After several trajectories ρj our network W̄T
i provides us with a good approximation

of the WT
i values and we use it in a regret matching update to define the next policy,

πT+1
i (s) = NormalizedReLU(W̄T

i ), i.e. Equation 1. Lemma 1 shows that if W̄T
i (s, a)

is sufficiently close to the WT
i (s, a) values, then this is equivalent to CFR, i.e., doing

regret-matching using the cumulative counterfactual regret RT .
Lemma 1. The policy defined by NormalizedReLU(WT

i ) is the same as the one produced
by CFR when regret matching is employed as the information-state learner:

πT+1
i (s, a) =

RT,+i (s, a)∑
bR

T,+
i (s, b)

=
WT,+
i (s, a)∑

bW
T,+
i (s, b)

. (4)

Proof. First, let us notice that

WT
i (s, a) =

∑
h∈s

∑T
t=1 η

πt(h)∑T
t=1 η

πt(s)
Aπt,i(h, a), (5)

=
∑
h∈s

∑T
t=1 η

πt

−i(h)∑T
t=1 η

πt
−i(s)

Aπt,i(h, a) (6)

=
1

wT (s)

T∑
t=1

∑
h∈s

ηπ
t

−i(h)Aπt,i(h, a), (7)

where we used the perfect recall assumption in the first derivation, and we define wT (s) =∑
t η
πt

−i(s). Notice that wT (s) depends on the state only (and not on h). Now the cumulative
regret is:

RTi (s, a) =

K∑
t=1

qcπt,i(s, a)− vcπt,i(s)

=

T∑
t=1

ηπ
t

−i(s)
(
qπt,i(s, a)− vπk,i(s)

)
=

T∑
t=1

ηπ
t

−i(s)
∑
h∈s

ηπ
t

−i(h)

ηπ
t

−i(s)

(
qπt,i(h, a)− vπt,i(h)

)
=

T∑
t=1

∑
h∈s

ηπ
t

−i(h)Aπt,i(h, a)

= wT (s)WT
i (s, a).

Finally, noticing that regret matching is not impacted by multiplying the cumulative regret
by a positive function of the state, we deduce

RT,+i (s, a)∑
bR

T,+
i (s, b)

=

(
wT (s)WT

i (s, a)
)+∑

b

(
wT (s)WT

i (s, b)
)+ =

WT,+
i (s, a)∑

bW
T,+
i (s, b)

.

The W̄T (s, a) estimates the expected advantages 1
T

∑T
j=1Aπj (h, a) conditioned on h ∈ s.

Thus ARMAC does not suffer from the variance of estimating the cumulative regret RT (s, a),
and in the case of infinite capacity, from any (s, a), the estimate W̄T (s, a) is unbiased as
soon as the (s, a) has been sampled at least once:
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Lemma 2. Consider the case of a tabular representation and define the estimate ŴT
i (s, a)

as the minimizer (over W ) of the empirical loss defined over N trajectories

L̂(s,a)(W ) =
1

N

N∑
n=1

[
W −Aπjn ,i(h, a)

]2I{(h, a) ∈ ρjn and h ∈ s},

where ρjn is the n-th trajectory generated by the policy (µTi , π
jn
−i) where jn ∼ U({1, . . . , T}).

Define N(s, a) =
∑N
n=1 I{(h, a) ∈ ρjn and h ∈ s} to be the number of trajectories going

through (s, a). Then ŴT
i (s, a) is an unbiased estimate of WT

i (s, a) conditioned on (s, a)
being traversed at least once:

E
[
ŴT
i (s, a)|N(s, a) > 0

]
= WT

i (s, a).

Proof. The empirical loss being quadratic, under the event {N(s, a) > 0}, its minimum is
well defined and reached for

ŴT
i (s, a) =

1

N(s, a)

N(s,a)∑
n=1

Aπjn ,i(hn, a),

where hn ∈ s is the history of the n-th trajectory traversing s. Let us use simplified notations
and write An = Aπjn ,i(h, a)I{(h, a) ∈ ρjn and h ∈ s} and bn = I{(h, a) ∈ ρjn and h ∈ s}.
Thus

E
[
ŴT
i (s, a)I

{ N∑
m=1

bm > 0
}]

= E

[∑N
n=1AnI

{∑N
m=1 bm > 0

}∑N
m=1 bm

]

=

N∑
n=1

E

[
E

[
AnI

{∑N
m=1 bm > 0

}∑N
m=1 bm

∣∣∣ N∑
m=1

bm

]]

=

N∑
n=1

E

[
E
[
An

∣∣∣ N∑
m=1

bm

] I{∑N
m=1 bm > 0

}∑N
m=1 bm

]
.

Now, E
[
An
∣∣∑N

m=1 bm
]

= E
[
An|bn

]
E
[
bn|
∑N
m=1 bm

]
since given bn, An is independent of∑N

m=1 bm. Thus

E
[
ŴT
i (s, a)I

{ N∑
m=1

bm > 0
}]

=

N∑
n=1

E
[
An|bn

]
E

[
E
[E[bn∣∣∑N

m=1 bm
]
I
{∑N

m=1 bm > 0
}∑N

m=1 bm

]

=

N∑
n=1

E
[
An|bn

]
E

[
bnI
{∑N

m=1 bm > 0
}∑N

m=1 bm

]

Since
∑N
n=1 E

[
bnI
{∑N

m=1 bm>0
}

∑N
m=1 bm

]
= E

[ ∑N
n=1 bn∑N
m=1 bm

I
{∑N

m=1 bm > 0
}]

= P
(∑N

m=1 bm > 0
)
, by

a symmetry argument we deduce E
[
bnI
{∑N

m=1 bm>0
}

∑N
m=1 bm

]
= 1

N P
(∑N

m=1 bm > 0
)
for each n.

Thus

E
[
ŴT
i (s, a)

∣∣∣N(s, a) > 0
]

= E
[
ŴT
i (s, a)

∣∣∣ N∑
m=1

bm > 0
]

=
E
[
ŴT
i (s, a)I

{∑N
m=1 bm > 0

}]
P
(∑N

m=1 bm > 0
)

=
1

N

N∑
n=1

E[An|bn] = E[A1|b1]

which is the expectation of the advantage Aπj ,i(h, a) conditioned on the trajectory ρj going
through h ∈ s, i.e. WT

i (s, a) as defined in (3).
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(a) (b)

Figure 6: The (a) Multi-headed network architecture, and (b) Exploration example.

C Baseline Details and Hyperparameters

For MC-RCFR, we sweep over all combinations of the exploration parameter, using a (learned)
state-action baseline (27), and learning rate (ε, b, α) ∈ {0.25, 0.5, 0.6, 0.7, 0.9, 0.95, 1.0} ×
{True,False} × {0.0001, 0.00005, 0.00001}, where each combination is averaged over five
seeds. We found that higher exploration values worked consistently better, which matches
the motivation of the robust sampling technique (corresponding to ε = 1) presented in (22)
as it leads to reduced variance since part of the correction term is constant for all histories
in an information state. The baseline helped significantly in the larger game with more
variable-length episodes.

For NFSP, we keep a set of hyperparameters fixed, in line with (21) and (16): anticipatory
parameter η = 0.1, ε-greedy decay duration 20M steps, reservoir buffer capacity 2M entries,
replay buffer capacity 200k entries, while sweeping over a combination of the following
hyperparameters: ε-greedy starting value {0.06, 0.24}, RL learning rate 0.1, 0.01, 0.001, SL
learning rate {0.01, 0.001, 0.005}, DQN target network update period of {1000, 19200} steps
(the later is equivalent to 300 network-parameter updates). Each combination was averaged
over three seeds. Agents were trained with the ADAM optimizer, using MSE loss for DQN
and one gradient update step using mini-batch size 128, every 64 steps in the game.

Finally, note that there are at least four difference in the results, experimental setup, and
assumptions between MC-RCFR and OS-DeepCFR reported in (31):

1. (31) uses domain expert input features which do not generalize outside of poker. The
neural network architecture we use is a basic MLP with raw input representations,
whereas (31) uses a far larger network. Our empirical results on benchmark games
compare the convergence properties of knowledge-free algorithms across domains.

2. The amount of training per iteration is an order of magnitude larger in OS-DeepCFR
than our training. In (31), every 346 iterations, the Q-network is trained using 1000
minibatches of 512 samples (512000 examples), whereas every 346 iterations we train
346 batches of 128 samples, 44288 examples.

3. MC-RCFR uses standard outcome sampling rather than Linear CFR (7).

4. MC-RCFR’s strategy is approximated by predicting the OS’s average strategy
increment rather than sampling from a buffer of previous models.

Our NFSP also does not use any extra enhancements.

C.1 Single-Agent Environments

Despite ARMAC being based on commonly-used multiagent algorithms, it has properties that
may be desirable in the single-agent setting. First, similar to policy gradient algorithms in the
common “short corridor example” (32, Example 13.1), stochastic policies are representable
by definition, since they are normalized positive mean regrets over the actions. This could
have a practical effect that entropy bonuses typically have in policy gradient methods, but
rather than simply adding arbitrary entropy, the relative regret over the set of past policies
is taken into account.

Second, a retrospective agent uses a form of directed exploration of different exploration
policies (2). Here, this is achieved by the simulation (µTi , π

t
−i), which could be desirable

whenever there is overlapping structure in successive tasks. µTi here is an exploratory
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policy, which consists of a mixture of all past policies (plus random uniform) played further
modulated with different amounts of random uniform exploration (more details are given in
Section 3.1). Consider a gridworld illustrated in Fig. 6(b). Green squares illustrate positions
where the agent i gets a reward and the game terminates. Most of RL algorithms would find
the reward of +1 first as it is the closest to the origin S. Once this reward is found, a policy
would quickly learn to approach it, and finding reward +2 would be problematic. ARMAC,
in the meantime, would keep re-running old policies, some of which would pre-date finding
reward +1, and thus would have a reasonable chance of finding +2 by random exploration.
This behaviour may also be useful if instead of terminating the game, reaching one of those
two rewards would start next levels, both of which would have to be explored.

These properties are not necessarily specific to ARMAC. For example, Politex (another
retrospective policy improvement algorithm (1)) has similar properties by keeping its past
approximators intact. Like Politex, we show an initial investigation of ARMAC in Atari in
Appendix D. Average strategy sampling MCCFR (13) also uses exploration policies that are
a mixture of previous policies and uniform random to improve performance over external and
outcome sampling variants. However, this exact sampling method cannot be used directly in
ARMAC as it requires a model of the game.

D Initial Investigation of ARMAC in the Atari Learning
Environment

While performance on Atari is not the main contribution, it should be treated as a health
check of the algorithm. Unlike previously tested multiplayer games, many Atari games
have a long term credit assignment problem. Some of them, like Montezuma’s Revenge,
are well-known hard exploration problems. It is interesting to see that ARMAC was able
to consistently score 2500 points on Montezuma’s Revenge despite not using any auxiliary
rewards, demonstrations, or distributional RL as critic. We hypothesize that regret matching
may be advantageous for exploration, as it provides naturally stochastic policies which stay
stochastic until regrets for other actions becomes negative. We also tested the algorithm
on Breakout, as it is a fine control problem. We are not claiming that out results on Atari
are state of art - they should be interpreted as a basic sanity check showing that ARMAC
could in principle work in this domain.

(a) Breakout (b) Montezuma Revenge

Figure 7: Performance on Breakout (left) and Montezuma Revenge (right). Results are shown for
two seeds.

E Training

Training is done by processing a batch of 64 of trajectories of length 32 at a time. In order
to implement a full recall, all unfinished episodes will be continued on the next training
iteration by propagating recurrent network states forward. Each time when one episode
finishes at a particular batch entry, a new one is sampled and started to be unrolled from
the beginning.
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Adam optimized with β1 = 0.0 and β2 = 0.999 was used for optimization. Hyperparameter
selection was done by trying only two learning rates: 5 · 10−5 and 2 · 10−4. The results
reported use 5 · 10−5 in all games, including Atari.

F Neural Network Architecture

The following recurrent neural network was used for no-limit Texas Hold’em experiments.
Two separate recurrent networks with shared parameters were used, consuming observations
of each player respectively. Each of those networks consisted of a single linear layer mapping
input representation to a vector of size 256. This was followed by a double rectified linear
unit, producing a representation of size 512 then followed by LSTM with 256 hidden units.
This produced an information state representation for each player a0 and a1.

Define architecture B(x), which will be reused several times. It consumes one of the informa-
tion state representations produced by the previously mentioned RNN: h1 = Linear(128)(x),
h2 = DoubleReLU(h1), h3 = h1 + Linear(128)(h2), B(a) = DoubleReLU(h3).

The immediate regret head is formed by applying B(s) on the information state representation
followed by a single linear layer of the size of the number of actions in the game. The same is
done for an average regret head and mean policy head. All those B(s) do not share weights
between themselves, but share weights with respective heads for another player.

The global critic q(h) is defined in the following way. nA = Linear(128), nB = Linear(128),
a0 = nA(s0) + nB(s1), a0 = nB(s0) + nA(s1), h1 = Concat(a0, a1), h2 = B(h1) and finally
q0(s1, s2) and q1(s1, s2) are evaluated by a two linear layers on top of h2. B(x) shares
architecture but does not share parameters with the ones used previously.
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