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Abstract

Processing wildlife imagery for conservation and manage-
ment poses significant challenges, especially when limited
data hinders the ability of classification models to extract suf-
ficient features from each wildlife class. In this study, we pro-
pose the use of a 3D free-viewpoint image-to-video genera-
tive model to augment the dataset by synthesizing new im-
ages for fine-tuning classification models. Our results demon-
strate a notable improvement in the F1-score, increasing from
a baseline of 0.338 to 0.525. While the quality of the synthe-
sized images can be further enhanced, particularly in terms
of incorporating wildlife-specific semantics, the study high-
lights the potential of generative Al not only for media cre-
ation but also for advancing environmental monitoring appli-
cations, despite challenges such as high computational cost.

Code — https:
//github.com/jesstytam/dimensionX _for_wildlife_cls

Introduction

Creating automated wildlife monitoring systems is essen-
tial for effective conservation and management (Christin,
Hervet, and Lecomte 2019; Nakagawa et al. 2023; Tuia et al.
2022; Fergus et al. 2024; Weinstein 2018). However, collect-
ing large datasets for building such systems in the wild is
challenging, especially for elusive species. To overcome the
limited availability of wildlife imagery, modern computer
vision approaches can offer novel solutions to synthesize
new data that were previously not possible. These solutions
include generative models, such as GANs (Goodfellow et al.
2014), VAEs (Yu et al. 2024), and diffusion models (Sohl-
Dickstein et al. 2015).

GANs work by training a generator to generate synthetic
samples to fool a discriminator from distinguishing them
from real samples. However, GANs can suffer from mode
collapse if a sub-optimal loss function is implemented, caus-
ing the discriminator to become stuck at a local minimum
without converging during training. As a result, synthesized
imagery may lack diversity, where the images appear simi-
lar or of the same class (Kossale, Airaj, and Darouichi 2022;
Thanh-Tung and Tran 2020; Saatchi and Wilson 2017).
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VAEs consist of an encoder that extracts features into a
continuous latent space as a Gaussian prior, and a decoder
then reconstructs samples by learning from the underlying
probabilistic distribution from the latent space. However, as
features are compressed into a low-dimensional latent space
that follows a simple Gaussian distribution, fine details of
the features are often lost, reducing the realism of the syn-
thesized imagery (Yacoby, Pan, and Doshi-Velez 2020).

On the other hand, diffusion models learn through a pro-
cess of gradually adding and then removing Gaussian noise
from images. By iteratively denoising random noise back
into realistic images, they can capture fine-grained visual de-
tails and complex data distributions, producing higher qual-
ity and more diverse samples without relying on compact
latent representations that are used in VAEs. In addition, dif-
fusion models are more stable to train than GANS, as they do
not depend on an adversarial objective and are less suscepti-
ble to mode collapse, resulting in more reliable convergence
and consistent image quality.

In this study, we demonstrate a novel pipeline that incor-
porates free-viewpoint video frames generated from images
using the 3D free-viewpoint image-to-video model Dimen-
sionX (Sun et al. 2025). We show that we can increase the
training dataset size using synthetic multi-view sequences,
which enhances classification performance. This approach
highlights the potential of generative models to address data
limitations in ecological applications and support more ro-
bust automated wildlife monitoring. To summarise, our con-
tributions are as follows:

* We expand our training dataset by generating multi-view
imagery using a 3D view synthesis diffusion model, pro-
ducing novel geometric perspectives of each individual
from multiple angles to enhance viewpoint diversity.

* We apply and evaluate this generative approach within a
wildlife classification pipeline.

Related work

Single-image to 3D scene generation

Reconstructing a 3D scene from a single view is a chal-
lenging problem, as it lacks multiple viewpoints to infer
depth, geometry, or camera pose. Recent progress in 3D
scene generation and reconstruction has mainly been driven



by diffusion-based approaches. Scene-level diffusion mod-
els go beyond reconstructing isolated objects and instead
synthesize entire environments in which foreground subjects
interact with the background and environment. These ap-
proaches can broadly be categorised into single-stage and
two-stage pipelines. Single-stage methods (Gao* et al. 2024;
Yu et al. 2025) train a unified diffusion model that directly
maps a single image to a 4D representation, jointly learn-
ing spatial and temporal consistency. In contrast, two-stage
methods (Sun et al. 2025; Sargent et al. 2024; Zhao et al.
2024) first generate intermediate 2D or 3D features before
refining them into coherent spatio-temporal scenes.

Video-based diffusion frameworks offer a way to unify
spatial and temporal reasoning. By learning in 3D or 4D la-
tent spaces, they produce temporally smooth and spatially
realistic view transitions without relying on explicit geome-
try. Treating view synthesis as a controllable video diffusion
task enables the capturing of fine-grained features across
frames, ensuring consistent appearance and structure across
viewpoints (Ma et al. 2025; Wen et al. 2025; Li et al. 2024).

DimensionX (Sun et al. 2025) builds on this approach
by framing single-image 3D scene generation as a con-
trollable video diffusion process. Its core innovation is the
ST-Directors, which decouples spatial and temporal control
through two LoRA (Hu et al. 2022) modules: the S-Director
for spatial viewpoint control and the T-Director for temporal
motion control. The S-Director is trained on spatially vary-
ing datasets where camera parameters change while the 3D
scene remains static (S(t) = Sp), enabling controlled cam-
era motion and novel viewpoint generation. Conversely, the
T-Director is trained on temporally varying datasets where
camera parameters are fixed (C'(t) = Cp), allowing realistic
object motion control.

For our classification task, we employ only the S-Director
to generate spatially variant video sequences, with the an-
imal and background held static. This allows the apparent
camera trajectory to vary while maintaining the underlying
scene structure, producing realistic multi-view sequences
that improve viewpoint diversity for training and evaluation.

Methods
Dataset description

The dataset was collected by NSW National Parks and
Wildlife Services (NPWS) within the state of New South
Wales (NSW) in Australia. The images were collected using
motion-sensitive cameras placed within multiple national
parks. The original dataset contained 41,022 images in to-
tal across 24 classes of wildlife, including both non-native
and native Australian wildlife. Training and testing sets were
created by stratifying the dataset temporally by 80:20 .

For this study, we sample a subset from the training
dataset as video generation is computationally expensive.
We select 14 classes of mammals with the most images
available, and then randomly sample 300 images from each
class to build the baseline training set.

Free-viewpoint video generation

To increase the size of our dataset with multi-view se-
quences, we employ the S-Director from DimensionX (Sun
et al. 2025), a controllable extension of CogVideoX (Yang
et al. 2024) that enables free-viewpoint video generation.
This approach renders the animal(s) in each image from
multiple viewpoints while preserving object structure and
scene coherence.

Architecture overview (Fig. 1). Built on CogVideoX, a
text encoder and a 3D causal VAE map the text prompt
and image into latent spaces, represented by zi.,:+ and
Zvision, respectively. The latents are then processed by the a
transformer-based video diffusion model (DiT; (Peebles and
Xie 2022)) backbone to learn 2D and diffusion priors, which
denoises and decodes the latents into coherent video frames.
To achieve spatial control, the S-Director LoORA module is
injected into the attention layers of the DiT backbone.

Viewpoint projection. The S-Director adjusts the atten-
tion weights to guide camera trajectories C} that vary spatial
viewpoint while holding time constant. The rendering pro-
cess can be described as the projection of a 4D scene S(T)
onto the 2D image plane:

Ii(u,v) = Pe,(S(T)), (1)

where Pc, represents the projection operator under the cur-
rent camera pose.

Video generation and training set augmentation. From
a single-view image, a still multi-view video sequence is
created. The videos generated using the S-Director orbit the
camera leftwards around the centre of each image at a mean
of 103 degrees, as estimated with VGGT (Wang et al. 2025)
(see Appendix for details). For each input image, we gen-
erate a 4-second, 12 frames-per-second video, i.e., 49 total
frames per video. See Appendix for examples of video se-
quences.

Each generated frame represents a novel camera view-
point of the same static subject, effectively sampling local
variations in appearance and geometry. This expands the di-
versity of training data available for fine-tuning without re-
quiring new image collection in the field.

To examine if text conditioning can influence the quality
of synthetic outputs, we designed a short and a long prompt.
The short prompt provides a concise description of each
image (A camera trap image taken in southeastern Aus-
tralia.”), while the long prompt, with the addition of a nega-
tive prompt, adds explicit object and scene-level instructions
(A realistic 3D label, clearly visible and unobstructed...”)
to increase the number of conditioning tokens interacting
with the visual latent through cross-attention layers (Hertz
et al. 2022). Details of prompts are shown in Table 1.

Then, we run MegaDetector v6 (Beery, Morris, and Yang
2019) with a confidence threshold of 0.8 on all frames to
draw bounding box. Frames without bounding box predic-
tions are discarded to ensure that only frames containing a
clearly visible animal are retained. We then use the box co-
ordinates for segmentation with Segment Anything Model 2
(SAM2; (Ravi et al. 2025)) using the default thresholds (pre-
dicted IOU threshold of 0.88 and stability score threshold
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Figure 1: Overview of model architecture used in our pipeline, adapting CogVideoX with the DiT backbone and the S-Director

LoRA module injection from DimensionX.

of 0.95) to retain high-confidence segmentations and create
masked images to increase the size of the training datasets.
As the synthetic frames lack ground truth, the thresholds we
set serve as a quality control step to minimise error propaga-
tion, rather than a measure of absolute accuracy.

Experiments

We devise four experiments to generate new training data to
test the effectiveness of using free-viewpoint data for classi-
fication. An overview of how our training datasets are cre-
ated is shown in Fig. 2, while the prompts and configurations
for video generation are shown in Table 1.

Baseline (Experiment 1) - no generated data. For our
baseline experiment, no synthesized data was included. Di-
rectly using the raw images, we used MegaDetector to draw
bounding boxes. Using the bounding boxes as prompts, we
created segmented masks using SAM2. Finally, we fine-
tuned the classifier using the masked images.

Experiment 2 - Generated from raw images + short
prompt. Directly from the raw images, we generate one
video per image using a short text prompt. In low-quality or
low-contrast inputs, we observed that the generated wildlife
subjects gradually blended into the background or became
partially occluded during the latter half of the sequence
(Appendix S4, S5). To minimise the inclusion of distorted
frames and reduce redundancy, we retained only the first
two seconds of each video, sampling one frame every 0.5
seconds (four frames per video). We then process the frames
with MegaDetector and SAM? to create masked images to
increase the training set size.

Experiment 3 - Generated from SAM2 masked images
+ short prompt. We first apply SAM2 to the raw images to
remove the background. The masked images are then used
as input for video generation using a short prompt. From
each video, all 49 frames are extracted and processed with
MegaDetector to create bounding boxes to use in SAM2 to

create final training data.

Experiment 4 - Generated from SAM?2 masked images
+ long prompt. Same as that of Experiment 3, with the ex-
ception of using a long prompt and a negative prompt for
video generation.

Model fine-tuning

We included identical geometric and photometric augmen-
tations across all experiments to serve as our traditional
data augmentation baseline. These transformations include
horizontal and vertical flips, random rotations, colour jit-
ter, Gaussian blur, and grayscale conversion. By applying
the same augmentation pipeline to both the baseline and
diffusion-augmented datasets, we isolate the additional con-
tribution of the generative views from standard 2D image-
space transformations.

All models are fine-tuned using ResNet-50 as the back-
bone and optimised with the Adam optimiser. Training is
performed on a single NVIDIA RTX A6000 GPU for 20
epochs, with a batch size of 128 and 16 CPU workers. We
use a learning rate of 0.0001 with a step scheduler (step
size of 5 epochs, decay factor of 0.1), and employ cross-
entropy loss for all experiments. We also perform 5-fold
cross-validation to prevent overfitting.

Evaluation metrics

We evaluate model performance using three common clas-
sification metrics: precision, recall, and F1-score, for each
class and the overall dataset.

Precision (p) measures the proportion of correctly pre-
dicted positive samples (true positives, TP) among all sam-
ples predicted as positive (TP and false positives, FP):

TP
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Figure 2: Pipeline illustrating how we created our training dataset.



Baseline Experiment 2

Experiment 3 Experiment 4

Generate videos No Yes

Videos generated / Raw images

from

Prompt / A camera trap image taken

in southeastern Australia.”

4 frames (every 0.5 sec-
onds of the first 2 seconds)
(frames without detections

Frames extracted /

were discarded)

Yes Yes

SAM?2 masked images SAM?2 masked images

”A realistic 3D {label},
clearly visible and unob-
structed in the center of
the frame. The camera
smoothly orbits around the
animal without anything
blocking the view. The
scene is a dry forest with
a clean, open view.” Neg-
ative prompt: “whiteout,
overexposed, washed out,
glowing, unrealistic light-
ing, blur, occlusion, other
animals, trees in front, grass
covering, deformities”

All frames with bound-
ing box predictions from
MegaDetector (frames
without detections were
discarded)

”A camera trap image taken
in southeastern Australia.”

All frames with bound-
ing box predictions from
MegaDetector (frames
without detections were
discarded)

Table 1: Summary of experimental configurations for video generation.

Recall (r) measures the proportion of correctly predicted
positive samples among all actual positive samples (TP and
false negatives, FN):

TP
"TTPIFN

The F1 score combines precision and recall into a single
harmonic mean, ensuring that both metrics are balanced:

3
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Results

Evaluation metrics

Across all metrics - precision, recall, and F1-score, there
was an overall improvement over the baseline results (Fig.
3), where the precision of baseline increased from 0.393
to 0.478, 0.535, and 0.540, recall increased from 0.367 to
0.449, 0.559, and 0.548, and F1 increased from 0.338 to
0.426, 0.525, and 0.515 respectively.

However, when comparing the results between the two
models that also used video frames generated from SAM2
masked images, the model with a shorter prompt demon-
strated slightly better performance than the model with a
more detailed prompt. While precision increased from 0.535
to 0.540, recall dropped from 0.559 to 0.548, and F1 dropped
from 0.525 to 0.515.

Confusion matrices

Echoing the metrics, normalised confusion matrices show a
gradual improvement in the diagonals with the inclusion of
video frames over the baseline (Fig. 4, 5). However, when
comparing the matrices, we observed frequent misclassifi-
cations between the Brown Bandicoot and the Long-nosed
Bandicoot, as seen in the results from Experiment 4. Ex-
ample video frames from both species are provided in the
Appendix to illustrate the similarity and distortions that may
have contributed to these errors.

Conclusion and Discussion

We demonstrate that 3D view synthesis can effectively ex-
pand limited training datasets by generating novel view-
points of wildlife for downstream tasks such as classifica-
tion. While view synthesis has been explored as a data aug-
mentation strategy in other domains (Zhou et al. 2023; Ma
et al. 2024), it remains a developing research direction for
environmental monitoring. Research in generative and dif-
fusion models are rapidly expanding. Here, we demonstrate
the use of one model for such pipeline. However, the com-
parison against other generative models remains outside the
scope of this study.

Variables affecting classification performance

When comparing Experiments 3 and 4, while overall results
appeared similar, several classes performed better in Experi-
ment 3, where a shorter text prompt was used. This suggests



Precision

Baseline (no generated images) 0.089 0251 0.234

Generated from raw images + short prompt 0.125 0301 0.250

Generated from SAM2 masked images + short prompt 0.201 0.308

Generated from SAM2 masked images + long prompt 0.227 0.282

Recall

Baseline (no generated images) 0.159

Generated from raw images + short prompt 0.193
Generated from SAM2 masked images + short prompt 0.265

Generated from SAM2 masked images + long prompt 0.314

F1-score

Baseline (no generated images)
Generated from raw images + short prompt
Generated from SAM2 masked images + short prompt

Generated from SAM2 masked images + long prompt

Figure 3: Precision, recall, and F1-score of all four experiments.
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Figure 4: Confusion matrix of baseline (Experiment 1) results, showing normalised values
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Figure 5: Confusion matrix of results after including free-viewpoint video frames generated from SAM?2 images using a long
prompt and a negative prompt (Experiment 4), showing normalised values

that longer prompts may have introduced irrelevant contex-
tual information, leading to reduced accuracy, an effect also
reported in large language and multi-modal models (Levy,
Jacoby, and Goldberg 2024; Shi et al. 2023). In contrast,
the comparison between the results in Experiments 2 and 3
show that using segmented inputs is more valuable in reduc-
ing background noise, and thus producing more consistent
multi-view representations for better classification.

Morphological characteristics of each species also had
a strong influence on classification performance. In partic-
ular, misclassifications were frequent between Brown and
Long-nosed Bandicoots (Fig. 5). As they have similar phys-
ical characteristics, overlapping morphologies may create
difficulties to distinguish, especially with their small body
size, and where diagnostic features only cover small re-
gions of the body that are easily occluded in camera trap
images. Further, geometric distortions in the synthetic data
could contribute to confusion between the two classes, due
to the model backbone’s limited semantic understanding of
wildlife anatomy. Further explanations on such failure cases
are outlined in the Appendix.

Semantics limitations affecting video quality

The lack of wildlife-specific semantic understanding could
lead to limited quality in some synthesized data. This limita-
tion manifests as unrealistic limb configurations and blurred
fur textures. Nevertheless, several strategies could improve
the semantic understanding of diffusion models for wildlife
imagery, such as bettering visual understanding with VLMs

(Choi et al. 2025) and incorporating 3D priors that encode
body geometry (Chan et al. 2023), including using museum
or field specimens.

Utilities of generative Al for wildlife monitoring

As diffusion-based models continue to innovate (Ma et al.
2025; Wen et al. 2025; Li et al. 2024; Ahsan et al. 2025), they
present new opportunities for wildlife research beyond clas-
sification (Rafiq et al. 2025). In addition to increasing train-
ing set size as shown here and other domains (Zhou et al.
2023; Ma et al. 2024; Chen et al. 2022), they can enable
the 3D reconstruction of animals in higher definition with
more realistic simulation of coat patterns and lighting. Be-
yond classification, with improved wildlife-specific seman-
tics, these methods could support other ecological applica-
tions, such as animal pose estimation and behaviour analy-
sis.

Limitations and future directions

While diffusion-based generative models can produce
higher quality imagery compared to those from GANs or
VAEs, they remain computationally expensive and time-
consuming to run. Future work can focus on improving the
efficiency of such models, such as through model distilla-
tion (Qin et al. 2025) or implementing lightweight archi-
tectures (Shen et al. 2025), to ensure accessibility and ef-
ficiency. Another limitation is that synthetic data generated
directly from raw data often do not have ground-truth la-
bels. As such, detector and segmentation outputs may con-



tain uncertainties that can be challenging to be quantitatively
evaluated. Incorporating confidence weighting by both hu-
man and model could improve robustness of models used
for downstream tasks (Yanez et al. 2024). In addition, as a
proof of concept, we only demonstrated the use of a single
generative framework, rather than performing an exhaustive
ablation across multiple generative models. Nevertheless,
direct comparisons with other approaches, such as NeRF-
based reconstruction (Mildenhall et al. 2021), can provide
further insights into the benefits and trade-offs between real-
ism and controllability of different approaches. Overall, our
study demonstrates that diffusion-based view synthesis of-
fers a scalable pathway for improving wildlife image analy-
sis under data scarcity.
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Appendix
Camera orbit angle calculation

We estimated the orbit angles of each synthetic video of
Experiments 2 to 4 by estimating the camera poses with
VGGT (Visual Geometry Grounded Transformer) (Wang
et al. 2025). As we observed some outlying values, we re-
port results both with and without these outliers. The stan-
dard deviations of all orbit angles decreased substantially
after removing the outliers. Outliers were identified us-
ing the interquartile range (IQR) method, where the lower
bound is defined as Q1 — (1.5 x IQR) and upper bound
as @3 + (1.5 x IQR). The distributions of results are illus-
trated in Fig. S1 and S2, with the mean values summarised
in Tables S1 and S2, grouped by experiment and class.

Training data distribution

We conducted four experiments in this study, with each hav-
ing a different set of images. The final size of each training
set are illustrated in Fig. S3.

Video sequence examples

Fig. S4 - S10 show examples of still video sequences we
generated with DimensionX for Experiments 2 to 4, showing
the camera orbiting towards the left.

In these experiments, we observed several failure cases
occurring especially common in the second half of the
videos, such as incorrect animal geometry (fused or disap-
pearing body parts), degradation of fur textures, or animals
blending into the background or environment.

In particular, for the Brown and Long-nosed Bandicoots,
(Fig. S4, S8, S9), due to their similar anatomy, in addition
to their small size, they often appear smaller in camera trap
images compared to other wildlife. This means that distor-
tions were not uncommon, which may have lead to the fre-
quent misclassifications between them, as outlined in the
main text.
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Figure S1: The distribution of orbit angles of all VGGT estimations. Outliers are illustrated by black circles. The mean orbit
angle is 104.46 degrees.
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Figure S2: The distribution of orbit angles of VGGT estimations after removing outliers. The mean orbit angle is 103.01
degrees.
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Figure S3: The distribution of the training datasets of our four experiments.




Figure S4: Video sequence generated for Experiment 2, where videos were generated directly from the raw images, showing the
camera orbiting around a Brown Bandicoot, with the bandicoot gradually becoming occluded by the environmental elements.



Figure S5: Video sequence generated for Experiment 2, where videos were generated directly from the raw images, showing
the camera orbiting around a Koala, with the Koala gradually disappearing into the background scene.



Figure S6: Video sequence generated for Experiment 2, where videos were generated directly from the raw images, showing
the camera orbiting around a Euro (Common Wallaroo), where the limbs were not accurately synthesized in the second half of
the video when moving from the right to left side of the body.



Figure S7: Video sequence generated for Experiment 3, where we first created segmented images using SAM?2, and then
generated videos using a short text prompt, showing the camera orbiting around a Euro (Common Wallaroo), where incorrect
geometry was generated on the left side of the body.



Figure S8: Video sequence generated for Experiment 4, where we created segmented images with SAM2 first, as shown in
Experiment 3, before generating videos using a long prompt and a negative prompt, showing the camera orbiting around
a Brown Bandicoot. As the camera orbits around the bandicoot, the geometry between the snot and the left each became
ambiguous and increasingly similar.



Figure S9: Video sequence generated for Experiment 4, where we created segmented images with SAM2 first, as shown in
Experiment 3, before generating videos using a long prompt and a negative prompt, showing the camera orbiting around
a Long-nosed Bandicoot. Although the synthesized geometry of the bandicoot remained accurate, there was a reduction in
quality of fur texture in the second half of the sequence.



Figure S10: Video sequence generated for Experiment 4, where we created segmented images with SAM?2 first, as shown in
Experiment 3, before generating videos using a long prompt and a negative prompt, showing the camera orbiting around a Euro
(Common Wallaroo). When orbiting from the right to left side of the wallaroo’s body, the model synthesized incorrect limb and
body geometry.



Table S1: Mean orbit angles of all videos, summarised
across each experiment and class. Values include outliers
and are rounded to three decimal places.

Table S2: Mean orbit angles of videos excluding outlier
values, summarised across each experiment and class, and
rounded to three decimal places.

Experiment

Class

Degree

Experiment

Class

Degree

Experiment 2

Brown Bandicoot
Brushtail Possum

Cat

Dog

Eastern Grey Kangaroo
Echidna

Euro

Fallow Deer

Koala

Long-nosed Bandicoot
Pig

Rabbit Hare

Red Fox

Red-necked Wallaby

94.053 (+65.768)
95.039 (+72.051)
96.159 (£50.981)
90.540 (+29.137)
84.413 (£50.260)
90.328 (£91.664)
93.671 (+28.259)
88.033 (+13.738)
86.378 (£21.421)
96.145 (+55.818)
90.105 (+33.154)
90.160 (+88.537)
85.863 (+86.028)
90.087 (£39.743)

Experiment 2

Brown Bandicoot
Brushtail Possum

Cat

Dog

Eastern Grey Kangaroo
Echidna

Euro

Fallow Deer

Koala

Long-nosed Bandicoot
Pig

Rabbit Hare

Red Fox

Red-necked Wallaby

86.150 (£10.095)
82.564 (+18.037)
87.556 (+9.693)
89.209 (£7.064)
88.116 (+9.006)
87.730 (213.963)
92.730 (£6.501)
87.383 (+7.796)
84.679 (£6.912)
85.832 (£14.273)
87.872 (£8.597)
82.766 (+14.175)
80.833 (£18.557)
89.324 (+5.770)

Experiment 3

Brown Bandicoot
Brushtail Possum

Cat

Dog

Eastern Grey Kangaroo
Echidna

Euro

Fallow Deer

Koala

Long-nosed Bandicoot
Pig

Rabbit Hare

Red Fox

Red-necked Wallaby

101.920 (£156.693)
109.273 (£84.053)
102.955 (+96.402)

106.082 (£107.043)
115.765 (£52.943)

128.704 (£105.313)
107.265 (£54.626)
109.846 (+44.063)

109.247 (£157.366)

110.876 (£147.822)
109.423 (+68.135)

125.417 (+151.521)
106.445 (£65.455)
106.965 (£26.082)

Experiment 3

Brown Bandicoot
Brushtail Possum

Cat

Dog

Eastern Grey Kangaroo
Echidna

Euro

Fallow Deer

Koala

Long-nosed Bandicoot
Pig

Rabbit Hare

Red Fox

Red-necked Wallaby

122.154 (£72.603)
101.243 (£17.258)

95.236 (+27.849)

97.526 (+23.109)
107.847 (+15.972)
142.439 (+70.663)
106.824 (£12.303)
106.505 (+14.078)
111.075 (£56.800)
132.105 (£78.099)
106.144 (+18.284)
133.040 (£75.694)

97.741 (£16.943)
103.986 (+13.449)

Experiment 4

Brown Bandicoot
Brushtail Possum

Cat

Dog

Eastern Grey Kangaroo
Echidna

Euro

Fallow Deer

Koala

Long-nosed Bandicoot
Pig

Rabbit Hare

Red Fox

Red-necked Wallaby

109.182 (£103.732)
111.376 (£36.224)
104.341 (£90.195)
108.589 (£65.503)
113.780 (£39.603)
131.713 (£72.970)
111.521 (#41.790)
112.180 (£37.147)

113.827 (£104.487)

112.038 (£101.798)
114.187 (£62.352)

111.521 (+109.145)
102.280 (£62.490)
109.650 (£27.559)

Experiment 4

Brown Bandicoot
Brushtail Possum

Cat

Dog

Eastern Grey Kangaroo
Echidna

Euro

Fallow Deer

Koala

Long-nosed Bandicoot
Pig

Rabbit Hare

Red Fox

Red-necked Wallaby

110.583 (£57.713)
107.138 (£20.728)

96.200 (+27.811)
103.833 (£21.398)
107.368 (£14.608)
122.693 (+55.171)
109.226 (+13.449)
107.800 (£14.987)
119.687 (£58.927)
119.996 (£67.860)
110.352 (+20.107)
104.995 (+45.872)
104.498 (£17.756)
106.640 (+13.978)




