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Abstract

Recent work suggests that convolutional neural networks of different architectures1

learn to classify images in the same order. To understand this phenomenon, we2

revisit the over-parametrized deep linear network model. Our asymptotic analysis,3

assuming that the hidden layers are wide enough, reveals that the convergence rate4

of this model’s parameters is exponentially faster along directions corresponding5

to the larger principal components of the data, at a rate governed by the singular6

values. We term this convergence pattern the Principal Components bias (PC-bias).7

We show how the PC-bias streamlines the order of learning of both linear and non-8

linear networks, more prominently at earlier stages of learning. We then compare9

our results to the spectral bias, showing that both biases can be seen independently,10

and affect the order of learning in different ways. Finally, we discuss how the11

PC-bias may explain some benefits of early stopping and its connection to PCA,12

and why deep networks converge more slowly when given random labels.13

1 Introduction14

The dynamics of learning in deep neural networks is an intriguing subject, not yet sufficiently15

understood. Diverse empirical data seems to support the hypothesis that neural networks start by16

learning a simple model, which then gains complexity as learning proceeds (Gunasekar et al., 2018;17

Soudry et al., 2018; Hu et al., 2020; Nakkiran et al., 2019; Gissin et al., 2019; Heckel & Soltanolkotabi,18

2019; Ulyanov et al., 2018; Valle-Perez et al., 2018). This phenomenon is sometimes called simplicity19

bias (Dingle et al., 2018; Shah et al., 2020).20

Recent work additionally shows that neural networks learn the training examples of natural datasets21

in a consistent order, and further impose a consistent order on the test set (Hacohen et al., 2020;22

Pliushch et al., 2021). Below we call this effect Learning Order Constancy (LOC). Currently, the23

characteristics of visual data, which may explain this consistently imposed order, remain unclear.24

Surprisingly, this universal order persists despite the variability introduced into the training of different25

models and architectures.26

To understand this phenomenon, we start by analyzing the deep linear network model (Saxe et al.,27

2013, 2019), defined by the concatenation of linear operators. While not a universal approximator, it28

is nevertheless trained by minimizing a non-convex objective function with a multitude of minima.29

The investigation of such networks is often employed to shed light on the learning dynamics when30

complex geometric landscapes are explored by GD (Fukumizu, 1998; Arora et al., 2018).31

In Section 2, we prove that the convergence of the weights of deep linear networks is governed32

by the eigendecomposition of the raw data in a phenomenon we term PC-bias. These asymptotic33

results, valid when the hidden layers are wide enough, can be seen as an extension of the known34

behavior of the single-layer convex linear model (Le Cun et al., 1991). Our work is closely related to35

(Saxe et al., 2013, 2019), where the deep linear model’s dynamics is analyzed as a function of the36

input and input-output statistics. Importantly, the analysis in (Saxe et al., 2013, 2019; Arora et al.,37
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2018) incorporates the simplifying assumption that the data’s singular values are identical (whitened38

data), an assumption which unfortunately obscures the main result of our analysis – the direct39

dependence of convergence rate on the singular values of the data.40

In Section 3, we empirically show that this pattern of convergence is indeed observed in deep linear41

networks, validating the plausibility of our assumptions. We continue by showing that the LOC-effect42

in deep linear network is determined solely by their PC-bias. We prove a similar (weaker) result for43

the non-linear two-layer ReLU model introduced by Allen-Zhu et al. (2018), where this model is44

presented as a certain extension of NTK (Jacot et al., 2020). In this framework, convergence is fastest45

along the largest kernel’s principal components, a result related to the Spectral bias discussed below.46

In Section 4, we extend the study empirically to non-linear networks, and investigate the relation47

between the PC-bias and the LOC-effect in general deep networks. We first show that the order48

by which examples are learned by linear networks is highly correlated with the order induced by49

prevalent deep CNN models. We then show directly that the learning order of non-linear CNN models50

is affected by the principal decomposition of the data. Moreover, the LOC-effect diminishes when51

data is whitened, indicating a tight connection between the PC-bias and the LOC-effect.52

Our results are reminiscent of another phenomenon, termed Spectral bias (Rahaman et al., 2019;53

Cao et al., 2019), which associates the learning dynamics of neural networks with the Fourier54

decomposition of functions in the hypothesis space. Rahaman et al. (2019) empirically demonstrated55

that the complexity of classifiers learned by ReLU networks increases with time. Basri et al. (2019,56

2020) showed theoretically, by way of analyzing elementary neural network models, that these models57

first fit the data with low-frequency functions, and gradually add higher frequencies to improve the fit.58

Nevertheless, the spectral bias and PC-bias are inherently different. Indeed, the eigendecomposition59

of raw images is closely related to the Fourier analysis of images as long as the statistical properties60

of images are (approximately) translation-invariant (Simoncelli & Olshausen, 2001; Torralba & Oliva,61

2003). Still, the PC-bias is guided by spectral properties of the raw data and is additionally blind to62

class labels. On the other hand, the spectral bias, as well as the related frequency bias that has been63

shown to characterize NTK models (Basri et al., 2020), are all guided by spectral properties of the64

learned hypothesis, which strongly depends on label assignment.65

In Section 4.3 we investigate the relation between the PC-bias, spectral bias, and the LOC-effect.66

We find that the LOC-effect is very robust: (i) when we neutralize the spectral bias by using low67

complexity models such as deep linear networks, the effect is still observed; (ii) when we neutralize68

the PC-bias by using whitened data, the LOC-effect persists. We hypothesize that at the beginning of69

learning, the learning dynamics of neural models is controlled by the eigendecomposition of the raw70

data. As learning proceeds, control of the dynamics slowly shifts to other factors.71

The PC-bias has implications beyond the LOC-effect, as expanded in Section 5 and Suppl. §A:72

1. Early stopping. It is often observed that when training deep networks with real data, the highest73

generalization accuracy is obtained before convergence. Consequently, early stopping is often74

prescribed to improve generalization. Following the commonly used assumption that in natural75

images the lowest principal components correspond to noise (Torralba & Oliva, 2003), our results76

predict the benefits of early stopping, and relate it to PCA. In Section 5 we investigate the relevance77

of this conclusion to real non-linear networks (see, e.g., Basri et al. (2019); Li et al. (2020) for78

complementary accounts).79

2. Slower convergence with random labels. Zhang et al. (2016) showed that neural networks80

can learn any label assignment. However, training with random label assignments is known to81

converge slower as compared to training with the original labels (Krueger et al., 2017). We report a82

similar phenomenon when training deep linear networks. Our analysis shows that when the principal83

eigenvectors are correlated with class identity, as is often the case in natural images, the loss decreases84

faster when given true label assignments as against random label assignments. In Section 5 we85

investigate this hypothesis empirically in linear and non-linear networks.86

3. Weight initialization. Different weight initialization schemes have been proposed to stabilize the87

learning and minimize the hazard of "exploding gradients" (e.g., Glorot & Bengio, 2010; He et al.,88

2015). Our analysis (see Suppl. §A) identifies a related variant, which eliminates the hazard when89

all the hidden layers are roughly of equal width. In the deep linear model, it can be proven that the90

proposed normalization variant in a sense minimizes repeated gradient amplification.91
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2 Theoretical analysis92

Notations. Let X = {(xi,yi)}ni=1 denote the training data, where x ∈ Rq denotes the i-th data93

point and y ∈ {0, 1}K its corresponding label. Let 1
ni
mi denote the centroid (mean) of class i with94

ni points, and M = [m1 . . .mK ]>. Finally, let X and Y denote the matrices whose ith column95

is xi and yi respectively. ΣXX = XX> and ΣY X = Y X> denote the covariance matrix of X96

and cross-covariance of X and Y respectively. We note that ΣXX captures the structure of the data97

irrespective of class identity.98

Definition 1 (Principal coordinate system). The coordinate system obtained by rotating the data in Rq99

by an orthonormal matrixU>, where SV D(ΣXX)=UDU>. Now ΣXX =D, a diagnoal matrix whose100

elements are the singular values of XX>, arranged in decreasing order d1 ≥ d2 ≥ . . . ≥ dq ≥ 0.101

Definition 2 (Compact representation). Let f(x) denote a deep linear network. Then f(x) =102 (∏1
l=LWl

)
x = Wx, where W ∈ RK×q is called the compact representation of the network.103

Definition 3 (Error matrix). For a deep linear network whose compact representation is W , the104

error matrix is Er = WΣXX − ΣY X . In the principal coordinate system, Er = WD −M .105

Assumptions. Our analysis assumes that the learning rate µ is infinitesimal, and therefore terms106

of size O(µ2) can be neglected. We further assume that the width of the hidden layers lies in107

[m,m+Mb], wherem→∞ denotes a very large number and Mb is fixed. Thus terms of size O( 1
m )108

can also be neglected. In Fig. 1 we show the plausibility of these assumptions, where the predicted109

dynamics is seen throughout the training of deep linear networks, even for small values ofm.110

2.1 The dynamics of deep over-parametrized linear networks111

Consider a deep linear network with L layers, and let112

L(X) =
1

2
‖WX − Y ‖2F W :=

1∏
l=L

Wl, Wl ∈ Rml×ml−1 (1)

Above ml denotes the number of neurons in layer l, where m0 = q and mL = K.113

Theorem 1. In each time point s, the compact matrix representation W obeys the following dynamics,114

when using the notation Ers defined in Def. 3:115

W s+1 = W s − µ
L∑
l=1

Asl · Ers ·Bsl +O(µ2) (2)

Above µ denotes the learning rate. Asl and Bsl are called gradient scale matrices, and are defined as116

Asl :=
( l+1∏
j=L

W s
j

)( l+1∏
j=L

W s
j

)>
∈ RK×K Bsl :=

( 1∏
j=l−1

W s
j

)>( 1∏
j=l−1

W s
j

)
∈ Rq×q (3)

The proof can be found in Suppl. §B.117

Gradient scale matrices. Some statistical properties of such matrices are established in Suppl. §A.118

Note that when the number of hidden layers is 0 (L = 1), both gradient scale matrices reduce to the119

identity matrix and the dynamics in (2) is reduced to the following known result (e.g., Le Cun et al.,120

1991): W s+1 = W s−µErs. Recall, however, that the focus of this paper is the over-parameterized121

linear model with L > 1, in which the loss is not convex. Since the difference between the convex122

linear model and the over-parametrized deep model boils down to these matrices, our convergence123

analysis henceforth focuses on the dynamics of the gradient scale matrices.124

In accordance, we analyze the evolution of the gradient scale matrices as learning proceeds. Let125

m = min (m1, ...,mL−1) denote the size of the smallest hidden layer. Initially for s = 0, all weight126

matrices W 0
l are assumed to be initialized by sampling from a distribution with mean 0 and variance127

σ2
l = O( 1

m
). The specific normalization factor, alluded to in O( 1

m
), is a variant of the Glorot128

initialization. Details and justification can be found in Suppl. §A.1.129

At time s, letAsl (m) andBsl (m) denote a sequence of random gradient scale matrices, corresponding130

to networks whose smallest hidden layer hasm neurons. From Suppl. §A we deduce that:131

3



Theorem 2. Using
p−→ to denote convergence in probability asm→∞, and ∀s, l:132

Bsl (m)
p−→ I, var[Bl(m)] = O

(
1

m

)
Asl (m)

p−→ I, var[Al(m)] = O

(
1

m

)
Proof. Proof by induction on s. Initially when s = 0, the claim follows from Thm 4 and Corr 5.1.133

The induction step validity follows from Thm 6 and Thm 7 (see Suppl. §A.2).134

The detailed proof shows that the relevant constants are amplified with s. While they remain moderate135

andm is sufficiently large, Bsl (m) ≈ I and Asl (m) ≈ I ∀l. In this case, the dynamics of the over-136

parameterized model is identical to the dynamics of the convex linear model, W s+1 = W s − µErs.137

Convergence rate. In §A.2 we show that the convergence of Bsl (m) to I is governed to some extent138

by O
(
K
m

)
, while the convergence of Asl (m) is governed by O

(
q
m

)
. Recall that while m → ∞,139

q is the dimension of the data space which is fixed in advance and can be fairly large, while K is140

the number of classes which is fixed and quite small. Typically, K � q. Thus we expect the right141

gradient scale matrices Bsl (m) to remain approximately I much longer than the left matrices Asl (m).142

Empirical validation. Since the results above are asymptotic, and to envision the difference between143

convergence governed by O
(
K
m

)
vs. O

(
q
m

)
, we resort to simulations whose results are shown in144

Fig. 1. These empirical results, recounting linear networks with 4 hidden layers of width 1024, clearly145

show that during a significant part of the training both gradient scale matrices remain approximately146

I . The difference between the convergence rate of Bsl and Asl is seen later on, when ∆Asl starts to147

increase shortly before convergence, while ∆Bsl remains essentially 0 throughout.148

(a) Diagonal layer 3 (b) Off-diagonal layer 3

Figure 1: The dynamics of Asl and Bsl when training 10
5-layered linear networks on the small-mammals dataset.
(a) Mean distance of the diagonal elements ofAsl andBsl
from αsi and βsi (as defined in Thm 3, §A.1). (b) Mean
value of the off-diagonal elements of Asl and Bsl . The
networks reach maximal test accuracy at epoch s = 100,
before the divergence ofAsl . All layers behave similarly.

(a) Linear Network (b) ReLU Network

Figure 2: Empirical confirmation of the theoretical re-
sults reported below, showing the std of wj over 10 in-
dependently trained networks as a function of the epoch,
for 6 specific principal components (identified in the leg-
end). Left: two-layer linear network. Right: two-layer
non-linear network with ReLU activation.

2.2 Weight evolution149

K � q entails that Bsl (m) remains approximately equal to I much longer than Asl (m). This is150

substantiated by the simulation results in Fig. 1. Consequently, while earlier on it is safe to assume151

that both Asl ≈ I and Bsl ≈ I , as learning proceeds only Bsl ≈ I is safe to assume.152

With this in mind, we obtain expressions for the evolution of W s separately for earlier and later in153

learning. We first shift to the principal coordinate system defined in Def 1. In this system we can154

analyze each column of W s separately, where ws
j and mj denote the respective columns of W s and155

M . At the beginning of learning when both Asl ≈ I and Bsl ≈ I (see §B.3 for a detailed derivation):156

ws+1
j = (λj)

sw0
j + [1− (λj)

s]
mj

dj
λj = 1− µdjL (4)

157
Eq. 4 is reminiscent of the well understood dynamics of training the convex one layer linear model. It158

is composed of two additive terms, revealing two parallel and independent processes:159

1. The dependence on random initialization tends to 0 exponentially with decline rate λj .160

2. The final value is the sum of a geometrical series with a common ratio λj .161

In either case, convergence is fastest for the largest singular eigenvalue, or the first column of W ,162

and slowest for the smallest singular value. This behavior is visualized in Fig. 2a. Importantly, the163

rate of convergence depends on the singular value dj , the number of layers L, and the learning rate µ.164
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In later stages of learning, when we can only assume that Bsl ≈ I , the dynamic becomes:165

ws+1
j =

s∏
ν=1

(I − µdjAν)w0
j + µ

[
s∑

ν=1

s∏
ρ=ν+1

(I − µdjAρ)Aν
]
mj (5)

where As =
∑L
l=1A

s
l . The proof is provided in §B.3. Although the dynamics now depends on166

matrices As as well, it is still the case that the convergence of each column is governed by its singular167

value dj . This suggests that while the PC-bias is more pronounced in earlier stages of learning, its168

effect persists throughout.169

The analysis above is extended to a simple non-linear ReLU model (cf. Arora et al., 2019) as detailed170

in §B.2, with qualitatively similar results (albeit under unrealistic assumptions). Empirical results,171

shown in Fig. 2b, indicate that the results are indicative beyond the assumed circumstances.172

3 PC-bias: empirical study173

In this section, we first analyze deep linear networks, showing that the convergence rate is indeed174

governed by the principal singular values of the data, which demonstrates the plausibility of the175

assumptions made in Section 2. We continue by extending the scope of the investigation to non-linear176

neural networks, finding there evidence for the PC-bias mostly in the earlier stages of learning.177

3.1 Methodology178

We say that a linear network is L-layered when it has L − 1 hidden fully connected (FC) layers179

(without convolutional layers). In our empirical study we relaxed some assumptions of the theoretical180

study, in order to increase the resemblance of the trained networks to networks in common use.181

Specifically, we changed the initialization to the commonly used Glorot initialization, replaced the182

L2 loss with the cross-entropy loss, and employed SGD instead of the deterministic GD. Notably,183

the original assumptions yielded similar results. The results presented summarize experiments with184

networks of equal width across all hidden layers, specifically the moderate value of m = 1024,185

keeping in mind that we test the relevance of asymptotic results form→∞. Using a different width186

for each layer yielded similar qualitative results. Details regarding the hyper-parameters, architectures,187

and datasets can be found in §D.1, §D.3 and §D.4 respectively.188

3.2 PC-bias in deep linear networks189

In this section, we train L-layered linear networks, then compute their compact representations190

W rotated to align with the canonical coordinate system (Def. 1). Note that each row wr in W191

essentially defines the one-vs-all separating hyper-plane corresponding to class r.192

To examine both the variability between models and their convergence rate, we inspect wr at different193

time points during learning. The rate of convergence can be measured directly, by observing the194

changes in the weights of each element in wr. These weight values1 should be compared with195

the optimal values in each row wr of Wopt = Y XT (XXT ). The variability between models is196

measured by calculating the standard deviation (std) of each wr across N models.197

We begin with linear networks. We trained 10 5-layered FC linear networks, and 10 linear st-VGG198

convolutional networks. When analyzing the compact representation of such networks we observe199

similar behavior – weights corresponding to larger principal components converge faster to the200

optimal value, and their variability across models converges faster to 0 (Figs. 3a,3b). Thus, while the201

theoretical results are asymptotic, PC-bias is empirically seen throughout the entire learning process202

of deep linear networks.203

Whitened data. The PC-bias is neutralized when the data is whitened, at which point ΣXX is the204

scaled identity matrix. In Fig. 3c, we plot the results of the same experimental protocol while using a205

ZCA-whitened dataset. As predicted, the networks no longer show any bias towards any principal206

direction. Weights in all directions are scaled similarly, and the std over all models is the same in207

each epoch, irrespective of the principal direction. (Additional experiments show that this is not an208

artifact of the lack of uniqueness when deriving the principal components of a white signal).209

1We note that the weights tend to start larger for smaller principal components, as can be seen in Fig. 3a left.
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(a) 5-Layered linear network (b) Linear convolutional network

(c) 5-Layered linear network, whitened data (d) Non linear convolutional network

Figure 3: Convergence of the compact representation along the principal directions in different epochs. The value
of the X-axis corresponds to the index of a principal eigenvalue, from the most significant to the least significant.
(a) 10 5-layered linear networks trained on the cats and dogs dataset. 3 plots are provided, corresponding to
snapshots taken at different stages of learning: the beginning (epoch 0, left), intermediate stage (middle), and
close to convergence (right). Bottom panel: average distance of the weights in w1 from the optimal linear
classifier; top panel: respective std. (b) Similarly, for 10 linear st-VGG convolutional networks, trained on
CIFAR-10. (c) Similarly, for 10 5-layered linear networks, trained on the cats and dogs dataset, with ZCA-
whitening. (d) Similarly, for 10 non-linear st-VGG networks trained on the cats and dogs dataset. Here the
distance to the optimal solution is not well defined and we therefore only show the std.

3.3 PC-bias in general CNNs210

In this section, we investigate the manifestation of the PC-bias in non-linear deep convolutional211

networks. As we cannot directly track the learning dynamics separately in each principal direction of212

non-linear networks, we adopt two different evaluation mechanisms:213

Linear approximation. We considered several linear approximations, but since all of them showed214

the same qualitative behavior, we report results with the simplest one. Specifically, to obtain a linear215

approximation of a non-linear network, without max-pooling or batch-normalization layers, we216

follow the definition of the compact representation from Section 2 while ignoring any non-linear217

activation. We then align this matrix with the canonical coordinate system (Def. 1), and observe the218

evolution of the weights and their std across models along the principal directions during learning.219

Note that now the networks do not converge to the same compact representation, which is not unique.220

Nevertheless, we see that the PC-bias governs the weight dynamics to a noticeable extent.221

More specifically, in these networks a large fraction of the lowest principal components hardly changes222

during learning, as good as being ignored. Nevertheless, the PC-bias affects the higher principal223

components, most notably at the beginning of training (see Fig. 3d). Thus weights corresponding to224

higher principal components converge faster, and the std across models of such weights decreases225

faster for higher principal components.226

Figure 4: Mean accuracy of
10 st-VGG networks evaluated
on test data projected to dimen-
sionality {1, 10, 100, 1000}.

Projection to higher PC’s. We created a modified test-set, by project-227

ing each test example on the span of the first P principal components.228

This is equivalent to reducing the dimensionality of the test set to P us-229

ing PCA. We trained an ensemble of N=100 st-VGG networks on the230

original small mammals training set, then evaluated these networks dur-231

ing training on 4 versions of the test-set, reduced to P=1,10,100,1000232

dimensions respectively. Mean accuracy is plotted in Fig. 4. Similar233

results are obtained when training VGG-19 networks on CIFAR-10,234

see §C.3.235

Taking a closer look at Fig. 4, we see that when evaluated on lower236

dimensionality test-data (P=1,10), the networks’ accuracy peaks after237

a few epochs, at which point performance starts to decrease. This result suggests that the networks238

rely more heavily on these dimensions in the earlier phases of learning, and then continue to learn239

other things. In contrast, when evaluated on higher dimensionality test-data (P=100,1000), accuracy240

continues to rise, longer so for larger P . This suggests that significant learning of the additional241

dimensions continues in later stages of the learning.242
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4 PC-bias: Learning Order Constancy243

In this section, we show that the PC-bias is significantly correlated with the learning order of deep244

neural networks, and can therefore partially account for the LOC-effect described in Section 1.245

Following Hacohen et al. (2020), we measure the "speed of learning" of each example by computing246

its accessibility score. This score is given per example, and characterizes how fast an ensemble of247

N networks learns it. Formally, accessibility(x) = E [1(fei (x) = y(x))], where fei (x) denotes248

the outcome of the i-th network trained over e epochs, and the mean is taken over networks and249

epochs. For the set of datapoints {(xj ,yj)}nj=1, Learning Order Constancy is manifested by the high250

correlation between 2 instances of accessibility(x), each computed from a different ensemble.251

PC-bias is shown to pertain to LOC in two ways: First, in Section 4.1 we show high correlation252

between the learning order in deep linear and non-linear networks. Since the PC-bias fully accounts253

for LOC in deep linear networks, this suggests it also accounts (at least partially) for the observed254

LOC in non-linear networks. Comparison with the critical principal component verifies this assertion.255

Second, we show in Section 4.2 that when the PC-bias is neutralized, LOC diminishes as well. In256

Section 4.3 we discuss the relationship between the spectral bias, PC-bias and the LOC-effect.257

4.1 PC-Bias is correlated with LOC258

We first compare the order of learning of non-linear models and deep linear networks by computing259

the correlation between the accessibility scores of both models. This comparison reveals high260

correlation (r = 0.85, p < 10−45), as seen in Fig. 5a. To investigate directly the connection between261

the PC-bias and LOC, we define the critical principal component of an example to be the first262

principal component P , such that a linear classifier trained on the original data can classify the263

example correctly when projected to P principal components. We trained N=100 st-VGG networks264

on the cats and dogs dataset, and computed for each example its accessibility score and critical265

principal component. In Fig. 5b we see strong negative correlation between the two scores (p=−0.93,266

r<10−4), suggesting that the PC-bias affects the order of learning as measured by accessibility.267

(a) (b)

Figure 5: (a) Correlation between the accessibility score
of N=100 st-VGG networks trained with a low learning
rate2, and N=100 linear st-VGG networks, trained on
small mammals. (b) Correlation between the accessi-
bility score of N=100 st-VGG networks trained on cats
and dogs, and the critical principal component score.
The accessibility plot is smoothed by moving average of
width 10. Error bars indicate standard error.

(a) Linear networks (b) Non-linear networks

Figure 6: LOC measured with and without PC-bias.
Each bar represents the correlation between the learning
order of 2 collections of 10 networks trained on CIFAR-
10. Orange bars represent natural images, in which the
PC-bias is present, while blue bars represent whitened
data, in which the PC-bias is eliminated. As PC-bias
is more prominent earlier on, we compare these correla-
tions for the entire data (right 2 bars), and for the subset
of 20% "fastest learned" examples (left 2 bars).

4.2 Neutralizing the PC-bias leads to diminishing LOC268

Whitening the data eliminates the PC-bias as shown in Fig. 3c, since all the singular values are now269

identical. Here we use this observation to further probe into the dependency of the Learning Order270

Constancy on the PC-bias. Starting with the linear case, we train 4 ensembles of N=10 2-layered271

linear networks on the cats and dogs dataset, 2 with and 2 without ZCA-whitening. We compute the272

accessibility score for each ensemble separately, and correlate the scores of the 2 ensembles in each273

test case. Each correlation captures the consistency of the LOC-effect for the respective condition.274

This correlation is expected to be very high for natural images. Low correlation implies that the275

LOC-effect is weak, as training the same network multiple times yields a different learning order.276

2As non-linear models achieve the accuracy of linear models within an epoch or 2, low learning rate is used.

7



Fig. 6a shows the results for deep linear networks. As expected, the correlation when using natural277

images is very high. However, when using whitened images, correlation plummets, indicating that278

the LOC-effect is highly dependent on the PC-bias. We note that the drop in the correlation is much279

higher when considering only the 20% "fastest learned" examples, suggesting that the PC-bias affects280

learning order more evidently at earlier stages of learning.281

Fig. 6b shows the results when repeating this experiment with non-linear networks, training 2282

collections of N=10 VGG-19 networks on CIFAR-10. We find that the elimination of the PC-bias283

in this case affects LOC much less, suggesting that the PC-bias can only partially account for the284

LOC-effect in the non-linear case. However, we note that at the beginning of learning, when the285

PC-bias is most pronounced, once again the drop is much larger and very significant (half).286

4.3 Spectral bias, PC-bias and LOC287

The spectral bias (Rahaman et al., 2019) characterizes the dynamics of learning in neural networks288

differently, asserting that initially neural models can be described by low frequencies only. This may289

provide an alternative explanation to LOC. Recall that LOC is manifested in the consistency of the290

accessibility score across networks. To compare between the spectral bias and accessibility score,291

we first need to estimate for each example whether it can be correctly classified by a low frequency292

model. Accordingly, we define for each example a discriminability measure – the percentage out293

of its k neighbors that share with it class identity. Intuitively, an example has a low discriminability294

score when it is surrounded by examples from other classes, which forces the learned boundary to295

incorporate high frequencies. In §C.2 we show that in the 2D case analyzed by Rahaman et al. (2019),296

this measure strongly correlates (r=−0.8, p < 10−2) with the spectral bias.297

We trained several networks (VGG-19 and st-VGG) on several real datasets, including small-298

mammals, STL-10, CIFAR-10/100 and a subset of ImageNet-20. For each network and dataset,299

we computed the accessibility score as well as the discriminability of each example. The vector300

space, in which discriminability is evaluated, is either the raw data or the network’s perceptual space301

(penultimate layer activation). The correlation between these scores is shown in Table 1.302

(a) linear network (b) non-linear network

Figure 7: Effects of amplifying the highest (blue) and
lowest (orange) principal components.

Table 1: Correlation between accessibility and discrim-
inability.

Dataset Raw data Penultimate

Small mammals 0.46 0.85
ImageNet 20 0.01 0.54
CIFAR-100 0.51 0.85
STL10 0.44 0.7

Using raw data, low correlation is still seen between the accessibility and discriminability scores303

when inspecting the smaller datasets (small mammals, CIFAR-100 and STL10). This correlation304

vanishes when considering the larger ImageNet-20 dataset. It would appear that on its own, the305

spectral bias cannot adequately explain the LOC-effect. On the other hand, in the perceptual space,306

the correlation between discriminability and accessibility is quite significant for all datasets. Contrary307

to our supposition, it seems that networks learn a representation where the spectral bias is evident,308

but this bias does not necessarily govern its learning before the representation has been learned.309

5 PC-bias: further implications310

Early Stopping and the Generalization Gap. Considering natural images, it is often assumed that311

the least significant principal components of the data represent noise (Torralba & Oliva, 2003). In312

such cases, our analysis predicts that as noise dominates the components learned later in learning,313

early stopping is likely to be beneficial. To test this hypothesis directly, we manipulated CIFAR-10314

to amplify the signal in either the 1.5% most significant (higher) or 1.5% least significant (lower)315

principal components (see examples in Fig. 16, Suppl. §D). Accuracy over the original test set,316

after training 10 st-VGG and linear st-VGG networks on these manipulated images, can be seen317

in Fig. 7. Both in linear and non-linear networks, early stopping is more beneficial when lower318
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principal components are amplified, and significantly less so when higher components are amplified,319

as predicted by the PC-bias.320

Slower Convergence with Random Labels. Deep neural models can learn any random label321

assignment to a given training set (Zhang et al., 2016). However, when trained on randomly labeled322

data, convergence appears to be much slower (Krueger et al., 2017). Assume, as before, that in natural323

images the lower principal components are dominated by noise. We argue that the PC-bias now324

predicts this empirical result, since learning randomly labeled examples requires signal present in325

lower principal components. To test this hypothesis directly, we trained 10 2-layered linear networks326

on datasets of natural images. Indeed, these networks converge slower with random labels (see327

Fig. 8a). In Fig. 8b we repeat this experiment after having whitened the images, to neutralize the328

PC-bias. Now convergence rate is identical, whether the labels are original or shuffled. Clearly, in329

deep linear networks the PC-bias gives a full account of this phenomenon.330

(a) original data (b) whitened data

Figure 8: Learning curves of 10 2-layered linear net-
works, with real and shuffled labels, (a) before and (b)
after whitening.

(a) Original labels (b) Shuffled labels

Figure 9: Learning curves of st-VGG networks trained
on 3 datasets, which are linearly separable after projec-
tion to the highestP principal components (see legend).

To further check the relevance of this account to non-linear networks, we artificially generate datasets331

where only the first P principal components are discriminative, while the remaining components332

become noise by design. We constructed two such datasets: in one the labels are correlated with the333

original labels, in the other they are not. Specifically, PCA is used to reduce the dimensionality of a334

two-class dataset to P , and the optimal linear separator in the reduced representation is computed.335

Next, all the labels of points that are incorrectly classified by the optimal linear separator are switched,336

so that the train and test sets are linearly separable by this separator. Note that the modified labels337

are still highly correlated with the original labels (for P = 500: p = 0.82, r < 10−10). The338

second dataset is generated by repeating the process while starting from randomly shuffled labels.339

This dataset is likewise fully separable when projected to the first P components, but its labels are340

uncorrelated with the original labels (for P = 500: p = 0.06, r < 10−10).341

The mean training accuracy of 10 non-linear networks with P=10,50,500 is plotted in Fig. 9a (first342

dataset) and Fig. 9b (second dataset). In both cases, the lower P is (namely, only the first few principal343

components are discriminative), the faster the data is learned by the non-linear network. Whether the344

labels are real or shuffled makes little qualitative difference, as predicted by the PC-bias.345

6 Summary and discussion346

When trained with gradient descent, the convergence rate of the over-parameterized deep linear347

network model is provably governed by the eigendecomposition of the data, and specifically, pa-348

rameters corresponding to the most significant principal components converge faster than the least349

significant components. Empirical evidence is provided for the relevance of these results to more350

realistic non-linear networks. We term this effect PC-bias. This result provides a complementary351

account for some prevalent empirical observations, including the benefit of early stopping and the352

slower convergence rate with shuffled labels.353

We use the PC-bias to explicate the Learning Order Constancy (LOC), showing that examples354

learned at earlier stages are more distinguishable by the higher principal components, demonstrating355

that networks’ training relies more heavily on higher principal components early on. A causal link356

between the PC-bias and the LOC-effect is demonstrated, as the LOC-effect diminishes when the357

PC-bias is eliminated by whitening the images. We analyze these findings in view of a related358

phenomenon termed spectral bias. While the PC-bias may be more prominent early on, the spectral359

bias may be more important in later stages of learning.360
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