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Abstract

Computer-aided design (CAD) significantly enhances the ef-
ficiency, accuracy, and innovation of design processes by en-
abling precise 2D and 3D modeling, extensive analysis, and
optimization. Existing methods for creating CAD models rely
on latent vectors or point clouds, which are difficult to ob-
tain and costly to store. Recent advances in Multimodal Large
Language Models (MLLMs) have inspired researchers to use
natural language instructions and images for CAD model
construction. However, these models still struggle with infer-
ring accurate 3D spatial location and orientation, leading to
inaccuracies in determining the spatial 3D starting points and
extrusion directions for constructing geometries. This work
introduces CAD-GPT, a CAD synthesis method with spa-
tial reasoning-enhanced MLLM that takes either a single im-
age or a textual description as input. To achieve precise spa-
tial inference, our approach introduces a 3D Modeling Spa-
tial Mechanism. This method maps 3D spatial positions and
3D sketch plane rotation angles into a 1D linguistic feature
space using a specialized spatial unfolding mechanism, while
discretizing 2D sketch coordinates into an appropriate pla-
nar space to enable precise determination of spatial starting
position, sketch orientation, and 2D sketch coordinate trans-
lations. Extensive experiments demonstrate that CAD-GPT
consistently outperforms existing state-of-the-art methods in
CAD model synthesis, both quantitatively and qualitatively.

Project Page — https://OpenIWIN.github.io/CAD-GPT/

Introduction

Computer-Aided Design (CAD) has become the standard
approach for designing, drafting, and modeling in a wide
range of industries(Robertson and Allen 1993; Chen and
Olechowski 2024). Almost every manufactured object that
exists today started its life in a parametric CAD tool. The
CAD command sequence is one type of CAD model repre-
sentation. It is described as a sequence of operations such
as drawing 2d sketches and extruding sketches into 3D
solid shapes(Wu, Xiao, and Zheng 2021). Constructing these
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CAD models requires domain expertise and spatial inference
capabilities, and it can also be time-consuming.

Recently, the most popular direction for CAD model gen-
eration focused on using generative models like variational
autoencoder(VAE) (Wu, Xiao, and Zheng 2021) and vec-
tor quantized variational autoencoder(VQ-VAE) (Xu et al.
2022, 2023). These methods map CAD models to vec-
tors or codebooks in a high-dimensional latent space and
then reconstruct the original CAD models from these high-
dimensional representations. The main limitations of both
methods include: 1) The quality of CAD models synthe-
sized by these methods depends not only on the methods’
capabilities but also on the quality of the provided guidance
vectors or codebooks, which can inevitably result in cumula-
tive errors. 2) These methods require high dimensional data,
similar to the distribution of their vectors or codebooks as
inputs, which are difficult to obtain directly. Another line of
work directly infers CAD sequences from point clouds(Ma
et al. 2023; Khan et al. 2024) or sketches(Li et al. 2022). In
practical applications, sketches need to be drawn by profes-
sionals, and point clouds require specialized equipment for
collection, both of which involve high data acquisition costs.

Generative Al tools such as Multimodal Large Language
Models (MLLMs) have the potential to remove these bar-
riers. These multimodal models exhibit impressive visual
language understanding and generation capabilities(Achiam
et al. 2023; Yin et al. 2023). Recently, there have been
initial attempts to use state-of-the-art MLLMs for the cre-
ation of CAD models(Makatura et al. 2023; Badagabettu,
Yarlagadda, and Farimani 2024). Experiments show that
these models, such as GPT-4, lack spatial reasoning ca-
pabilities(Makatura et al. 2023) and have a low success
rate(Badagabettu, Yarlagadda, and Farimani 2024) in gener-
ating the desired CAD models. These limitations can man-
ifest as notable challenges in the design and manufacturing
domain. For instance, they may generate a car with four hor-
izontally placed wheels or a table with legs that exceed the
tabletop and are randomly positioned. Hence, the main ques-
tion we ask is: How to enhance the 3D spatial reasoning
capabilities of multimodal large language models for ac-
curate CAD model synthesis?
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Figure 1: Demonstration of various CAD models generated by CAD-GPT. The models in the image demonstrate semantic
sketch generation capabilities (e.g., a heart shape and the letter "E”), category-based CAD generation capabilities (e.g., a table,
a chair, and a key), spatial reasoning abilities (e.g., a table and mutually perpendicular cylinders), and the capability to generate
identical models with varying dimensions (e.g., three connectors with two circular holes of differing sizes).

In this paper, we introduce CAD-GPT, a MLLM with en-
hanced 3D spatial reasoning capability built upon LLaVA-
1.5 7B version(Liu et al. 2024). For training the model, we
constructed a dataset that pairs CAD modeling sequences
with natural language descriptions and single fixed-view
rendered images of the CAD models. We built our dataset
based on the DeepCAD dataset(Wu, Xiao, and Zheng 2021).
To enhance the spatial reasoning capabilities of the model,
we developed a 3D spatial localization mechanism specif-
ically tailored for 3D modeling tasks. Concretely, we con-
vert the global spatial 3D coordinates, sketch plane rota-
tion angles into two distinct categories of position tokens
by unfolding their characteristics into a 1D linguistic fea-
ture space. Additionally, the 2D sketches are discretized and
converted into special tokens. These tokens are incorporated
into the vocabulary of the base LLM. Simultaneously, we in-
corporate custom learnable positional embeddings to bridge
the gap between language and spatial positions.

In summary, our contributions are as follows:

* We present CAD-GPT, a MLLM that synthesises CAD
modeling sequences precisely from a single image or tex-
tual description. To the best of our knowledge, we are the
first to develop a MLLM specifically trained for this task.

* We designed a novel localization mechanism tailored for
the 3D modeling process, enhancing the spatial reason-
ing capabilities of large-language models by mapping 3D
space into 1D through a tokenization method.

 Utilizing the DeepCAD dataset, we generated 160k
fixed-viewpoint CAD model images and 18k correspond-
ing natural language captions. We plan to release our
CAD-GPT model along with the dataset we developed,
contributing a valuable resource.

* Experiments on the held-out dataset demonstrate that our
approach achieves a higher accuracy compared to state-
of-the-art baseline models.

Related Work
Approximate 3D Representation

Accurate and efficient 3D data representation remains a
challenge in computer graphics and vision. Point Clouds
(Zhou, Du, and Wu 2021; Luo and Hu 2021; Nichol et al.
2022) capture discrete spatial points, offering simplicity but
lacking surface details; Meshes(Groueix et al. 2018; Wang
et al. 2018; Chen et al. 2024b; Siddiqui et al. 2024) use ver-
tices and edges to form polygons, providing connectivity but
facing complexity issues; 3D Gaussians model (Kerbl et al.
2023; Tang et al. 2023) use points with Gaussian distribu-
tions for efficient rendering, yet they miss precise surface
features; and Neural Radiance Fields (NeRF) (Mildenhall
et al. 2021) employ neural networks for volumetric model-
ing, requiring substantial computational resources and data.
These representations often struggle with noise, incomplete
details, and limited editability.

Computer-Aided Design Model Representations

Direct B-rep Generation involves synthesizing the un-
derlying parametric curves and surfaces and the topology
that connects them to create a solid model(Wang et al. 2020;
Sharma et al. 2020). This work focuses on developing a gen-
erative model for CAD construction sequences rather than
B-reps. However, converting a B-rep into a construction se-
quence is challenging, as multiple command sequences can
produce the same B-rep.

CAD Construction Sequence Generation DeepCAD
(Wu, Xiao, and Zheng 2021) was the first to propose a
sketch-extrusion construction sequence representation for
CAD models, predicting CAD history from latent vectors
or point clouds as a preliminary experiment. HNC-CAD
(Xu et al. 2023) introduced a hierarchical code tree rep-
resentation for CAD sequences based on VQ-VAE, which
can autoregressively generate various CAD sequences from
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Figure 2: Overview of our CAD-GPT framework. On the left side, a dashed box contains the overall algorithm framework. The
right side provides a detailed view of our 3D Modeling Spatial Localization Mechanism. From top to bottom, it sequentially
demonstrates the 3D Orientation, 3D Coordinate Location, showing how they unfold from 3D to 1D along specific directions,

as well as the token representation method for the 2D Sketch.

different codebooks. However, these codebooks’ high-
dimensional and abstract nature makes it difficult to generate
desired CAD models directly. The recently proposed CAD-
SIGNet (Khan et al. 2024) can generate CAD sequences
from point clouds and produce CAD models by selecting
different sketches from the autoregressively generated inter-
mediates. However, obtaining point clouds requires a time-
consuming and costly process with expensive equipment. In
the fields of 3D mesh or 3D Gaussians generation, recent
work (Chen et al. 2024a; Wang et al. 2024) has leveraged
large language models(LLMs) and autoregressive methods
to achieve text-to-3D and image-to-3D generation. However,
these approaches have yet to be explored in the CAD con-
struction sequence generation domain.

MLLMs Recent advancements in LLMs (Mattas 2023;
Zhao et al. 2023) have revealed extraordinary emergent abil-
ities through scaling data and model sizes. Meanwhile, large
vision models (LVMs) (Kirillov et al. 2023) excel in visual
clarity but often need help with reasoning. Combining these
strengths, the emerging field of MLLMs(Achiam et al. 2023;
Yin et al. 2023) integrates LLMs with billion-scale param-
eters and new training paradigms, such as multimodal in-
struction tuning. This integration enables MLLMs to gener-
ate website code from images, interpret memes, and perform
OCR-free math reasoning. The remarkable success of these
applications inspires us to extend such methods to CAD con-
struction sequence generation, which can be considered as a
form of 3D modeling code generation.

User-Controlled 2D/3D Modeling Tasks Recently, Icon-
Shop(Wu et al. 2023) has demonstrated the capability of
language models to generate SVG 2D vector graphics from
text prompts, representing a significant advancement in 2D
modeling. Experimental evidence (Makatura et al. 2023) in-
dicates that GPT-4 struggles with specific types of reason-
ing, particularly those requiring analytical and spatial skills.
Query2CAD has developed a pipeline that utilizes GPT-4
and GPT-3.5 to generate CAD modeling code from text de-
scriptions. However, the failure rate has reached 30% to
50%. Currently, there is no work addressing these issues or
extending MLLMs to the domain of 3D modeling or CAD
construction sequence generation, nor are there MLLMs
specifically fine-tuned for these types of problems.

Method
Overview

In this section, we first briefly introduce the model architec-
ture of CAD-GPT. After that, we describe the representa-
tion of CAD command sequences. Next, we propose the 3D
modeling spatial localization mechanism that enhances the
spatial reasoning capabilities of the base MLLM.

Model Architecture

An efficient MLLM can be divided into three main modules:
a visual encoder g tasked with processing visual inputs, a
pre-trained language model f, (-) parameterized by ¢ that



manages the received multimodal signals and performs rea-
soning, and a visual-language projector P which functions
as a bridge to align the two modalities. We adopt LLaVA-1.5
7B version (Liu et al. 2024) as our base model with the pre-
trained Vicuna (Chiang et al. 2023) as our pedestal LLM.
Vicuna is built on LLaMA-2 (Touvron et al. 2023).

For an input image Iy, utilizing the pre-trained visual
encoder ViT-L/14-336px as g, which provides the visual
feature Z, = g(Iy). We consider a simple two-layer lin-
ear layer as the vision-language projector to map the vi-
sual patch embeddings Z, into the text feature space: S, =
P(Z,). Thus, we have a sequence of visual tokens S,,, which
can be understood just like the text tokens S, by the LLM.
Specifically, for a sequence of length L, we compute the
probability of the target answers S, by:

L
p(Sa | IV7 Sinstruct) = HP@(% | SV7 Sinstructy Sa7<i) (1)
i=1
where O is the trainable parameters, Sy, struct,<i and Sg,<;
are the instruction and answer tokens before the current pre-
diction token x;.

CAD Command Sequence Representation

Following the DeepCAD dataset (Wu, Xiao, and Zheng
2021), a CAD model is represented as a sequence of mod-
eling operations that the user executes to construct a 3D 3
d shape. This type of CAD model is saved in JSON for-
mat, storing key modeling commands and parameters (see
Table 1) in the order of CAD construction. The sequence
of commands is human-readable and easily editable. More-
over, JSON is one of the formats used for the LLaMA-2 pre-
training corpus and aligns with its prior knowledge. Con-
sequently, we directly preserve the JSON-formatted CAD
modeling sequence as the output format of our model.
These commands describe a CAD model M as a se-
quence of pairs of curve and extrusion commands inter-
leaved. In other words, M is a command sequence M =
[Cy,...,CN.], where each C; has the form (¢;, p;), spec-
ifying the command type ¢; and parameters p;. The com-
mands include details for determining the global starting
point of the sketch, the angles between the sketch plane and
the three coordinate axes, various parameters for drawing
the 2D sketch. Based on these commands, the 2D sketches
can be iteratively drawn and extruded to form a 3D model.
To execute an extrusion command, one must first define
the profile’s sketch plane’s 3D orientation and spatial loca-
tion.This ensures that closed curves can be accurately drawn
at the correct 2D local starting point on the correctly ori-
ented sketch plane. The orientation of the sketch plane is
defined by the parameters 6, v, ¢. At the same time, the spa-
tial location is specified by the coordinates p,, py, p., which
denote the origin of the sketch plane (see Table 1). Sketch
commands define closed curves on a 2D plane, with curve
parameters specifying the curve’s 2D location in the sketch
plane’s local frame. We consider three widely used curve
commands: drawing a line, an arc, and a circle. Precise com-
mand types and 2D coordinates are crucial for accurately
sketching the design. In summary, a sketch profile S is de-
scribed by a list of loops S = [Q1,...,Qn], where each

Commands Parameters
Line x,y: 2D line start-point
x,y: 2D line end-point
Arc x,y: 2D arc start-point
x,y: 2D arc mid-point
x,y: 2D arc end-point
Circle x,y: 2D circle start-point
x,y: 2D circle center
0, ¢,~: 3D sketch plane orientation
Das Dy, Pz : 3D sketch plane origin
Extrude s: scale of associated sketch profile

e1, ea: extrude distances toward both sides
b: boolean type, u: extrude type

Table 1: Origin CAD command sequences and the main pa-
rameters.

loop Q; consists of a series of curve commands, such that
Q; = [C1,...,Cy,]. Each curve command C; = (t;,p;)
specifies the curve type t; and its shape parameters p;.

3D Modeling Spatial Localization Mechanism

Selecting the coordinates of the 3D sketch plane origin co-
ordinate, determining the 3D sketch plane orientation, and
then drawing the sketch involves complex mathematical and
3D geometric reasoning processes. Our preliminary experi-
ments demonstrate that MLLMs struggle to infer these pa-
rameters accurately, leading to low precision and high fail-
ure rates in CAD model generation. To address these chal-
lenges, we propose a 3D Modeling Spatial Localization
Mechanism.

Specifically, we have designed three series of localiza-
tion tokens to replace the parameters for sketch plane origin
coordinates, orientation angles of the sketch plane, and 2D
sketch curve coordinates. These tokens have been added to
the LLM’s vocabulary, enabling the model to reason about
3D spatial transformations as seamlessly as it generates
words. A detailed explanation of this method is provided in
the following sections. Each type of token is enclosed by two
distinct boundary tokens, which are composed of special to-
kens. These boundary tokens serve to signal the model to
output the corresponding series of localization tokens. All
tokens constructed for the 3D Modeling Spatial Local-
ization Mechanism are presented in Table 2.

3D Sketch Plane Orientation Tokens In the CAD con-
struction sequence, the orientation is represented by a rota-
tion matrix composed of three consecutive parameters: 6, ¢,
and 7. This matrix is designed to align the world frame of
reference to the plane’s local frame of reference, specifically
orienting the z-axis to match the plane’s normal direction.
Following the order of & — ¢ — -y, progressing from low-
est to highest, each angle is discretized into 9 integer values,
resulting in a total of 729 orientation tokens represented as

<An>, where n6N0728. 2)



Commands Parameters

3D Orientation Tokens <An>, ne NJ?®

3
<Pk>, ke NOK -1
<81X>, <Smy>, lm e N}?7

3D Localization Tokens
2D Sketch Tokens

<angles>, </angles>;
<spatial_position>,
</spatial_position>;
<sketch_ position_x>,
</sketch_position_x>;
<sketch_position.y>,
</sketch_position_y>;

Boundary tokens

Table 2: Tokens customized for the 3D Modeling Spatial Lo-
calization Mechanism

After this, the angles are aligned with the language space of
large language models as part of the linguistic structure.

3D Coordinate Localization Tokens We normalize each
CAD model within a 1 x 1 x 1 cube. Next, we discretize
the vertices’ coordinates into K3 grids, where K = 36.
The grids are sorted in z — y — x order, from lower to
higher, following MeshGPT (Siddiqui et al. 2024) and Poly-
gen (Nash et al. 2020). The order indices of these grids are
used to construct our position tokens, forming a sequence of
location tokens

<Pk>, where kGNostl. 3)

For instance, a spatial point O, if its normalized coordinates
(Pai > Py, » P2, ) are located within grid o;, then its correspond-
ing position coordinate is P,,.

2D Sketch Coordinate Tokens After normalizing the 3D
modelto a1l x 1 x 1 cube, we also normalize each 2D sketch
profile within its bounding box and quantize their values into
128 levels. Consequently, the x and y coordinates are repre-
sented by two series of tokens as follows:

where [,m € N&”. (@]

<S1X>
<SmY>

These tokens indicate the discretized levels of = and y coor-
dinates for the 2D sketch.

Augmenting Spatial Features with Position Embeddings
We introduced four distinct types of tokens to the vocabu-
lary. Correspondingly, we expanded the embedding layers
to accommodate these additional tokens and incorporated
learnable position embedding layers to enhance the repre-
sentation of the four types of spatial information. The use
of learnable position embeddings allows the model to un-
derstand the relative positioning and relationships within
the spatial data, enhancing the accuracy and expressiveness
of the representation. Specifically, we introduced the fol-
lowing learnable position embedding matrices: Wypge €

729x D K3xD 128x D
R 9 > W3D,pos € R* X s WZD,sketch,x €ER 8 > and

Wap sketchy € R'™23*P. These matrices were used to aug-
ment the embeddings of the corresponding token types, en-
hancing their spatial information representations.

Dataset Construction

Our work is based on the DeepCAD dataset (Wu, Xiao, and
Zheng 2021), which contains 178,238 CAD modeling se-
quences. Referring to SkexGen (Xu et al. 2022), we remove
duplicate models.

Considering the unique characteristics of CAD models,
the division of CAD data in our dataset differs from that of
other 3D models. Many models within the dataset are ran-
domly constructed parts without known categories, while
others can be succinctly described with a single sentence
that encapsulates their category and characteristics. Conse-
quently, our dataset includes fewer instances of natural lan-
guage descriptions compared to image-based data.

First, using the OpenCascade (Open CASCADE Technol-
ogy), we render 2D images for each CAD model from fixed
angles. Then we have developed ten distinct natural lan-
guage modeling instructions designed to guide CAD-GPT
in generating CAD models based on reference images. For
instance, one of the instructions is: "Please create a CAD
model based on the provided image.” During each iteration
of fine-tuning, a different instruction is randomly selected.
Additional instructions are detailed in the supplementary
material. Ultimately, the dataset for fine-tuning CAD gen-
eration from images comprises 162k samples.

In order to generate accurate textual model caption data,
We first use GPT-4o to classify and filter the CAD models
by combining JSON and rendered images, removing those
that cannot be described. This process leaves us with 19k
models. We established a pipeline for generating instruc-
tions based on InstructGPT (Wang et al. 2022), which was
used to produce natural language descriptions for a dataset
of 19k instances. Following this, we manually curated the
generated descriptions to eliminate those deemed irrelevant
or erroneous. Consequently, a refined dataset comprising
18k natural language descriptions of CAD models was re-
tained. These curated data was saved in the format specified
for fine-tuning LLaVA, excluding image data, and was sub-
sequently utilized for mixed training purposes.

Experiments Settings

In this section, we first introduce the detailed training pa-
rameters and strategies of our method. We then present the
CAD generation results for both image and text input condi-
tions. Additionally, we conduct ablation studies to compare
the performance of the baseline multimodal model with and
without our 3D Modeling Spatial Localization Mechanism,
demonstrating the effectiveness of our approach.

Implementation Details

We freeze the linear mapping layer and vision encoder
weights of LLaVA, while fully fine-tuning the language
base model. We constructed our data input model based on
the LLaVA fine-tuning format, incorporating mixed image-
CAD sequence data and text-only description-CAD se-
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Figure 3: Comparison of different methods for image input
scenarios

quence data. The training involves two stages: first train-
ing on the image2CAD task, followed by fine-tuning on the
text2CAD task with a reduced learning rate. During training,
the newly introduced embedding layers are initialized based
on the original vocabulary embedding. The network was
trained using a batch size of 8 per GPU across 4x NVIDIA
RTX A800 GPUs, with a total training duration of 96 hours.
The initial learning rate is set to 2 x 1075, with a Cosine-
Warmup learning rate initialization strategy and a warm-up
ratio of 0.3. Additionally, following an extrapolation opti-
mization strategy, we adjust certain parameters, expanding
the model’s maximum input sequence length to 8§192.

Metrics

To comprehensively evaluate the predicted sequences, we
employ a set of metrics that assess different aspects of the
predictions. Specifically, the final CAD reconstructions are
quantitatively analyzed against ground-truth CAD models
using Chamfer Distances (CD) (Fan, Su, and Guibas 2017).
Since CAD sequences are predicted as tokens, they may not
always generate successfully rendered CAD models when
reconstructed with OpenCascade, we introduce an Invalidity
Ratio(IR) metric, expressed as a percentage, which quanti-
fies the proportion of invalid models. In addition, we evalu-
ate command accuracy using two metrics: Command Accu-
racy (ACCcpq) and Parameter Accuracy (ACCparam)-

CAD Generation from a Single Image

Qualitative Analysis In this section, we provide addi-
tional qualitative results on single-view image condition-
ing.As shown in Figure 3, we compared our approach

against three representative methods. The first is DeepCAD,
which exemplifies advanced generation techniques in CAD
modeling. The second is GPT-4, representing the cutting-
edge in closed-source multimodal large models. The third
is Qwen2-VL-Max, one of the leading open-source multi-
modal large models. As observed, DeepCAD struggles with
generating fine details, while GPT-4 exhibits limitations in
spatial reasoning, frequently leading to errors in generated
models. Qwen2-VL-Max, despite multiple attempts, consis-
tently failed to render the generated JSON correctly. In con-
trast, our model produces outputs that are both accurate and
aesthetically refined.

Quantitative Comparison with Existing Methods In
comparison with current CAD generation approaches, we
use DeepCAD as a compare method. In addition, we com-
pare our method with two recent autoregressive generative
models, namely SkexGen (Xu et al. 2022) and HNC-CAD
(Xu et al. 2023). We employ the same pre-trained visual
encoder, ViT-L/14-336, and map its output to the same la-
tent space for these methods. Additionally, we compare our
method with the state-of-the-art multimodal large model
GPT-4, with specific prompts detailed in the supplemen-
tary materials. As shown in Table 3, CAD-GPT achieves
a median CD of 9.77, representing a 48% reduction com-
pared to the best-performing baseline HNC-CAD’s 18.64.
Furthermore, it achieves an 84% lower than GPT-4’s 62.64,
demonstrating significantly higher reconstruction accuracy.
In terms of the IR, CAD-GPT achieves a 91% reduction
compared to the best-performing baseline, HNC-CAD, and
a 97% reduction compared to the state-of-the-art multimodal
model, GPT-4, demonstrating a significant improvement in
generating valid CAD models. CAD-GPT also outperforms
other methods on the two additional ACC metrics, demon-
strating superior command generation accuracy. These re-
sults underscore CAD-GPT’s superior precision and validity
in CAD model reconstructions.

Model IR Median ~ ACCena?  ACCpuram?
CDJ

DeepCAD  23.16 2378 95.34 96.23

SkexGen 2232 20.45 95.82 96.63

HNC-CAD  18.64 18.64 97.87 97.77

GPT4 64.37 62.64 98.22 97.36

CAD-GPT  1.61 9.77 99.21 98.87

Table 3: Quantitative Evaluation of CAD Model Perfor-
mance under Image Input Conditions

CAD Generation from Text Descriptions

Qualitative Analysis In this section, we present additional
qualitative results on text conditioning. Due to the lack of
directly comparable CAD generation methods, we selected
two representative large language models: GPT-4, a lead-
ing closed-source model, and LLaMA-3.1 (405B), a state-
of-the-art open-source model. As illustrated in Figure 4,
our model consistently generates high-precision, aestheti-
cally pleasing outputs that align well with the textual de-
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Figure 4: Comparison of different methods for text input scenarios

scriptions across various scenarios. In contrast, GPT-4 fre-
quently produces incorrect models with a high failure rate,
while LLaMA-3.1 only occasionally succeeds in rendering
models, and even then, the results often do not match the
provided descriptions.

Quantitative Comparison with Existing Methods We
compare our approach with GPT-4 and the state-of-the-art
open-source model LLaMA-3.1. We provide both models
with the same background and input them with identical
modeling instructions or text descriptions to generate the
corresponding modeling code. As shown in Table 4, CAD-
GPT achieves a median CD of 83% lower than GPT-4’s
187.52, and reduces the IR to 7.43, a 90% decrease com-
pared to GPT-4 and 92% compared to LLaMA-3.1. This
highlights CAD-GPT’s superior accuracy and lower failure
rates in CAD model reconstruction under text description in-
puts. In terms of ACC metrics, CAD-GPT outperforms the
other two methods up to 6%.

Model IR | Median  ACCema?  ACCpuam?
CDJ

LLaMA-3.1 98.68 NA NA NA

GPT-4 76.97 187.52 9221 93.65

CAD-GPT  7.43 28.33 98.73 98.12

Table 4: Quantitative Evaluation of CAD Model Perfor-
mance under Text Description Input Conditions

Ablation Study

The impact of the components proposed in CAD-GPT is
evaluated in Table 5, focusing on CAD reconstruction met-
rics, including IR, mean CD, ACC¢yg and ACCpyram. The
first row of the table shows the results when only the orig-
inal data is trained, without our additional tokens and po-
sition embeddings. This configuration results in a decline

in performance across CD distance, IR, as well as ACCyq
and ACCpyram- The second row demonstrates the effects of
incorporating only the three types of tokens. The incorpo-
ration of the three token series introduces 3D spatial posi-
tioning into the vocabulary, thereby enabling valid and accu-
rate CAD reconstructions. The third row reports the results
when both the three types of tokens and position embeddings
are added. This configuration further reduces CD distance
and IR while improving ACCy,g and ACCpyram, demonstrat-
ing that our method effectively enhances modeling accuracy
by mapping 3D spatial information into a one-dimensional
space and constructing new learnable position encodings.

Model IR | Median ACCemaT  ACCparamT
CDJ

Image Input

w/o Loc 37.15 161.31 90.45 91.37

w/o Emb 4.31 27.98 91.63 91.55

CAD-GPT 1.61 9.77 99.21 98.87

Text Input

w/o Loc 40.23 145.87 83.42 83.44

w/o Emb 10.12 29.58 87.54 88.23

CAD-GPT 7.43 28.33 98.73 98.12

Table 5: Ablation Study with Image and Text as Input

Conclusion

In this paper, we introduce CAD-GPT, a multimodal large
model enhanced with the 3D Modeling Spatial Localization
Mechanism to improve spatial reasoning capabilities. Our
model excels at inferring variations in sketch orientations,
changes in 3D spatial positions, and accurately rendering 2D
sketches. Leveraging these capabilities, CAD-GPT demon-
strates exceptional performance in generating precise CAD
models under both image and text input conditions.
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