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Abstract

The field of general time series analysis has recently begun to explore unified modeling,
where a common architectural backbone can be retrained on a specific task for a specific
dataset. In this work, we approach unification from a complementary vantage point: uni-
fication of time series data representations across domains in many tasks. To this end, we
explore the impact of discrete, learnt, time series data representations that enable general-
ist, cross-domain training. Our method, TOTEM, or Tokenized Time Series Embeddings,
proposes a simple tokenizer architecture that embeds time series data from varying domains
using a discrete vectorized representation learned in a self-supervised manner. TOTEM
works across multiple tasks and domains with minimal to no tuning. We study the efficacy
of TOTEM with an extensive evaluation on 17 real world time series datasets across 3
tasks. We evaluate both the specialist (i.e., training a model on each domain) and gen-
eralist (i.e., training a single model on many domains) settings, and show that TOTEM
matches or outperforms previous best methods on several popular benchmarks. Please
find the full paper here: https://arxiv.org/pdf/2402.16412.pdf, and the code here:
https://github.com/SaberaTalukder/TOTEM.
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1 Introduction

Time series analysis encompasses a wide range of datasets, tasks, and applications in the
real world. When considering training paradigms, time series analysis has historically been
conducted via specialist-training, meaning that models are trained on a single time se-
ries domain (Zhou et al., 2023; Wu et al., 2022a; Nie et al., 2022; Zhang and Yan, 2022).
Generalist-training, where models are simultaneously trained on multiple time series do-
mains, contrasts the specialist paradigm. Both specialist and generalist models can be
tested under various regimes. Within in-domain-testing, a model is tested on the same
domain(s) it was trained on. In zero-shot-testing, a model is tested on different domains(s)
than it was trained on. Some methods have begun to explore the idea of zero-shot fore-
casting where (1) a forecaster trains on one dataset then predicts on a separate dataset
(Zhou et al., 2023), or (2) a forecaster trains on a subset of channels (which we call sensors)
from one dataset then zero-shot forecasts on the remaining sensors in the same dataset (Liu
et al., 2023). Both of these models would be considered specialists, as they were trained on
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Figure 1: TOTEM & Evaluation Regimes. An overview of TOTEM, the training
schemas, and inference regimes. (a) The TOTEM VQVAE architecture consists
of an 1D strided CNN encoder &, quantizer, latent codebook, and 1D strided
transpose CNN decoder D. TOTEM’s VQVAE enables generalist training, i.e.,
on all datasets jointly, and specialist training, i.e., on one dataset at a time. (b)
TOTEM’s discrete, self-supervised codebook can be leveraged for both in domain
and zero shot testing.

only one (or a subset of one) dataset. In order to fully enable generalist training and zero
shot testing we explore the value of unified time series data representations.

Further, time series analysis has typically been restricted by task, where methods study
only forecasting (Wu et al., 2021; Woo et al., 2022), anomaly detection (Xu et al., 2021;
He and Zhao, 2019), or imputation (Luo et al., 2018, 2019), among others. Recently, the
field has become increasingly unified with respect to model architecture, with methods
(Zhou et al., 2023; Wu et al., 2022a) exploring language and vision backbones on various
time series tasks. These backbones, like previous methods, utilize specialist training (e.g.,
training separate anomaly detectors on each dataset).

Similarly, the field has also become increasingly unified with respect to data represen-
tation, with growing emphasis on learning performant data representations. For instance,
Franceschi et al. (2019) utilize an exponentially dilated causal convolutional encoder to
discover in-domain embeddings, Tonekaboni et al. (2021) leverage temporal neighborhood
coding, Yang and Hong (2022) utilize temporal-spectral fusion, and Yue et al. (2022) em-
ploys hierarchical contrasting across the time and batch dimensions.

At a technical level, our approach bears closest affinity to methods that use vector
quantized variational autoencoders (VQVAEs) (Van Den Oord et al., 2017; Duan et al.,
2023; Rasul et al., 2022b,a). As we discuss further in Section 2, Our goal is to develop a
streamlined framework for learning a tokenized data representation (using VQVAEs) in a
way that permits easy applicability and holistic empirical evaluation on a broad range of
time series modeling tasks and data domains (including zero-shot generalization to new test
domains) with minimal to no tuning.!

1. As an aside, our approach to studying what is a performant general time series data representation
shares a philosophical alignment with the development of large generalist models in natural language
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Motivated by the trend of time series analysis unification, we explore the value of a
VQVAE-based tokenizer for time series imputation, anomaly detection, and forecasting.
Unlike previous methods, we utilize self-supervised, discrete tokens, and extensively explore
their utility in varied training and testing regimes. Our contributions are as follows:

1. We present TOTEM, a simple tokenizer architecture for time series analysis that
works across domains and tasks with minimal to no tuning.

2. Despite its simplicity, TOTEM matches or outperforms the state-of-the-art on several
popular benchmark datasets and tasks.

3. With an extensive evaluation in the generalist setting (training a single model on
multiple domains), we show that TOTEM outperforms the leading state-of-the-art
model in both in-domain and zero-shot testing regimes.

2 Method

Our proposed discrete time series tokenization enables the design of general models across
a variety of time series domains, tasks, and evaluation schemas, Figure 1. We design a
single tokenizer architecture that is generally applicable without extensive data engineering
while being suitable for varying data dimensionalities across different tasks. There are many
possibilities for how to introduce a discrete time series tokenizer, we extensively study one
such methodology that satisfies the aforementioned design criteria.

Data Engineering. Prior work in time series analysis leverages data engineering such
as the use of auxiliary features (e.g. day of the month, or minute in the hour, etc.) (Chen
et al., 2023; Salinas et al., 2020), or frequency transformations (Wu et al., 2022a; Zhou et al.,
2022). We forego any data engineering and operate directly on time steps. This enables
generalist-training as differing data domains have widely varying sampling rates leading to
distinct auxiliary features and frequency profiles.

Varying Dimensionality. A time series dataset consists of E examples (i.e. number
of distinct recordings), S sensor channels, and T time steps, and can be formally expressed
as {xj};;:1 C R¥*T. Even within a single task and single data domain where S does not
change, F and T take on a wide range of values. As an example, canonical forecasting
predictions lengths range from 96 to 720 time steps. When moving to generalist-training,
datasets additionally have wide ranging sensor dimensionalities S. Our tokenizer handles
varying dimensionality across E, S, and T' by creating non-overlapping tokens along the
time-dimension that are smaller than the dimension 7.

Differing Tasks. There are numerous tasks to tackle in time series analysis. Three
significant ones are imputation, anomaly detection, and forecasting. In imputation, models
intake a masked time series x, € R*Tin and then reconstruct and impute x € RS*Tin
anomaly detection, models intake a corrupted time series Xcorr € RS*Tin and reconstruct
the data x € RS*Tin The amount of corruption is considered known, at A%. In forecasting,
models intake a time series x € R¥*Tin and predict future readings y € R5*7eut  where S
is the number of sensors and Tiy, T,y signify the durations of the preceding and succeeding

. In

processing, which are also based on having a common tokenized representation (Gage, 1994; Radford
et al., 2018).
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time series, respectively. Our tokenizer is performant across all tasks despite their distinct
representational requirements.

TOTEM Implementation. To realize a single tokenizer architecture that enables
generalist modeling across differing domains and tasks we take inspiration from the VQ-
VAE (Van Den Oord et al., 2017). The original VQVAE leverages a dilated convolutional
architecture with a stride of 2 and window-size of 4, similar to the WaveNet (Oord et al.,
2016) dilated, causal, convolutional decoder. A dilated convolution skips inputs allowing
a filter to operate on a larger input area / coarser scale. Utilizing dilated convolutions is
an architectural decision rooted in the high sampling rates of raw audio waveforms (Oord
et al., 2016; Van Den Oord et al., 2017). High sampling rates are not a trait shared by
many time series domains.

When adapting the VQVAE for general time series analysis, the TOTEM VQVAE:

1. Operates directly on time steps; no data engineering.

2. Creates discrete, non-overlapping tokens along the time dimension of length F', where
F < T, thereby promoting training and testing on variable length examples, F, sen-
sors, S, and time steps T

3. Maintains the same architecture and objective regardless of the downstream task.

4. Aims to capture maximal information within a large receptive field by: (1) using a
strided non-causal convolutional architecture with no dilation, (2) training on long
time series inputs, (3) pre-striding the data by a stride of 1 so the tokenizer learns
from maximal inputs.

The TOTEM VQVAE consists of an encoder, quantizer, latent codebook, and decoder.
It takes in a univariate time series {x; € RT}E{ obtained by flattening the sensor chan-
nel of the multivariate data. This makes TOTEM’s VQVAE sensor-agnostic, enabling
TOTEM’s generalist-training and zero-shot-testing. The encoder £ consists of strided 1D
convolutions compressing the time series by a cumulative stride of F. £ maps a univari-
ate time series x € R’ to a latent representation z = £(x) € R™/"*P where D is the
the hidden dimension. The latent codebook C = {c;}X, consists of K D-dim codewords
c; € RP. During quantization, the codebook is used to replace z with z € R"/F*D guch
that z; = c, where k = argmin, ||z; — ¢;||2. The decoder D follows the reverse architec-
ture of the encoder £, consisting of 1D transpose convolutions with a cumulative stride of
1/r mapping the quantized z to a reconstructed time series X = D(z) € RT. We learn &,
D, and C by optimizing the objective L = Liec + Lemt consisting of a reconstruction loss
Lree = %S >oillxi — %;||3 and a commitment loss Lemg, which allows the codebook to
update despite the the non-differentiable arg min operation during quantization. The final
objective is £L = Liec + « - Lemt, Where « is a scalar that weights the two losses. This
objective does not change even when the underlying task, time series length, data masking,
normalization schema, or data domain changes.

Notably imputation and anomaly detection can be directly solved with just TOTEM’s
VQVAE, as they are fundamentally data representation tasks, whereas in forecasting further
modeling is required, Figure 2. In forecasting, the trained, frozen, codebook representation
converts a sensor’s observed measurements x; € R7in to a sequence of T /F discrete tokens.
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Figure 2: Forecaster Modeling. The forecasting

task requires modeling beyond the VQVAE.
sor s = 1. ... S to unnormalize the We leverage TOTEM’s pretrained, learnt,
data Th’e ﬁ7nal forecasted predic- discrete codes as a the input data represen-
tion is ys = 0s - §s + ps. The tation and train a transformer encoder. We
forecasters is tr;ine ds n as super- add positional embeddings along the time di-
vised fashion by minimizing three mension, and use linear layers before the final
smooth L1 losses between predic- output as well as to un-normalize the result-

tions {ys, s, 05} and their ground ing forecast.
truth respectively.

For further discussion see: related work (A), experimental setup (B), ablations (C),
exploratory studies in generalist modeling (D), and std. devs. (E). Following the field
standard, we bold the best, second best, and best metric and calculate the average
number of best results, or AvgWins , for each method. We compare to two approach families:
methods designed for multiple tasks (multitask) — TOTEM belongs in this category — and
methods designed for a specific task (singletask), and are adapted to other tasks.

3 Imputation

In imputation, models intake a masked time series x;m € RS*Tn and then reconstruct and
impute x € R5*Tin We experiment with four canonical masking percentages at 12.5%, 25%,
37.5%, 50%, and report MSE and MAE ; lower is better ({).

Specialist. In Table 1 we compare TOTEM to baselines. All models are trained and
evaluated on the same dataset (in-domain). TOTEM has the highest AvgWins with 52.1%,
followed by GPT2 at 35.4%, and TiNet at 18.8%. TOTEM performance for m1 and hl
is lower; notably these datasets are the minute and hour resampling of the same raw data
respectively. We investigate and discuss TOTEM'’s success across different domains in Table
9. Generalist. In Table 2 we compare TOTEM to GPT2 (best performing models above),
when both models are trained on the aggregate of W, E, m1, m2, h1, h2. We test them on
the in-domain and zero-shot test sets. TOTEM outperforms GPT2 in-domain, 58.3% vs.
43.8% , and by a much larger margin in zero-shot, 80% vs. 20%.
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Table 1: Specialist Imputation (/). Across all datasets, metrics, and masking percent-
ages, TOTEM has the highest AvgWins (52.1%), followed by GPT2 (35.4%).
TOTEM values are means from 3 seeds; baseline values are from Zhou et al.
(2023); Wu et al. (2022a).

Model| TOTEM — GPT2 TiNet ‘ Patch ETS FED Stat Auto In Re LiTS Dlin
Metric| MSE MAE |MSE MAE |MSE MAE |MSE MAE |[MSE MAE |MSE MAE |MSE VMAE | MSE MAE |MSE MAE |MSE MAE |MSE MAE |MSE MAE
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TOTEM’s performance across all experiments demonstrate that tokens are a performant
representation for imputation.

Table 2: Generalist Imputation ().

4 Anomaly Detection TOTEM & GPT2 simultaneously

In anomaly detection, models intake a cor- train on all in domain datasets,
rupted time series Xeorr € R%*Tn and re- 3 seeds each. A. In-Domain
construct the data x € RS*Tin where the Performance. TOTEM has the
amount of corruption is considered known, highest AvgWins at 58.3%. B.
at A%. We report % Precision P (1), Recall Zero-Shot Performance.  We
R (1), and F1 Score (1); higher is better (1). test on unseen datasets zero-shot.

The standard practice in machine learn- TOTEM again has the highest
ing, which we adopt, is to have a held out AvgWins at 80.0%.

test set that is not used for tuning the model ~ , o~ . o .

or learning algorithm. One aspect that — Model| Torenv — cpro
Metric| MSE MAE | MSE MAE
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. . 8 0 .
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validation set for early stopping of the learn- o, i iEIEHIR B30 = 37 RARBA Wi
mng algorlthm, which can often inflate their 0‘5/0b 0095 0:205/0.132 0.236 50% 10.056 0.16010.131 0.228
performance. Despite this inconsistency, we = B/ SOBRIBIE 1151 2 RATR a0 b1 0

. N . 3 5 L 1o . o 8 N
) ’ B 572 0:048 0:135|0:0% 0171 2 53726 |0:053 0:08| 0:030 0155
compare our performance agalnst these re- 50% 10.058 0.152/0.117 0.196 50% 10.029 0.110/0.055 0.145
ted pert h ante. 2 M LRI < ST
D o o s e o i LRSI "

. . 0 .04 . . . . . . .
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GPT?2, TiNet, ATrans, ETS, and LogTr at  avewins 58.3% | 43.8%  avgwins 80.0% | 20.0%
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13.3%. Generalist. In Table 4 we compare generalist-trained TOTEM and GPT2. On
the in-domain test sets TOTEM outperforms GPT2: 80% vs. 20%. In the zero-shot test
sets TOTEM outperforms GPT2: 73.3% vs. 26.7%.

TOTEM’s AvgWins across the specialist and generalist settings demonstrate that tokens
are a performant representation for anomaly detection.

Table 3: Specialist Anomaly Detection (1).

TOTEM has the highest AvgWins at

26.7% followed by a five-way tie between GPT2, TiNet, ATrans, ETS, and LogTr
at 13.3%. Some prior methods use the test set as a validation set for early stop-
ping of the learning algorithm, which can inflate performance. We do not adopt
this practice and train TOTEM for a set number of iterations.

Model [TOTEM GPT2 TiNet | ATran Patch ETS FED Stat Auto Pyra Inf Re LogTr Trans LiTS DLin
SMD | 79.62 | 86.89 | 84.61 | 85.49 |84.62 | 83.13 |85.08|84.62 83.04|81.65(75.32| 76.21 |79.56 |82.53|77.10

~ MSL | 8258 | 8245 | 8184 | 8331 |7870 | 85.03 |78:57|77-50(79.05 8406 (84.40| 7957 | 78:68 | 7895 |84.88
m SMAP| 94:02 | 72:88 | 69:39 i 68:82 | 69:50 |70776|71.09 | 7112 (71.09(69:92|70:40| 69:97 | 69:70 | 69:21 | 69:26
\%AT 9427 | 94:23 | 93102 | 83.10 | 8572 | 84:91 193719 79:88]92:74 |91.78 |S143|82:80| 80:52 | 80-37 8752
PSM | 9587 | 9713 | 97.34 | 7940 [96.08| 9176 97.29193:29 | 82108 | 77101 73:61| 7674 | 76:07 |97.15]93:55
SMD | 76.06 | 84.98 | 81.54 | 82.23 [82.14| 79.23 [82.39|81.21 80.6177.23169.24| 70.13 | 76.13 |78.42|71.52
e MSL | 82185 | 8291 | 7536 | 87.37 | 70:96 | 84:93 |80:07|89.14(80.92|85:93|86.48 [83.:31| 87.37 |87.37|rb.18|85.42
gMAP 94.04 | 60:95 | 56:40 | 5811 | 5546 | 55775 |5810(59°02|58:62 5771|5713 | 5744 | 5759 | 57.12 |55.27 | 5541
AT| 9597 | 96:34 | 9540 | 97.32 | 80:94 | 80'36 |96:42(96.75(95:81]96:00|96.75|96.53| 97-32 | 96:53 |94.72|95'30
PSM | 9451 | 9568 | 96:20 | 9472 [93:47| 8528 |97:16 8815196:02196.33195:38 | 98:00 | 96:56 195:97]89:26
MD | 83.54 | 88.89 | 87.91 | 88.91 |87.26 | 87.44 |87.95 88.06 | 85.61|86.60|82.58| 83.46 |83.58 |87.10]83.62

o, MSL | 82132 | 82:00 | 89:54 | 7961 |88:34| 85'13 |77-14|68.55|77-27 |83:8L | 8177 73.05 | 7157 |82:40|84:34
gMAP 94.00 | 90:60 | 90'14 | 91:85 |90.64 | 92:25 |90'47|89:37|90:40 90:11190:91| 8915 | 89:37 |92.58]92.32
AT| 92:68 | 92:20 | 9075 | 7251 | 91:10 | 90:02 [90:17 | 68103 |89:85[87.92|70:29|72:50| 68.:67 | 68.84 80.91
PSM | 9758 | 9862 | 9851 | 6835 99.31 197.31197.8299.08/71.67164.97159.93| 63.06 | 62.75 |98.37|98:28
Avgiiins 26.7% 113.3%/13.3%]/13.3%]| 0% [13.3%] 0% 16.7%| 0% | 0% | 0% | 0% 113.3%]| 0% | 0% | 0%

5 Forecasting

In forecasting, models intake a time series
x € R¥Tn and predict future readings
y € R9*Tout where S is the number of sen-
sors and Tin, Tout signify the durations of
the preceding and succeeding time series,
respectively. The pairs (x,y) are generated
by striding the original time series data.

All models have a lookback of T}, =
96, with prediction lengths Tout
{96,192, 336, 720}. Numbers for other
methods are from Liu et al. (2023). We
run GPT2 with Ti, = 96 as they origi-
nally report varying, dataset-specific, look-
back lengths. We report MSE (|) and MAE
(J); lower is better ({).

Specialist. From Table 5 we find
that TOTEM achieves the highest AvgWins
at 28.6% followed by iTrans at 26.8%.

Table 4: Generalist Anomaly Detection
(1). We train TOTEM & GPT2
on all datasets and then per-
form in-domain and zero-shot eval-
uations. A. In-Domain Per-
formance. TOTEM outperforms
GPT2: 80.0% vs. 20.0%. B. Zero-
Shot Performance. TOTEM
again outperforms GPT2: 73.3%
vs. 26.7%.

A. In-Domain Performance B. Zero-Shot Performance

Model ITOTEM — GPT2 Model ITOTEM — GPT2
SMD | 78.64 79.73 N2 | 51.29 39.02

—~ MSL | 83.29 80.17 - N5 | 51.28 1219
m SMAP| 9251 67.05 m R 4939 36.14
WAT| 94:37 8962 g 4915 20.81
PSM | 9578 90.47 52117 3812
MD | 72.07 73.42 N2 | 76.88 33.69

« MSL | 82.96 78148 = N5 | 76.84 3677
gMAP 91.48 53.42 R 70.49 29.66
WAT| 96.13 87.53 B 7371 1767
PSM | 93:90 8776 S 77.36 31.83
Sl\éD 86.66 87.44 N2 38.49 46.43

o, MSL | 83.64 81.95 a, N5 38.48 4958
gMAP 93.56 90.01 R 3802 46:30
WAT| 92.68 01.83 E 36.86 2533
PSM | 97.74 93:39 39:35 4772
AvgWins 80.0% ‘ 20.0% AvgWins T3. % ‘ 26.7%

TOTEM has first finishes in five datasets while iTrans’ first finishes are concentrated in
only electricity and traffic. Generalist. In Table 6 we compare generalist TOTEM and
GPT2. TOTEM outperforms GPT2 for both in-domain (67.9% vs. 33.9%) and zero-shot

(90.0% vs. 12.5%).
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TOTEM has the best AvgWins (28.6%), followed

by iTrans (26.8%). Notably, TOTEM has first place finishes in 5 datasets, while

Table 5: Specialist Forecasting (|).

iTrans’ first places are concentrated in only electricity and traffic. All models have

lookback T;

= 96.

m T

Cross FED Stat TiDE RLin DLin SCi

Patch

iTrans

P

TiNet

GPT2

TOTEM

el

L
We

B. Zero-

In-Domain Per-
TOTEM outperforms

A.

evaluate generalist TOTEM and
Shot Performance. TOTEM out-

GPT2: 67.9% to 33.9%.

GPT2.
formance.

| 3.6%

§:437

SE_MAE |MSE MAE |MSE MAE | MSE MAE |MSE MAE |MSE MAE | MSE MAE | MSE MAE [MSE MA
2910.354 0.34810.
-

. 54 0.214
221 0.254
s 0.296

| 26.8% | 14.3%

| 1.8%

TOTEM demonstrates strong
in-domain and zero-shot capabilities that

MSE _MAE | MSE MAE | MSE MAE

TOTEM’s AvgWins forecasting performance across the training and testing regimes

demonstrates that tokens are a performant representation for forecasting.

6 Conclusions, Limitations & Future Work

AvgWins 28.6% ‘ 1.8%

We present TOTEM: a simple, perfor- Table 6: Generalist Forecasting ({).

mant tokenizer that creates unified time
series data representations across domains
in many tasks thereby enabling generalist

modeling.

to 12.5%.

performs GPT2: 90.0%

f-the-

-0
art approaches. We leave discussion of our

match or outperform existing state

MAE

A. In-Domain Performance
Model | TOTEM

Metric| MSE

ablation experiments, section C, and fur-
ther studies of generalist modeling, section

Dy-

interesting limitation is that TOTEM does

not support variable token lengths.
namic token lengths could potentially en-

D, to the Appendix. Moving forward, an

hance unified time series data representa-
tions and further improve task performance.

Other interesting directions include further
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investigating the relationship between gen-
eralist data representations, token length,

data size, and domain diversity.

AvgWins 90.0% ‘ 12.5%

AvgWins 67.9% ‘ 33.9%
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7 Reproducibility Statement

To ensure reproducibility all results are run on three seeds; see section E for standard
deviations. All code will be released. All datasets are already popular, public time series
benchmark datasets. In imputation, anomaly detection, and forecasting the VQVAE is
trained with a learning rate of 0.001, embedding dimension of 64, commitment cost of 0.25,
and compression factor of 4. In forecasting the downstream model is a transformer encoder
with 4 layers and 4 attention heads and a feed-forward hidden dimension of 256. We train
using Adam with a base learning rate of 0.0001 and a one cycle learning rate scheduler in
accordance with Nie et al. (2022) on A100s.

Broader Impact

There are no immediate ethical concerns that arise from our work. However, as with all
data driven methods, certain societal consequences are important to be discussed, in this
case surrounding time series modeling. A few are reported below:

Privacy Concerns. Time series data, especially when sourced from personal devices or
applications, can contain sensitive information about individuals, e.g. for health domains.
In this work, no time series were sourced from personal devices.

Misuse. Time series forecast models can be misused. For instance, if a model fore-
casts stock prices or market movements, it could be exploited for insider trading or other
illegal financial activities. In this work, we are focused on domains pertinent to scientific
disciplines.

Economic Impacts. Automated forecasts and decisions based on time series models
can significantly impact industries and labor markets both positively and negatively. For
instance, if a model can accurately predict weather patterns, it might affect farmers and
their crop decisions, or if it can forecast energy consumption, it could impact the energy
sector.
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Appendix A. Related Work

Time series modeling methods utilize many techniques, ranging from statistical methods
(Winters, 1960; Holt, 1957; Anderson, 1976; Hyndman and Athanasopoulos, 2018; Taylor
and Letham, 2018) to multilayer perceptrons (MLPs) (Zeng et al., 2023; Li et al., 2023;
Das et al., 2023; Challu et al., 2023; Chen et al., 2023; Zhang et al., 2022; Oreshkin et al.,
2019) to convolutional neural networks (CNNs) (Wu et al., 2022a; Liu et al., 2022a; He and
Zhao, 2019; Franceschi et al., 2019; Bai et al., 2018) to recurrent neural networks (RNNs)
(Salinas et al., 2020; Shen et al., 2020; Hochreiter and Schmidhuber, 1997) to transformers
(Zhou et al., 2023; Liu et al., 2023; Nie et al., 2022; Zhang and Yan, 2022; Woo et al., 2022;
Zhou et al., 2022; Liu et al., 2022b; Wu et al., 2022b; Xu et al., 2021; Wu et al., 2021; Liu
et al., 2021; Zhou et al., 2021; Kitaev et al., 2020; Li et al., 2019). Many models are hybrid
solutions that blend aforementioned approaches.

Most of these methods intake time and then perform various combinations of normal-
ization (Kim et al., 2021), frequency transformations (Wu et al., 2022a; Zhou et al., 2022),
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and patchification either along the time dimension (Liu et al., 2023; Zhang and Yan, 2022;
Nie et al., 2022), or sensor dimension (Li et al., 2019; Zhou et al., 2021; Wu et al., 2021,
Liu et al., 2021).2 Patch lengths range from a single time-step / sensor, also known as
point-wise, to the length of the entire time series / all sensors. Time and sensor patch de-
pendencies are then learned, via an attention mechanism, convolution, recurrence, or linear
layer, across the temporal dimension, sensor dimension, or both the temporal and sensor
dimensions (Zhang and Yan, 2022). For multisensor modeling, one can model all sensors
jointly or independently (i.e., forecast each sensor independently) (Nie et al., 2022). These
methods learn the underlying data representations end-to-end with the downstream task
(e.g., forecasting).

Specialist-training, where models are only trained on a single time series domain, is
the most common regime amongst prior work (Zhou et al., 2023; Wu et al., 2022a; Nie
et al., 2022; Zhang and Yan, 2022). These specialist models are primarily evaluated via
in-domain-testing, where the test set is from the same domain as the train set. Recently,
some methods (Zhou et al., 2023; Liu et al., 2023) have begun to explore specialist zero-shot
forecasting capabilities.

The time series analysis field is undergoing unification along both the modeling axis
(Zhou et al., 2023; Wu et al., 2022a) and data representation axis (Franceschi et al., 2019;
Tonekaboni et al., 2021; Yang and Hong, 2022; Yue et al., 2022). Unified data representa-
tions, both statistical and learnt, have been more extensively studied in language and vision
modeling (Gage, 1994; Van Den Oord et al., 2017; Esser et al., 2021; Rombach et al., 2022).
The vision modeling field distinguishes between discrete, learnt, tokens (Van Den Oord
et al., 2017; Esser et al., 2021; Rombach et al., 2022) and patches (Dosovitskiy et al., 2020).
Patches have been studied in time series modeling (Zhou et al., 2023; Nie et al., 2022; Zhang
and Yan, 2022). In this work, we propose to use discrete, learnt tokenized representations,
which we show lead to strong performance in both specialist and generalist settings, as well
as in-domain and zero-shot testing regimes.

Appendix B. Experimental Setup

Through experiments in imputation (§3), anomaly detection (§4), and forecasting (§5), our
goal is to explore the efficacy of TOTEM on standard benchmark datasets and tasks, and
domain general settings. To briefly refresh: specialist refers to training on a single domain
(Tables 1, 3, 5). Generalist refers to training on multiple domains (Tables 2, 4, 6). Finally,
in-domain refers to testing on the training domain, and zero-shot to testing on a separate
domain from training.

For all experiments & models, we run three seeds and report the mean; standard devi-
ations are reported in section E. Following the field standard, we bold the best metric in
all tables. Evaluation metrics differ across tasks. We report mean squared error MSE ({),
mean absolute error MAE (), precision P (1), recall R (1), and F1 score (1); (J) means lower
is better, (1) means higher performance is better. Given the varied metrics we calculate
the average number of best results, or AvgWins , for each method and highlight the best,
second best, and best methods.

2. In time series analysis, sensors, channels, and variates are synonymous terms; in this paper we adopt the
sensor terminology.
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Baselines. We compare to two families of approaches: methods designed for multiple
tasks (multitask) — TOTEM belongs in this category — and methods designed for a specific
task (singletask), and are adapted to other tasks.

We compare against two recent multitask models, the transformer based GPT2 Zhou
et al. (2023) and the convolutional TimesNet[TiNet] Wu et al. (2022a). For singletask
models we compare against PatchTST Patch] Nie et al. (2022), ETSFormer[ETS] Woo et al.
(2022), Fedformer[FED] Zhou et al. (2022), Non-stationary trans.[Stat] Liu et al. (2022b),
Autoformer[Auto] Wu et al. (2021), Informer[Inf] Zhou et al. (2021), Reformer|[Re| Kitaev
et al. (2020), Light TS[LiTS] Zhang et al. (2022), DLinear[DLin| Zeng et al. (2023), Anomaly
trans.[ATran]|Xu et al. (2021), Pyraformer[Pyra] Liu et al. (2021), LogTrans.[LogTr| Li et al.
(2019), Trans.[Trans| Vaswani et al. (2017), Crossformer[Cross| Zhang and Yan (2022),
TiDE Das et al. (2023), RLinear[RLin| Li et al. (2023), SciNet[SCi| Liu et al. (2022a), &
iTrans.[iTrans| Liu et al. (2023).

Datasets. We leverage 12 benchmark datasets: weather[W], electricity[E], traffic[T],
ETTm1[m1], ETTm2[m2], ETTh1[h1], ETTh2[h2], SMD, MSL, SMAP, SWAT, PSM that
are commonly used for imputation, anomaly detection and forecasting Zhou et al. (2023);
Wu et al. (2022a); Xu et al. (2021); Zhang and Yan (2022); Nie et al. (2022). For the zero
shot settings, we leverage 5 benchmark datasets: neuro2[N2], neuro5[N5| (from Peterson
et al. (2022)), and saugeen river flow[R], U.S. births[B], and sunspot[S] (from Godahewa
et al. (2021)). 17 datasets in total.

Appendix C. Ablations

Tokens vs. Time. To evaluate if tokens enable TOTEM’s performance, we implement
TimeTOTEM. TimeTOTEM has the identical architecture to TOTEM, except we replace
the VQVAE with an MLP trained end-to-end with the downstream forecaster. We compare
Totem vs. TimeTOTEM in the specialist in-domain, and generalist in-domain and zero-
shot regimes (Table 7). In all cases TOTEM outperforms TimeTOTEM - specialist: 67.9%
vs. 39.3%, generalist in-domain: 78.6% vs. 23.2%, generalist zero-shot: 67.5% vs. 35.0%.
TOTEM’s performance demonstrates that tokens, when compared to time, lead to better
performance.

Codebook Size. In Table 7 we explore the affect of the codebook size, K, on the
VQVAE’s MSE and MAE reconstruction performance. As expected, we find that as K increases
from 32 to 256 to 512 the reconstruction performance improves.
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Appendix D. Exploratory Studies in Generalist Modeling

Generalist Codebooks. To further explore the capabilities of a generalist codebook data
representation we train models that utilize a general codebook but dataset-specific trans-
former forecasters, e.g. a TOTEM VQVAE trained on multiple domains with a forecaster
trained only on electricity, Table 8. We compare these mixed models to generalist and
specialist models trained on the same domains. All models use the same the codebook
hyperparameters (number of codewords K = 256, compression factor F' = 4, code di-
mensionality D = 64) as well as the forecaster transformer architecture to ensure a fair
comparison.

Since we are evaluating the specialists, mixed-models, and generalist on in-domain test
data one might expect that the TOTEM specialists will significantly outperform all models.
Surprisingly this intuition is not correct. When comparing models trained using specialist
codebooks to models trained using a single generalist codebook we find that generalist
codebook models outperform specialist codebook models: 66.1% vs. 57.1%. Upon further
inspection we find that the fully-generalist model (far right column Table 8) significantly
outperforms the mixed-models (middle column Table 8) in traffic (T) and electricity (E).
This dominant performance is puzzling until considering the training sizes.

The largest training set across domains belongs to traffic (T) at 10.2M training exam-
ples. In dataset T, the fully generalist models achieves 100% AvgWins . The second largest
training set belongs to electricity (E) at 5.8 M training examples, with 75% AvgWins for the
fully-generalist model. Unfortunately there is a sharp drop off in training set sizes, with
the rest of the data domains collectively comprising 1.6M training examples. These results
evoke questions. For instance: does training on the smaller datasets act like form of regular-
ization? Or: how does in-domain generalist performance scale with dataset size? We leave
these exciting directions for future work. The generalist codebook’s performance across
datasets highlights the potential of unified, discrete, token representations for in-domain
evaluations.

Zero Shot Vignette: Training Size & Data Diversity. Here we further explore
generalist and specialist zero-shot testing capabilites, Table 9. We take the two largest
TOTEM specialist, traffic at 10.2M and electricity at 5.8M training examples, and test
their zero-shot capabilities compared to the TOTEM generalist. We expect that the gen-
eralist will perform best as it was trained on the most data at 17.6M training examples
as well as the most domains. We predict the generalist will be followed by TOTEM-
traffic then TOTEM-electricity as they are both trained on only one domain but traffic
has 4.4M more training examples than electricity. As expected the generalist outperforms
both TOTEM-traffic and TOTEM-electricity with 85.0% AvgWins . However, curiously
TOTEM-electricity outperforms TOTEM-traffic: 12.5% vs. 2.5% despite having 4.4M
fewer training examples. Why is the smaller training set outperforming the larger training
set? Ome possible explanation is that the electricity domain is more similar than the traffic
domain to neuro, river, births, and sunspot. Another possible explanation comes from the
raw time series dimensionality. Despite having fewer training examples, electricity has a
higher number of raw time steps® compared to traffic: 26304 vs. 17544. However, traffic
has a larger number of sensors: 862 vs. 321. This limited analysis suggests that a higher

3. Raw time steps for all data. The train:val:test ratio is 7:1:2.
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number of raw time steps is more valuable than more sensor readings. Untangling these

possibilities and beginning to answer the questions: what is a unit of data in time series?
And how this unit scale as the time steps, sensors, and examples scale? are valuable future

directions. The zero shot vignette has demonstrated the power of the token-enabled gener-
alist over the traffic and electricity specialists, and has opened up exciting training size and

data diversity questions.

Table 8: Generalist codes beat specialist codes: 66.1% vs 57.1%.
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Table 9: Zero Shot Vignette: Training Size & Diversity
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Appendix E. Means and Standard Deviations

E.1 Imputation Results - Means and Standard Deviations

Table 10: TOTEM - Specialist Imputation (])

Metricl MSE MAE
. 12.5%]0.028 4 0.0000 0.046 + 0.0006
2 % |0 0000 0.046 + 0.0

70 28 £ 0. 006
5%10.029 + 0.0000 0.047 + 0.0010
)07 0.031 £ 0.0006 0.048 + 0.00015

5%(0.054 + 0.0006 0.154 + 0.0015
= 3507008 = 80006 0130 £ 0: 9019
5% 006 0.169 + 0.0012
50% 10.079 £ 0.0012 01183 + 0:0012

. 12.5%/0.049 + 0.0000 0.125 + 0.0006
= 25% 10.052 + 0. 8888 0.128 = 8 .0006

37.5%]0.055 £ 0. 0.132 £ 0.0006
50% 10.061 £+ 0.0006 0.139 + 0.000
aq 12:5%/0.016 £ 0.0006 0.078 £ 0.0010
= 250/? 0.017 £ 0.0006 0.081 £ 0.0006
=37.5%|0.018 £ 0.0000 0.084 + 0.0006
50% 10.020 £ 0.0000 0.088 + 0.0000
. 12.5%)0.119 £ 0. 0010 0.212 4 0.0006
=257 10.127 £ 0.0015 0.220 & 0.0006
37.5%(0.138 £ 0.0 .230 £ 0.0006
50% 10.157 + 0. [](]()() 0.247 £ 0.0010
~ 12 5%/0.040 + 0.0006 0.129 +0.0017
= 25% 10.041 +0.0010 0.131 +0.0012
37.5%(0.043 £ 0.0006 0.136 & 0.0006
50% 10.047 = 0.0006 0.142 + 0.00

Table 11: TOTEM - Generalist Imputation (/)

Metricl MSE MAE

]2 5%/0.029 = 0.0012 0.060 + 0.0047
= 25% 10.030  0.0006 0.060 + 0.0047
~ 3T, 5%0.032 & 0.0006 0.062 + 0.0030

50% 10.036 + 0.0006 0.067 4+ 0.00036

12.5%0.065 & 0.0020 0.171 4 0.0032

m 25% 10.071 +0.0015 0.179 +0.0031

37.5%10.080 % 0.0025 0.189 + 0.0032

50% 10.095 £+ 0.0026 0.205 4+ 0.0032

— 12.5%/0.041 + 0.0006 0.
E 25”/9 0.044 £ 0.0000
©10.048 £ 0.0006

>07 0.058 £ 0.0010
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S 12.5%0.017 £ 0.0010 0.085 + 0.0030
Z, 25% 10.019 & 0.0010 0.090 % 0.0030
37.5%(0.022 + 0.0006 0.098 & 0.0025
50% 10.029 + 0.0006 0.110 + 0.0025
12.5%0.071 4 0.0070 0.109 + 0.0040
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20



TOTEM: TOKENIZED TIME SERIES EMBEDDINGS FOR GENERAL TIME SERIES ANALYSIS

Table 12: GPT2 - Generalist Imputation (J)

Metricl MSE MAE
12.5%0.029 + 0.0000 0.045 + 0.0006
1033 £ 0.0006 0.048 = 0.0006

.5%/0.037 + 0.0006 0.054 + 0.0012

50% 10.043 + 0.0012 0.061 + 0.00017
12.5%0.008 £ 0.0020 0.186 =+ 0.00:
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76/0.108 & 0.0021 13 4 0.00:

50% 10.132 + 0.0026 0.236 + 0.00:

. 12.5%/0.052 + 0.0012 0.141 + 0.00
= 25% 10.065 + 0.0021 54 £ 0.00:
= 37.5%/0.085 & 0.0038 714+ 0.00:

50% 0.117 £ 0.0052 6 4 0.00

095 + 0.0006
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S [

a 12:5%/0.029 + 0.0000
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E.2 Anomaly Detection Results - Means and Standard Deviations

Table 13: TOTEM - Specialist Anomaly Detection (1)

Mean + Std

SMD
MSL

L'SMAP

SWAT
PSM

0.796 £ 0.0137
0.826 £ 0.0052
0.940 £ 0.0008
0.943 £ 0.0006
0.959 £ 0.0008

SMD
MSL
< SMAP
SWAT
PSM

0.761 £ 0.0207
0.829 £ 0.0071
0.940 £ 0.0013
0.959 £ 0.0012
0.942 £ 0.0004

SMD
MSL
A SMAP
SWAT
PSM

0.835 £ 0.0054
0.823 +0.0033
0.940 £ 0.0004
0.927 4+ 0.0003
0.976 £+ 0.0012
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Table 14: TOTEM - Generalist Anomaly Detection (1)

‘Mean + Std

SMD
MSL
SMAP
SWAT
_, PSM

"N

N5

R

B

S

0.786 + 0.0386
0.833 £+ 0.0020
0.925 £+ 0.0014
0.944 £ 0.0005
0.958 £ 0.0002
0.513 £ 0.0397
0.513 £ 0.0390
0.494 £ 0.0625
0.492 £+ 0.0229
0.522 £ 0.0418

SMD
MSL
SMAP
SWAT
PSM

[

N2
N5
R
B
S

0.721 £ 0.0565
0.830 £ 0.0046
0.915 £ 0.0020
0.961 £ 0.0010
0.939 £ 0.0004
0.769 & 0.0594
0.768 £ 0.0582
0.705 + 0.0825
0.737 £ 0.0340
0.774 £ 0.0581

SMD
MSL
SMAP
SWAT
PSM

2}

N2
Nb5
R
B
S

0.867 £ 0.0114
0.836 £ 0.0014
0.936 £ 0.0009
0.927 &£ 0.0001
0.977 £ 0.0002
0.385 £ 0.0299
0.385 £+ 0.0294
0.380 £ 0.0502
0.369 £+ 0.0172
0.394 £+ 0.0325
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Table 15: GPT2 - Generalist Anomaly Detection (1)

YUE, GKIOXARI

‘Mean + Std

SMD
MSL
SMAP
SWAT
_, PSM

"N

N5

R

B

S

0.797 + 0.0326
0.802 £ 0.0205
0.671 £ 0.0041
0.896 £ 0.0016
0.905 £+ 0.0759
0.390 £ 0.0596
0.422 £ 0.0047
0.361 £ 0.0204
0.208 £ 0.0462
0.381 £+ 0.0621

SMD
MSL
SMAP
SWAT
PSM

[

N2
N5
R
B
S

0.734 +0.0559
0.785 £ 0.0277
0.534 £ 0.0051
0.875 £ 0.0033
0.878 £ 0.0624
0.337 &£ 0.0592
0.368 £ 0.0498
0.297 £ 0.0218
0.177 £ 0.0426
0.318 £ 0.0648

SMD
MSL
SMAP
SWAT
PSM

2}

N2
Nb5
R
B
S

0.874 £ 0.0029
0.820 £ 0.0130
0.900 £ 0.0007
0.918 £ 0.0006
0.934 £ 0.0925
0.464 £ 0.0561
0.496 £ 0.0396
0.463 £+ 0.0139
0.253 £ 0.0498
0.477 4+ 0.5000
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E.3 Forecasting Results - Means and Standard Deviations

Table 16: TOTEM - Specialist Forecasting (J)

MAE

|

Mean + Std

MSE

IVIetrjc‘

Table 17: GPT2 - Specialist Forecasting, Lookback Window of 96 (/)

| MAE

Mean + Std

MSE

Metric‘
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Table 18: TOTEM - Generalist and Zero-Shot Forecasting ()
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Table 19: GPT2 - Generalist and Zero-Shot Forecasting ()

| MAE

Mean + Std

MSE

IVIetrjc‘
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E.4 Additional Ablations

Table 20: TimeTOTEM Ablation - Specialist Forecasting

| MAE

Mean + Std

MSE

28



TOTEM: ToKENIZED TIME SERIES EMBEDDINGS FOR GENERAL TIME SERIES ANALYSIS

Table 21: TimeTOTEM Ablation - Generalist and Zero-Shot Forecasting

MAE

Mean + Std

MSE

Metrjc‘

Table 22: Detailed Codebook Ablation (|)

Mean + Std

MAE
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E.5 Exploratory Results

Table 23: Mixed Models - Forecasting (] )

MAE

|

Mean + Std

MSE

IVIetrjc‘

Table 24: Traffic Only - Specialist Zero-Shot Performance (/)

| MAE

Mean + Std

MSE

Metric‘
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Table 25: Electricity Only - Specialist Zero-Shot Performance (/)

MAE

Mean + Std

MSE

Metric‘
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