
From Pretrain to Primate: Decoding Chimp Nocturnes
for Wellbeing

Lara Narbona Sabaté
Research Department

Fundació Mona
17457 Girona, Spain

lara.narbona@gmail.com

Pablo R. Ayuso
Research Department

Fundació Mona
17457 Girona, Spain

pablo.bio.uah@hotmail.com

Abstract

Sanctuaries play a crucial role in ensuring primate welfare, yet limited economic
and human resources constrain animal behavior from being systematically mon-
itored. While daytime behavior can be observed directly, nocturnal behavior
(equally critical for wellbeing, social dynamics, and management) remains largely
inaccessible. Chimpanzees vocalize at night in high arousal contexts, shaping
circadian rhythms, emotional states, and subsequent cooperation in management
routines. Current approaches to accessing this information, such as manual audio
and video inspection, are unsustainable for long-term sanctuary operations.
We propose an automated framework to analyze nocturnal vocal behavior using
self-supervised speech representation learning. By retraining HuBERT, to which
we added a sequential classification layer, we aim to detect and classify vocal
interactions from audio recordings. This frugal and scalable approach provides
ethologically meaningful insights, enabling informed decisions from keepers with-
out requiring intensive human labor or costly infrastructure.
As a case study, we focus on Fundació MONA, a European primate sanctuary
where manual night analyses have already informed management decisions. Au-
tomation will extend these efforts, offering timely insights that directly enhance
chimpanzee wellbeing, and will allow to share the methodology ai to other sanctu-
aries worldwide.

1 Introduction

Primate sanctuaries are specialized facilities that provide sustained, high-quality, lifelong care and
welfare for primates victims of wildlife trade or other illegal human activities [27]. Within these
contexts, evidence-based husbandry and behavioral management are central to maintaining welfare:
structured enrichment, social management, and cooperative training reduce stress, facilitate veterinary
procedures, and support the expression of species-typical behaviors [5] [20] [24] [29]. Because
sanctuaries often operate with limited financial and staffing resources, there is a need for scalable,
low-overhead monitoring approaches that translate directly into improved management practices.

Animal wellbeing in captivity depends fundamentally on detailed knowledge of their behavior
[17][7]. Behavioral indicators provide early-warning signals of stress, illness, or conflict, often before
clinical symptoms appear [6]. They can also help keepers make more informed decisions, providing
information not only for immediate, day-to-day husbandry, such as the order in which animals are
moved or fed, but also for broader strategic decisions, such as whether certain individuals should be
separated overnight.

Contemporary welfare frameworks emphasize that wellbeing is a 24/7 endeavor, extending beyond
standard working hours [4]. While behavior can be monitored during the day with human observers,
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nocturnal activity remains far less studied. Nighttime welfare is no less important than daytime,
particularly for highly social species like chimpanzees, where their social lives continue during the
night [1] [8]. During the night, they also perform species-specific behaviors such as nesting, crucial to
chimpanzee wellbeing [19]. Neglecting the night risks missing critical components of their behavioral
and social worlds.

The importance of the nights becomes especially evident when considering the ways past social
interactions shape future behavior. Chimpanzees are highly sensitive to their social history: they
track both competitive and cooperative exchanges across domains, and base future interactions on
these prior experiences [11] [10] [15] [21] [30]. Nocturnal events may therefore strongly influence
daytime cooperation, conflict, and even willingness to engage in management tasks. Social dynamics
also affect animals’ emotional states, which in turn shape participation in cooperative management
routines such as positive reinforcement training (PRT). Voluntary management is critical for welfare,
as animals’ chosen participation in husbandry procedures reduces distress and creates safer conditions
for both humans and animals [20] [23] [25]. Underpinning these practices is the notion of agency
and control: providing primates with meaningful choice enhances wellbeing and partially restores
autonomy lost in captivity [18] [26] [29].

Moreover, proper sleep–wake cycles (i.e. circadian rhythms) are essential for cognitive function,
emotional regulation, and healthy aging in primates. Disrupted circadian rhythms or poor-quality
sleep contribute to psychological stress and accelerate cognitive decline [1] [3] [13]. This point
is especially pressing in European sanctuaries, where chimpanzee populations are aging and thus
increasingly vulnerable to sleep disruption and its downstream health effects [12].

Reliable knowledge of nocturnal events is thus a key question for chimpanzee welfare. It can guide
informed day-to-day decisions, aligning practice with evidence rather than guesswork. Ultimately, the
goal is to adapt routines to enhance wellbeing in a holistic manner, integrating behavioral evidence
across the full 24-hour cycle.

However, achieving this insight is far from straightforward. After-hours staffing is limited for obvious
reasons of cost, practicality, and human welfare. To track nocturnal behavior, sanctuaries must rely
on recording devices. Passive acoustic monitoring (PAM) represents a particularly attractive option:
it requires less infrastructure than multi-camera systems, offers high sensitivity to socially salient
sound events, and is far more affordable for under-resourced sanctuaries [9] [32]. Chimpanzees are
an especially promising target for PAM, since they are highly vocal, particularly in high-arousal
contexts such as aggression, alarm, or displays [31] [33]. By focusing on vocal behavior, it is possible
to capture much of the behavioral landscape that most strongly impacts welfare.

Yet manual review of long-duration audio is infeasible. Sanctuaries could quickly accumulate
hundreds of hours of overnight recordings, and detailed annotation would be infeasible. Automated
pipelines offer a solution. Advances in deep learning for bioacoustics have reduced human effort by
orders of magnitude while retaining ecologically relevant signals, making near-real-time nocturnal
summaries technically and economically feasible (e.g. [22] [28]). Delivering automated overnight
reports would allow keepers to adapt management proactively rather than reactively.

This is where self-supervised learning enters the sanctuary. Models such as wav2vec 2.0 and HuBERT
have revolutionized speech processing by learning rich acoustic representations from unlabeled audio
[2] [14] [16]. These methods discover latent sound units and temporal patterns without requiring
costly annotation, and they transfer effectively to downstream tasks with limited data. For sanctuary
bioacoustics, where labeled corpora are sparse, this paradigm is particularly well-suited. Having
these models at hand is very useful for transfer learning in a situation where labeled data are sparse.
Moreover, we reframe nocturnal vocalizations as a sequential problem, rather than isolated call
classification, allowing us to capture the temporal dynamics of chimpanzee social life. By using
a trained backbone (HuBERT) to which we added a classification layer, we can segment long
overnight audio streams into units, detect bursts of high-arousal activity, and transitions between
vocal states that may foreshadow chimpanzee behavior the following day. This combination of
self-supervised representation learning with sequence modeling and classification bridges the gap
between individual calls and behaviorally meaningful episodes, providing sanctuary keepers with an
automated early-warning tool for welfare-relevant dynamics.
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1.1 Case study: Fundació Mona

The potential of this approach can be illustrated with a case study from Fundació MONA, a European
sanctuary housing 14 chimpanzees divided into three groups. In small groups, interpersonal relations
are particularly important. Individuals sleep in indoor rooms at night while accessing outdoor
enclosures by day. Rather than sleeping continuously, chimpanzees wake, interact, and resettle
throughout the night.

Previous studies at Fundació MONA have demonstrated that these nocturnal interactions influence
daytime behavior and management decisions [1]. For example, in one of the groups, Mutamba,
nighttime recordings revealed systematic aggression by the beta male (Juan) against the lowest-
ranking male (Marco). Although Marco did not retaliate, repeated episodes were detected through
manual review of video and audio. Sanctuary staff responded by rearranging sleeping arrangements,
pairing Juan with the alpha male (Bongo) instead of Marco. Following this change, group dynamics
improved.

Importantly, this insight required extensive manual review, an unsustainable practice for a small
team aiming for a systematic, continuous and long-term monitoring. Automating detection of such
nocturnal events would make them visible in near-real time, providing managers with actionable
knowledge without consuming scarce human resources.

Automated nocturnal monitoring thus offers a dual benefit: it enables sanctuaries like Fundació
MONA to improve welfare immediately through better-informed decisions, and it establishes a
scalable, transferable workflow for sanctuaries worldwide. Using self-supervised speech models
for sequential bioacoustic analysis, we can transform how sanctuaries understand the night, shifting
welfare monitoring from labor-intensive hindsight to proactive, data-driven foresight.

2 Methods

2.1 Study site and subjects

The study is being conducted at Fundació MONA, a sanctuary located in Riudellots de la Selva
(Girona, Spain), dedicated to the rehabilitation of chimpanzees (Pan troglodytes) rescued from the
entertainment industry and illegal pet trade. The study subjects will be 14 adult chimpanzees (7
females) living in 3 mixed-sex groups. During the day they have access to an outdoor enclosure (two
naturalistic measuring 2420 m2 and 3220 m2 and a non-naturalistic measuring 25 m2), and during
the night to an indoor non-naturalistic rooms (measuring between 25–30 m2).

2.2 Data collection

Nocturnal vocalizations are recorded using a digital stereo audio recorder (TASCAM®DR-07X,
TEAC Corporation©, Tokyo, Japan) installed inside the chimpanzees’ sleeping rooms. The device
operates nightly between 8:30 p.m. and 8:30 a.m., with the automatic recording function triggering
whenever sound levels exceeds -24 dBFS and stopping after five seconds below this threshold. This
configuration was validated to capture a wide range of chimpanzee sounds, including drumming,
alarm calls, screaming, and agonistic displays. Each recording is automatically timestamped with
date and time, enabling systematic alignment with daily observations. This setup allows for the
unobtrusive and continuous monitoring of chimpanzees’ vocal communication and drumming without
human interference during the recording period.

2.3 Data annotation

A subset of recordings was manually annotated by a trained ethologist using custom software
developed by one of the authors. Each chimpanzee-related sound was classified into labeled events
representing vocalizations or other acoustic behaviors of interest. The annotation schema included:
pant-hoot introduction, pant-hoot build-up, pant-hoot climax, waa-barks, drumming sequences, and
other [33]. These categories were selected because they represent the most frequent high-arousal
vocalizations reported in previous studies [1]. The label other captured less common or previously
unreported chimpanzee vocalizations. For each event, annotators specified onset and offset times
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in seconds relative to the start of the audio file, allowing alignment of behavioral labels with the
temporal dynamics of the acoustic signal.

2.4 Data augmentation and class balancing

Given the extensive manual work required for annotation and the small team size, we implemented
an extensive data augmentation strategy to increase dataset diversity and improve model robustness.
We applied five distinct augmentation techniques to simulate natural acoustic variation: (1) time-
stretching at rates of 0.9× and 1.1× introduced natural tempo variations that could occur in chimpanzee
vocalizations, (2) pitch shifting by ±2 semitones simulated individual vocal differences and varying
recording conditions, (3) background noise addition at 15 dB enhanced robustness to environmental
interference, (4) temporal shifting by ±0.5 seconds with zero-padding and exclusion of events falling
entirely outside the audio boundaries after shifting, and (5) gain adjustments of ±6 dB simulated
recording level variations. Additionally, we created composite augmentations by chaining multiple
transformations, further increasing acoustic diversity. Crucially, this augmentation framework enabled
class balancing by generating more synthetic examples for underrepresented labels, ensuring roughly
equal representation across vocalization types in the training set and mitigating potential biases from
imbalanced data distribution.

2.5 Deep learning framework (HuBERT-based modeling)

We will implement an audio sequence labeling framework based on HuBERT (Hidden-Unit BERT), a
self-supervised speech representation model originally trained on large-scale human speech corpora.
HuBERT was chosen because its architecture is well suited to capturing the complex acoustic features
of chimpanzee vocalizations, in much the same way it models human speech. In particular, it
leverages the ability to learn robust representations from unlabeled audio while modeling long-range
temporal dependencies, which provides an advantage over alternative architectures for this task. These
properties make it an ideal backbone for adapting to non-human primate communication. Furthermore,
HuBERT is distributed under the MIT license, which permits unrestricted use, modification, and
distribution, making it both legally and practically feasible for research and applied work in sanctuary
contexts.

The methodology will follow four key stages plus a post-processing step:

Feature extraction. Raw audio waveforms will be resampled to 16 kHz and processed using the
Hugging Face AutoFeatureExtractor associated with HuBERT. This step will produce fixed-length
input sequences of acoustic embeddings at the frame level.

Frame-wise labeling. For each audio file, the annotated onsets and offsets will be converted into
frame-aligned binary vectors, indicating the presence or absence of each target label at each temporal
frame. This transformation will enable the task to be formulated as a multi-label frame classification
problem.

Model architecture. A custom neural architecture will be constructed by combining the HuBERT
backbone (pretrained facebook/hubert-base-ls960) with an additional linear classification layer that
mapped the hidden representation at each frame to the set of ethological labels. The model will
be trained with a binary cross-entropy loss applied frame-wise, to account for overlapping events
such as simultaneous drumming and vocalizations. The model will produce frame-level predictions
indicating the presence or absence of each label.

Training and evaluation. The dataset will be split into training (70%), validation (10%), and test
(20%) subsets, ensuring that the distribution of individuals, contexts, and dates is balanced across
partitions. Training will be conducted for up to five epochs with gradient accumulation, a learning
rate of 3e-5, and evaluation every 100 steps. Performance will be assessed using the micro-averaged
F1-score on the frame-level predictions. Model training will be carried out on a Google Colab
instance using a GPU T4 runtime with Python 3.

Event-level post-processing. To translate frame-level predictions into ethologically meaningful
events, a post-processing step will be applied. Consecutive frames exceeding a probability threshold
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will be grouped into single events, yielding outputs defined by onset, offset, label, and confidence
score. This step will ensure that model predictions can be directly interpreted in terms of discrete
communicative behaviors. In practice, this transforms a frame-by-frame output—where each frame
may encode one or more vocalizations, including drumming—into a structured list showing where
events occur in the audio, their duration, and their associated confidence.

2.6 Use of Large Language Models (LMMs)

A LLM (GPT 5) was employed to support the curation of code for combining the HuBERT backbone
with an additional linear classification layer. The LLM was used strictly as a coding assistant to write
and refine scripts and improve reproducibility. All model design choices, dataset preparation, and
methodological decisions were defined and implemented by the authors.

3 Expected results and impact

This project will generate a structured dataset of nightly chimpanzee vocalizations and drumming,
including onset and offset times, acoustic categories, and confidence scores. When paired with
existing video recordings, these outputs will allow keepers to identify the individuals involved and
the direction of interactions (e.g., aggressor versus recipient). This timely information will support
proactive husbandry decisions, enhancing welfare management across the full 24-hour cycle.

In addition, the dataset will enable systematic analyses linking nocturnal vocal behavior with daytime
interactions, extending previous findings [1]. A logical next step will be to extend the model to
incorporate caller identification. By retraining the pipeline with individual-level labels, we could
automatically link nocturnal vocal events to specific chimpanzees. This development would further
reduce reliance on video inspection and provide keepers with a more complete picture of nightly
dynamics. Further automating the process incorporating who vocalized, when, and in what context
would allow for even more precise and informed welfare interventions.

4 Code availability

The code is available in a figshare depository (https://figshare.com/projects/From_
Pretrain_to_Primate_Decoding_Chimp_Nocturnes_for_Wellbeing/268244).
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