
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FACTORIZED IMPLICIT GLOBAL CONVOLUTION FOR
AUTOMOTIVE COMPUTATIONAL FLUID DYNAMICS PRE-
DICTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Computational Fluid Dynamics (CFD) is crucial for automotive design, requiring
the analysis of large 3D point clouds to study how vehicle geometry affects pressure
fields and drag forces. However, existing deep learning approaches for CFD
struggle with the computational complexity of processing high-resolution 3D
data. We propose Factorized Implicit Global Convolution (FIGConv), a novel
architecture that efficiently solves CFD problems for very large 3D meshes with
arbitrary input and output geometries. FIGConv achieves quadratic complexity
O(N2), a significant improvement over existing 3D neural CFD models that require
cubic complexity O(N3). Our approach combines Factorized Implicit Grids to
approximate high-resolution domains, efficient global convolutions through 2D
reparameterization, and a U-shaped architecture for effective information gathering
and integration. We validate our approach on the industry-standard Ahmed body
dataset and the large-scale DrivAerNet dataset. On DrivAerNet, our model achieves
an R2 value of 0.95 for drag prediction, outperforming the previous state-of-the-art
by a significant margin. This represents a 40% improvement in relative mean
squared error and a 70% improvement in absolute mean squared error over prior
methods.

1 INTRODUCTION

The automotive industry stands at the forefront of technological advancement, relying heavily on
computational fluid dynamics (CFD) to optimize vehicle designs for enhanced aerodynamics and
fuel efficiency. The accurate simulation of complex fluid dynamics around automotive geometries is
crucial for achieving optimal performance. However, traditional numerical solvers, including finite
difference and finite element methods, often prove computationally intensive and time-consuming, par-
ticularly when dealing with large-scale simulations, as encountered in CFD applications. The demand
for efficient solutions in the automotive sector necessitates the exploration of innovative approaches
to accelerate fluid dynamics simulations and overcome the limitations of current solvers.

In recent years, deep learning methodologies have emerged as promising tools in scientific computing,
advancing traditional simulation techniques, in bio-chemistry (Jumper et al., 2021), seismology (Yang
et al., 2021), climate change mitigation (Wen et al., 2023), and weather (Pathak et al., 2022; Lam
et al., 2022) to name a few. In fluid dynamics, recent attempts develop domain specific deep learning
methods to emulate fluid flow evolution on 2D and 3D proof of concept settings (Jacob et al., 2021;
Li et al., 2020b; Pfaff et al., 2020a; Kossaifi et al., 2023). While most of these works focused on
solving problems using relatively low-resolution grids, industrial automotive CFD requires working
with detailed meshes containing millions of points.

To address the time-consuming and compute-intensive nature of conventional CFD solvers on detailed
meshes, recent studies (Jacob et al., 2021; Li et al., 2023) have explored replacing CFD simulations
with deep learning-based models to accelerate the process. In particular, Jacob et al. (2021) studies
DrivAer dataset (Heft et al., 2012), utilize Unet (Ronneberger et al., 2015) architecture and aim
to predict single number scalar car surface drag coefficients – the integration of surface pressure
and friction – directly by bypassing the integration. Furthermore, the architecture is applied on 3D
voxel grids that requires O(N3) complexity, forcing the method to scale only to low-resolution 3D
grids. Li et al. (2023) propose a neural operator method for Ahmed body (Ahmed et al., 1984) car
dataset and aims to predict the pressure function on the car surface. This approach utilizes graph
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embedding to a uniform grid and perform 3D global convolution through fast Fourier transform
(FFT). While this method, in principle, handles different girding, the FFT in the operator imposes
complexity of O(N3 logN3), which becomes computationally prohibitive as the size of the grid
increases. Both methods face scalability challenges due to their cubic complexity, which severely
limits their representational power for high-resolution simulations. Consequently, there is a pressing
need for a specialized, domain-inspired method capable of handling 3D fine-grained car geometries
with meshes comprising tens of millions of vertices (Jacob et al., 2021). Such massive datasets
demand a novel approach in both design and implementation.

In this work, we propose a novel neural CFD approach with quadratic complexity O(N2), signif-
icantly improving scalability over existing 3D neural CFD models that require cubic complexity
O(N3). Our method outperforms the state-of-the-art by reducing absolute mean squared error by
70%.

The key innovations of our approach include Factorized Implicit Grids and Factorized Implicit
Convolution. With Factorized Implicit Grids, we approximate high-resolution domains using a set of
implicit grids, each with one lower-resolution axis. For instance, a 1k × 1k × 1k domain containing
109 elements can be represented by three implicit grids with dimensions 5×1k×1k, 1k×4×1k, and
1k× 1k× 3. This reduces the total elements to just 5M +4M +3M = 12M , a significant reduction
from the original 109. Our Factorized Implicit Convolution method approximates 3D convolutions
using these implicit grids, employing reparametrization techniques to accelerate computations.

We validate our approach on two large-scale CFD datasets: DrivAerNet (Heft et al., 2012; Elrefaie
et al., 2024) and Ahmed body dataset (Ahmed et al., 1984). Our experiments focus on surface pressure
and drag coefficient prediction. Results demonstrate that our network is an order of magnitude faster
than existing methods while achieving state-of-the-art performance in both drag coefficient prediction
and per-face pressure prediction.

2 RELATED WORK

The integration of deep learning into CFD processes has seen significant research efforts. Graph
neural operator is among the first methods to explore neural operators on various geometries and
meshes (Li et al., 2020b). The architectures based on graph neural networks (Ummenhofer et al., 2019;
Sanchez-Gonzalez et al., 2020; Pfaff et al., 2020a), follow message passing and encounter similar
computational challenges when dealing with realistic receptive fields. The u-shaped graph kernel,
inspired by multipole methods and UNet (Ronneberger et al., 2015), offers an innovative approach
to graph and operator learning (Li et al., 2020c). However, the core computational challenges in
3D convolution remain nonetheless, even for FNO based architectures that are widely deployed (Li
et al., 2022; Pathak et al., 2022; Wen et al., 2023). Deep learning models in computer vision, e.g.,
UNet, have been used to predict the fluid average properties, such as final drag for the automotive
industry (Jacob et al., 2021; Trinh et al., 2024). Studies incorporating signed distance functions
(SDF) to represent geometry have gained attention where CNNs are used as predictive models in
CFD simulations (Guo et al., 2016; Bhatnagar et al., 2019). The 3D representation of SDF inflicts
significant computation costs on the 3D models, making them only scale to low-resolution SDF,
missing the details in the fine car geometries. Beyond partial differential equations (PDE) and
scientific computing, various deep learning models have been developed to deal with fine-detail
3D scenes and objects. In particular, for dense prediction tasks in 3D space, a network is tasked
to make predictions for all voxels or points, for which 3D UNets have been widely used for, e.g.,
segmentation (Li et al., 2018; Atzmon et al., 2018; Hermosilla et al., 2018; Graham and van der
Maaten, 2017; Choy et al., 2019). However, many of these networks exhibit poor scalability due to
the cubic complexity of memory and compute O(N3) or slow neighbor search.

Recently, decomposed representations for 3D – where multiple orthogonal 2D planes have been used
to reconstruct 3D representation – have gained popularity due to their efficient representation and
have been used in generation (Chan et al., 2022; Shue et al., 2023) and reconstruction (Chen et al.,
2022; Fridovich-Keil et al., 2023; Cao and Johnson, 2023). Such representation significantly reduces
the memory complexity of implicit neural networks on 3D continuous planes. Despite basing on
the decomposition of continuous planes and fitting a single neural network to a scene, this approach
shares relevance with our factorized grid convolution approach.
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Prior works in the deep learning literature, focusing on large-scale point clouds, ranges from the use of
graph neural networks and point-nets to the u-shaped architectures along with advanced neighborhood
search (Qi et al., 2017a; Hamilton et al., 2017; Wang et al., 2019; Choy et al., 2019; Shi et al., 2020).
However, these methods make assumptions that may not be valid when applied to CFD problems.
For example, the sub-sampling approach is a prominent approach to deal with the social network,
classification, and segmentation to gain robustness and accuracy. However, in the automotive industry,
dropping points could lead to a loss of fine-details in the geometry, the vital component of fluid
dynamics evolution and car design. There is a need for a dedicated domain-inspired method able to
work directly on fine-grained car geometry with meshes composed of 100M vertices (Jacob et al.,
2021), a massive size that requires a unique design and treatment.

2.1 FACTORIZATION

Factorization of weights in neural networks has been studied to reduce the computational complexity
of deep learning models Panagakis et al. (2021). It has been applied to various layers, including
full-connected Novikov et al. (2015), and most recently, the low-rank adaptation of transformers (Hu
et al., 2021), and the training of neural operators (Kossaifi et al., 2024). In the context of convolutions,
the use of factorization was first proposed by Rigamonti et al. (2013). This decomposition can either
be implicit Chollet (2017), using separable convolutions for instance (Jaderberg et al., 2014), or
explicit, e.g using CP (Astrid and Lee, 2017; Lebedev et al., 2015) or Tucker (Kim et al., 2016)
decompositions. These methods all fit within a more general framework of decomposition of the
kernels of the decomposition, where the full kernel is expressed in factorized form, and the full, dense
convolutional operation is replaced with a sequence of smaller convolutions with the factors of the
decomposition (Kossaifi et al., 2020). Here, in contrast, we propose to factorize the domain, not the
kernel, which allows us to perform parallel global convolution while remaining computationally
tractable. The advantages include parallelism and better numerical stability, since we do not chain
many operations. The factorization of the domain can lead to efficient computation, but the challenge
is to find an explicit representation of the domain (Sec. 3.2).
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Figure 1: FIGConvNet: ConvNet for drag prediction using FIG convolution blocks. The encoder
and decoder consist of a set of FIG convolution blocks and we connect the encoder and decoder with
skip connections. The output of the encoder is used for drag prediction and the output of the decoder
is used for pressure prediction.

3 FACTORIZED IMPLICIT GLOBAL CONVNET

In this section, we introduce our factorized implicit global convolution and discuss how we create
implicit factorized representations, reparametrize the convolution, implement global convolution, and
fuse the implicit grids. We then present a convolution block using factorized implicit grids and build
a U-shaped network architecture for pressure and drag coefficient prediction. An overview diagram
is provided in Fig. 1.

3.1 FACTORIZED IMPLICIT GRIDS

Our problem domain resides in 3D space with an additional channel dimension, represented math-
ematically as X = RHmax×Wmax×Dmax×C with high spatial resolution. Explicitly representing an
instance of the domain X ∈ X is extremely costly in terms of memory and computation due to its
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(a) Convolution (b) Separable Convolution (Chollet, 2017) (c) Factorized Implicit Global Convolution

Figure 2: From left to right, we have a regular convolution, a separable convolution, and our proposed
factorized implicit global (FIG) convolution. Regular Convolution: Requires O(N2k2) computation
and the convolution kernel is not global. Separable Convolution: Involves a sequence of O(N2k)
convolutions, but the convolution kernel is still not global. FIG Convolution: Requires O(Nk)
computation in parallel, with convolution kernels that are global in one axis in the respective
factorized domain.

large size. Instead, we propose using a set of factorized representations {Fm}Mm=1, where M is the
number of factorized representations. Each Fm ∈ RHm×Wm×Dm×C has different dimensions, col-
lectively approximating X(·) ≈ X̂(·; {Fm}Mm=1). These {Fm}Mm=1 serve as implicit representations
of the explicit representation X , and we refer to each Fm as a factorized implicit grid throughout this
paper.

Mathematically, we use MLPs to project features from the factorized implicit grids {Fm}m to the
explicit grid X:

X(v) ≈ X̂(v; {Fm}m, θ) =

M∑
m

f(v, Fm; θm) (1)

f(v, Fm; θm) =

iv+1∑
i=iv

jv+1∑
j=jv

kv+1∑
k=kv

MLP(Fm[i, j, k], v; θm), (2)

where (iv, jv, kv) is the smallest integer grid coordinate closest to the query coordinate v ∈ R3 and
θm is the parameters of the MLP, which takes the concatenated features from the implicit grid Fm

and position encoded v as an input.

To efficiently capture the high-resolution nature of the explicit grid X , we propose making one axis
of Fm ∈ RHm×Wm×Dm low resolution. For example, F1 ∈ R4×Wmax×Dmax where Hmax ≫ 4
and F2, F3 to have low resolution W and D respectively. Thus, the cardinality of X , |X| is much
greater than that of the factorized grids, |X| ≫

∑
m |Fm|. Formally, this low-resolution size is the

rank r of our factorized grid. For example, the Fx ∈ Rrx×Wmax×Dmax , Fy ∈ RHmax×ry×Dmax , and
Fz ∈ RHmax×Wmax×rz . In experiments, since we use 3D grids, the rank is a tuple of 3 values, that we
will denote as (rx, ry, rz), to represent the low resolution components of (Fx, Fy, Fz). In practice,
we will use ri < 10 in place of Hmax,Wmax, Dmax > 100 thus making the cardinality of factorized
grids |Fm| orders of magnitude smaller than that of |X|.
Note that when we use a rank of 1, i.e. (rx, ry, rz) = (1, 1, 1), we have an implicit representation
that resembles the triplane representation proposed in Chan et al. (2022) and Chen et al. (2022). This
is a special case of factorized implicit grids that are used for reconstruction without convolutions on
the implicit grids, fusion (Sec. 3.4), or U-shape architecture (Sec. 3.6).

3.2 FACTORIZED IMPLICIT CONVOLUTION

In this section, we propose a convolution operation on the factorized implicit grids. Specifically, we
use a set of 3D convolutions on the factorized grids in parallel to approximate the 3D convolution
on the explicit grid. Let N be the dimension of the high-resolution axis and K be the kernel size
N ≫ K. Then, the computational complexity of the original 3D convolution is O(N3K3) and the
computational complexity of the 3D convolution on the factorized grids is O(MN2K2r), where r is
the dimension of the low-resolution axis, M is the number of factorized grids. Mathematically, we
have:

Y = Conv3D(X;W ) ≈
∑
m

Ym =

M∑
m

f(Conv3D(Xm;Wm); θm) (3)
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Figure 3: Factorized Implicit Global Convolution 3D: The FIG convolution first creates a set of
voxel grids that factorizes the domain. This allows representing a high resolution voxel grid domain
implicitly that can be computationally prohibitive to save explicitly. Then, a set of global convolution
operations are applied in parallel to these voxel grids to capture the global context. Finally, the voxel
grids are aggregated to predict the output.

where Y and Ŷ are the output feature maps of the original and approximation, and W and Wm are
the weights of the original and factorized implicit convolutions.

3.3 EFFICIENT GLOBAL CONVOLUTION THROUGH 2D REPARAMETERIZATION

Large convolution kernels allow output features to incorporate broader context, leading to more
accurate predictions (Peng et al., 2017; Huang et al., 2023). Experimentally, we find larger kernel sizes
yield higher accuracy on the test set (Tab. 2). However, large kernel sizes can be impractical due to
their computational complexity, which increases cubically with respect to the kernel size. To enable a
larger receptive field without making computation intractable, we propose a 2D reparameterization of
3D convolution that allows us to apply large convolution kernels while maintaining low computational
complexity. Specifically, we can reparameterize the 3D convolution to 2D convolution by flattening
the an axis with channel. Mathematically, the 3D convolution on the flattened feature map is
equivalent to 2D convolution with shifted kernel weights:

Ym(i, j, k, co) =

C∑
cin

K∑
i′,j′,k′

Xm(i+ i′, j + j′, k + k′, cin)W (i′, j′, k′, cin, co) (4)

=

CK∑
s=1

K∑
i′,j′

X(i+ i′, j + j′, k +
⌊ s

C

⌋
, s mod C)Wm(i′, j′,

⌊ s

C

⌋
, co) (5)

However, as we increase the kernel size K ≥ 2r − 1 where r is the chosen rank, controlling the
dimension of the low-resolution axis, we can reparametrize the convolution kernel into a matrix and
replace the convolution with a matrix multiplication with the flattened input. For example, we can
define a 1D convolution with kernel size K = 3 and the axis of size 2 (x0, x1) as:[

y0
y1

]
=

[
x0 x1 0
0 x0 x1

] [w0

w1

w2

]
1-D spatial convolution with 1 channel (6)

=

[
w0 w1

w1 w2

] [
x0

x1

]
reparametrization to 0-D space 2-vector matmul (7)

Using this reparametrization, we can convert a D dimensional convolution with large kernels to
D − 1-dimensional convolution with C × ND channels where C is the original channel size and
ND being the cardimality of the flattened dimension. This reparametrization does not change the
underlying operation but reduces the practical computational complexity by removing redundant
operations such as padding, truncation, and permutation involved in the 3D convolution. In addition,
the kernel that is being flatten is global along the low-dimension axis as K ≥ 2r− 1. Experimentally,
we find that the larger convolution kernels outperform smaller convolution kernels. However, if
we do not use the reparametrization technique, the computation burden of the extra operations can
outweight the added benefit (Tab. 2). Lastly, we name the final reparametrized convolution on the
factorized implicit grids, factorized implicit global convolution (FIG convolution) as we apply global
convolution on the factorized grids.
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3.4 FUSION OF FACTORIZED IMPLICIT GRIDS

The convolution operation on the factorized implicit grids produces a set of feature maps {Ym}m that
in combination can represent the final feature map Ŷ of one 3D convolution that approximates Y ,
which we do not explicitly represent. Thus, if we apply the factorized implicit global convolution
multiple times on the same factorized implicit grids, there would be no information exchange between
the factorized representations. To enable information exchange between the factorized representations,
we fuse the factorized representations after each convolution by aggregating features from the other
factorized grids. Mathematically, we use trilinear interpolation to sample features from M − 1
factorized grids {Fm′}m′ ̸=m and add the sampled features to the target grid Fm by sampling from
the all voxel locations vijk of Fm. We visualize the final 3D convolution operation in Fig. 3.

3.5 LEARNING IMPLICIT FACTORIZATION

M
LP

M
LP

C
oncat

R
eduction

Figure 4: Point Convolution: The features from source and target nodes as well as offset are fed
into an MLP to lift the features, which are then aggregated and projected back to the original feature
space using an MLP.

We discussed how we perform global convolution on the factorized implicit grids. In this section, we
discuss how we initialize the factorized implicit grids from an input 3D point clouds or a mesh. The
traditional factorization of a large matrix of size N requires O(N3) computational complexity, where
A ≈ Â = PTQ. However, this decomposition is not ideal for our case where the resolution of the
domain is extremely high. Instead, we propose to learn the factorized implicit grids from the input
point clouds or meshes rather than first converting to the explicit grid X ∈ RHmax×Wmax×Dmax×C

– where Hmax,Wmax, Dmax are the maximum resolutions of the domain and C is the number of
channels – and then factorize. We define a hyper paramter the number of factorized implicit grids M ,
as well as the size of the low-resolution axis r and create M factorized grids with different resolutions
{Fm}Mm , each with a different resolution Fm ∈ RHm×Wm×Dm×C . Then, we use a continuous
convolution on each voxel center vm,ijk of Fm to update the feature of the voxel fm,ijk from as set
of features fn on point vn of the point cloud. Note that the input mesh is converted to a point cloud
where each point represent a face of a mesh. We use (i, j, k) to represent voxels and n to indicate
points:

fm,ijk = MLP

 ∑
n∈N (vijk)

MLP(fn, vn, vijk)

 , N (v,Σ) = {i|∥Σ−1/2(vi − v)∥ < 1} (8)

where N (v,Σ) is the set of points around v within an ellipsoid (vi − v)TΣ−1(vi − v) < 1 with
covariance matrix Σ ∈ R3×3 that defines the ellipsoid of neighborhood in physical domain. We use
an ellipsoid rather than a sphere since the factorized grids have rectangular shape due to one low
resolution axis. Each mlp before and after the summation use different parameters. To ensure the
efficiency of the ellipsoid radius search, we leverage a hash grid provided by the GPU-acceleration
library Warp (Macklin, 2022) and the pseudo-code is available in the Appendix.

3.6 UNET FOR PRESSURE AND DRAG PREDICTION

We combine factorized implicit global convolution with 2D reparameterization, fusion, and learned
factorization to create a U-shaped ConvNet for drag prediction. While drag can be directly regressed
using a simple encoder architecture, the number of supervision points is extremely small compared
to the number of parameters and dataset size. Therefore, we add per-face pressure prediction as
additional supervision, which is part of the ground truth since CFD simulation requires per-face
pressure for drag simulation. We use the encoder output for drag prediction and the decoder output
for pressure prediction. The architecture is visualized in Fig. 1.
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4 IMPLEMENTATION DETAILS AND TRAINING

We implement all baseline networks and FIG convnet using pytorch. In this section, we describe the
implementation details of the FIG convnet and the training procedure.

4.1 EFFICIENT RADIUS SEARCH AND POINT CONVOLUTION

One of the most computationally intensive operation in our network is the radius search in Eq. 8 for
which we leverage a hash grid to accelerate the search. We first create a hash grid using Warp (Macklin,
2022) with the voxel size as the radius. Then, we query all 27 neighboring voxels for each point in
the point cloud and check if the point is within a unit sphere. For non spherical neighborhoods, we
scale the point cloud by the inverse of the covariance matrix Σ and check if the point is within the
unit cube.

We save the neighborhood indices, and number of neighbors per point in a compressed sparse row
matrix format (CSR) and use batched sparse matrix multiplication to perform the convolution in
Eq. 8. We provide a simple example of the radius search in the supplementary material.

4.2 FACTORIZED IMPLICIT GLOBAL CONVOLUTION

To implement 3D global convolution using factorized representations, we use minimum three factor-
ized grids with one low resolution axis. We first define the maximum resolution of the voxel grid
that can represent the space explicitly e.g. 512× 512× 512. Then, we define the low resolution axis
as ri for each factorized grid. Note that ri can be different for each factorized grid. For example,
512× 512× 2, 512× 3× 512, and 4× 512× 512.

4.3 TRAINING PROCEDURE AND BASELINE IMPLEMENTATION

We train all networks using Adam optimizer with a learning rate of 10−3, step a learning rate scheduler
with γ = 0.1 and step size of 25 epochs, and batch size of 16 for 100 epochs on NVIDIA A100 80G
GPUs. We use a single A100 if batch size of 16 fits inside the memory and use 2 GPUs with batch size
8 each if not to make sure all experiments follow the same training configuration. The total training
takes approximately 16 hours with two GPUs. For pressure prediction, we first normalize the pressure
as all units are in the metric system and range widely. We denote P̄ as the normalized pressure
where it has 0 mean and 1 standard deviation. For both pressure prediction and drag prediction,
we use the same mean squared error as the loss function. Training loss is simply the sum of both:
(ĉd − cd)

2 + 1
N

∑
i(
ˆ̄Pi − P̄i)

2 where ·̂ denotes the prediction of · and P̄i indicates the normalized
pressure on the i-th face and N the number of faces. We use the same training procedure, loss with the
same batch size, learning rate, and training epochs for all baseline networks to ensure fair comparison.
There are many representative baselines, so we chose an open-source framework that supports a
wide range of network architectures and is easy to implement new networks. Specifically, we use
the OpenPoint library (Qian et al., 2022) to implement PointNet segmentation variants, DGCNN,
and transformer networks. We provide the network configuration yaml files in the supplementary
material.

4.4 CODE RELEASE

We have publicly released all implementations of our FIG convolution, FIGConv U-Net architecture,
and experiment configurations as part of the industry standard [HIDDEN FOR DOUBLE BLIND
REVIEW] package, where users can download and preprocess public computational fluid dynamics
datasets as well as train various neural network models.

5 EXPERIMENTS

We evaluate our approach using two automotive computational fluid dynamics datasets, comparing
it with strong baselines and state-of-the-art methods: DrivAerNet (Elrefaie et al., 2024): Contains
4k meshes with CFD simulation results, including drag coefficients and mesh surface pressures. We
adhere to the official evaluation metrics and data split. Ahmed body: Comprises surface meshes
with approximately 100k vertices, parameterized by height, width, length, ground clearance, slant
angle, and fillet radius. Following (Li et al., 2023), we use about 10% of data points for testing.
The inlet velocity ranges from 10m/s to 70m/s, which we include as an additional input to the
network.
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Table 1: Performance on on DrivAerNet: we evaluate drag coefficient cd Mean Squared Error
(MSE), Mean Absolute Error (MAE), Max Absolute Error (Max AE), coefficient of determination
(R2) of drag coefficient (cd) prediction and inference time on the official test set. We evaluated the
inference time on A100 single GPU. † numbers from the authors.

Model cd Mean SE (↓) cd Mean AE (↓) cd Max AE (↓) cd R2 (↑) Time (sec) (↓)
PointNet++ (Qi et al., 2017b) 7.813E-5 6.755E-3 3.463E-2 0.896 0.200
DeepGCN (Li et al., 2019) 6.297E-5 6.091E-3 3.070E-2 0.916 0.151
MeshGraphNet (Pfaff et al., 2020b) 6.0E-5 6.08E-3 2.965E-2 0.917 0.25
AssaNet (Qian et al., 2021) 5.433E-5 5.81E-3 2.39E-2 0.927 0.11
PointNeXt (Qian et al., 2022) 4.577E-5 5.2E-3 2.41E-2 0.939 0.239
PointBERT (Yu et al., 2022) 6.334E-5 6.204E-3 2.767E-2 0.915 0.163
DrivAerNet DGCNN (Elrefaie et al., 2024) † 8.0E-5 6.91E-3 8.80E-3 0.901 0.52

FIGConvNet (Ours) 3.225E-5 4.423E-3 2.134E-2 0.957 0.051

Table 2: Comparing Convolution Kernel Size (local and global) on DrivAerNet Normalized
Pressure (P̄ ) Prediction: we evaluate Mean Squared Error (MSE), Mean Absolute Error (MAE),
Max Absolute Error (Max AE), of normalized pressure and the coefficient of determination (R2) of
drag coefficient and inference time on the official test set. The local convolution suffers from long
inference time. (rx, ry, rz) = (4, 4, 4) and kernel size K ≥ 2r− is global. (Sec. 3.3)

Kernel size P̄ Mean SE (↓) P̄ Mean AE (↓) P̄ Max AE (↓) cd R2 (↑) Time (sec) (↓)
3× 3× 3 0.046845 0.11895 5.95431 0.93 0.054
5× 5× 5 0.046364 0.11489 5.7173 0.943 0.061

7× 7× 7 (Global) 0.044959 0.1124 5.6795 0.955 0.079
7× 7× 7 (2D Reparametrization) 0.043818 0.11285 5.73351 0.957 0.051

5.1 EXPERIMENT SETTING

The car models in both datasets consist of triangular or quadrilateral meshes with faces and pressure
values defined on vertices for the DrivAerNet and faces on the Ahmed body dataset. As the network
cannot directly process a triangular or quadrilateral face, we convert a face to a centroid point and
predict pressure on these centroid vertices for the Ahmed body dataset.

To gauge the performance of our proposed network, we considered a large number of state-of-the-
art dense prediction network architectures (e.g., semantic segmentation) for comparison includ-
ing Dynamic Graph CNN (DGCNN) (Wang et al., 2019), PointTransformers (Zhao et al., 2021),
PointCNN (Qi et al., 2017a; Li et al., 2018), and geometry-informed neural operator(GINO)(Li et al.,
2023). For the DrivAerNet dataset, we follow the DrivAerNet (Elrefaie et al., 2024) and sample N
number of points from the point cloud and evaluate the MSE, MAE, Max Error, and the coefficient of
determination R2 of drag prediction. For the Ahmed body dataset, we follow the same setting as (Li
et al., 2023) and evaluate the pressure prediction.

5.2 RESULTS ON DRIVAERNET

Table 1 presents the performance comparison of various methods on the DrivAerNet dataset. Our
FIGConvNet outperforms all state-of-the-art methods in drag coefficient prediction while maintaining
fast inference times. PointNet variants (e.g., PointNet++, PointNeXt) perform well compared to
transformer-based networks like PointBERT, likely due to the dataset’s small size. For all baselines
except DrivAerNet DGCNN, we incorporate both pressure prediction and drag coefficient prediction
losses.

We analyzed the impact of convolution kernel size on pressure prediction (Table 2). Larger ker-
nels approach global convolution but lead to performance saturation and slower inference. Our
reparameterized 3D convolution achieves comparable performance with improved speed.

Figure 5b visualizes ground truth vs. predicted drag coefficients, demonstrating the network’s ability
to capture the distribution accurately. Figure 5a shows the effect of sample point count on prediction
accuracy, revealing robustness across a wide range but potential overfitting with very high point
counts. Qualitative pressure predictions are shown in Figure 6.
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To assess the impact of factorized grid dimensions, we varied grid sizes (Table 3). Larger grids
improved pressure prediction accuracy but degraded drag coefficient determination (cdR2) and
increased inference time.

Lastly, we removed the feature fusion between factorized grids proposed in Sec. 3.4. We observe
that having no fusion in FIG convolution degrades performance but the gap is smaller when the grid
(rx, ry, rz) are bigger. This suggests that while fusion remains important, its significance decreases
with increasing grid size.

Table 3: Choosing the rank: impact of the choice of on DrivAerNet on performance: we evaluate
normalized pressure P̄ Mean Squared Error (MSE), Mean Absolute Error (MAE), Max Absolute
Error (Max AE), coefficient of determination (R2) of drag coefficient cd and inference time on the
official test set. We trained for only 50 epochs for this experiment. Note that the car is facing +x
axis and is the longest while -z is the gravity axis and is the shortest. See Sec. 3.1 for (rx, ry, rz)
definition.

(rx, ry, rz) P̄ Mean SE (↓) P̄ Mean AE (↓) P̄ Max AE (↓) cd R2 (↑) Time (sec) (↓)
(1, 1, 1) 0.05278 0.1275 5.8266 0.9328 0.0305
(3, 2, 2) 0.05199 0.1250 5.8284 0.9249 0.0396
(5, 3, 2) 0.05131 0.1223 6.2350 0.8735 0.0399
(10, 6, 4) 0.05079 0.1221 5.6506 0.9243 0.0493
(10, 10, 10) 0.04999 0.1254 5.5343 0.8926 0.0610

Table 4: Impact of the factorized grid fusion (Sec. 3.4) on DrivAerNet: we evaluate normalized
pressure P̄ Mean Squared Error (MSE), Mean Absolute Error (MAE), Max Absolute Error (Max
AE), coefficient of determination (R2) of drag coefficient cd, and inference time on the official test
set. We trained for 50 epochs for this experiment. For no communication rows, we set the fusion
layer in Sec. 3.4 to be identity and kept all the rest of the network the same.

(rx, ry, rz) P̄ Mean SE (↓) P̄ Mean AE (↓) P̄ Max AE (↓) cd R2 (↑) Time (sec) (↓)
(3, 2, 2) 0.05199 0.1250 5.8284 0.9249 0.0396
(3, 2, 2) No Fusion 0.053455 0.12683 6.28512 0.90413 0.0361
(5, 3, 2) 0.05131 0.1223 6.2350 0.8735 0.0399
(5, 3, 2) No Fusion 0.052921 0.12287 6.02101 0.88638 0.0451
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(a) Number of Sample Points on Drag Prediction:
The networks are robust to the number of sample
points used for drag prediction.

(b) Drag prediction vs. Ground truth drag on Dri-
vAerNet. The drag prediction closely matches the
drag ground truth with R2 of 0.95.

5.3 RESULTS ON AHMED BODY

Table 5 compares our method’s performance on the Ahmed body dataset with state-of-the-art ap-
proaches Li et al. (2023), reporting normalized pressure MSE and model size. While GINO out-
performs UNet and FNO, it achieves only 9% pressure error. In contrast, our method attains a
significantly lower normalized pressure error of 0.89% with a smaller model footprint.
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Input Mesh Ground Truth Pressure Pressure Prediction Pressure Absolute Error

Figure 6: Normalized Pressure Prediction and Error Visualization on DrivAerNet. Our network
predicts both drag coefficients and per vertex pressure. We visualize the ground truth pressure and
prediction along with the absolute error of the pressure. Note that the pressures are normalized to
highlight the errors clearly.

Table 5: Ahmed Body Per Vertex Pressure Prediction Error measured the normalized L2 pressure
error per vertex on the test set. The top three rows are from Li et al. (2023).

Model Pressure Error Model Size (MB)
UNet (interp) 11.16% 0.13
FNO (interp) Li et al. (2020a) 12.59% 924.34
GINO Li et al. (2023) 9.01% 923.63

FIGConvNet (Ours) 0.89% 68.29

We further analyze the impact of grid resolution on network performance (Table 6). Our approach
demonstrates robust pressure prediction across a wide range of grid resolutions, even with small grids.
However, we observe that very high grid resolutions lead to overfitting on training data, resulting in
decreased test performance.

6 CONCLUSION AND LIMITATIONS

In this work, we proposed a deep learning method for automotive drag coefficient prediction using a
network with factorized implicit global convolutions. This approach efficiently captures the global
context of the geometry, outperforming state-of-the-art methods on two automotive CFD datasets.
On the DrivAerNet dataset, our method achieved an R2 value of 0.95 for drag coefficient prediction,
while on the Ahmed body dataset, it attained a normalized pressure error of 0.89%.

However, our approach has some limitations. The FIG ConvNet directly regresses the drag coef-
ficient without incorporating physics-based constraints, which could lead to overfitting and poor
generalization to unseen data. Additionally, our method is currently limited to the automotive domain
with a restricted model design, potentially limiting its applicability to other fields. Looking ahead,
we plan to address these limitations and further improve our model. Future work will focus on
incorporating physics-based constraints such as Reynolds number and wall shear stress to enhance
generalization.
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A APPENDIX

B DATASETS

The foundation of CFD in the automotive industry provides insight into design and engineering.
Prior comprehensive texts provide a solid overview of computational methods in fluid dynamics and
dedicate a comprehensive overview of traditional CFD techniques (Ferziger et al., 2019) along with
specification in automotive aerodynamics, also instrumental in understanding the principles (Katz,
2016). Solvers, such as OpenFOAM, a GPU-accelerated open-source solver, along with commercial-
ized licensed solvers are widely used for solving CFD equations in automotive simulations (Jasak
et al., 2007).

Such simulations consist of two main components, i) the car designs, complex geometry often
developed special software, and ii) running large scale computation to solving multivariate coupled
equations. Significant advancements have been enabled by the Ahmed body shape (Ahmed et al.,
1984), a generic car model simple enough to enable high-fidelity industry-standard simulations while
retaining the main features characterizing the flow of modern cars. Since, attempts have been made to
improve the realism of the shapes. Shape-net (Chang et al., 2015) in particular has provided a valuable
resource for simple car CFD simulations (Umetani and Bickel, 2018). Extending on Ahmed’s body
setting, the DrivAer data set introduces more complex and realistic car geometries (Heft et al., 2012),
with subsequent efforts, producing large-scale aerodynamics simulation on such geometries(Varney
et al., 2020). On such dataset, prior work attempts to predict car surface drag coefficients directly by
bypassing the surface pressure prediction, pioneered by Jacob et al. (2021). However, this approach
deploys an architecture applied to 3D voxel grids, forcing the method to scale only to low-resolution
3D grids version of the data. The lack of resolution obfuscates the fine details of geometry, making
the network predict the same results for cars with different information. This is in contrast to our
work that predicts pressure fields on large scales and detailed meshes.

Ahmed body consists of generic automotive geometries (Ahmed et al., 1984), simple enough to
enable high-fidelity industry-standard simulations but retaining the main features characterizing the
flow of modern cars. It was generated and used in the prior studies (Li et al., 2023) and contains
simulations with various inlet velocities.

Ahmed body dataset, generated using vehicle aerodynamics simulation on the Ahmed body
shapes (Ahmed et al., 1984), consists of steady state simulation of OpenFOAM solver on 3D
meshes each with 10M vertices parameterized by height, width, length, ground clearance, slant angle
and fillet radius. The dataset is generated and used in the prior studies (Li et al., 2023) and contains
GPU accelerated simulations with surface mesh sizes of 100k on more than 500 car geometries, each
taking 7-19 hours. We follow the same setting of this study using 10% of shapes testing. The dataset
is proprietary from NVIDIA Corp. Following this work, both of the deployed datasets are in the
process of being made publicly available for further research.

Table 6: Ahmed body Controlled Experiment We vary the grid resolution and kernel size for
analysis. (rx, ry, rz) is (6, 2, 2) (Sec. 3.1) e.g. The three grid resolutions we used for the first three
rows are 6×280×180, 560×2×180, 560×208×2.

Max Resolution Kernel Size Pressure Error Model Size (MB)

560×208×180
3 3.40% 105.0
7 3.31% 417.1
11 2.56% 979.7

280×104×90
3 2.89% 105.0
7 3.05% 417.1
11 2.93% 979.7

140×42×45 9 1.65% 667.29
11 2.59% 979.7

DrivAerNet datasets is the parametric extension of DrivAer datasets. DriveAer cars geometries
are more complex, real-world automotive designs used by the automotive industry and solver de-
velopment (Heft et al., 2012), Fig ??. Solving the aerodynamics equation for such geometries
is a challenging task, and GPU-accelerated solvers are used to provide fast and accurate solvers,
generating training data for deep learning purposes (Varney et al., 2020; Jacob et al., 2021). To train
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our model on the DrivAer dataset, and to demonstrate the applicability of our approach to real-world
applications, we use industry simulations from Jacob et al. (2021). DrivAerNet with 50 parameters in
the design space. The dataset constitutes of 4000 data points generated using Reynolds-Averaged
Navier-Stokes (RANS) formulation on OpenFoam solver on 0.5M mesh faces.

B.1 BASELINE NETWORK CONFIGURATIONS

We list the network configurations used in the experiment in the appendix. We use OpenPoint Qian
et al. (2022) for the baseline implementation and, with the configuration, you can specify the network
architecture.

B.2 BASELINE IMPLEMENTATIONS

We use an open source 3D point cloud library OpenPoint (Qian et al., 2022) to implement Point-
Net++ (Qi et al., 2017b), DeepGCN (Li et al., 2019), AssaNet (Qian et al., 2021), PointNeXt (Qian
et al., 2022), and PointBERT (Yu et al., 2022). In this section, we share the network architecture
configuration used in the experiment.

NAME: BaseSeg
encoder_args:

NAME: PointNet2Encoder
in_channels: 3
width: null
strides: [2, 4, 1]
mlps: [[[64, 64, 128]],

[[128, 128, 256]],
[[256, 512, 512]]]

layers: 3
use_res: False
radius: 0.05
num_samples: 32
sampler: fps
aggr_args:

NAME: ’convpool’
feature_type: ’dp_fj’
anisotropic: False
reduction: ’max’

group_args:
NAME: ’ballquery’

conv_args:
order: conv-norm-act

act_args:
act: ’relu’

norm_args:
norm: ’bn’

decoder_args:
NAME: PointNet2Decoder
fp_mlps: [[128, 128], [256, 128], [512, 128]]

Listing 1: PointNet++ Configuration
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NAME: BaseSeg
encoder_args:

NAME: DeepGCN
in_channels: 3
channels: 64
n_classes: 256
emb_dims: 256
n_blocks: 14
conv: ’edge’
block: ’res’
k: 9
epsilon: 0.0
use_stochastic: False
use_dilation: True
dropout: 0
norm_args: {’norm’: ’in’}
act_args: {’act’: ’relu’}

Listing 2: DeepGCN Configuration

NAME: BaseSeg
encoder_args:

NAME: PointNet2Encoder
in_channels: 3
strides: [4, 4, 4, 4]
blocks: [3, 3, 3, 3]
width: 128
width_scaling: 3
double_last_channel: False
layers: 3
use_res: True
query_as_support: True
mlps: null
stem_conv: True
stem_aggr: True
radius: [[0.1, 0.2], [0.2, 0.4], [0.4, 0.8], [0.8, 1.6]]
num_samples: [[16, 32], [16, 32], [16, 32], [16, 32]]
sampler: fps
aggr_args:

NAME: ’ASSA’
feature_type: ’assa’
anisotropic: True
reduction: ’mean’

group_args:
NAME: ’ballquery’
use_xyz: True
normalize_dp: True

conv_args:
order: conv-norm-act

act_args:
act: ’relu’

norm_args:
norm: ’bn’

decoder_args:
NAME: PointNet2Decoder
fp_mlps: [[64, 64], [128, 128], [256, 256], [512, 512]]

Listing 3: AssaNet Configuration
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NAME: BaseSeg
encoder_args:

NAME: PointNextEncoder
blocks: [1, 2, 3, 2, 2]
strides: [1, 4, 4, 4, 4]
width: 64
in_channels: 3
sa_layers: 1
sa_use_res: True
radius: 0.1
radius_scaling: 2.5
nsample: 32
expansion: 4
aggr_args:

feature_type: ’dp_fj’
reduction: ’max’
group_args:

NAME: ’ballquery’
normalize_dp: True

conv_args:
order: conv-norm-act

act_args:
act: ’relu’ # leakrelu makes training unstable.

norm_args:
norm: ’bn’ # ln makes training unstable

decoder_args:
NAME: PointNextDecoder

Listing 4: PointNeXt Configuration
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NAME: BaseSeg
encoder_args:

NAME: PointViT
in_channels: 3
embed_dim: 512
depth: 8
num_heads: 8
mlp_ratio: 4.
drop_rate: 0.
attn_drop_rate: 0.0
drop_path_rate: 0.1
add_pos_each_block: True
qkv_bias: True
act_args:

act: ’gelu’
norm_args:

norm: ’ln’
eps: 1.0e-6

embed_args:
NAME: P3Embed
feature_type: ’dp_df’
reduction: ’max’
sample_ratio: 0.0625
normalize_dp: False
group_size: 32
subsample: ’fps’ # random, FPS
group: ’knn’
conv_args:

order: conv-norm-act
layers: 4
norm_args:

norm: ’ln2d’
decoder_args:

NAME: PointViTDecoder
channel_scaling: 1
global_feat: cls,max
progressive_input: True

Listing 5: PointBERT Configuration

B.3 FIGCONVNET CONFIGURATION

We share the network configuration used in FIGConvNet experiments in the Appendix. The code
will be released upon acceptance, and the network configuration below uniquely defines the architec-
ture.

B.4 FIG CONVNET ARCHITECTURE DETAILS

In this section, we provide architecture details used in our network using the configuration files used
in our experiments.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

num_levels: 2
kernel_size: 5
hidden_channels:

- 16
- 32
- 48

num_down_blocks: [1, 1] # defines the number of FIGConv blocks
per hierarchy in encoder

num_up_blocks: [1, 1] # defines the number of FIGConv blocks per
hierarchy in decoder

resolution_memory_format_pairs: # defines the grid resolutions
- [ 5, 150, 100]
- [250, 3, 100]
- [250, 150, 2]

Listing 6: FIGConvNet Configuration

B.5 WARP-BASED RADIUS SEARCH

Algorithm 1 describes how we efficiently find the input points within the radius of a query point
in parallel. It follows the common three step computational pattern in GPU computing when
encountering dynamic number of results: Count, Exclusive Sum and Allocate, and Fill. We achieve
excellent performance by leveraging NVIDIA’s Warp Python framework, which compiles to native
CUDA and provides spatially efficient point queries with its hash grid primitive.

Procedure 1 GPU-accelerated points in a radius search

Input: input points p, query points q, radius r
Output: Results Array, Result Offset

procedure COUNTRADIUSRESULTS(query points, input points, radius r)
Step 1: Count number of results
for all query points q do

while candidate p← hash-grid query(q,r) do
if ∥q − p∥ < radius then count[q]++
end if

end while
end for

end procedure
procedure COMPUTEOFFSET(count)

offset← exclusive-sum(count)
total number results← offset[last]
results-array← alloc(total number results)

end procedure
procedure FILLRADIUSRESULTS(query points, input points, radius r, offset)

for all query points q do
q-count← 0
while candidate p← hash-grid query(q,r) do

if ∥q − p∥ < radius then
results-array[offset[q-count]]← p
q-count++

end if
end while

end for
end procedure
procedure POINTSINRADIUS(input points, query points, radius)

count← COUNTRADIUSRESULTS(query points, input points, radius)
offset, allocated results array← COMPUTEOFFSET(count)
results array← FILLRADIUSRESULTS(query points, input points, radius, offset, results array)

end procedure
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