
What Can Transformer Learn with Varying Depth?
Case Studies on Sequence Learning Tasks

Xingwu Chen 1 Difan Zou 2

Abstract
We study the capabilities of the transformer ar-
chitecture with varying depth. Specifically, we
designed a novel set of sequence learning tasks to
systematically evaluate and comprehend how the
depth of transformer affects its ability to perform
memorization, reasoning, generalization, and con-
textual generalization. We show a transformer
with only one attention layer can excel in mem-
orization but falls short in other tasks. Then, we
show that exhibiting reasoning and generalization
ability requires the transformer to have at least
two attention layers, while context generalization
ability may necessitate three attention layers. Ad-
ditionally, we identify a class of simple operations
that a single attention layer can execute, and show
that the complex tasks can be approached as the
combinations of these simple operations and thus
can be resolved by stacking multiple attention lay-
ers. This sheds light on studying more practical
and complex tasks beyond our design. Numerical
experiments corroborate our theoretical findings.

1. Introduction
Transformers (Vaswani et al., 2017) have been recognized
as the most powerful model to achieve state-of-the-art per-
formances in various deep learning tasks such as vision,
natural language process, and decision making (Dosovitskiy
et al., 2020; Brown et al., 2020a; Chen et al., 2021). Its su-
perior performance makes it the most prevalent architecture
for building universal foundation models (Touvron et al.,
2023; Dosovitskiy et al., 2021; Devlin et al., 2018; Ying
et al., 2021; Ouyang et al., 2022), its superiority in capa-
bility makes it one of the most widely used architectures
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for building universal foundation models (Bommasani et al.,
2021; Brown et al., 2020a; Kaplan et al., 2020). A central
module in the transformer is the attention layer, which per-
forms nonlinear sequence-to-sequence mapping that allows
each token to attend to several other tokens based on the
semantic relationship. By stacking multiple attention layers,
the transformer models have been observed to be surpris-
ingly strong at performing memorization, understanding,
and reasoning from the input sequences.

The remarkable empirical performance of transformer has
triggered a series of theoretical studies, which aim to under-
stand the working mechanism of transformer. For instance,
some early attempts, including RASP (Weiss et al., 2021)
and Tracr (Lindner et al., 2023), propose to interpret the
transformer model by translating its mechanism into pro-
gramming languages. However, their explanations are still
hard to parse and difficult to help obtain quantitative charac-
terizations on the transformer’s capability. More recently,
people has particularly focused on the capability of trans-
former in certain aspects, including its universal approxima-
tion power (Kajitsuka & Sato, 2023; Yun et al., 2020), data
memorization capacity (Kajitsuka & Sato, 2023; Mahdavi
et al., 2023), reasoning ability (Boix-Adsera et al., 2023; Fu
et al., 2023), and in-context learning (ICL) (Xie et al., 2021;
Garg et al., 2022; Bai et al., 2023; von Oswald et al., 2023;
Wu et al., 2023).

However, these research primarily focuses on specific, sim-
plified tasks that only utilize a subset of the transformer’s
capabilities. In practice, tasks often involve complex com-
binations of these simpler tasks, rendering them more chal-
lenging. Moreover, these studies often assume that the data
is well-structured, aligning perfectly with the desired input-
output token pairs. In practical scenarios, transformer inputs
typically consist of general sequences, with tokens gener-
ated through human learning processes. Consequently, it
remains unclear whether a given transformer model can ef-
fectively handle practical sequence-based tasks that require
leveraging multiple aspects of the transformer’s capabilities.
Specifically, the capacity and limitations of the transformer
architecture for addressing diverse sequence learning tasks
remain uncertain.

In this paper, we aim to comprehensively understand the per-
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formance of the attention-based transformer architecture by
investigating whether and how certain tasks can be learned
by transformers with varying depth (i.e. the number of atten-
tion layers). Specifically, we have designed four sequence
learning tasks, including sequence classification, in-context
question answering, template matching, and in-context tem-
plate matching tasks, aiming at assessing and understanding
the transformer’s memorization, reasoning, generalization,
and contextual generalization abilities. Notably, these tasks
are correlated and purposely designed to incrementally be-
come harder, based on which we can analyze how these
abilities vary depending on the number of attention layers
employed and characterize the mechanism of different atten-
tion layers. We have then conducted a systematic theoretical
analysis to address two key research questions: (1) the mini-
mum number of attention layers required for the transformer
to perform the four tasks; and (2) the respective roles of the
different attention layers in accomplishing these tasks. Our
contributions to the field are summarized as follows:

• We propose a new set of sequence learning tasks specifi-
cally designed to assess the capabilities of transformers.
In contrast to prior research that often concentrates on
isolated tasks with well-structured input data, our tasks
are systematic, interconnected, and more representative of
real-world scenarios (the input data are general sequences
generated from human’s learning process). By leveraging
these tasks, we can accurately evaluate the transformer’s
proficiency in key areas such as memorization, reason-
ing, generalization, and contextual generalization, and
interpret the underlying mechanism of attention layers.

• We then theoretically assess the learning ability of trans-
former with varying numbers of attention layers by pre-
senting both positive and negative results. In particu-
lar, we prove that the transformer with single attention
layer can memorize but fails on other tasks. On the oppo-
site, we show that two-layer transformer can successfully
perform the reasoning and generalization tasks, and the
transformer may need 3 layers to conduct contextual gen-
eralization. We further conduct numerical experiments to
validate the theoretical results. These theoretical findings
justify the need of more attention layers to accomplish
more complicated tasks (that require multi-step reason-
ing and generalization), which aligns with the emergence
phenomenon of transformer (Wei et al., 2022).

• We further provide some evidences regarding the working
mechanism of transformer to accomplish the designed
tasks. We show that the single attention layer can perform
simple copying, parsing, matching, and mapping opera-
tions. Then stacking multiple attention layers can achieve
the combinations of these operations, thus accomplish
the harder tasks. In our experiments, we show that the
attention maps of a trained transformer for different tasks
are consistent with our findings. This could be of indepen-

dent interest to understand how transformer tackle more
complicated tasks in practice.

2. Related Work
Theoretical Understanding of Transformers Remarkable
achievements of transformer leads to various theoretical
attempts to understand its underlying mechanisms. These
works approach the understanding of transformers from dif-
ferent angles. From a universal-approximation perspective,
researchers have proven that transformers can approximate
any sequence-to-sequence mapping under mild assump-
tions about the data distribution and target functions(Yun
et al., 2020; Kajitsuka & Sato, 2023; Mahdavi et al., 2023;
Takakura & Suzuki, 2023). In addition to mapping se-
quences, there is a line of work that investigates the trans-
former’s ability to learn in context (von Oswald et al., 2023;
Garg et al., 2023; Guo et al., 2023; Zhang et al., 2023), gen-
eralize on certain tasks (Boix-Adsera et al., 2023) and even
perform complex instructions (Giannou et al., 2023; Liu
et al., 2022). While these works provide useful perspectives
on what transformers can do and propose possible mecha-
nisms, they often involve more layers than what is typically
used in practice or fall short in explaining real-world tasks
involving discrete tokens and functions. Additionally, some
works try to understand transformers from a computational
perspective, offering valuable insights for understanding
important properties such as chain of thought (Feng et al.,
2024; Merrill & Sabharwal, 2023; Li et al., 2024). Although
these works show the expressive power and limitations of
well-structured transformers for certain tasks, the detailed
analysis of expressive power in specific layers remains un-
clear.

Empirical Understanding of Transformers In addition to
theoretical investigations, researchers have also attempted
to understand the mechanisms of transformers through em-
pirical analysis, such as interpreting trained transformers
to derive human-readable representations (Lindner et al.,
2023; Friedman et al., 2023; Weiss et al., 2021; Zhou et al.,
2023), explaining transformers through probing techniques
(Clark et al., 2019; Prabhu et al., 2022; Zou et al., 2023) or
leveraging other large language models (Bills et al., 2023).
However, due to the complexity of large language models,
the explanations derived from these experiments are often
complex and challenging to comprehend. Moreover, these
empirical methods only provide insight into how the model
accomplishes certain tasks, while the underlying mecha-
nisms and the minimum requirements for transformers to
learn such algorithms, such as the minimum number of lay-
ers and attention heads, remain elusive. In comparison to
previous theoretical work, we introduce a practical setting
that adapts discrete functions and data. Unlike using ran-
dom features, we employ an approach that is more easily
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explainable. Furthermore, we aim to provide a theoreti-
cal explanation for why smaller models with fewer layers
struggle with certain tasks, instead of relying solely on ex-
perimental results. To the best of our knowledge, this is
the first study that compares and explains the limitations of
small transformers.

3. Preliminaries
Notations. The set of indices from 0 to n − 1 is denoted
by [n]. Boldface upper-case X and lower-case x represent
matrices and vectors, respectively. Specifically, we use [·]
as Python index notation where X[i, :] refers to the i-th row
of X and X[:, j] refers to the j-th column of X. Similarly,
x[i] refers to the i-th element of x.

3.1. Attention-only Transformers

The transformer (Vaswani et al., 2017) is a neural network
that can map a matrix [x0, . . . ,xn−1] of size d × n to a
sequence [y0, . . . ,yn−1]. In this work, we consider a trans-
former with L hidden layers and a classifier output layer:

TF = fcls︸︷︷︸
classifier

◦TFL ◦ · · · ◦ TF1︸ ︷︷ ︸
L hidden layers

. (1)

Moreover, as mentioned previously, the objective of this
work is to investigate the reasoning and generalization abil-
ity of the attention calculations in the transformer. Thus in
each hidden layer, we choose to explode the MLP module as
it performs token-wise operations that may introduce unnec-
essary distortion to our analysis (Zhang et al., 2017). Math-
ematically, given the representation matrix H(l) ∈ Rd′×n in
the (l + 1)-th layer, where d′ denotes the dimension of the
hidden representations, the transformer layer TFl+1 with m
attention heads computes:

H(l+1) = TFl+1(H
(l))

= H(l) +
1

m

m∑
i=1

[
V

(l)
i σ
(
(Q

(l)
i )⊤K

(l)
i

)]
, (2)

where Q
(l)
i = W

(l)
Qi
H(l), K(l)

i = W
(l)
Ki

H(l), and V
(l)
i =

W
(l)
Vi
H(l) are the query, key, and value computed by the i-th

attention head with learned weight matrices W
(l)
Qi

, W(l)
Ki

,

and W
(l)
Vi

respectively. These weight matrices have dimen-
sions Rd′×d′

. Besides, σ(z) is the activation function, which
is set as the ReLU function σ(z) = max{0, z} in this work.

Classifier Layer: Given the representation generated by the
last hidden layer TFL, i.e, H(L) = (h

(L)
0 , . . . ,h

(L)
n−1), we

make use of its last column, i.e., h(L)
n−1 to obtain the final

prediction o = WOh
(L)
n−1 ∈ RC , where WO ∈ RC×d′

is the weight matrix of the classifier layer. Notably, C

represents the total number of labels, which can be seen as
(1) the vocabulary size for the token prediction task; or (2)
the number of classes for the sequence classification task.
The prediction result is then achieved by finding the index
of the maximum entry of o, i.e., ŷ = argmaxi∈[C] o[i].

Positional Encoding and Padding: Given a sequence of
discrete tokens, denoted by X = [x0, . . . ,xn−1] ∈ Rd×n,
the initial representation of each token is composed by the
original token embedding, positional encoding, and padding.
In particular, note that the hidden dimension is d′, the initial
representation matrix for the sequence H(0) is given by:

H(0) =

x0 · · · xn−1 → d× n
p0 · · · pn−1 → n× n
0 · · · 0 → (d′ − n− d)× n

 . (3)

For the simplicity of analysis, we consider the one-hot po-
sitional encoding, i.e., we set pi = [0i, 1,0n−(i+1)]

⊤ for
position i.

4. Memorization, Reasoning, and
Generalization Tasks for Sequences

In this section, we will introduce the tasks designed to assess
and understand the capability of transformers for tackling
sequences. In particular, four tasks will be designed, which
aim to characterize the capability of transformer structure
in terms of memorization, reasoning, generalization, and
contextual generalization.

4.1. Memorization: Sequence Classification Task

The memorization capability serves as a fundamental theo-
retical property for transformers. We start our understanding
of the transformer model by characterizing its memorization
capability. In particular, we consider the sequence classifi-
cation task, as shown in Figure 1, one of the most important
and successful tasks for transformer-based models (Devlin
et al., 2018). To formulate the sequence classification task,
we define the dataset DSC as a collection of N sequence-
label examples, each with a different class type. Specifically,
DSC = {(X(0), y(0)), . . . , (X(N−1), y(N−1))}, where X ∈
Rd×n is a sequence consisting of n discrete tokens
from a word alphabet X , and the corresponding labels
y(0), y(1), . . . , y(N−1) are distinct integer. Before input into
the model, we first append a CLS token c at the end of each
sequence, which is widely applied in transformer-based
models as a representation of the whole sequence. Then this
task is to characterize whether the transformer model can
successfully map each sequence to the corresponding label
based on the representation corresponding to the last token
of the sequence, i.e., CLS.
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Figure 1: Descriptions of the four sequence learning tasks considered in this work, including (1) sequence classification
task; (2) in-context question answering task; (3) template matching task; and (4) in-context template matching task. Here
each input, context, and query are represented as sequences consisting of multiple tokens.

4.2. Reasoning: In-context Question Answering Task

In-context learning (Brown et al., 2020b) refers to the ca-
pability of model to learn from the context and provide
answers to questions based on examples and their corre-
sponding solutions. To characterize the reasoning capability
of the transformer, we consider a simplified in-context learn-
ing task, called in-context question answering task, which
is summarized in Figure 1. We consider a simple in-context
learning problem with several question-answer pairs, the
model is required to retrieve the corresponding answer based
on the given question from the context.

To formulate our in-context question-answering task, we
define three types of tokens: question tokens Q =
{q0,q1, . . . ,qnq−1}, response sign R = {r}, and answer
tokens A = {a0,a1, . . . ,ana−1}. Additionally, we use
π0, . . . , πn−1 and π′

0, . . . , π
′
n−1 denote the indices of the

sampled question and answer tokens, π and π′ correspond
to permutations. The response sign is a special tag widely
used in large language models like Llama2 (Touvron et al.,
2023) and Galactica (Taylor et al., 2022) for guiding the
model’s behavior in question-answer scenarios. Our data is
constructed as follows: we sample k questions from Q, de-
noted as (qπ0 , . . . ,qπk−1

) and k answers (aπ′
0
, . . . ,aπ′

k−1
)

from A. We then add the response sign r between each
qπi

and aπ′
i
, resulting in a context block length of 3k:

B
(π,π′)
IC-QA = (qπ0 , r,aπ′

0
, . . . ,qπk−1

, r,aπ′
k−1

). Next, we ran-
domly choose the question qπc

(where c ∈ [k]) from the
context block, and concatenate it with the final response
sign: [B

(π,π′)
IC-QA;qπc

; r]. We denote this data as E
(π,π′)
IC-QA(c),

a sequence length n = 3k + 2. Instead of pre-defining
question-answer pairs, we consider each question to have na

possible answers by choosing different permutation π and
π′, as the objective is to investigate whether the model can
learn to retrieve answers from the context, rather than mem-
orizing the question-answer pairs. In this way, with nq ques-
tions and na answers, we can construct a dataset (denoted as
D(k)
IC-QA) with Ak

nq
·Ak

na
· k examples, where Am

n = n!
(n−m)!

denotes the number of ways to choose m elements from a

set of n elements. Then, the task is to characterize that given
any context block E

(π,π′)
IC-QA(c) = [B

(π,π′)
IC-QA;qπc

; r], whether
the transformer can correctly output the desired answer aπ′

c
.

4.3. Generalization: Template Matching Task

Motivated by the learning process of humans, where we ab-
stract new things into different patterns for further analysis.
Inspired by the template task designed in Boix-Adsera et al.
(2023) for studying the generalization ability of transformer,
we consider a similar template matching task to investigate
whether transformers with varying attention layers have the
ability to generalize. In particular, we first deliver the formal
definition of the template.

Definition 4.1. A template is a string t ∈ W l, where W
is an alphabet of “wildcards”. A substitution map is an
injection function s : W → X that maps wildcards to real
word symbols X . Here, X can be seen as the alphabet of
tokens in language or pixel blocks in an image. Different
wildcards should be mapped to different tokens to ensure
that each sequence can be mapped to one and only one
template. We write sub(t, s) ∈ X l for the sequence where
each wildcard is substituted with the corresponding token:
sub(t, s)i = s(ti). A template labeling mapping is a
mapping from a template to the class index f : Wn → Z∗.

In general, the template can be understood as the abstract
concept of the data, i.e., in Figure 1, “car” is the concept of
the car image with different colors. To construct our dataset,
we first define a template set with all possible templates of
length ntmpl: T = {t0, t1, . . . , tntmpl−1}. We then use a
template labeling mapping f to map each template ti to
a class yi. After that, we use a set of nmap substitution
maps S = {s0, s1, . . . , snmap−1} to generate data from the
template to a real word sequence. We write the dataset
as Dtm =

{(
sub(ti, sj), yi)

)
: i ∈ [ntmpl], j ∈ [nmap]

}
,

where yi = f(ti) denotes the template label and sub(t, s)
denotes the sequence of real-word symbols that follow the
template t and token mapping function s.

Similar to the sequence classification task, we also append
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a CLS token at the end of the input sequence for generating
the prediction. However, to investigate the generalization
ability, the transformer cannot simply memorize all possi-
ble sequences but requires to learn their abstract patterns,
i.e., the templates, to make the correct prediction. Then,
the task is to characterize that given a sequence generated
via sub(tk, si), whether the transformer can identify the
template tk and output the correct prediction yk. We call
the model can generalize on template tk if it can correctly
predict all possible sequences generated by tk and si.

4.4. Contexture Generalization: In-context Template
Matching Task

We then consider a more complex and general problem
that is designed as the combination of in-context question-
answering and template matching tasks, which requires
the model to perform both reasoning and generalization
simultaneously. This task is summarized in Figure 1.

In particular, we formulate our problem by replacing the
question in the context block BIC-QA from a simple token q
to the template data sub(t, s). To construct our dataset, we
need to define a set of templates T = {t0, t1, . . . , tltmpl−1}.
All templates have the same length l. Rather than pre-
defining a mapping from the template t to a class label
y, we follow the construction process in the previous in-
context question-answering task. We first randomly choose
k templates from T and k answers from the answer to-
ken set A: (tπ0 , . . . , tπk−1

) and (aπ′
0
, . . . ,aπ′

k−1
). Then

we can consider k different substitution mapping function
sπ′′

0
, . . . , sπ′′

k−1
for tπ0 , . . . , tπk−1

to generate sequences of
real-world symbols, denoted as Xπ0

, . . . ,Xπk−1
, where

Xπi
= sub(tπi

, sπ′′
i
). Then, the context block is defined as

B
(π,π′)
IC-TM =

(
X0, r,aπ′

0
, . . . ,Xπk−1

, r,aπ′
k−1

). Then we ran-
domly choose a query template tπc

with c ∈ {0, . . . , k− 1}
and use a new mapping function sπ′′

k
to get the sequence of

real-world symbols Xπc . Then, the entire input sequence is
defined as E(π,π′)

IC-TM(c) = [B
(π,π′)
IC-TM,Xπc , r], and the desired

answer should be aπ′
c
. Then, the entire dataset, denoted

as DIC-TM, is the collection of all sequences-answer pairs
that generated by using all possible templates, answers, and
mapping functions.

Compared with the in-context learning question-answering
and template matching tasks, this task requires the model
to reason from the context and generalize to the unseen
data. For instance, in Figure 1, the model needs to first
identify the template/concept of the query image (which is
“hat”), and then seeks the answer from the context (there is
an example image using the same template and providing
the answer “hat”). In this task, the model should capture
the similarity between each question (generalization) and
retrieve the answer from the context (reasoning).

Summary and Discussion. We provide data examples
and a more detailed comparison for the four tasks in Ap-
pendix A. Note that we employ these tasks to assess the
model’s capacity, i.e. for the given architecture, especially
the transformer with different attention layers, what the
model can do and how the model do it. Specifically, we
aim to determine whether there exists a particular configura-
tion of the transformer model, such that all examples in the
dataset can be perfectly learned. This ability is independent
of the training process; our focus is solely on the ability of
the transformer’s architecture for tackling these tasks.

5. Main Results
In this section, we present our main findings regarding the
aforementioned tasks. We will focus on characterizing how
transformer model performs on these tasks with varying
attention layers. We will prove both negative and positive
results on the capability of transformer when different num-
bers of attention layers are stacked.

5.1. Single-Layer Transformer Can Memorize

We commence our investigation by examining the mem-
orization capability of a single-layer transformer. In this
scenario, the model’s objective is to accurately classify N
sequences with distinct labels. In particular, we will show
that given sufficient heads, a single-layer transformer has
the capability to memorize all data points. We summarize
this result in the following Theorem.

Theorem 5.1. For any dataset of the sequence classification
task, denoted by DSC, let d be the token dimension, and
n be the length of the sequence (i.e., number of tokens).
Then there exists a transformer TF with L = 1 attention
layer, n attention heads, and model embedding dimension
d′ = max{nd, d + n} such that for all (X, y) ∈ DSC, it
holds that TF(X) = y1.

We first remark that the goal of Theorem 5.1 is to demon-
strate the ability of the single-layer transformer for the mem-
orization task, while the (horizontal) model size, i.e., num-
ber of heads and embedding dimensions, are not optimized.
It is possible to further sharpen our analysis, e.g., apply-
ing the techniques in Mahdavi et al. (2023), to relax the
conditions on the (horizontal) size of the transformer model.

To achieve this, we show that a single attention layer, with
n attention heads, can perform the mapping operation to
transformer the input sequence, formulated as a matrix of
embeddings (of dimension Rd×n), to a distinct vector rep-
resentation. Moreover, we show that these vector represen-
tations are linearly independent. Then the output classifier

1Here we slightly abuse the notation use TF(X) the denote the
prediction result of the input X. Similar notations will be used in
other theorems.
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layer, equipped with the weight matrix WO ∈ RN×d′
(N

denotes the number of total labels), can map each vector
representation to a probability vector, where the index of
the largest entry corresponds to the desired sequence label.
The full proof and construction of the transformer weights
can be found in Appendix E.

Theorem 5.1 demonstrates that the one attention layer is
sufficient for memorization. However, it is important to
note that memorization alone cannot guarantee other more
challenging and critical abilities such as reasoning and gen-
eralization. Characterizing the ability of transformer in these
aspects will be the focus of the subsequent subsections.

5.2. Two-Layer Transformer Performs Reasoning

Then we explored the ability of transformers to reason using
simple in-context learning tasks. Previous research has
investigated similar tasks, using induction heads (Olsson
et al., 2022) and transformer circuits (Elhage et al., 2021),
to assess the transformer’s reasoning ability. However, the
theoretical basis for these observations remains unclear, the
connection between the number of attention layers and the
reasoning ability has not been thoroughly studied.

In this section, we theoretically characterize the reasoning
performance of single-layer and two-layer transformer mod-
els on the in-context question-answering task. First, we
provide the following theorem to show that any single-layer
transformer cannot perfectly perform the reasoning task.

Theorem 5.2. Let DIC-QA be a dataset of the in-context
question-answering task and n be the number of question-
answer pairs. Then for any transformer with L = 1 atten-
tion layer, no matter how many heads are applied, there
exists at least one data point (E(π,π′)

IC-QA(c),aπ′
c
) ∈ D(k)

IC-QA

such that TF
(
E

(π,π′)
IC-QA(c)

)
̸= aπ′

c
.

Theorem 5.2 suggests for any single-layer transformer, there
must exist at least one data point that cannot be correctly
predicted, suggesting its inability to perfectly tackle the in-
context question-answer task. The idea to prove this is to
show that single-layer attention function can preserve the lin-
ear dependency (defined in terms of the set operations, see
Appendix D). In other words, if multiple input sequences,
such as the entire dataset, exhibit some dependence, then the
corresponding outputs of the single-layer attention will also
display linear dependence. By leveraging this linear depen-
dence in the outputs, we can demonstrate that the attention
function fails to successfully learn all question-answering
tasks. The detailed proof can be found in Appendix F.1.

Moreover, we claim that Theorem 5.2 is not limited to the
ReLU attention, but can also apply to softmax attention
when using single head inAppendix I (extending to multiple
head case is left for future study). Then, we show that, in

the following theorem, a two-layer transformer can resolve
the issue of the first-layer transformer and perfectly reason
all sequences in the dataset.
Theorem 5.3. For any dataset of the in-context question-
answering task, denoted by DIC-QA, let k be the number of
question-answer pairs (the sequence length is n = 3k + 2)
and d be the dimension of the token embedding. There exists
a transformer TF with L = 2 attention layers, 1 attention
head, and d′ = d+ n such that for all

(
E

(π,π′)
IC-QA(c),ak′

c

)
∈

DIC-QA, it holds that TF(E(π,π′)
IC-QA(c)) = ak′

c
.

Our proof, i.e., the construction of such a two-layer trans-
former model, draws inspiration from (Friedman et al.,
2023), which shows that the two-layer transformer can per-
form a copying-matching procedure to accomplish the tem-
plate matching task. We construct the first layer to perform
the copying operation among question and answer tokens
to aggregate each question and the corresponding answer
together. The second layer is implemented as an induc-
tion head (Olsson et al., 2022) to perform the matching
operation between the token representations (which already
aggregate the question and answer together) with the same
question (i.e., the query question), and then output the de-
sired answer. The detailed construction is in Appendix F.2.

By combining Theorem 5.2 and Theorem 5.3, we can con-
clude that it requires two attention layers to perfectly per-
form the reasoning. However, the 2-layer attention-only
transformer can do more than just copying and matching.
Next, we will show that 2-layer transformers can also accom-
plish the generalization task through a different mechanism.

5.3. Two-Layer Transformer Can Generalize

In this part, we shift our focus to the generalization abil-
ity of transformers. Specifically, we consider the template
matching task, where each template has a distinct label, and
sequences that follow from the same template will be as-
signed by the same label. Our goal is to investigate whether
and how transformers can successfully perform this task,
i.e., identify the template of the input sequence and pre-
dict its label, for all possible sequences. This serves as the
necessary condition for the generalization of transformer
(Boix-Adsera et al., 2023). Similar to the findings in Sec-
tion 5.2, we also observe that a single-layer transformer
fails to accurately learn this generalization process, which
is summarized in the following theorem.
Theorem 5.4. Let DTM be a dataset of the template matching
task and n be the sequence length. Then for any transformer
with L = 1 attention layer, no matter how many heads are
applied, there exists at least one data (sub(t, s), y) ∈ DTM,
generated via a template t and a mapping s, such that
TF(sub(t, s)) ̸= y.

We follow a similar idea for proving 5.2 to prove the above
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argument. In particular, we can show that there are two
templates such that all possible sequences generated accord-
ingly are linearly dependent. Then if these two templates
have different labels, the single-layer transformer fails to
correctly classify all sequences generated via these two tem-
plates. The detailed proof can be found in Appendix G.1.

This intriguing result suggests that although single-layer
transformers possess strong memorization abilities, they
struggle with more complex tasks. Moreover, we show that
this template matching task can be performed by a two-layer
transformer, which is stated in the following theorem.

Theorem 5.5. For any dataset of the template matching task,
denoted by DTM , let n be the sequence/template length and
d be the token embedding dimension. Then there exists
a transformer TF with L = 2 attention layers, 1 attention
heads, and d′ = d+n such that for all (sub(t, s), y) ∈ DTM,
it holds that TF(sub(t, s)) = y.

We show that such a two-layer transformer can be con-
structed using a parsing-mapping process. In particular,
the first layer can be designed to parse the sequence into
the corresponding template, then the second layer can per-
form a memorization process that is similar to the sequence
classification task investigated in Section 5.1. These find-
ings prompt us to reconsider the mechanism of multi-layer
transformers, instead of solely relying on memorizing all
the data (Yun et al., 2020). The detailed construction can be
found in Appendix G.2.

5.4. Three-Layer Transformer Can Perform Contextual
Generalization

In previous sections, we have shown that a 2-layer trans-
former is capable of conducting reasoning and generaliza-
tion tasks. Now we will focus on a more challenging in-
context template matching task that requires the model to
perform generalization and reasoning simultaneously, i.e.,
exhibiting the contextual generalization capability.

First, since the in-context template matching task can de-
generate to the standard in-context question-answering task
(e.g., using identity mapping from the template alphabet
to real-world symbols). Then, we can straightforwardly
leverage the result in Theorem 5.2 to demonstrate the failure
of the single-layer transformer in accomplishing this task.
Moreover, note that when tackling the in-context question-
answering and template matching tasks, the transformer is
constructed to perform two-step copy-matching and parse-
mapping procedures, respectively. Therefore, regarding the
in-context template matching task, we can design a trans-
former to perform a three-step parsing-copying-matching
procedure, which is constructed using three attention layers.
We state this result in the following theorem.

Theorem 5.6. For any dataset of the in-context template

matching task, denoted by DIC-TM, let l be the template
length, k be the number of question-answer pairs (then the
sequence length is n = k(l+2)+ l+1), and d be the dimen-
sion of the token embedding. There exists a transformer TF
with L = 3 attention layers, 2l attention heads, and d′ =

d+ n+ l + 2 such that for all
(
E

(π,π′)
IC-TM(c),ak′

c

)
∈ DIC-TM,

it holds that TF(E(π,π′)
IC-TM(c)) = ak′

c
.

We remark that Theorem 5.6 does not imply that the in-
context template matching task cannot be accomplished by
two-layer transformers. However, in our numerical experi-
ments (see Figure 2), we find that the two-layer transformer
struggles with this task and can even not perform well during
the training. Therefore, we tend to believe that a three-layer
transformer may be the shallowest one to perform contex-
tual generalization, while the rigorous proof for the failure
of two-layer models is left for future study.

6. Experiments
In this section, we verify the main results presented in Sec-
tion 5 through synthetic datasets. We examine the accuracy
and loss dynamics for the four tasks across different lay-
ers and heads of transformers. Additionally, we study the
reasoning and generalization mechanisms of transformers
by analyzing attention maps and comparing them with our
constructed transformer. The detailed experimental setup is
presented in Appendix B.

6.1. The Impact of Attention Layers on Different Tasks

We begin by studying the impact of transformer depth on
these tasks. The results are shown in Figure 2. We ob-
serve that a single-layer transformer performs well on the
memorization task but struggles with tasks related to gener-
alization and reasoning. This validates Theorems 5.1, 5.2,
5.3, 5.4, and 5.5. Single-layer transformer performs like a
random guess for generalization and reasoning tasks.

For the contextual generalization task, we interestingly find
the same random guessing degeneration in both single-layer
and two-layer transformers, indicating that a 2-layer trans-
former might not be able to handle such a complex task
that requires both generalization and reasoning. Instead, a
3 layer transformer performs perfectly on this task. This
validates Theorem 5.6. Through this task, we can observe
the emergence of more complex reasoning and generaliza-
tion when we extend the layer of the transformer from 2
to 3. In Appendix B, we also study the performance of a
4-layer transformer, which shows that compared to a 3-layer
transformer, a 4-layer transformer can perform contextual
generalization more quickly. This emphasizes the effective-
ness of using deeper model to perform harder tasks.
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Figure 2: Performance of different layers of transformers on memorization, reasoning, generalization, and contextual
generalization tasks. Far left column: A single-layer transformer can memorize sequences with distinct labels. Center left
column: A single-layer transformer struggles with reasoning tasks, while a two-layer transformer can learn reasoning with
enough training steps. Center right column: A single-layer transformer struggles with generalizing on template tasks, while
a two-layer transformer can quickly grasp the method for generalization. Far right column: When it comes to more complex
contextual generalization tasks, a 1/2-layer transformer fails, but a 3-layer transformer can perform well on such tasks.
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Figure 3: Attention maps for a trained two-layer transformer
in the reasoning sequences "A=1B=2A=" (top row) and
"A=1B=2A=" (bottom row).

6.2. Algorithms Behind Trained Transformers

To further understand how transformers achieve generaliza-
tion and reasoning, we analyze the attention maps for some
typical examples. The results show that trained transformers
exhibit similar mechanisms to our constructions.

In the reasoning task, we observe operations in Figure 3 that
are similar to the constructed copying-matching mechanism.
In particular, we can identify two “copying” operations (the
corresponding value in the attention map is relatively high)
in the first layer: in Figure 3 (top row), tokens "1" and "A"
are copied to the 4-th and last positions respectively. In the
second layer, we can then identify a “matching” operation:
token "1", which now appears in the 3-th position, strongly
correlates with the token "A", which now appears in the
last position. This further leads to the correct answer "1".
Similar observation can be found in the second example:

A A B =

α α β =

parse

𝑦1

map

A B B =

α β β =

parse

𝑦2

map

Figure 4: Attention maps for a trained two-layer transformer
in the template sequences "AAB=" (top row) and "ABB="
(bottom row).

token "2" and "B" are copied to the first and last positions
respectively in the first layer; then a matching between the
token "B" in the last position and the value "2" in the first
position occurs, leading to the correct answer.

In the template matching task, we also find evidence of
our constructed parsing-mapping mechanism in Figure 4.
Specifically, a ”parsing” operation that checks the similarity
of tokens in other positions can be observed in the first layer:
for input sequence "AAB=", the repeat token "A" in posi-
tions 0 and 1 share attention with each other, for the input
"ABB=", the repeat token in positions 1 and 2 share the
position information. In this way, the model parses the input
sequence into a template representation, AAB → ααβ and
ABB → αββ, which can be mapped to different templates
by utilizing the memorization ability of the transformer.
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7. Discussion
In this study, we explore the capabilities of transformers
with varying attention layers in performing various tasks,
including memorization, reasoning, generalization, and con-
textual generalization. Our investigation reveals the limita-
tions of single-layer transformers when dealing with com-
plex tasks, and highlights the importance of using multiple
attention layers to achieve optimal performance in reason-
ing, generalization, and contextual generalization tasks. Our
findings shed light on the theoretical properties of trans-
former models, offering insights into their design and op-
timization for diverse tasks. Besides, our framework can
be further expanded to more challenging tasks. For exam-
ple, we can expand our in-context QA as ”nested in-context
QA” task, where the model must perform a chain-of-thought
process to arrive at the final answer. This could involve a se-
quence like “a →bb →cc →da→d ”, where we can design
a transformer with 6 layers that performs ”copy-matching”
3 times to solve this problem effectively. We believe that
expanding our four tasks is worth for further investigation,
and our framework can offer valuable insights. Moreover,
our analysis, which determines the threshold for attention
layers in solving complex tasks, can even offer explanations
for the scalability of transformers (Kaplan et al., 2020) and
their emergent abilities (Wei et al., 2022).
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consequences of our work, none which we feel must be
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Organization of the Appendix
• Examples for Different Tasks

• Supporting Experiments

• Useful Transformer Constructions

• Limitation for Single Layer Attention-only Transformer

• Proofs for Section 5.1

• Proofs for Section 5.2

• Proofs for Section 5.3

• Construction for Section 5.4

• Expanding from ReLU to Softmax Attention

A. Examples for Different Tasks
Here we use letters a,b, . . . to denote the “question tokens” (also can be seen as pixel blocks for input images in Figure 1,
use integer number 0,1,2, . . . denote the labels, such as “hat” and “car”, and use → denote the response sign (or CLS), then
we provide data examples as in Table 1, for each example, the prior part of the sequence is the input, and the model should
predict the underlined result:

Table 1: Examples of four tasks.

Task Data Example Explanation

Memorization
aa →1 bb →2 cc →3
ab →4 ac →5 ba →6
bc →7 ca →8 cb →9

different sequence belong to different class

Reasoning a →1b →2a →1 b →1a →2a →2
a →1b →2b →2 b →1a →2b →1 answer the last question based on the context

Generalization
aa →1 bb →1 cc →1
ab →2 ac →2 ba →2
bc →2 ca →2 cb →2

sequence generated by same template belongs to same class
different template have different label

(in this example we have templates αα→1, αβ→2)

Contextual
Generalization

aa →1ab →2bb →1 aa →1ab →2ba →2
aa →1ab →2aa →1 aa →1ab →2ab →2

similar question have the same answer
answer the last question based on the context

Memorization Task: We assume that each sequence belongs to a different cluster, meaning that the sequences are
”independent” from each other. This means that the model only needs to memorize each sequence and its corresponding
label without considering any relationships between the data.

Reasoning Task: We first provide question-answer pairs and then ask the model to retrieve the answer from the context.
Such task can be used as a benchmark to evaluate the model’s reasoning and comprehension ability (Liu et al., 2023).

Generalization Task: we assume that sequences generated by the same template belong to the same class. For example,
different-colored cars should be classified into the same class. Our setting is adapted from (Boix-Adsera et al., 2023), and we
focus on understanding when and how the model can generalize to all possible sequences that belong to the same template.

Contextual Generalization: We assume that similar questions (generated by the same template) should have the same
answer. Therefore, the task requires analyzing the semantic similarity between each question and retrieving the answer from
the context.

Reasoning focuses on the semantic meaning behind the sequence, while generalization focuses on the relationships between
each sequence. This makes our task more challenging compared to the memorization task, which ignores any possible
relationships within and between the data.

12
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B. Supporting Experiments
B.1. Experiments setup

Model: Our model is an attention-only transformer with a classification layer. We employ different initialization methods
for different tasks. For the memorization task, we initialize WQK with a uniform distribution in the range [0, 1). For other
tasks, we initialize WQK in the first layer of the transformer with constructed pattern for different tasks, as illustrated
in Appendix F.2, Appendix G.2, and Appendix H. This allows us to provide a favorable starting point for these models.
Additionally, we initialize WV for each task with a value of 1. The classification layer WC is initialized with a uniform
distribution in the range [0, 1). We have observed that tasks related to generalization and initialization can be challenging
even for randomly initialized transformers with sufficient layers. Our objective is to gain insights into the workings of
transformers on these tasks and empirically validate the propositions in Section 5. Hence, this choice of initialization is
justified.

Data: We construct the dataset as described in Section 3. Before inputting the data to the transformer, we concatenate each
token with a one-hot positional encoding. This is done to ensure that different types of tokens are disentangled, meaning that
each token is encoded in a certain subspace. For memorization tasks, we set the word dimension d1 to 500 and add an extra
dimension for the response sign, resulting in a final token dimension of d = 500 + 1. The sequence length is set to 6, so the
one-hot positional encoding has a dimension of n = 6 + 1. We randomly choose e examples and assign them with random
permuted e distinct labels. Therefore, the input sequence is represented as a (d + n) × n matrix, where the transformer
hidden size is set to d′ = (d+ n) = 508.

Similarly, for reasoning tasks, we set the question dimension d1 to 100, the answer dimension d2 to 100, and include an
extra dimension for the response sign. This results in a token dimension of d = 100 + 100 + 1. For a sequence with k
examples, the total length is n = 3k + 2.

For generalization tasks, we set the word dimension to d1 = 210 and add an extra dimension for the response sign. The
input sequence length is n = l + 1, where l represents the template length.

For contextual generalization tasks, we set the question dimension d1 = 100, the answer dimension d2 = 100, and
each question is generated from a template length l = 5. For a sequence with k examples, the total length is n =
(l + 1 + 1)(k + 1)− 1 = 7k + 6.

Training: During training, we utilize stochastic gradient descent (SGD) as the optimizer with cross-entropy loss function
given by:

ℓ(y,o) = − log
eo[y]∑
eo[i]

Here, ô represents the prediction result based on the last response sign, and y represents the target index. In the case of
memorization and template generalization tasks, y can be viewed as a label. For reasoning and contextual reasoning tasks, y
corresponds to a vocabulary index.

B.2. The Impact of the Number of Attention Heads

In our previous experiments, we discovered that a single-head transformer with 2 layers is sufficient for performing reasoning
and generalization tasks. However, in practice, it is common to use multiple attention heads, so we conducted additional
experiments to investigate the effects of using more than one attention head. In the following figure, we represent the number
of heads on each layer using the list [h1, h2, · · · ].

13



What Can Transformer Learn with Varying Depth? Case Studies on Sequence Learning Tasks

0 20000 40000 60000 80000 100000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

1-layer, e = 12800
head = 1
head = 2

head = 4
head = 8

1-layer, e = 12800
head = 1
head = 2

head = 4
head = 8

0 20000 40000 60000 80000 100000
Training Steps

0

1

2

3

4

5

6

7

Lo
ss

1-layer, e = 12800
head = 1
head = 2

head = 4
head = 8

1-layer, e = 12800
head = 1
head = 2

head = 4
head = 8

Figure 5: Training dynamic for different attention heads on memorization task
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Figure 6: Training dynamic for different attention heads on in-context learning task
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Figure 7: Training dynamic for different attention heads on template generalization task

For the memorization task, increasing the number of attention heads allows the model to more easily memorize the data, as
shown in Figure 5. However, for tasks that require reasoning and generalization, such as those depicted in Figure 6 and
Figure 7, additional attention heads does not yield a significant impact.

B.3. Additional experiments for contextual generalization task

When it comes to more challenging contextual generalization task, we conduct extensive additional experiments to investigate
the impact of both the number of layer and attention heads.
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Figure 8: Training dynamic for different attention heads and layers on contextual generalization task on given k examples

As shown in Figure 8, similar to the results in Figure 6 and Figure 7, the addition of attention heads does not have a
significant effect for generalization and reasoning. It is worth noting that when each sequence contains 4 examples, a 3-layer
transformer with a single head in the last layer exhibits faster learning compared to models with multiple attention heads.
This can be attributed to the inherent nature of larger models, which typically require more steps to converge (Bottou et al.,
2018). Interestingly, we observed that a 4-layer transformer with a single head achieves even faster learning in the contextual
generalization task compared to the 3-layer transformer. This suggests that by increasing the number of layers, the model
can employ more complex and efficient methods to solve problems.

C. Useful Transformer Constructions
In this section, we introduce two useful constructions that can help us understand the linear attention model and make the
following section of our construction clearer. The instructive attention enables us to generate any token-invariant attention
map α, i.e., the attention map α ∈ Rn×n

+ is independent of the token embedding, but instead only relies on the position in
the sequence. This implies that we can instruct the model to focus on the specific areas for each position. The constrained
attention allows us to apply custom masks to the original attention, restricting the attention of each token to a specific
segment of the sequence. This will be applied as the core to make transformer generalization more effective.

Lemma C.1 (Instructive attention). There exists an attention layer that can guide the attention between each token using
the positional encoding. Let H ∈ Rd′×n be the input, represented as:

H =

X
P
0

 =

x0 · · · xn−1 → d× n
p0 · · · pn−1 → n× n
0 · · · 0 → (d′ − n)× n

 .

For any attention score α ∈ Rn×n
+ that is independent of the input sequences, there always exists a weight matrix

WQK ∈ Rd′×d′
such that the following holds for any input sequence (x0, · · · ,xn−1) ∈ Xn:

σ
(
H⊤WQKH

)
= α
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Proof. Recall that the sequence will first be preprocessed into a d′ × n matrix with positional encoding, and padding zero to
make the input dimension align with the model’s hidden size d′, result in the final input H. Besides, note that we consider
the one-hot positional encoding, i.e., pi = [0, . . . , 0︸ ︷︷ ︸

i

, 1, 0, . . . , 0︸ ︷︷ ︸
n−(i+1)

]⊤. Then, we can first consider the attention weight matrix

WQK with the following form:

WQK =

 Wtt Wtp 0d×(d′−n)

Wpt Wpp 0n×(d′−n)

0(d′−n)×d 0(d′−n)×n 0(d′−n)×(d′−n)

.

Expanding the equation H⊤WQKH gives:

H⊤WQKH = X⊤WttX+P⊤WptX+X⊤WtpP+P⊤WppP. (4)

Note that P = [p0, · · · ,pn−1] = I. Therefore, we can further set Wtt = 0, Wpt = 0, and Wtp = 0, then

σ
(
H⊤WQKH

)
= σ

(
P⊤WppP

)
= σ (Wpp) .

It is then clear that the attention map only depends on Wpp and has nothing to do with the token embeddings X. Therefore,
we can directly set Wpp = α to complete the proof.

Lemma C.1 shows that the transformer can instruct the attention through positional encoding. That is, the transformer can
aggregate any tokens together for further processing, which is essential for the instruction head where multiple tokens need
to be copied together for further processing (Olsson et al., 2022).

Furthermore, applying the above construction can further help implement attention masking, which aims to restrict attention
between any specific pair of tokens based on their positions:

Lemma C.2 (Constrained attention). There exists an attention layer that can control the attention between any pair of
tokens through the one-hot positional encoding, i.e., masking the correlation of tokens between any two positions.

Proof. By Equation (4), we have

H⊤WQKH = (X⊤WttX+P⊤WptX+X⊤WtpP) +Wpp.

The first term on the R.H.S. of the above equation enables the model to learn attention between each token at different
positions, while the right part Wpp can be arbitrarily designed. Therefore, in order to mask the attention between the tokens
at positions i and j, we can directly set Wpp(i, j) → ∞ or some sufficiently large negative value. In this way, we can
constrain the attention between each token based on their position.

In the following sections, these two attention methods will be useful to help achieve the desired task. In particular, instructive
attention to aggregate tokens at specific positions, and utilize the constrained attention mechanism when the model needs to
concentrate on a particular segment of the sequence.

D. Limitation for Single Layer Attention-only Transformer
In this section, we present an intriguing scenario where the input sequences possess specific properties. Under these
conditions, the predictions made by a single layer transformer exhibit linear dependence, implying that the sequence labels
must satisfy specific constraints. This limitation hinders the performance of the 1-layer transformer, and we will leverage
this property to demonstrate why the single layer transformer struggles with reasoning and generalization in Appendix F.1
and Appendix G.1.

To begin, let us define a combination operation for discrete tokens and sequences, which is useful in describing the
relationship among sequences.
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Definition D.1. (Combination operation for discrete tokens and sequences). Let x and y be two tokens chosen from the
vocabulary X . The combination operation for these two tokens, denoted as x⊕ y, is a multiset containing both tokens, i.e.,
x⊕ y = [x,y]. Furthermore, the combination between a multiset [x,y] and a token z results in a new multiset [x,y, z]. For
two sequences X = (x0, . . . ,xn−1) and Y = (y0, . . . ,yn−1), their combination X⊕Y = (x0 ⊕ y0, . . . ,xn−1 ⊕ yn−1)
is a sequence of multisets. Notably, for any positive integer λ ∈ Z+, λ⊗ x can be interpreted as a multiset consisting of λ
copies of token x, i.e., {x, . . . ,x︸ ︷︷ ︸

k times

}. Similarly, λ⊗X = (λ⊗ x0, . . . , λ⊗ xn−1).

Definition D.2. (Sequence dependent). We define the input sequences X(0),X(1), . . . ,X(N−1) ∈ Xn as dependent if they
satisfy the following conditions:

1. All sequences end with the same token, i.e., X(0)[n− 1] = X(1)[n− 1] = · · · = X(N−1)[n− 1].

2. There exist coefficients λ0, λ1, . . . , λN−1 ∈ Z (not all zero) such that

⊓i∈I+
(λi ⊗X(i)) = ⊓i∈I−(−λi ⊗X(i)), (5)

where I+ = {i|λi ≥ 0, i ∈ [N ]} and I− = {i|λi < 0, i ∈ [N ]} divide the sequences into two parts. Here,
⊓i∈Iλi ⊗X(i) = (λi1 ⊗X(i1))⊕ · · · ⊕ (λik ⊗X(ik)) represents the operation of combining sequences.

Example Consider a vocabulary X = {a,b, r} with 3 discrete tokens. In this case, the sequences
(a,b, r), (b,a, r), (a,a, r), (b,b, r) are dependent. This is because (a,b, r) ⊕ (b,a, r) = ([a,b], [a,b], [r, r]) =

(a,a, r) ⊕ (b,b, r). Additionally, we can observe that
∑N−1

i=0 λi = 0 since both sides of Equation (5) should have
the same number of discrete tokens in each position.

Proposition D.3. If the input sequences X(0),X(1), . . . ,X(N−1) ∈ Xn are dependent, then for the first attention layer
TF1 for any attention only transformer, we have

λ0(TF1(X
(0))[n− 1]) + λ1(TF1(X

(1))[n− 1]) + · · ·+ λN−1(TF1(X
(N−1))[n− 1]) = 0.

Here, {λi}N−1
i=0 represents the coefficients defined in Definition D.2. We highlight the linear dependency in the output of

at position n− 1, which can be regarded as the representation for the next token or classification prediction of the entire
sequence.

Proof. Assuming the input sequence is X = [x0,x1, . . . ,xn−1] ∈ Rd×n, the 1-layer linear attention only transformer TF1

performs a sequence-to-sequence mapping by first computing the attention score between each token and then aggregating
them to obtain the final representation at each position:

TF1(X) = X+
1

m

m∑
i=1

[
(WVi

X)σ((WQi
X)⊤(WKi

X))
]

= X+
1

m

m∑
i=1

[
(WViX)σ(X⊤WQKiX)

] (6)

Here, we have combined the learnable parameters WQi ,WKi ∈ Rh×d into a single matrix WQKi ∈ Rd×d for analysis
simplification.

Consider the output at position k ∈ [n]:
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TF1(X)[k] = xk +
1

m

m∑
i=1

[
(WVi

X)σ(X⊤WQKi
xk)
]

= xk +
1

m

m∑
i=1

n−1∑
j=0

[
(WVi

xj)σ(x
⊤
j WQKi

xk)
]

= xk +
1

m

n−1∑
j=0

m∑
i=1

[
(WVixj)σ(x

⊤
j WQKixk)

]
,

(7)

we define Attn(xj ,xk) :=
1
m

∑m
i=1

[
(WVi

xj)σ(x
⊤
j WQKi

xk)
]
, in this way the output at position k can be written as

TF(X)[k] = xk +
∑n

j=1 Attn(xj ,xk). Specifically, when the last token for all input sequences is the same, the prediction
based on the last token is:

TF1(X)[n− 1] = xn−1 +

n−1∑
j=0

Attn(xj ,xn−1). (8)

If the input sequences are dependent, based on Definition D.2, we can divide the sequences into two groups I+ and I− so in
each position j, both side have the same occurrence for each token:

⊓i∈I+
(λi ⊗ x

(i)
j ) = ⊓i∈I−(−λi ⊗ x

(i)
j ) := Sj , (9)

here we use Sj to denote the tokens occurrences at position j, note that λAttn(x(i)
j ,xn−1) =

∑
s∈(λ⊗x

(i)
j )

Attn(s,xn−1),
so we can derive the following equation:

∑
i∈I+

λiAttn(x
(i)
j ,xn−1) =

∑
s∈Sj

Attn(s,xn−1) =
∑
i∈I−

−λiAttn(x
(i)
j ,xn−1). (10)

Then for the final prediction result

λ0(TF1(X
(0))[n− 1]) + λ1(TF1(X

(1))[n− 1]) + · · ·+ λN−1(TF1(X
(N−1))[n− 1])

=

(
xn−1

N−1∑
i=0

λi

)
+

n−1∑
j=0

N−1∑
i=0

λiAttn(x
(i)
j ,xn−1)


=0.

(11)

The first part of Equation (11) is zero based on the observation that
∑N−1

i=0 λi = 0 since both sides of Equation (5) should
have the same number of discrete tokens in each position, and the second part is zero based on Equation (10), which states
that each token should have the same occurrence for both groups.

In a single layer transformer, which consists of only one attention layer and a linear classifier layer, the result o =
WOTF1(X)[n− 1]) also satisfies the linear dependency:

Proposition D.4. If the input sequences X(0),X(1), . . . ,X(N−1) ∈ Xn are dependent, then for any single layer transformer
TF, their prediction result o(0), . . . ,o(N−1)

λ0o
(0) + λ1o

(1) + · · ·+ λN−1o
(N−1) = 0.

Here, {λi}N−1
i=0 represents the coefficients defined in Definition D.2.
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Proof. By directly applying Proposition D.3 and multiplying both sides by WO, we have:

λ0WO(TF1(X
(0))[n− 1]) + λ1WO(TF1(X

(1))[n− 1]) + · · ·+ λN−1WO(TF1(X
(N−1))[n− 1]) = WO0.

In a single layer transformer, the prediction is conducted by a linear projection WO ∈ Rc×d′
. Therefore, we can replace

WOTF1(X
(i)[n− 1]) with o(i), thus completing the proof.

According to Proposition D.4, the prediction of a single layer transformer for certain dependent sequences should be linearly
dependent. For instance, let’s consider the four sequences: (a,b, r), (b,a, r), (a,a, r), (b,b, r). In this case, the final
predictions o0,o1,o2,o3 will satisfy the equation o0 + o1 = o2 + o3 for any single layer transformer. This observation
implies that the labels of these sequences are restricted for a single layer transformer to fit all of them. We will explain
later in Appendix F.1 and Appendix G.1 why this leads to the failure of the single layer transformer in reasoning and
generalization. Besides, we extend Proposition D.4 to from ReLU attention to softmax attention for single layer single head
transformer in Appendix I.

E. Proofs for Section 5.1
In this section, we will prove the results in Section 5.1, which asserts that a single-layer transformer with a sufficient number
of attention heads can effectively memorize sequences with distinct labels. We establish this by first proving the existence of
a linear projection layer that can map any non-parallel vectors with distinct labels. Subsequently, we provide evidence that
with a sufficient number of attention heads, there exists a transformer can map any sequences to non-parallel vectors.

In the following section, we will first show that there exists a single-layer transformer with n heads, d′ = max{nd, d+ n},
that any input sequence H ∈ Rd′×n can be mapped to a corresponding distinct label so that the memorizing task can be
perfectly performed, our construction procedure can be formulated as follows:

H =


x0 · · · xk−1 0
0 · · · 0 1
p0 · · · pk−1 pk

0 · · · 0 0



sequence
with k tokens︷ ︸︸ ︷responsesign︷︸︸︷

TF, last token−−−−−−−−→
Lemma E.2


x0

...
xk−1

0


linear classifier−−−−−−−−→
Lemma E.1



o0
...
oj max element

(distinct j for each sequence)
...

oC−1


We first deliver the following lemma, which proves that the linear classify can perfectly map the representation of any input
sequence to the desired labels.

Lemma E.1. Let {(x0, y0), . . . , (xN−1, yN−1)} ⊂ Rd×N × [N ]N be a dataset of N vector-label pairs, where every two
vectors xi,xj are linearly independent, and the labels of each vector are different. Then, there exists a linear projector
W ∈ Rd×N such that:

(xiW)[yi] > (xiW)[j] ∀j ∈ [N ], j ̸= yi,∀i ∈ [N ].

Proof. Considering the result of the linear projector as the prediction of the probability of the sequence belonging to each
class 1, . . . , N , it always predicts the highest possibility at the index of the corresponding label. In this case, the model will
achieve a perfect accuracy rate. We construct W = [w0,w1, . . . ,wN−1] by assigning the value w at each column one by
one. WLOG, we let the data be {(x0, 0), (x1, 1), . . . , (xN−1, N − 1)}.

We started by consider the case N = 2, because x0,x1 are linearly independent, for any a,b ∈ R2, Equation (12) have at
least one solution for

[
w0 w1

]
.

x0

x1

w0 w1

 =

a
b

, (12)

we can let a = [1, 0],b = [0, 1] and solve the above equation, the corresponding solution w0,w1 can correctly classify
{(x0, 0), (x1, 1)}.
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If N = k satisfies the above condition, which means that there exists [w0,w1, . . . ,wk−1] that can correctly classify
{(x0, 0), (x1, 1), . . . , (xk−1, k − 1)}, then consider a new data point (xk, k). We construct wk as follows:

First, we compute the result o(k)
:k = xk[w0,w1, . . . ,wk−1] and choose the highest index ik = argmaxio

(k)
:k . Then, we

consider the result if we set wk = wik :



x0

...
xik

...
xk


w0 . . . wik . . . wk−1 wik

k︷ ︸︸ ︷
︸︷︷︸
init

wk=wik

=



oo,o . . . o0,ik . . . o0,k−1 o0,ik
...

. . .
...

. . .
...

...
oik,0 . . . oik,ik . . . oik,k−1 oik,ik

...
. . .

...
. . .

...
...

ok−1,0 . . . ok−1,ik . . . ok−1,k−1 ok−1,ik

ok,0 . . . ok,ik . . . ok,k−1 ok,ik


,

We can see that appending wik wouldn’t change the prediction result for {x0, . . . ,xik−1,xik+1, . . . ,xk−1}. Therefore, we
just need to find an extra ∆wk such that wk = wik + ∆wk remains the prediction for {x0, . . . ,xik−1,xik+1, . . . ,xk}
unchanged (Equation (13)), and can successfully classify (xik , ik) and (xk, k) (Equation (14)).

x0 . . . xik−1 xik+1 · · · xk−1

⊤
∆wk ≺

ϵ . . . ϵ ϵ · · · ϵ
⊤

, (13)

{
xik∆wk < 0

xk∆wk > 0
, (14)

where ϵ = mini∈[k]∤ik
{pi,i − pi,ik}, which is also a maximum vibration that can remain the prediction result for

{x0, . . . ,xik−1,xik+1, . . . ,xk−1} unchanged. Such ∆wk exists as xik and xk are linearly independent. Therefore,
we can first solve the equation {

xik∆wk = −1

xk∆wk = 1
, (15)

and then rescale the ∆wk = 1
M∆wk to ensure that the vibration for any other rows is less than ϵ. Finally, we assign

wk = ∆wk + wik , which ensures that the prediction result for xk is k, while the prediction for other rows remains
unchanged.

Given the mapping capability of sequences to non-parallel vectors using Lemma E.1, it follows that constructing a classifier
layer to map each vector to a distinct label becomes straightforward. Consequently, our focus turns to the second part, where
we aim to establish the validity of Lemma E.2. This lemma asserts that a single-layer transformer, equipped with n attention
heads and a hidden size of max{kd, d+ k}, can effectively map a sequence to a non-parallel vector.

Lemma E.2. Given a vocabulary X of non-parallel vectors, then there exists a single-layer transformer with n attention
heads and hidden size d′ = max{k · d, d+ k} to map all possible sequences of length n (ending with a response sign) to
non-parallel vectors.

Proof. To achieve this, we construct a transformer with n attention heads, where each head processes only the token at its
corresponding position i, for the first k heads, we process the sequence for the last token (response sign) as follows:

WVi


x0 · · · xk−1 0
0 · · · 0 1
p0 · · · pk−1 pk

0 · · · 0 0

, αi[:, n− 1] = n

 0i·d×1

xi

0(d′−(i+1)d)×1

,
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where αi ∈ Rn×n is the attention map for the i-th head, we can assign αi[:, n − 1] = [0, . . . , 0︸ ︷︷ ︸
i

, 1, 0, . . . , 0︸ ︷︷ ︸
n−(i+1)

]⊤ using the

construction for instructive attention Lemma C.1, and we set WVi to copy the token at position i in a disentangled manner:

WVi
= n

 0i·d×d 0i·d×(d′−d)

Id×d 0d×(d′−d)

0(d′−(i+1)d)×d 0(d′−(i+1)d)×(d′−d)

.

Then we set the k-th head to neutralize the information from the residue:

WVk
= −nI αk = I.

As a result, the processed token representation at the last position is:

H(1)[n− 1] = H(0)[n− 1] +
1

n

n∑
i=1

WViH
(0)αi[:, n− 1]

= H(0)[n− 1]−H(0)[n− 1]︸ ︷︷ ︸
k-th head

+

k−1∑
i=0

WVi
H(0)αi[:, n− 1]︸ ︷︷ ︸

0,...,k−1-head

=
x0 · · · xk−1 0

⊤

. (16)

Since the tokens in the vocabulary X are non-parallel vectors, their concatenation should also be non-parallel for different
tokens. Therefore, we have successfully constructed a single-layer transformer with n heads that can map sequences to
non-parallel vectors by concatenating the tokens based on their positional information.

Based on the aforementioned derivation, we can construct our final single-layer transformer as follows: first, employ the
attention weights from Lemma E.2 to reshape sequences into no-parallel vectors , and then employ the methodology from
Lemma E.1 to construct a classifier layer that maps each vector to a distinct label.

F. Proofs for Section 5.2
In this section, we will prove the main results in Section 5.2, which shows that the transformer requires at least two layers to
perform successful reasoning. We will first prove that the reasoning task can never be perfectly resolved using single-layer
transformer, no matter how many heads are included. Then, we show that two-layer transformers are capable of performing
the designed reasoning tasks with perfect accuracy, by proving the existence of a set of attention weight matrices.

F.1. Proofs of Theorem 5.2

Proof. In order to prove the inability of the single-layer transformer, we will design a specific task and show that any
single-layer transformer cannot achieve perfect test accuracy. In particular, We consider a task that contains 2 question a,b
and 2 answer x,y, take the response sign as "=". Then, the dataset Dtoy-icl = {E(0),E(1),E(2),E(3)} can be denote as
follows:

1. input : a = x b = y a = target : x

2. input : a = y b = x b = target : x

3. input : a = y b = x a = target : y

4. input : a = x b = y b = target : y
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It can be shown that these 4 sequences are dependent, as we defined in Definition D.2. To verify this, we first have that all
these sequences end with the same token "=", then, it holds that

E(0) ⊕E(1) = ([a,a], ["=","="], [x,y], [b,b], ["=","="], [x,y], [a,b]) = E(2) ⊕E(3).

Then, for any single layer transformer TF, we can leverage Proposition D.3 and then get that the output representations for
the last token corresponding to all sequences are linearly dependent, i.e.,

o(0) + o(1) = o(2) + o(3).

Then we are ready to show that there doesn’t exist a single-layer transformer that can reason all these 4 examples. We
will prove this by contradiction. First , suppose that there exists such a transformer TF that can correctly reason all these
examples, then the output of the transformer will have the maximum output corresponding to the desired answer. Let ix and
iy be the indices of the transformer output corresponding to the target x and y respectively, it shall hold that

o(0)[ix] > o(0)[iy], o(1)[ix] > o(1)[iy], o(2)[iy] > o(2)[ix], o(3)[iy] > o(3)[ix]. (17)

Besides, by linear dependency, we have

o(0) − o(2) = o(3) − o(1). (18)

Combining Equation (17) and Equation (18), we have the following contradiction:

(o(0) − o(2))[ix] > (o(0) − o(2))[iy] > (o(3) − o(1))[iy] > (o(3) − o(1))[ix] > (o(0) − o(2))[ix]. (19)

Therefore, this implies that no single-layer transformer can correctly reason all of these four sequences. In other words, if
these four sequences appear with equal probability, the reasoning accuracy achieved by any single-layer transformer will be
upper bounded by 3/4.

F.2. Proof for Theorem 5.3

In this section we will show that a 2-layer transformer can perfectly perform the reasoning tasks, when provided with proper
weights. In particular, we will construct such a transformer by following a copy-matching process, that is, the first layer
of transformer copies the answer to the corresponding question ahead of them, and then the second layer searches these
question-answer pairs and chooses the one with the highest similarity, i.e. having the same token, then the classifier layer
projects the representation embedding to the answer.

Proof. Recall the data construction process, we consider an input sequence with k question-answer pairs, which is denoted
as H(0) ∈ Rd′×n (n = 3k + 2):

H(0) =


q0 0 0 · · · qk−1 0 0 qr 0 → d1 × n
0 1 0 · · · 0 1 0 0 1 → 1× n
0 0 a0 · · · 0 0 ak−1 0 0 → d2 × n
p0 p1 p2 · · · p3k−3 p3k−2 p3k−1 p3k p3k+1 → n× n
0 0 0 · · · 0 0 0 0 0 → (d′ − n− d)× n



Q−R−A︷ ︸︸ ︷
,

where [qk;0] and [0;ak] denote the embeddings for the k-th question token and k-th answer token respectively, [0; 1;0]
denotes the embedding for the response sign, r ∈ [k] is a random choose question index. Without loss of generality, we will
set r = 0 in the following proof to illustrate how our construction works:
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H(0) =


q0 0 0 · · · q0 0
0 1 0 · · · 0 1
0 0 a0 · · · 0 0
p0 p1 p2 · · · p3k p3k+1

0 0 0 · · · 0 0



Q−R−A︷ ︸︸ ︷
TF1−−−−−−→

copy among
Q-A block


q0 q0 q0 · · · q0 q0

1 1 1 · · · 1 1
a0 a0 a0 · · · 0 0
...

...
...

. . .
...

...



Q−R−A︷︸︸︷ Q−R︷︸︸︷
TF2 last token−−−−−−−→

match col
with same Q


...
a0
...


First we construct an instructive attention matrix α(1) ∈ Rn×n by set W(1)

QK follow the method in Lemma C.1:

α(1) =


A3×3

A2×2

0

0


k times A3×3 =

0 1 1
1 0 1
1 1 0

 A2×2 =

0 1
1 0

.

And we set W(1)
V = I, then the first layer only performs the copying operation based on the positions of tokens, and the

output of the first layer H(1) becomes

H(1) = H(0) +H(0)α(1) =


q0 q0 q0 · · · qk−1 q0 q0

1 1 1 · · · 1 1 1
a0 a0 a0 · · · ak−1 0 0

p0,1,2 p0,1,2 p0,1,2 · · · p3k−3,3k−2,3k−1 p3k,3k+1 p3k,3k+1

0 0 0 · · · 0 0 0

,

where pi,j,... = pi + pi + . . . means the sum of several positional encoding. In this way we copy the question, response
sign and answer into a vector, making it possible for the match and carry step for the next layer.

Because our question and answer are one-hot vector, so q⊤
i qj =

{
1 i = j

0 otherwise
, so we can choose W

(2)
QK ∈ Rd′×d′

as

W
(2)
QK =

 Id1×d1 0d1×(d′−d1)

0(d′−d1)×d1
0(d′−d1)×(d′−d1)

,

and set W(2)
V = I, then the last output for the 2-second layer H(2)[n− 1]

H(2)[n− 1] = H(1)[n− 1] +H(1)σ
(
(H(1))⊤W

(2)
QKH(1)[n− 1]

)
= [6q0; 6; 3a0; 3p3k,3k+1 + 3p0,1,2],

we then set the classification WO = [0d2×(d1+1), Id2
,0d2×(n−(d1+d2+1))]

⊤, in this way, the prediction result of our
construct transformer TF is

TF(H(0)) = a1.

G. Proofs for Section 5.3
G.1. Proofs for Theorem 5.4

In this section, we delve into the reasons why transformers struggle to generalize on different templates, similar to their
limitations in reasoning, the primary constraint on the transformer’s ability arises from the linear dependence of the predicted
results, as mentioned in Proposition D.3. Let’s recall that a transformer is considered capable of generating output for a
specific template if it can accurately classify all sequences generated by that template, so we achieve this by aggregating
the prediction results and demonstrating that their sum must be linearly dependent, leading the failure of single-layer of
transformer in generalization.
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Lemma G.1. For any template t and all possible sequences set generated by any : D(t)
tmpl = {X0,X1, . . . ,Xn(t)−1}, each

real world token x ∈ X occur in D(t)
tmpl at each position n(t)

|X | times.

Proof. The observation in Lemma G.1 is straightforward, as the sequence generated by the same template is token-
symmetric: for any sequence (x0,x1, . . . ,xn−1) and any permutation π : X → X , (x0,x1, . . . ,xn−1) and
(π(x0), π(x1), . . . , π(xn−1)) belong to the same template. Therefore, for each position, each token should occur in
the D(t)

tmpl with the same frequency, resulting in n(t)

|X | occurrences for each token at any position.

Example: Let X = {a, b, c} and two templates of length 2 {αα, αβ}. Then in total there are 3 sequences generated
by αα: {aa, bb, cc}, each token occurs n(t)

|X | = 3
3 = 1 time at each position. For template αβ, there are 6 sequences

{ab, ac, ba, bc, ca, cb}, each token occurs 6
3 = 2 times at each position.

Lemma G.2. Given any two different templates t, t′, and all possible sequences generated D(t)
tmpl = {X0, . . . ,Xn(t)−1},

D(t′)
tmpl = {X′

0, . . . ,X
′
n(t′)−1

}, there exist λ, λ′ ∈ Z+ such that the combined occurrence of each token at each position in

D(t)
tmpl is equal to the combined occurrence of each token at each position in D(t′)

tmpl:

⊓i∈[n(t)](λ⊗Xi) = ⊓j∈[n(t′)](λ
′ ⊗Xj), (20)

where ⊓ denotes the token combination operation defined in Definition D.2, which computes the occurrence of each token at
each position.

Proof. Based on the observation in Lemma G.1, Lemma G.2 is straightforward. Since each token occurs n(t)

|X | times at each

position, we can let λ = n(t′) and λ′ = n(t). Then, for the left part ⊓i∈[n(t)](λ⊗Xi), each token occurs n(t′) n(t)

|X | times

at each position. Similarly, for the right part ⊓j∈[n(t′)](λ⊗Xj), each token also occurs n(t) n(t′)

|X | = n(t′) n(t)

|X | times. This
completes the proof.

Example: Let X = {a, b, c} and two templates of length 2 {αα, αβ}. Then in total there are nαα = 3 sequences
generated by αα: {aa, bb, cc}, each token occurs 1 time at each position. For template αβ, there are nαβ = 6 sequences
{ab, ac, ba, bc, ca, cb}, each token occurs 2 times at each position. We can find positive integers λ1 = 6 and λ2 = 3 such
that 3(ab⊕ ac⊕ ba⊕ bc⊕ ca⊕ cb) = 6([a, b, c], [a, b, c], [a, b, c]) = 6(aa⊕ bb⊕ cc). Note that in Equation 20, both sides

have n(t)n(t′) tokens. If we add a response sign at the end of each sequence, i.e., {aa, bb, cc} add sign r−−−−−→ {aar, bbr, ccr},
Lemma G.2 still holds.

Since the last token of the sequence input into the transformer is the same response sign, based on Lemma G.2 and
Definition D.2, for any two templates, the sequences generated by them are dependent. This dependence leads to the
following lemma:

Lemma G.3. Given any two different templates t, t′, and all possible sequences generated D(t)
tmpl = {X0, . . . ,Xn(t)−1},

D(t′)
tmpl = {X′

0, . . . ,X
′
n(t′)−1

}. For any single-layer transformer model TF, let o(i) = TF(Xi) and o
′(i) = TF(X′

i) denote
the model predictions for these two templates. Then we have:

λ1

n(t′)−1∑
i=0

p(i) = λ2

n(t′)−1∑
i=0

p
′(i). (21)

Proof. As the sequences generated by any two templates are dependent, we can apply Proposition D.3 to directly complete
the proof.

Note that any sequence generated by the same template should be classified by the same template. Therefore, if the model
can generalize on both templates, the sum of the prediction output for template t,

∑n(t)−1
i=0 p(i), should have the maximum

value at position y1, and
∑n(t′)−1

i=0 p
′(i) should have the maximum value at position y2, where y1 ̸= y2 since different
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templates belong to different classes. This contrasts with Lemma G.3, and thus, we can conclude that transformers cannot
generalize on any two different templates.

G.2. Proof for Theorem 5.5

In this section, we will construct 2-layer transformer that can generalize on the template task, our construct transformer
can first parse the sequence into the template, and then use the memorization ability of one-layer transformer, mapping the
template to the corresponding label, follow such parsing-mapping procedure, our constructed transformer can generalize on
the template task.

Recall the data construction process, we consider an input sequence generated by a template length k, a d′ × n matrix H(0)

where n = k + 1:

H(0) =


x0 x1 · · · xk−1 0 → d× n
0 0 · · · 0 1 → 1× n
p0 p1 · · · pk−1 pk → n× n
0 0 · · · 0 0 → (d′ − (n+ 1 + d))× n



sequence
by template︷ ︸︸ ︷ response

sign︷︸︸︷

We illustrate our construction by using a template length 3 αββ,which generates the sequence (a,b,b):

H(0) =


a b b 0
0 0 0 1
p0 p1 p2 p3

0 0 0 0



from template
αββ︷ ︸︸ ︷ response

sign︷︸︸︷
TF1−−−−−−−−−−→

check position
with the same token


a b b 0
0 0 0 1

p0 + p0 p1 + p1,2 p2 + p1,2 p3 + p3

0 0 0 0

︸ ︷︷ ︸
positional encoding

as template representation

TF2−−−−−−−→
map template

to vectors



...
(200)(3)
(021)(3)
(012)(3)

...

encode each
row to a

ternary number




First we set our transformer use attention mechanism parse each sequence into template, recall the match layer in Ap-
pendix F.2, each token only focus on the position of the same token, in this way, the position dimension can be considered as
a dimension of template sequence:

W
(1)
QK =

 Id×d 0d×(d′−d)

0(d′−d)×d 0(d′−d)×(d′−d)

,

W
(1)
V =

 −I(d+1)×(d+1) 0(d+1)×(d′−(d+1))

0(d′−(d+1))×(d+1) 0(d′−(d+1))×(d′−(d+1))

+

 0(d+1)×(n) 0(d+1)×(d′−n)

In×n 0n×(d′−n)

0(d′−(n+1+d))×(n) 0(d′−(n+1+d))×(d′−n)

.

Then the resulting sequence to be input to the second layer is

H(1) = H(0) +W
(1)
V H(0)α(1) = H(0) +


−x0 −x1 · · · −xk−1 0
0 0 · · · 0 −1
p′
0 p′

1 · · · p′
k−1 pk

0 0 · · · 0 0


=


0 0 · · · 0 0
0 0 · · · 0 0

p′
0 + p0 p′

1 + p1 · · · p′
k−1 + pk−1 pk + pk

0 0 · · · 0 0

.
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The second part can be seen as a sequence of template, take k = 4 and template be αβαγ as example, then p′
0 = p′

2 =

p0 + p2,p
′
1 = p1,p

′
3 = p3, then the result template representation is


2 0 1 0
0 2 0 0
1 0 2 0
0 0 0 2

. Note that p′
i = p′

j if and only if

xi = xj . We can further prove that the output sequence parsed by the first layer of the transformer satisfies the following:

• Sequence from the same template have the same representation.

• Different templates have different, no-parallel representation matrix.

The first point is straightforward since this representation is based on positional encoding and is token-invariant. For the
second point, since the elements in this representation only consist of the values 0, 1, 2, and the diagonal value is always
2 for any two representations H(1) and H

′(1), if there exists a λ such that H(1) = λH
′(1), then we must have λ = 1 and

H(1) = H
′(1). Therefore, each representation is non-parallel.

The role of second layer, incorporate with the classification layer, is to map the sequence to its corresponding label, as we
define different template have different label, and based on the two property of the output of the first layer, we can utilize the
memorization ability of the first layer transformer, as demonstrated in Appendix E, and following the construction procedure,
construct a transformer with n attention heads that can correctly map each sequence to corresponding label.In addition to
that, since template encoding is a more structured form of data compared to randomly assembled sequences, we provide one
possible weight that can map the templates to non-parallel vectors using only a single attention head:

First we construct a inductive head with α =

 0 0 · · · 0 0
3k−1 3k−2 · · · 30 0

⊤

, and set W(2)
V = I, in this way the last

token of the sencond layer is
∑k

i=1 3
k−i(pi + p′

i), as each element of pi + p′
i only consists of three integers 0, 1, 2, and

(pi + p′
i)[i] = 2, in this way, for each row of H(1), we can encode it into a unique ternary number, for example, given a

vector [2, 1, 1, 0, 0], we can encode it to 2× 34 + 1× 33 + 1× 32 + 0× 31 + 0× 30 = 21100(3), and the representation

for αβαγ, we encode it row by row:


2 0 1 0
0 2 0 0
1 0 2 0
0 0 0 2

→


(2010)(3)
(0200)(3)
(1020)(3)
(0002)(3)

. Now consider the representation at position k, as

(pk + p′
k)[k− 1] = 2 for all representation, the resulting vector at position k should be (. . . 2)(3), in this way we can ensure

different template will project into no-parallel vectors, as if two template representaion vector is parallel, they must have the
same representation vector, which further indicate they must have the same template representation at each row.

Then utilizing Lemma E.1, we can construct a WC ∈ Rd′×C map each vector to their distinct label. In this way, a part from
the n attention head transformer, we further proof there exists a 2-layer transformer with single head that can accomplish
our generalization task.

H. Construction for Section 5.4
In this section, we provide a construction for a 3-layer transformer that is capable of handling contextual generalization task.
Our constructed transformer follows a parsing-copy-match process, the transformer parses each question into corresponding
template, this is achieved by utilizing the parsing process in the template generalization task, we use the constrained attention
to force the model focuses only on tokens that belong to the same question block. Next, in the second layer, we mix the
question and corresponding answer together by utilizing inductive attention. Then the final layer retrieve the corresponding
question-answer representation and transform it into the final answer.

Let us consider an input sequence with k question-answer pairs, each question being of sequence length l. We represent this
input sequence as H(0) ∈ Rd′×n, where n = (l + 2)k + l + 1.
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H(0) =


x
(0)
0 · · · x

(0)
l−1 0 0 · · · x

′(r)
0 · · · x

′(r)
l−1 0 → d1 × n

0 · · · 0 1 0 · · · 0 · · · 0 1 → 1× n
0 · · · 0 0 a0 · · · 0 · · · 0 0 → d2 × n
p0 · · · pl−1 pl pl+1 · · · p(l+2)k · · · p(l+2)k+l−1 p(l+2)k+l → n× n
0 · · · 0 0 0 · · · 0 · · · 0 0 → (d′ − n− d)× n



Question︷ ︸︸ ︷Response
Sign︷︸︸︷ Answer︷︸︸︷

︸ ︷︷ ︸
(Q−R−A)×k

Where r ∈ [k] is a random choose question index, we can set r = 1 , k = 2 and l = 2, which means there are
only two templates αα and αβ , to illustrate how our construction works:

H(0) =


a a 0 0 a b 0 0 b b 0
0 0 1 0 0 0 1 0 0 0 1
0 0 0 a0 0 0 0 a1 0 0 0
p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

0 0 0 0 0 0 0 0 0 0 0



Question︷ ︸︸ ︷ Response
Sign︷︸︸︷Answer︷︸︸︷

TF1−−−−−−−−−−→
check token

among Q-A block &
align representation



...
...

...
...

...
...

...
...

...
...

...
0 0 0 a0 0 0 0 a1 0 0 0
...

...
...

...
...

...
...

...
...

...
...

2 1 0 0 2 0 0 0 2 1 0
1 2 0 0 0 2 0 0 1 2 0
...

...
...

...
...

...
...

...
...

...
...

︸︷︷︸
template
αα

︸︷︷︸
template

αβ

︸︷︷︸
template
αα

TF2−−−−−−−−−−−→
copy answer

compare each template



...
...

...
...

...
...

...
...

...
...

...
a0 a0 0 a0 a1 a1 0 a1 0 0 a0 + a1
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 −2 0 0 2 1 1
0 0 0 0 −2 0 0 0 1 2 1
...

...
...

...
...

...
...

...
...

...
...

︸ ︷︷ ︸
same template

template row all zero

︸ ︷︷ ︸
different template

exist no-zero elements

︸︷︷︸
template
αα

TF3, last token−−−−−−−−−−−−−→
focus on col that template
exists no-zero elements


...

a0 + a1 − γa1 (γ ≥ 1)
...



In the first layer, we parse each question into a template. To achieve this, we set the weight W(1)
QK as follows:

W
(1)
QK =

 Id1×d1
0d1×(d′−d1)

I(d′−d1)×d1
0(d′−d1)×(d′−d1)

+

 0d×d 0d×n 0d×(d′−(n+d))

0n×d Wpp 0n×(d′−(n+d))

0(d′−(n+d))×d 0(d′−(n+d))×n 0(d′−(n+d))×(d′−(n+d))

.

Here, d = d1 + d2 + 1, and Wpp is an n× n matrix. As discussed in Lemma C.1, we can set:
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Wpp =


0(l+2)×(l+2)

0(l+1)×(l+1)

−∞
−∞


k times .

This way, the attention is constrained to each question-answer block, making it easier to parse each question into a template.
We then set

W
(1)
V =

0(d′−l−2)×d 0(d′−l−2)×(l+2) . . . 0(d′−l−2)×(l+1)

0(l+2)×d I(l+2)×(l+2) . . . I(l+2)×(l+1)

︸ ︷︷ ︸
k times

.

Here, we assume that the hidden size d′ is large enough, so that d′ − (d+ n) > l + 2. This enables the model to save the
representation disentangled. As a result, the output of the first layer has the same positional encoding as the input sequence.

In the second layer, we perform a pre-match and copy procedure by constructing an instructive attention α(2) ∈ Rn×n.

α(2) =


A(l+2)×(l+2)

A(l+1)×(l+1)

0

0


(k−1) times

⊤

+


0(l+2)×(d−(l+1)) B(l+2)×(l+1)

...
...

0(l+1)×(d−(l+1)) 0(l+1)×(l+1)

k times


} ⊤

.

Here, A(l+2)×(l+2) =
0(l+2)×(l+1) 1(l+2)×1

, A(l+1)×(l+1) =

0l×(l+1)

11×(l+1)

, and B(l+2)×(l+1) =

I(l+1)×(l+1)

01×(l+1)

.

The left part of α(2) copies the answer to each column of the question (template), while the right part of the attention tries to

compare each row of the template with the last template. As we set W(2)
V =

 Id×d 0d×(d′−d)

0(d′−d)×d −I(d′−d)×(d′−d)

, if there is a

template that is the same as the last one, then their template representation is zero. In this way, we perform a copy procedure,
accompanied by the template pre-matching procedure in the second layer.

In the third layer, we utilize 2l attention heads. If any row of the template representation is not zero, there exist at least one
attention head that subtracts the corresponding answer from the last token. To achieve this, we set the weight matrices as
follows:

W
(3)
QKi

=

0(d′−l)×(d′−l) 0(d′−l)×l)

0l×(d′−l) Mi

 W
(3)
Vi

= −I.

Here, Mi ∈ Rl×l. For the first l heads (0 ≤ i < l), only the element at position (i, i) is 1 and the rest are zero. For
l ≤ i < 2l, only the element at position (i− l, i− l) is −1 and the rest are zero. Together with W

(3)
Vi

= −I, the third layer
will focus on the answer that has non-zero elements and subtract the corresponding answer from the final representation.

The output for the last token is as follows:

TF3(H
(3))[n− 1] =


...∑k−1

i=0 ai −
∑k−1

i=0,i̸=r γiai (γi ≥ 1)
...

 .

As we assume the tokens are one-hot, we can set the classifier layer as

WO =

 0(d1+1)×d2
Id2×d2 0(d′−d×d2)

0(d1+1)×(c−d2) 0d2×(c−d2) 0(d′−d×(c−d2))

.
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By letting c = d2, the final prediction result is
∑k−1

i=0 ai −
∑k−1

i=0,i̸=r γiai (γi ≥ 1), which has the largest element
corresponding to the final answer ar.

I. Expanding from ReLU to Softmax Attention
When considering a transformer with a single layer and a single head, the results for a single-layer ReLU attention
transformer still hold.

In the case of softmax attention, which replaces the activation function in Equation 2 from ReLU (σ(x) = max{0, x}) to
softmax (softmax(x)i = exi∑K

j=1 exj
), the input sequence X ∈ Rd′×n. For a single attention head with parameters WV and

WQK , we define σ′(xj ,xk) = exp(x⊤
j WQKxk). Equation 7 can be rewritten for softmax attention as follows:

TFsoft(H)[k] = xn−1 +

n−1∑
i=0

WV xiσ
′(xi,xk)∑n−1

j=0 σ′(xj ,xk)
(22)

Proposition I.1. If the input sequences X(0),X(1), . . . ,X(N−1) ∈ Xn are dependent, then for any single layer single head
transformer with softmax attention TFsoft, we have

λ′
0(TFsoft(X

(0))[n− 1]) + λ′
1(TFsoft(X

(1))[n− 1]) + · · ·+ λ′
N−1(TFsoft(X

(N−1))[n− 1]) = 0.

where λ′
i =

∑n−1
j=0 σ′(x

(i)
j ,xn−1)λi, {λi}N−1

i=0 represents the coefficients defined in Definition D.2.

Proof. Consider the last token

TFsoft(X
(e))[n− 1] = xn−1 +

n−1∑
i=0

WV x
(e)
i σ′(x

(e)
i ,xn−1)∑n−1

j=0 σ′(x
(e)
j ,xn−1)

then we have

λ′
0(TFsoft(X

(0))[n− 1]) + λ′
1(TFsoft(X

(1))[n− 1]) + · · ·+ λ′
N−1(TFsoft(X

(N−1))[n− 1])

=xn−1(

n−1∑
i=0

n−1∑
j=0

λi(σ
′(x

(i)
j ,xn−1))) + (

n−1∑
i=0

n−1∑
j=0

(λiWV x
(i)
j σ′(x

(i)
j ,xn−1))

(23)

Similar with the proof techique in Proposition D.3 we can divide the sequences into two groups I+ and I− so in each
position j, both side have the same occurrence for each token:

⊓i∈I+
(λi ⊗ x

(i)
j ) = ⊓i∈I−(−λi ⊗ x

(i)
j ) := Sj , (24)

here we use Sj to denote the tokens occurrences at position j, note that

λWV x
(i)
j σ′(x

(i)
j ,xn−1) =

∑
s∈(λ⊗x

(i)
j )

WV sσ
′(s,xn−1)

λσ′(x
(i)
j ,xn−1) =

∑
s∈(λ⊗x

(i)
j )

σ′(s,xn−1)

, so we can derive the following equation:
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n−1∑
j=0

λi(σ
′(x

(i)
j ,xn−1))

=
∑
i∈I+

λiσ
′(x

(i)
j ,xn−1)−

∑
i∈I−

−λiσ
′(x

(i)
j ,xn−1)

=
∑
s∈Sj

σ′(s,xn−1)−
∑
s∈Sj

σ′(s,xn−1)

=0

, (25)

n−1∑
j=0

λi(WV x
(i)
j σ′(x

(i)
j ,xn−1))

=
∑
i∈I+

λi(WV x
(i)
j σ′(x

(i)
j ,xn−1))−

∑
i∈I−

−λi(WV x
(i)
j σ′(x

(i)
j ,xn−1))

=
∑
s∈Sj

(WV sσ
′(s,xn−1))−

∑
s∈Sj

(WV sσ
′(s,xn−1))

=0

, (26)

Based on Proposition I.1, we observe that the single layer single head softmax transformer shares a similar dependent
property with the ReLU attention only transformer:

Proposition I.2. If the input sequences X(0),X(1), . . . ,X(N−1) ∈ Xn are dependent, then for any single layer single head
softmax transformer TFsoft, their prediction result o(0), . . . ,o(N−1)

λ′
0o

(0) + λ′
1o

(1) + · · ·+ λ′
N−1o

(N−1) = 0.

where λ′
i =

∑n−1
j=0 σ′(x

(i)
j ,xn−1)λi, {λi}N−1

i=0 represents the coefficients defined in Definition D.2.

Expanding our results from Theorem 5.2,Theorem 5.4 to the softmax attention only transformer, we can conclude that a
single-layer single-head attention only transformer is incapable of handling our reasoning and generalization tasks.
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