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Abstract

The robustness of recent Large Language Mod-001
els (LLMs) has become increasingly crucial002
as their applicability expands across various003
domains and real-world applications. Retrieval-004
Augmented Generation (RAG) is a promising005
solution for addressing the limitations of LLMs,006
yet existing studies on the robustness of RAG007
often overlook the interconnected relationships008
between RAG components or the potential009
threats prevalent in real-world databases, such010
as minor textual errors. In this work, we investi-011
gate two underexplored aspects when assessing012
the robustness of RAG: 1) vulnerability to noisy013
documents through low-level perturbations and014
2) a holistic evaluation of RAG robustness. Fur-015
thermore, we introduce a novel attack method,016
the Genetic Attack on RAG (GARAG), which017
targets these aspects. Specifically, GARAG is018
designed to reveal vulnerabilities within each019
component and test the overall system func-020
tionality against noisy documents. We validate021
RAG robustness by applying our GARAG to022
standard QA datasets, incorporating diverse re-023
trievers and LLMs. The experimental results024
show that GARAG consistently achieves high025
attack success rates. Also, it significantly dev-026
astates the performance of each component and027
their synergy, highlighting the substantial risk028
that minor textual inaccuracies pose in disrupt-029
ing RAG systems in the real world.1030

1 Introduction031

Recent Large Language Models (LLMs) (Brown032

et al., 2020; OpenAI, 2023b) have enabled remark-033

able advances in diverse Natural Language Process-034

ing (NLP) tasks, especially in Question-Answering035

(QA) tasks (Joshi et al., 2017; Kwiatkowski et al.,036

2019). Despite these advances, however, LLMs037

face challenges in having to adapt to ever-evolving038

or long-tailed knowledge due to their limited para-039

metric memory (Kasai et al., 2023; Mallen et al.,040

1The code will be released after acceptance.

Figure 1: Impact of the noisy document in the real-world
database on the RAG system.

2023), resulting in a hallucination where the mod- 041

els generate convincing yet factually incorrect 042

text (Li et al., 2023a). Retrieval-Augmented Gen- 043

eration (RAG) (Lewis et al., 2020) has emerged 044

as a promising solution by utilizing a retriever to 045

fetch enriched knowledge from external databases, 046

thus enabling accurate, relevant, and up-to-date re- 047

sponse generation. Specifically, RAG has shown 048

its superior performance across diverse knowledge- 049

intensive tasks (Lewis et al., 2020; Lazaridou et al., 050

2022; Jeong et al., 2024), leading to its integra- 051

tion as a core component in various real-world 052

APIs (Qin et al., 2024; Chase, 2022; OpenAI, 053

2023a). Given its extensive applications, ensuring 054

robustness under diverse conditions of real-world 055

scenarios becomes critical for safe deployment. 056

Thus, assessing potential vulnerabilities within the 057

overall RAG system is vital, particularly by assess- 058

ing its components: the retriever and the reader. 059

However, existing studies on assessing the ro- 060

bustness of RAG often focus solely on either re- 061

trievers (Zhong et al., 2023; Zou et al., 2024; Long 062

et al., 2024) or readers (Li et al., 2023b; Wang et al., 063

2023; Zhu et al., 2023). The robustness of a single 064

component might only partially capture the com- 065

plexities of RAG systems, where the retriever and 066

reader work together in a sequential flow, which is 067
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crucial for optimal performance. In other words,068

the reader’s ability to accurately ground informa-069

tion significantly depends on the retriever’s capa-070

bility of sourcing query-relevant documents (Baek071

et al., 2023; Lee et al., 2023). Thus, it is important072

to consider both components simultaneously when073

evaluating the robustness of an RAG system.074

While concurrent work has shed light on the se-075

quential interaction between two components, they076

have primarily evaluated the performance of the077

reader component given the high-level perturbed078

errors within retrieved documents, such as context079

relevance or counterfactual information (Thakur080

et al., 2023; Chen et al., 2024; Cuconasu et al.,081

2024). However, they have overlooked the impact082

of low-level errors, such as textual typos due to083

human mistakes or preprocessing inaccuracies in084

retrieval corpora, which commonly occur in real-085

world scenarios (Piktus et al., 2021; Le et al., 2023).086

Additionally, LLMs, commonly used as readers, of-087

ten struggle to produce accurate predictions when088

confronted with textual errors (Zhu et al., 2023;089

Wang et al., 2023). Note that these are the practical090

issues that can affect the performance of any RAG091

system in real-world scenarios, as illustrated in Fig-092

ure 1. Therefore, to deploy a more realistic RAG093

system, we should consider: “Can minor document094

typos comprehensively disrupt both the retriever095

and reader components in RAG systems?”096

In this work, we investigate two realistic yet097

underexplored dimensions of RAG robustness eval-098

uation: 1) the quantitative resilience of the individ-099

ual retriever and reader components and their se-100

quential relationships and 2) vulnerability to noisy101

documents with low-level perturbations. First, we102

introduce two specific objectives for a retriever103

and reader to assess each component’s robust-104

ness against low-level perturbations. These ob-105

jectives assess the impact of perturbed documents106

on the RAG pipeline’s retrieval and grounding ca-107

pabilities, providing a detailed understanding of108

component-specific resilience beyond traditional109

QA metrics. To further explore robustness under110

these newly defined dimensions, we introduce a111

novel adversarial attack algorithm, namely GARAG,112

which targets at the dual objectives within the RAG113

system. Specifically, the adversarial document pop-114

ulation is initially generated by injecting low-level115

perturbations to clean documents while keeping the116

answer tokens intact. The population then under-117

goes iterative crossover, mutation, and selection118

processes to discover the most optimal adversarial119

documents within the search space formulated by 120

our objectives. To sum up, GARAG assesses the 121

holistic robustness of an RAG system against minor 122

textual errors, offering insights into the system’s 123

resilience through iterative adversarial refinement. 124

We validate our method on three standard QA 125

datasets (Joshi et al., 2017; Kwiatkowski et al., 126

2019; Rajpurkar et al., 2016), with diverse retriev- 127

ers (Karpukhin et al., 2020; Izacard et al., 2022) and 128

LLMs (Touvron et al., 2023; Chiang et al., 2023; 129

Jiang et al., 2023). The experimental results reveal 130

that adversarial documents with low-level pertur- 131

bation generated by GARAG significantly induce 132

retrieval and grounding errors, achieving a high 133

attack success rate of approximately 70%, along 134

with a significant reduction in the performance of 135

each component and overall system. Our analyses 136

also highlight that lower perturbation rates pose a 137

greater threat to the RAG system, emphasizing the 138

challenges of mitigating such inconspicuous yet 139

critical vulnerabilities. 140

Our contributions in this paper are threefold: 141

• We point out that the RAG system is vulnerable 142

to minor but frequent textual errors within the 143

documents, by evaluating the functionality of 144

each retriever and reader component. 145

• We propose a simple yet effective attack method, 146

GARAG, based on a genetic algorithm searching 147

for adversarial documents targeting both compo- 148

nents within RAG simultaneously. 149

• We experimentally show that the RAG system is 150

fatal to noisy documents in real-world databases. 151

2 Related Work 152

2.1 Robustness in RAG 153

The robustness of RAG, characterized by its ability 154

to fetch and incorporate external information dy- 155

namically, has gained much attention for its critical 156

role in real-world applications (Chase, 2022; Liu, 157

2022; OpenAI, 2023a). However, previous studies 158

concentrated on the robustness of individual com- 159

ponents within RAG systems, either retriever or 160

reader. The vulnerability of the retriever is cap- 161

tured by injecting adversarial documents, specially 162

designed to disrupt the retrieval capability, into 163

retrieval corpora (Zhong et al., 2023; Zou et al., 164

2024; Long et al., 2024). Additionally, the ro- 165

bustness of LLMs, often employed as readers, has 166

been critically examined for their resistance to out- 167

of-distribution data and adversarial attacks (Wang 168

et al., 2021; Li et al., 2023b; Wang et al., 2023; 169
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Zhu et al., 2023). However, these studies overlook170

the sequential interaction between the retriever and171

reader components, thus not fully addressing the172

overall robustness of RAG systems.173

In response, there is an emerging consensus on174

the need to assess the holistic robustness of RAG,175

with a particular emphasis on the sequential interac-176

tion of the retriever and reader (Thakur et al., 2023;177

Chen et al., 2024). They point out that RAG’s vul-178

nerabilities stem from retrieval inaccuracies and in-179

consistencies in how the reader interprets retrieved180

documents. Specifically, the reader generates in-181

correct responses if the retriever fetches partially182

(or entirely) irrelevant or counterfactual documents183

within the retrieved set. The solutions to these chal-184

lenges range from prompt design (Cho et al., 2023;185

Press et al., 2023) and plug-in models (Baek et al.,186

2023) to specialized language models for enhanc-187

ing RAG’s performance (Yoran et al., 2024; Asai188

et al., 2024). However, they focus on the high-189

level errors within retrieved documents, which may190

overlook more subtle yet realistic low-level errors191

frequently encountered in the real world.192

In this study, we spotlight a novel vulnerabil-193

ity in RAG systems related to low-level textual194

errors found in retrieval corpora, often originating195

from human mistakes or preprocessing inaccura-196

cies (Thakur et al., 2021; Piktus et al., 2021; Le197

et al., 2023). Specifically, Faruqui et al. (2018)198

pointed out that Wikipedia, a widely used retrieval199

corpus, frequently contains minor errors within its200

contents. Therefore, we focus on a holistic evalua-201

tion of the RAG system’s robustness against perva-202

sive low-level text perturbations, emphasizing the203

critical need for systems that can maintain compre-204

hensive effectiveness for real-world data.205

2.2 Adversarial Attacks in NLP206

Adversarial attacks involve generating adversarial207

samples designed to meet specific objectives to208

measure the robustness of models (Zhang et al.,209

2020). In NLP, such attacks use a transformation210

function to inject perturbations into text, accompa-211

nied by a search algorithm that identifies the most212

effective adversarial sample.213

The operations of the transformation function214

can be categorized into high-level and low-level215

perturbations. High-level perturbations leverage216

semantic understanding (Alzantot et al., 2018;217

Ribeiro et al., 2018; Jin et al., 2020), while low-218

level perturbations are based on word or character-219

level changes, simulating frequently occurring er-220

rors (Eger et al., 2019; Eger and Benz, 2020; Le 221

et al., 2022; Formento et al., 2023). 222

Search algorithms aim to find optimal adversar- 223

ial samples that meet specific objectives, utiliz- 224

ing diverse methods such as greedy search, gra- 225

dient descent-based approaches, and genetic algo- 226

rithms. Greedy search algorithms sequentially alter 227

word tokens based on criteria such as the word 228

saliency (Ren et al., 2019; Jin et al., 2020). Gradi- 229

ent descent-based methods select perturbed tokens 230

that maximally increase one specific loss objec- 231

tive (Papernot et al., 2016; Ebrahimi et al., 2018). 232

While these approaches are unsuitable for multi- 233

objective scenarios, a genetic algorithm that iter- 234

atively refines an adversarial population can be 235

applied (Alzantot et al., 2018; Zang et al., 2020; 236

Williams and Li, 2023). Given our aim to evaluate 237

the robustness of the overall RAG system, which 238

has non-differentiable and dual objectives for a 239

retriever and a reader, we propose a novel attack 240

algorithm that incorporates a genetic algorithm. 241

3 Method 242

Here, we introduce our task formulation and a 243

novel attack method, GARAG. Further details of 244

the proposed method are described in Appendix A. 245

3.1 Adversarial attack on RAG 246

Pipeline of RAG. Let q be a query the user re- 247

quests. In an RAG system, the retriever first fetches 248

the query-relevant document d, then the reader gen- 249

erates the answer grounded on document-query 250

pair (d, q). The retriever, parameterized with ϕ = 251

(ϕd, ϕq), identifies the most relevant document in 252

the database. The relevance score r is computed by 253

the dot product of the embeddings for document d 254

and query q, as rϕ(d, q) = Enc(d;ϕd)·Enc(q;ϕq). 255

Finally, the reader, using an LLM parameterized 256

with θ, generates the answer a from the document- 257

query pair (d, q), as a = LLM(d, q; θ). 258

Adversarial Document Generation. To simulate 259

typical noise encountered in real-world scenarios 260

that attack RAG, we introduce low-level pertur- 261

bations to mimic these conditions. Specifically, 262

we design an adversarial document d′ by trans- 263

forming the original and clean document d into its 264

noisy counterparts with perturbations. Formally, 265

this transformation involves a function f that al- 266

ters each token d in d into a perturbed version d′, 267

where these perturbed tokens collectively form d′. 268

Specifically, the function f randomly applies one 269
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of several operations — inner-shuffling, truncation,270

keyboard errors, or natural typos — to each token,271

then outputs the perturbed token: d′ = f(d).272

In detail, generating the adversarial document273

d′ involves selecting tokens for attack, applying274

perturbations, and assembling the modified docu-275

ment. Initially, to identify the tokens to be altered,276

a subset of indices I ′ is randomly selected from277

the complete set of token indices I = {1, . . . , N},278

where N is the total number of the tokens in d.279

This selection is designed to exclude any indices280

that correspond to the correct answer a within the281

document, thus ensuring that the perturbations fo-282

cus exclusively on assessing the impact of noise.283

Each selected token di is then transformed using284

the function f , yielding a perturbed version d′i,285

for i ∈ I ′ ⊂ I . The final document d′ merges286

the set of unaltered tokens T = {di|i /∈ I \ I ′}287

with the set of modified tokens, represented by288

T ′ = {d′j |j ∈ I ′}, forming d′ = T ∪ T ′.289

Attack Objectives on RAG. Compromising both290

the system’s retrieval and grounding capabilities is291

essential for a successful adversarial attack on an292

RAG system. Given a set of adversarial documents293

D′, the optimal adversarial document d∗ ∈ D′294

must achieve the following two objectives. First,295

d∗ should shift the system’s attention away from296

d, ensuring that it no longer appears as the top rel-297

evance for q. At the same time, d∗ should distract298

the LLM from generating the correct answer a,299

given the adversarial pair (d∗, q).300

To quantify the effectiveness of the aforemen-301

tioned goals, we formally define two novel objec-302

tives: the Relevance Score Ratio (RSR) for mea-303

suring retrieval capability and the Generation Prob-304

ability Ratio (GPR) for measuring grounding ca-305

pability. To be specific, the former calculates the306

ratio of the perturbed document d′ to the original307

document d in relation to the query q and the cor-308

rectly generated answer a, while the latter does309

the opposite. In other words, the RSR quantifies310

variations in the relevance score2 determined by311

the retriever, whereas the GPR assesses changes312

in the likelihood of generating the correct answer313

a, as assigned by the LLM. These two metrics are314

formally represented as follows:315

LRSR(d
′) =

erϕ(d,q)

erϕ(d′,q)
,LGPR(d

′) =
pθ(a|d′, q)

pθ(a|d, q)
. (1)316

2Given the potential for relevance scores to be negative,
we have structured the term to guarantee positivity.

Note that the lower values of LRSR and LGPR indi- 317

cate a stronger negative effect on the RAG system. 318

Specifically, each value below 1 identifies a suc- 319

cessful adversarial attack against the document d. 320

Consequently, the search for an optimal adver- 321

sarial document within the RAG system is defined 322

as a dual objective optimization problem, aiming to 323

minimize both the RSR and GPR simultaneously: 324

d∗ = argmin
d′∈D′

(LRSR(d
′),LGPR(d

′)) (2) 325

3.2 Genetic Attack on RAG 326

In successful RAG systems, the answer a is cor- 327

rectly generated from the query q and the original 328

retrieved document d. Our goal is to design an 329

attack for the RAG system such that makes LLM 330

generate an incorrect answer a′ when given an ad- 331

versarial document d∗: a′ = LLM(d∗, q; θ), with 332

higher relevance score rϕ(d
′, q) than the score 333

rϕ(d, q). We frame the search process for iden- 334

tifying an optimal adversarial document d∗ as a 335

multi-objective optimization problem. As depicted 336

on the left in Figure 2, we formulate the search 337

space into four regions: the safety, retrieval error, 338

grounding error, and holistic error zones. Note that 339

the optimal adversarial document should be located 340

within the holistic error zone, where both retrieval 341

and grounding errors occur simultaneously. 342

To achieve this, we present a novel adversarial at- 343

tack strategy, called GARAG, which employs the ge- 344

netic algorithm NSGA-II (Deb et al., 2002), to tar- 345

get two objectives that are not differentiable simul- 346

taneously. Specifically, GARAG iteratively refines 347

a population of adversarial documents, methodi- 348

cally moves them closer to the origin. Given the 349

star-shaped original document in its clean version, 350

our goal is to generate noisy versions (adversar- 351

ial documents), represented as orange-colored and 352

blue-colored dots, and aim to locate them within 353

the holistic error zone, as shown on the right in Fig- 354

ure 2. This process includes exploring the search 355

space to find new adversarial documents and select- 356

ing the most effective ones, which can be achieved 357

through crossover, mutation, and selection steps. 358

Initialization. Our attack begins with the initial- 359

ization step. We first construct the initial popula- 360

tion P0, consisting of adversarial documents d′
i, 361

formalized as P = {d′
i}Si=1, where S is the total 362

number of documents in the population. The extent 363

of perturbation for each adversarial document d′
i 364

is determined by applying a predefined level prper. 365
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Figure 2: (Left) The search space formulated by our proposed attack objectives, LRSR and LGPR. (Right) An overview of the
iterative process implemented by our proposed method, GARAG.

to the number of tokens N in the original docu-366

ment d. Given the star-shaped original document,367

the initial (parent) documents are represented as368

orange-colored dots in the initialization step of the369

figure on the right in Figure 2.370

Crossover & Mutation. Then, through the371

crossover and mutation steps, the adversarial docu-372

ments are generated by balancing the exploitation373

of existing knowledge within the current popula-374

tion (parent documents) and the exploration of new375

documents (offspring documents). In detail, the376

crossover step generates offspring documents by re-377

combining tokens from pairs of parent documents,378

incorporating their most effective adversarial fea-379

tures. Subsequently, the mutation step introduces380

new perturbations to some tokens in the offspring,381

aiming to explore genetic variations that are not382

present in the parent documents.383

Formally, the crossover step selects Nparents pairs384

of parent documents from the population P . Let385

d′
0 and d′

1 be the selected parent documents along386

with their perturbed token sets T ′
0 and T ′

1, respec-387

tively. Then, the swapping tokens perturbed in each388

parent document generate the offspring documents,389

excluding those in the shared set T ′
0∩T ′

1. The num-390

ber of swapping tokens is determined by the prede-391

fined crossover rate prcross, applied to the number392

of unique perturbed tokens in each document.393

The mutation step selects two corresponding sub-394

sets of tokens, M from the original token set T and395

M ′ from the perturbed token set T ′, ensuring that396

both subsets are of equal size |M | = |M ′|. The397

size of these subsets is determined by the prede-398

fined mutation probability prmut., which is applied399

to prper. ·N . Tokens di ∈ M are altered using a per-400

turbation function f , whereas tokens d′j ∈ M ′ are401

reverted to their original states dj . Following this,402

the sets of unperturbed and perturbed tokens, Tnew403

and T ′
new, respectively, are updated to incorporate404

these modifications: Tnew = (T \ M) ∪ M ′ and 405

T ′
new = (T ′ \M ′) ∪M . The newly mutated docu- 406

ment, d′
new, is composed of the updated sets Tnew 407

and T ′
new, and the offspring set O is then formed, 408

comprising these mutated documents. The off- 409

spring documents are represented by blue-colored 410

dots in the figure on the right in Figure 2. 411

Selection. The remaining step is to select the most 412

optimal adversarial documents from the combined 413

set P̂ = P ∪ O, which includes both parent and 414

offspring documents. Specifically, each document 415

within P̂ is evaluated against the two attack objec- 416

tives, LRSR and LGPR, to assess their effectiveness 417

in the adversarial context. Note that it is crucial 418

to balance these two objectives when generating 419

adversarial documents. Therefore, we incorporate 420

a non-dominated sorting strategy (Deb et al., 2002) 421

to identify the optimal set of documents, known as 422

the Pareto front. In this front, each document is 423

characterized by having all objective values lower 424

than those in any other set, as shown in the right of 425

Figure 2. Then, the documents in the Pareto front 426

will be located in a holistic error zone closer to 427

the origin. Additionally, to help preserve diversity 428

within the document population, we further utilize 429

the crowding distance sorting strategy to identify 430

adversarial documents that possess unique knowl- 431

edge by measuring how isolated each document 432

is relative to others. Then, the most adversarial 433

document d∗ is selected from a less crowded re- 434

gion of the Pareto front, enhancing the efficiency 435

of our adversarial strategy. Note that this process, 436

including crossover, mutation, and selection steps, 437

continues iteratively until a successful attack is 438

achieved, where the selected adversarial document 439

d∗ prompts an incorrect answer a′, as illustrated 440

in the figure on the right in Figure 2. If the pro- 441

cess fails to produce a successful attack, it persists 442

through the predefined number of iterations, Niter.. 443
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Table 1: Results of adversarial attacks using GARAG, averaged across three datasets. The most vulnerable results are in bold.

Attack Success Ratio (↑) Component Error (↓) End-to-End (↓)

Retriever LLM ASRR ASRL ASRT R.E. G.E. EM Acc

DPR

Llama2-7b 79.2 90.5 70.1 0.327 0.674 77.1 81.3
Llama2-13b 78.4 92.0 70.8 0.308 0.745 81.9 87.3

Vicuna-7b 88.7 80.7 69.8 0.384 0.388 57.2 79.3
Vicuna-13b 88.8 81.6 70.8 0.375 0.409 58.4 83.2

Mistral-7b 83.7 85.5 69.5 0.363 0.520 66.7 96.5

Contriever

Llama2-7b 85.3 91.0 76.6 0.940 0.674 75.0 79.6
Llama2-13b 82.0 92.0 74.2 0.936 0.740 80.7 87.3

Vicuna-7b 92.1 81.5 73.9 0.948 0.391 55.1 76.9
Vicuna-13b 91.3 83.2 74.7 0.950 0.376 53.5 79.5

Mistral-7b 89.2 86.6 75.9 0.942 0.514 63.1 95.3

w/o GARAG - - - 1.000 1.000 100 100

Figure 3: (Left & Center) Adversarial attack results depending on the number of iterations Niter, on NQ with Contriever and
Llama2-7b. (Right) Distribution of incorrectness among predictions with the Contriever and Llama-7b depending on LGPR.

4 Experimental Setup444

In this section, we describe the experimental setup.445

4.1 Model446

Retriever. We use two recent dense retriev-447

ers: DPR (Karpukhin et al., 2020), a supervised448

one trained on query-document pairs, and Con-449

triever (Izacard et al., 2022), an unsupervised one.450

Reader. Following concurrent work (Asai et al.,451

2024; Wang et al., 2024) that utilizes LLMs as read-452

ers for the RAG system, with parameters ranging453

from 7B to 13B, we have selected open-source454

LLMs of similar capacities: Llama2 (Touvron455

et al., 2023), Vicuna (Chiang et al., 2023), and Mis-456

tral (Jiang et al., 2023). Each model has been either457

chat-versioned or instruction-tuned. To adapt these458

models for open-domain QA tasks, we employ a459

zero-shot prompting template for exact match QA460

derived from Wang et al. (2024).461

4.2 Dataset462

We leverage three representative QA datasets: Nat-463

ural Questions (NQ) (Kwiatkowski et al., 2019),464

TriviaQA (TQA) (Joshi et al., 2017), and SQuAD465

(SQD) (Rajpurkar et al., 2016), following the se-466

tups of Karpukhin et al. (2020). To assess the ro-467

bustness of the RAG system, we randomly extract468

1,000 instances of the triple (q,d,a). In each triple,469

q is a question from the datasets, d is a document470

from the top-100 documents retrieved from the 471

Wikipedia corpus corresponding to q, and a is the 472

answer generated by the LLM, which is considered 473

as correct for the specific question-document pair. 474

4.3 Evaluation Metric 475

Since we aim to measure how the generated ad- 476

versarial documents with GARAG attack the RAG 477

system, we incorporate three types of metrics to 478

show 1) the overall effectiveness of the adversarial 479

attacks, 2) the adversarial impact of the adversarial 480

samples for each retriever and reader component, 481

and 3) the end-to-end QA performance. 482

Attack Success Ratio (ASR). Attack Success Ra- 483

tio (ASR) measures the effectiveness of the adver- 484

sarial document d′ in disrupting the RAG system 485

compared to the original document d. Specifically, 486

it is quantified by the proportion of adversarial doc- 487

uments located in the holistic error zone by the 488

proportion of adversarial documents that achieve 489

values below 1 in our objective functions. ASRR 490

and ASRL denote the ratios of documents meet- 491

ing such criteria for each objective function LRSR, 492

LGPR, respectively, while ASRT denotes the docu- 493

ments that satisfy them simultaneously. 494

Component Error (C.E.). To assess the impact of 495

d∗ located in the holistic error zone on each com- 496

ponent of RAG, we utilize Retrieval Error (R.E.) 497

and Grounding Error (G.E.). Specifically, RE 498
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measures the average of LRSR values, indicating499

the relative relevance score compared to the origi-500

nal document. Then, G.E. measures the proportion501

of predictions that exactly match the actual answers,502

measuring the grounding capability to noisy docu-503

ments. Lower values of each metric mean that they504

are more vulnerable to adversarial documents.505

End-to-End Performance (E2E). To assess how506

GARAG influences end-to-end performance, we507

report it with standard QA metrics: Exact Match508

(EM) and Accuracy (Acc). In cases when the509

attack fails, we report the scores using the original510

document d instead of the adversarial one d′.511

4.4 Implementation Details512

The proposed method, GARAG, was configured513

with hyperparameters: Niter was set to 25, Nparents514

to 10, and S to 25. prper, prcross, and prmut were set515

to 0.2, 0.2, and 0.4, respectively. The operations516

of perturbation function f in GARAG consist of517

the inner swap, truncate, keyboard typo, and nat-518

ural typo, following Eger and Benz (2020)3. For519

computing resources, we use A100 GPU clusters.520

5 Results521

In this section, we show our experimental results522

with an in-depth analysis of the adversarial attack.523

Main Result. Table 1 shows our main results aver-524

aged over three datasets using GARAG with three525

metrics: attack success ratio (ASR), components526

error (C.E.), and end-to-end performance (E2E).527

First, a notable success rate of over 70% across528

all scenarios indicates that GARAG effectively lo-529

cates adversarial documents within the holistic er-530

ror zone by simultaneously considering retrieval531

and reader errors. This also implies that the RAG532

system is vulnerable to low-level (yet realistic) per-533

turbations. Additionally, the results indicate that534

two different retrievers show varying susceptibili-535

ties to attacks: Contriever is more vulnerable than536

DPR. Furthermore, the results reveal that an in-537

crease in model size does not necessarily enhance538

robustness to adversarial attacks, as shown by the539

minimal differences in ASR between LLMs with540

7B and 13B parameters. This suggests that simply541

increasing the size may not be an optimal solution542

when addressing the realistic challenges in RAG.543

Then, how does an optimal adversarial document544

located in the holistic error zone specifically influ-545

ence each component within the RAG system? To546

3https://github.com/yannikbenz/zeroe

answer this, we analyze its impact on both the re- 547

trieval and reader components by measuring C.E. 548

Interestingly, the results indicate that adversarial 549

documents within the holistic error zone do not 550

affect the retriever and reader components of differ- 551

ent models to the same extent. Note that a higher 552

ASR does not necessarily result in lower C.E. for 553

each component. In detail, although DPR exhibits 554

a significantly lower ASR compared to Contriever, 555

its Retrieval Error (R.E.) remains significantly low, 556

consistently below 0.5. This suggests that adver- 557

sarial documents targeting DPR are ranked higher 558

in the retrieval corpora, indicating a more effective 559

disruption despite fewer successful attacks. On the 560

other hand, Contriever is more susceptible to at- 561

tacks, but the impact of these attacks tends to be 562

relatively smaller. Furthermore, although Vicuna 563

appears to be the least vulnerable according to its 564

ASR, it suffers the most significant effects from 565

successful adversarial attacks, as indicated by its 566

Grounding Error (G.E.). 567

Finally, we further analyze the E2E performance 568

to assess how adversarial attacks impact overall 569

QA performance. Based on the EM metric, the 570

performance of RAG systems decreased by an aver- 571

age of 30% and a maximum of close to 50% in all 572

cases. These findings imply that noisy documents 573

with minor errors, frequently found in real-world 574

databases, can pose significant risks to downstream 575

tasks using RAG. Additionally, we find that the 576

robustness of an RAG system varies significantly 577

depending on the specific retriever and LLMs tar- 578

geted, thus necessitating the need for careful design 579

of both retrievers and readers to address challenges 580

in robust RAG applications effectively. 581

Impact of Hyperparameter. We further explore 582

how varying the perturbation probability prpert and 583

the number of iterations Niter affects the attack out- 584

comes. As the left and center figures of Figure 3 585

illustrate, there is an apparent correlation between 586

the attack success rates for the retriever (ASRR) 587

and the entire pipeline (ASRT ) while also revealing 588

a significant vulnerability in the reader as indicated 589

by the high success rate for the LLM (ASRL). In- 590

terestingly, in the left figure of Figure 3, the results 591

indicate that a lower proportion of perturbation 592

within a document leads to a more disruptive im- 593

pact on the RAG system. This poses a significant 594

concern, given that documents with a few typos are 595

commonly found in the real world. Overall, these 596

findings highlight the critical role of the retriever 597

as a first line of defense in the entire RAG system. 598
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Table 2: Case study with Contriever and Llama-7b, where perturbed texts are in red and correct answers are in blue .

Question Name a food you might eat on thanksgiving.
Noisy Document Thanksgivong ( 8nited States) the Pilgrims who settled at Plymouth Plantation. It is continued in modern

times with the Thanksgiving dinner, traditionally featuring turkey , playing a central ro;e in the celebartion
of Thanksgiving. In the United States, cetrain kinds of good are traditionally served at Thanksgiving meals.
Turkey , usualla roasted and stuffed (but sometimes deep-fried instead), is typically the feat8red!25 item
on most Thanksgiving feast tables, so much so that Thanksgiving is also colloquially known as" Turkey
Day." In fact, 45 mollion turkeys were consumed on Thanksgiving Day alone in 2015. With 85 percent of
Americans partaking in the meal, that’s an estimated 276.

Answer Turkey
Prediction Mashed potatoes

Table 3: Results of punctuation insertion, phonetic swap, and
visual swap on NQ with Contriever and Llama-7b.

ASR C.E. E2E

Attack ASRR ASRL ASRT R.E. G.E. EM

Typo 85.9 91.1 77.5 0.96 63.0 70.1

Punc. 93.0 93.7 86.7 0.91 65.8 68.9
Phonetic. 84.7 92.1 76.8 0.96 62.3 70.0
Visual. 77.7 90.5 68.8 0.98 61.0 72.5

Table 4: Ablation studies of assessing the impact of each step
within GARAG on NQ with Contriever and Llama-7b.

ASR

Attack ASRR ASRL ASRT Niter

GARAG 85.9 91.1 77.5 14.8

w/o Cross. & Mutat. 83.0 90.7 73.7 15.6
w/o Select. 79.4 89.9 69.5 15.6

Impact of Lowering LGPR. Since the value of599

LRSR does not directly indicate the likelihood of600

generating incorrect answers with auto-regressive601

models, we analyze the correlation between the602

likelihood of generating incorrect answers and603

LGPR. As illustrated in the right figure of Figure 3,604

we categorize predictions into buckets based on605

their LGPR ranges and calculate the proportion of606

incorrect answers within each bucket. The results607

indicate that a lower LGPR value is correlated with608

a higher likelihood of incorrect responses, thus cor-609

roborating our objective design.610

Other Low-level Perturbations. While focusing611

on character-level perturbations, we also investi-612

gate other low-level yet prevalent disturbances,613

such as punctuation insertion (Formento et al.,614

2023) and character swaps based on phonetic or vi-615

sual similarities (Eger et al., 2019; Le et al., 2022).616

As shown in Table 3, these perturbations show617

higher success rates and lower E2E performance618

than those with typos, with punctuation insertion619

alone compromising the RAG in 86% of attacks.620

The results emphasize the RAG system’s suscepti-621

bility to diverse low-level perturbations.622

Ablation Study. We conducted ablation studies623

to see how each step in GARAG contributes to the624

overall performance. As shown in Table 4, omitting625

the crossover and mutation steps results in a lower626

ASR, reducing the attack’s overall effectiveness627

due to limited search space exploration. Further-628

more, without the selection step, lower ASRR in-629

dicates that the optimization becomes unbalanced.630

Overall, each step in GARAG plays a crucial role in631

achieving a balanced optimization during attacks 632

targeting both the retriever and reader components. 633

Case Study. We further qualitatively assess the 634

impact of low-level textual perturbations within a 635

document in Table 2. Note that since we ensure that 636

the answer spans remain unperturbed, the readers 637

should ideally generate correct answers. However, 638

interestingly, an LLM fails to identify the correct 639

answer, “Turkey”, which is mentioned four times 640

in the document, but instead generates “Mashed 641

potatoes”, which is never mentioned at all. We 642

include more diverse cases in Table 6. 643

6 Conclusion 644

In this work, we highlighted the importance of as- 645

sessing the overall robustness of the retriever and 646

reader components within the RAG system, par- 647

ticularly against noisy documents containing mi- 648

nor typos that are common in real-world databases. 649

Specifically, we proposed two objectives to eval- 650

uate the resilience of each component, focusing 651

on their sequential dependencies. Furthermore, to 652

simulate real-world noises with low-level pertur- 653

bations, we introduced a novel adversarial attack 654

method, GARAG, incorporating a genetic algorithm. 655

Our findings indicate that noisy documents criti- 656

cally hurt the RAG system, significantly degrading 657

its performance. Although the retriever serves as a 658

protective barrier for the reader, it still remains sus- 659

ceptible to minor disruptions. Our GARAG shows 660

promise as an adversarial attack strategy when as- 661

sessing the holistic robustness of RAG systems 662

against various low-level perturbations. 663
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Limitation664

In this work, we explored the robustness of the665

RAG system by using various recent open-source666

LLMs of different sizes, which are widely used as667

reader components in this system. However, due668

to our limited academic budget, we could not in-669

clude much larger black-box LLMs such as the670

GPT series models, which have a hundred billion671

parameters. We believe that exploring the robust-672

ness of these LLMs as reader components would673

be a valuable line of future work. Furthermore,674

GARAG aims for the optimal adversarial document675

to be located within a holistic error zone, by simul-676

taneously considering both retrieval and grounding677

errors. However, we would like to note that even678

though the adversarial document is located within679

the holistic error zone, this does not necessarily680

mean that the reader will always generate incorrect681

answers for every query, due to the auto-regressive682

nature of how reader models generate tokens. Nev-683

ertheless, as shown in the right figure of Figure 3684

and discussed in its analysis, we would like to em-685

phasize that there is a clear correlation: a lower686

LGPR value is associated with a higher likelihood687

of incorrect responses.688

Ethics Statement689

We designed a novel attack strategy for the purpose690

of building robust and safe RAG systems when691

deployed in the real world. However, given the692

potential for malicious users to exploit our GARAG693

and deliberately attack the system, it is crucial to694

consider these scenarios. Therefore, to prevent695

such incidents, we also present a defense strategy,696

detailed in Figure 4 and its analysis. Addition-697

ally, we believe that developing a range of defense698

strategies remains a critical area for future work.699
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A Implementation Detail1104

A.1 Operations1105

The operations of transformation function f in our1106

work are as follows:1107

• Inner-Shuffle: Randomly shuffles the letters1108

within a subsequence of a word token, limited1109

to words with more than three characters.1110

• Truncate: Removes a random number of let-1111

ters from either the beginning or end of a word1112

token. This operation is restricted to words1113

with more than three characters, with a maxi-1114

mum of three characters removed.1115

• Keyboard Typo: Substitutes a letter with its1116

adjacent counterpart on an English keyboard1117

layout to simulate human typing errors. Only1118

one character per word is replaced.1119

• Natural Typo: Replaces letters based on com-1120

mon human errors derived from Wikipedia’s1121

edit history. This operation encompasses a1122

variety of error types, including phonetic er-1123

rors, omissions, morphological errors, and1124

their combinations.1125

Also, we explore other types of low-level pertur-1126

bations, such as punctuation insertion and phonetic1127

and visual similarity. The operations of these low-1128

level perturbations are as follows:1129

• Punctuation Insertion: Insert random punc-1130

tations into the beginning or end of a word1131

token. We insert a maximum of three identi-1132

cal punctuation into the beginning or end of1133

the word. Exploited punctuation is " ,.’!?; ".1134

• Phonetic Similarity: Swap the characters1135

in a word into the other tokens having pho-1136

netic similarity with the original ones. We1137

exploit two types of phonetic similarity at-1138

tacks from Eger and Benz (2020) and Le et al.1139

(2022).1140

• Visual Similarity: Swap the characters in a1141

word into the other tokens having visual simi-1142

larity with the original ones. We exploit two1143

types of phonetic similarity attacks from Eger1144

et al. (2019).1145

Algorithm 1: Genetic Attack on RAG
Input: Query q, Document d, Number of iterations

Niter, Number of parents Nparent, Population
size S, Perturbation rate prper, Crossover rate
prcross, Mutation rate prmut

Function: Non-dominated sorting NDS, Crowd
sorting CS

Output: Adversarial document d′∗

// Initialization

1 P0 ← {d′
i}Si=1 with prper;

2 for i = 1 to Niter do
// Crossover

3 O ← CROSSOVER(Pi−1, Nparent, prcross);
// Mutation

4 O ← MUTATE(O, prmut);
// Selection

5 P̂i ← Pi−1 ∪O;
6 for d′ in P̂i do
7 Evaluate LRSR(d

′) and LGPR(d
′);

8 P̂i ← CS(NDS(P̂i));
9 d∗ ← Top-1(P̂i) ;

10 if a ̸= LLM(d∗, q; θ) and LRSR(d
∗) < 1 then

11 return d∗ as adversarial example;

12 Pi ← Top-S(P̂i);

13 d∗ ← Top-1(PNiter) ;
14 return d∗ as adversarial example;

A.2 Process of GARAG 1146

The detailed process of GARAG is showcased in 1147

Algorithm 1. Our process begins with the initializa- 1148

tion of the adversarial document population, and 1149

then the population repeats the cycles of crossover, 1150

mutation, and selection. 1151

A.3 Template 1152

We adopt the zero-shot prompting template opti- 1153

mal for exact QA tasks, derieved from Wang et al. 1154

(2024), for all LLMs exploited in our experiments. 1155

QA Template for LLMs

[INST] Documents:
{Document}

Answer the following question with
a very short phrase, such as "1998", "May
16th, 1931", or "James Bond", to meet the
criteria of exact match datasets.

Question: {Question} [/INST]

Answer:
1156
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Table 5: Adversarial attack results of GARAG on three QA datasets across different retrievers and LLMs.

NQ TriviaQA SQuAD

ASR(↑) C.E.(↓) E2E(↓) ASR(↑) C.E.(↓) E2E(↓) ASR(↑) C.E.(↓) E2E(↓)
Retriever LLM ASRR ASRL ASRT RE. GE. EM Acc. ASRR ASRL ASRT RE. GE. EM Acc. ASRR ASRL ASRT RE. GE. EM Acc.

DPR

Llama2-7b 75.4 89.8 66.0 0.387 0.689 76.8 80.6 78.2 91.7 70.2 0.312 0.730 81.6 85.3 84.1 90.1 74.2 0.280 0.637 73.0 78.
Llama2-13b 71.3 91.7 63.5 0.357 0.695 82.8 88.2 83.9 92.0 76.1 0.266 0.630 76.7 83.3 80.0 92.4 72.7 0.299 0.722 86.3 90.5

Vicuna-7b 83.0 81.6 65.1 0.423 0.786 62.0 79.2 91.1 79.5 70.8 0.391 0.775 58.4 81.7 92.0 81.1 73.4 0.338 0.742 51.2 76.9
Vicuna-13b 82.8 80.9 64.4 0.423 0.77 58.5 83.3 91.8 83.5 75.4 0.367 0.779 59.2 85.7 91.7 80.5 72.5 0.336 0.722 57.4 80.5

Mistral-7b 78.5 85.9 65.1 0.397 0.8 69.1 96.5 84.7 84.9 69.8 0.352 0.811 66.5 97.7 87.8 85.7 73.5 0.34 0.701 64.4 95.2

Contriever

Llama2-7b 85.9 91.1 77.5 0.941 0.639 70.1 74.7 84.9 90.7 76.0 0.94 0.725 82.0 86.9 85.2 91.2 76.4 0.94 0.605 72.9 77.2
Llama2-13b 78.9 91.2 70.5 0.939 0.647 78.7 85.7 81.0 91.9 72.9 0.932 0.723 86.2 91.7 86.1 93.0 79.1 0.938 0.633 77.2 84.5

Vicuna-7b 90.8 81.3 72.4 0.949 0.738 52.2 72.5 93.0 80.8 74.0 0.946 0.764 60.3 81.5 92.6 82.5 75.2 0.948 0.712 52.7 76.7
Vicuna-13b 87.5 85.5 73.3 0.94 0.735 63.9 95.4 88.8 86.4 75.2 0.944 0.796 66.2 97.8 91.2 88.0 79.3 0.942 0.704 59.2 92.6

Mistral-7b 87.5 85.5 73.3 0.94 0.735 63.9 95.4 88.8 86.4 75.2 0.944 0.796 66.2 97.8 91.2 88.0 79.3 0.942 0.704 59.2 92.6

Figure 4: Distribution of grammatically correct document
among d∗ on NQ with the Contriever and Llama2-7b.

B Additional Results1157

B.1 Overall Result1158

Table 5 shows the overall results across three QA1159

datasets, two retrievers, and five LLMs.1160

B.2 Defense Strategy.1161

Various defense mechanisms against adversarial1162

attacks in NLP have been proposed. Adversarial1163

training, fine-tuning the model on adversarial sam-1164

ples, is a popular approach (Yoo and Qi, 2021).1165

However, this strategy is not practically viable for1166

RAG systems, given the prohibitive training costs1167

associated with models exceeding a billion param-1168

eters. Alternatively, a grammar checker is an effec-1169

tive defense against low-level perturbations within1170

documents (Formento et al., 2023).1171

Our analysis, depicted in Figure 4, compares the1172

grammatical correctness of original and adversarial1173

documents via grammar checker model 4 presented1174

in Dehghan et al. (2022). It reveals that approxi-1175

mately 50% of the original samples contain gram-1176

matical errors. Also, even within the adversarial set,1177

about 25% of the samples maintain grammatical1178

correctness at a low perturbation level. This obser-1179

vation highlights a critical limitation: relying solely1180

on a grammar checker would result in dismissing1181

many original documents and accepting some ad-1182

versarial ones. Consequently, this underscores the1183

4https://huggingface.co/imohammad12/
GRS-Grammar-Checker-DeBerta

Figure 5: Correlation matrices of prediction from the adver-
sarial document d∗ across EM and Acc. with Contriever.

limitations of grammar checkers as a standalone de- 1184

fense and points to more sophisticated and tailored 1185

defense strategies. 1186

B.3 Analysis on Prediction 1187

We analyze the discrepancy between them with 1188

the responding patterns of diverse LLMs when af- 1189

fected by adversarial documents, categorizing re- 1190

sults based on EM and Acc values in Figure 5. 1191

Specifically, EM strictly assesses whether the pre- 1192

diction exactly matches the correct answer, while 1193

Acc assesses only whether the answer span is in- 1194

cluded within the predicted response. When EM is 1195

0 and Acc is 1 (i.e., (0,1)), the answer span is in- 1196

cluded along with extraneous tokens. By contrast, 1197

when EM is 0 and Acc is 0 (i.e., (0,0)), the an- 1198

swer span is entirely incorrect, indicating a halluci- 1199

nated prediction. Therefore, Llama2 demonstrates 1200

a higher tendency to generate responses that ex- 1201

actly match the annotated samples, as indicated by 1202

the high portion of (1,1). However, given its lower 1203

proportion of (1,0) results, it frequently produces 1204

entirely incorrect answers when exposed to adver- 1205

sarial conditions. By contrast, Mistral, while gen- 1206

erating fewer exact matches compared to Llama2, 1207

more consistently includes the correct answer span 1208

in its responses. These findings are crucial for un- 1209

derstanding the behavior of different models in real- 1210

world scenarios, particularly in how they handle 1211

documents containing noise or adversarial modi- 1212

fications. Therefore, these results show that the 1213
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Figure 6: The process of population refinement by GARAG
on NQ with Contriever and Llama-7b

patterns of LLMs are varied under the influence of1214

noisy documents.1215

B.4 Case Study1216

We conducted case studies with diverse LLMs, in-1217

cluding Llama-7b, Vicuna-7b, and Mistral-7b, as1218

shown in Table 6. In all these studies, while the an-1219

swer tokens were not perturbed—allowing for the1220

possibility of grounding correct information—the1221

LLMs typically failed to locate the correct knowl-1222

edge within the document. This often resulted in1223

incorrect predictions or even hallucinations, where1224

the answer was not just wrong but absent from the1225

document. However, there was an exception with1226

Mistral-7b, which generated the correct answer and1227

additional explanatory text. While this prediction1228

did not meet the Exact Match (EM) metric, it was1229

semantically correct. Additionally, we provide a1230

detailed overview of how the population is refined1231

through the iterative process, as illustrated in Fig-1232

ure 6.1233
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Table 6: Case study on NQ with Contriever, where perturbed texts are in red and correct answers are in blue .

Llama-7b

Question Which site of an enzyme is called allosteric site?
Noisy Document A;losteric enzyme Long-range allostery is esprcially imponant in cell signaling. Allosteric regulation is

also particularly important in the cell’s abil9ty to adjusy enzyme activity. The term "allostery" comes
from the Greek "allos" (), "other," and "stereos" (), " silid (object)." This is in reference to the fact that the
regulatory site of an allosteric protein is physically distinct from its active site. The protein catalyst (enzyme)
may be paft of a multi-subunit complex, and/or may transiently or permanently associatr with a Cofactor
(e.g. adenosine triphosphate). Catalysis of biochejical reactions is vital due to the very law reaction rates
of the uncatalysed reactioms .

Answer Regulatory site
Prediction Active site

Question Who did Cora marry in once upon a time?
Noisy Document The Millerś Daughter (Once Upon a Time) to the King and accepts Henry ’s resultant marriage proposal.

The day before her wedding, Cora ques6ions her olans ; she is unlikely to become qjeen as Henry is fifth
in linf to the throne, while Rumplestiltskin, with whom she has been having an affair, offers her love. They
agree to amend the contratc so Cora owes Rumplestiltskin "his" child. He also agrees to teach her how
to take a heart, so that she can kilk King Savier. That night, she confromts the king. He reveals that he
knows of her relationship with Rumplestiltskin; telling her that " pove is weakness," he ays

Answer Henry
Prediction Rumplestiltskin

Vicuna-7b

Question What is the 3rd largest state in USA?
Noisy Document Wextern United States LGBT community, and Oakland, California has a large percen5age of residents

being African-American, as well as Long Beadh , California which also has a large Black community.
Ths state of Utah has a Mormon majority (estimate at 62.4% in 2004), while some cities like Albuquerque,
Nrw Mexico; Billkngs , Montqna ; Spokane, Washington; and Tucson, Arizona are located near Indian
Reservations. In remote areas there are settlements of Alaskan Natives and Native Hawaiians. Fqcing
both the Pacitic Ocean and the Mexican border, the West has been shaped by a cariety of ethnic groups.
Hawaii is the only state in the union in which

Answer California, Alaska
Prediction Oregon

Question When did the movie peter pan come out
Noisy Document Peter Pan as an adult by Robin Williams, with iblue eyes and dark brown hair; in flashbacks to him in his

youth, his hwir is light brown. In this film his ears ap;ear poin only when he is Petef Pan, not as Peter
Banning. His Pan attire resembles the D9sney outfit (minus the cap). In the lvie-action 2003 " -eter
Pan" film, he is portrayed by Jeremy Su,pter , who has blond hair and blue-green eyes. His outfit is made
of leaves and vines. J.M. Barrie created his character based on his older brother, Davic , who died in an
ice-skating accieent the day before

Answer 25 December 2003, 2003
Prediction 1998

Mistral-7b

Question Make it or break it who goes to the Olympics?
Noisy Document Make It or Break It A new gymnast, Max (Josh Bowman), cpmes to The Rock, wttracting the attention of

Lauren and Payson . Though Max seems more interested in Payson , she is more focused on her dream.
Lauren tells Payson that Max is her nww boyfriend; Max denies this. Mas, Austin, and Payson hope
Kaylie train in secret, as they try to convince Sasha that Kaylie is ready to compete at Worlds. In the week
of Emily’s departure, Kelly Parke becomes closer to Kaylie , des-ite the scheming of her stage her, Sheila
(Kathy Najimy). Kaylie offers her comfort as Kelly’s mom is only sup[ortive of Kelly’s

Answer Jordan, Payson, Lauren, Colleen, Kaylie
Prediction Kaylie goes to the Olympics

Question When did Michael Jordan get his last ring?
Noisy Document Hisfory of basketball A large place of this is due to the transcendent stars that have played the game through

the years. It was because of the play of Michael Jordan that basketball started to rsach international
audiences, especially on the 992 United States men’s Olympic basketball team, known as the Dream Team.
After his fianl championship and second retirement in 1998 , there was a void as in who would be the face
of basketball. So;n after with the help of Shaquille O’Neal, Koge Bryant would go on to win three straight
championships from 2000–2002 with the Los Angeles kers , helping make basketball

Answer 1998
Prediction 2002. (This is based on the context of the given document stating that Kobe Bryant and Shaquille O’Neal)
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