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ABSTRACT

In this paper, we address post-training quantization (PTQ) for large language
models (LLMs) from an overlooked perspective: given a pre-trained LLM, the
predominant sequential quantization framework treats different layers equally, but
this may be not optimal in challenging bit-width settings. We empirically study the
quantization impact of different layers on model accuracy, and observe that: (1)
shallow/deep layers are usually more sensitive to quantization than intermediate
layers; (2) among shallow/deep layers, the most sensitive one is the first/last layer,
which exhibits significantly larger quantization error than others. These empirical
observations imply that the quantization design for different layers of LLMs is
required on multiple levels instead of a single level shared to all layers. Motivated
by this, we propose a new PTQ framework termed Sliding-layer Quantization
(SliderQuant) that relies on a simple adaptive sliding quantization concept facili-
tated by few learnable parameters. The base component of SliderQuant is called
inter-layer sliding quantization, which incorporates three types of sliding win-
dow designs tailored for addressing the varying layer sensitivity to quantization.
The other component is called intra-layer sliding quantization that leverages an
incremental strategy to quantize each window. As a result, SliderQuant has a
strong ability to reduce quantization errors across layers. Extensive experiments
on various language generation and reasoning tasks with different LLMs show
that our method outperforms previous works for both weight-only quantization
and weight-activation quantization. Code will be made publicly available.

1 INTRODUCTION

Transformer-based large language models (LLMs) (Vaswani et al., 2017; Devlin et al., 2019; Brown
et al., 2020; Achiam et al., 2023; Touvron et al., 2023b; Anil et al., 2023; Liu et al., 2024a; Jaech
et al., 2024; Guo et al., 2025) have demonstrated extraordinary performance on a wide range of
natural language processing tasks. However, deploying them in real-world scenarios poses a great
challenge due to their huge model sizes. Post-training quantization (PTQ) is a practically appealing
way to reduce memory and computation demands of LLMs at inference. It approximates pre-trained
high-precision models with low-precision replacements conditioned on a small number of calibra-
tion samples, without the need of the expensive retraining pipeline used in quantization-aware train-
ing (Zafrir et al., 2019; Ma et al., 2024a; Xu et al., 2024). Because of this, PTQ research has gained
increasing attention in the LLM community.

Existing PTQ methods for LLMs generally use a sequential quantization framework: splitting a pre-
trained LLM into the same-sized disjoint parts, and then quantizing them from the first to the last part
separately. Early seminal works, such as LLM.int8() (Dettmers et al., 2022), ZeroQuant (Yao et al.,
2022), GPTQ (Frantar et al., 2023) and SmoothQuant (Xiao et al., 2023), assume that different
layers of a pre-trained LLM are independent to each other, and use the layer-wise quantization.
This simple framework has been popularly adopted by many subsequent works (Lin et al., 2024b;
Ashkboos et al., 2024b; Lin et al., 2024a; Dettmers et al., 2024; Duanmu et al., 2024). Instead,
OmniQuant (Shao et al., 2024) and FlatQuant (Sun et al., 2025) employ the block-wise quantization
in which layers within each attention block are quantized simultaneously. To explore longer-distance
dependencies than the block-wise quantization, QLLM (Liu et al., 2024b) and CBQ (Ding et al.,
2025) utilize the multi-block-wise quantization based on a fixed-size sliding window, resembling
the insights of prior works (Li et al., 2021; Zheng et al., 2022) tailored for quantizing convolutional
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Figure 1: Illustrations on the quantization impact of different layers to model accuracy: (1) quantiz-
ing a single layer (the first row) and (2) quantizing the first l layers (the second row) of Llama2-7B,
Llama2-13B and Qwen2.5-14B. Here, we select three representative layer-wise, block-wise and
multi-block-wise quantization methods, SmoothQuant, OmniQuant and CBQ, and examine them
in 4-bit weight-activation (W4A4) quantization on WikiText2. In the Appendix, Figure C provides
more illustrations on Llama3-8B, Qwen2.5-7B and Qwen2.5-32B, showing similar observations.

neural networks in computer vision. These methods have significantly advanced the research on
post-training quantization for LLMs. However, in formulation, they typically treat different layers
of any pre-trained LLM equally, no matter using the layer-wise or block-wise or multi-block-wise
quantization. Such an assumption seems fairly reasonable under moderate quantization settings,
e.g., 8-bit weight, as the total quantization error tends to be small. However, we conjecture it may
be not optimal under challenging quantization settings, e.g., 4-bit weight-activation.

For the sequential quantization framework described above, some previous works (Nagel et al.,
2020; Li et al., 2021; Frantar et al., 2023; Shao et al., 2024; Ding et al., 2025) have established
a solid theoretical foundation based on second-order Taylor expansion to get a better approxima-
tion solution for post-training quantization. This paper moves one step further: we revisit the pre-
dominant sequential quantization framework via questioning whether different layers of currently
prevailing LLMs have similar quantization impacts on model accuracy. To explore this question,
we select three representative layer-wise, block-wise and multi-block-wise quantization methods,
SmoothQuant, OmniQuant and CBQ, and examine them on a lot of popular LLMs in the challeng-
ing 4-bit weight-activation quantization regime. Of particular interest, we have observed several
properties. Firstly, for each of our tested LLMs, intermediate layers usually have smaller quantiza-
tion impacts on model accuracy compared to shallow/deep layers. This implies that shallow/deep
layers are more sensitive to quantization than intermediate layers which are relatively easy to quan-
tize. Secondly, among shallow/deep layers, the first/last layer has the largest quantization impact on
model accuracy, exhibiting significantly larger quantization error than others. This implies that the
first and last layers are greatly important in the quantization process, as they are responsible for the
very basic feature extraction and the final feature abstraction. Thirdly, as more layers are sequen-
tially quantized, the quantization impact on model accuracy will be magnified gradually. However,
SmoothQuant, OmniQuant and CBQ show unsatisfactory abilities to suppress this issue, suffer-
ing from the underlying premise that all layers are treated equally in their layer-wise, block-wise
and multi-block-wise quantization frameworks. Figure 1 illustrates these properties on Llama2-7B,
Llama2-13B (Touvron et al., 2023b) and Qwen2.5-14B (Yang et al., 2024).

These empirical properties highlight two ingredients that are essential to formulate an improved
sequential quantization framework: (1) the concentration of quantization process is required on
shallow and deep layers, particularly the first and last layers; (2) the quantization synergy of succes-
sive layers is required to reduce quantization errors across layers. Driven by the importance of these
two ingredients, we present a new sequential quantization framework, Sliding-layer Quantization
(SliderQuant) shown in Figure 2, which relies on a simple adaptive sliding quantization concept. In
principle, by adopting a sliding window, the layers of a pre-trained LLM are sequentially divided
into overlapping windows with the same size first, and then the quantization is performed window by
window facilitated by few learnable quantization parameters. The overlaps of consecutive windows

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

establish a basic quantization synergy path to reduce quantization errors across layers. However,
simply using a fixed-size sliding window (Duanmu et al., 2024; Ding et al., 2025) still has a large
gap to endow SliderQuant with the desired two ingredients, as shallow, intermediate and deep lay-
ers will be quantized with the same window size and moving interval per step. We fill this gap
by presenting two novel sliding quantization components. Our base component, inter-layer sliding
quantization, incorporates three types of sliding window designs tailored for adaptively quantizing
shallow, intermediate and deep layers with a smart optimization relay across them. Specifically, it
first allocates a progressively expanded sliding window along shallow layers, a fixed-size sliding
window along intermediate layers and a progressively contracted sliding window along deep lay-
ers, and then performs the sliding quantization progressively. With three types of sliding window
designs, our inter-layer sliding quantization component can leverage the aforementioned empirical
properties about the varying layer sensitivity to quantization. To exploit these empirical properties
further, we present another complementary component called intra-layer sliding quantization. It
extends the progressively expanded sliding design within each window of inter-layer sliding quan-
tization component, by which all layers in each window are jointly quantized in an incremental
manner. Coupling these two components in this way forms a neat implementation of SliderQuant.

Overall, SliderQuant is a flexible PTQ framework which can be used for both weight-only and
weight-activation quantization. Our experiment results show that SliderQuant outperforms exist-
ing PTQ works across a broad range of quantization settings (W4A16, W3A16, W2A16, W4A4),
model families (Llama, Llama2, Llama3, Qwen2.5, Qwen3) and model sizes (7B, 8B, 13B, 14B,
32B, 65B, 70B) on 2 basic language generation and 6 commonsense reasoning benchmarks. Incor-
porating advanced techniques (e.g., rotation transformations) into SliderQuant further improves its
performance. In addition, we validate the effectiveness of our SliderQuant on the advanced MoE
model Qwen3-30B-A3B. Notably, we also apply SliderQuant to the recently popular DeepSeek-
R1 (Guo et al., 2025) distilled models with strong chain-of-thought reasoning abilities, achieving
near-lossless accuracy under 4-bit weight-only quantization on the challenging mathematical rea-
soning and code generation tasks.

2 RELATED WORK

Many PTQ works focus on weight-only quantization. Early works, such as Q-BERT (Shen et al.,
2020) and GOBO (Zadeh et al., 2020), use a mixed-precision decomposition scheme in which the
weight outliers (i.e., a small fraction of weights that cause large quantization errors) are retained in
high-precision format while the other weights are quantized into low-precision format. They mainly
consider small language models like BERT. GPTQ (Frantar et al., 2023) formulates a novel weight-
only quantization approach based on approximate second-order Hessian matrices. Compared to
the populst round-to-nearest (RTN) quantization method (Dettmers et al., 2022), GPTQ achieves
significantly better performance when quantizing weights to 3-bit/4-bit. QuIP (Chee et al., 2024)
introduces an incoherence-driven scheme to enhance the quantization process of GPTQ, especially
for the 2-bit quantization of weights, and an improved variant is further presented in (Tseng et al.,
2024). SpQR (Dettmers et al., 2024) and AWQ (Lin et al., 2024b) extend the mixed-precision de-
composition scheme through designing more effective strategies to identify weight outliers, achiev-
ing superior performance to GPTQ. To avoid the inefficiency of the mixed-precision implementation
on hardware systems, AWQ searches channel-wise factors to scale down weight outliers, enabling
full-weight quantization. There also exist other works (Shen et al., 2020; Tang et al., 2023; Park
et al., 2024; Kim et al., 2024) that try to advance the PTQ research from other aspects. Another PTQ
research line is dedicated to 1-bit weight quantization, which is beyond the focus of this paper.

Compared to weight-only quantization, weight-activation quantization can bring more signifi-
cant reduction ratios in both compute and storage costs at inference, but it is more difficult.
LLM.int8() (Dettmers et al., 2022), a pioneering work for weight-activation quantization, uses a
mixed-precision scheme that quantizes all weights and most of activations into INT8 format, but
isolates activation outliers (i.e., a small fraction of activations that have large magnitudes than the
others) into FP16 format. To suppress activation outliers, Wei et al. (2022) develops a strategy that
employs the non-scaling layer normalization and the token-wise clipping, making activations to be
more friendly for 8-bit quantization. Unlike LLM.int8() using the vanilla vector-wise quantization
with RTN, ZeroQuant (Yao et al., 2022) applies a fine-grained INT-8 quantization scheme con-
sisting of group-wise quantization for weights and token-wise quantization for activations. Based
on a linear equivalent transformation, SmoothQuant (Xiao et al., 2023) uses per-channel smooth-
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ing factors to scale down activation outliers and scale up the corresponding weights, mitigating the
quantization difficulty from activations to weights which are easier to quantize. SmoothQuant offline
calculates channel-wise smoothing factors over a randomly sampled calibration set, and is tailored
for 8-bit weight-activation quantization. Instead, OmniQuant (Shao et al., 2024) dynamically learns
activation-smoothing factors and weight-clipping thresholds, and considers more diverse bit-width
settings down to 4-bit. QUIK (Ashkboos et al., 2024a) addresses 4-bit weight-activation quanti-
zation by extending the mixed-precision scheme. QLLM (Liu et al., 2024b) formulates a channel
disassembly and channel assembly scheme facilitated by the low-rank adaptation (Hu et al., 2022)
to suppress outliers in some channels. However, this scheme modifies LLM architectures, and thus
introduces extra inference-time cost. QuaRot (Ashkboos et al., 2024b) uses random rotation trans-
formations to remove outliers from the hidden state. Some subsequent works improve QuaRot by
making rotation transformations learnable (Liu et al., 2025; Sun et al., 2025) or combining rotation
and permutation transformations (Lin et al., 2024a). Similar to QLLM, these rotation-based meth-
ods also introduce extra computation cost at inference, as rotation transformations added to some
layers are not absorbable due to non-linear operations.

3 METHOD

In this section, we describe the formulation of our SliderQuant and detail its implementation.

3.1 BASIC CONCEPT: FIXED-SIZE SLIDING QUANTIZATION

Given a pre-trained high-precision LLM having L layers, we start with the vanilla sliding quanti-
zation (Duanmu et al., 2024; Ding et al., 2025). It uses a fixed-size sliding window {s, i} moving
along the layer direction of the given model and performs the sequential quantization in a window-
wise manner, where s denotes the window size, i denotes the moving interval per step. The overlap
between two consecutive windows is s− i. Let W = {W1, ...Ws} be the pre-trained weight matrix
set for s layers in the current window and let X be its input feature corresponding to a small set of c
task-agnostic calibration samples. Then, for weight-only quantization, the optimization objective is
defined as

argmin
Ŵ

||F(W,X),F(Ŵ,X)||22, (1)

where F(·, ·) denotes the output feature of the current window, and Ŵ = {Ŵ1, ...Ŵs} denotes
the low-precision weight matrix set needs to be determined. For weight-activation quantization,
the low-precision input feature X̂ is obtained from the quantization of X beforehand, and then its
optimization objective can be defined by simply replacing F(Ŵ,X) in Eq. 1 by F(Ŵ, X̂).

According to the above definition, when the window size s is one layer or one attention block or
multiple attention blocks and the moving interval per step i is equal to the window size s (i.e.,
there is no overlap between two consecutive windows), we will get the basic layer-wise, block-wise
and multi-block-wise quantization frameworks popularly used in existing post-training quantization
works (Yao et al., 2022; Frantar et al., 2023; Xiao et al., 2023; Shao et al., 2024; Liu et al., 2024b).

3.2 SLIDERQUANT

Recall that our empirical observations underlie two ingredients that are crucial to improve the se-
quential quantization framework. Firstly, the concentration of quantization process is required on
shallow and deep layers, particularly the first and last layers, as they are more sensitive to quantiza-
tion than intermediate layers. Secondly, the quantization synergy of successive layers is required to
reduce quantization errors across layers. For fixed-size sliding quantization (we use it as the baseline
sliding quantization design in our ablations), the existence of an overlap s− i ≥ 1 between any two
consecutive windows builds a basic synergy path to reduce quantization errors across layers. How-
ever, when using a fixed-size sliding window, all layers of any pre-trained LLM will be quantized
with the same window size and moving interval per step. That is, shallow, intermediate and deep
layers are still treated equally to a large extent, leading to a large gap to have the desired design. We
present SliderQuant to fill this gap via designing a more adaptive sliding quantization framework,
which consists of two novel sliding quantization components, as shown in Figure 2.

Inter-Layer Sliding Quantization. Our base component, inter-layer sliding quantization, incorpo-
rates three types of sliding window designs tailored for adaptively quantizing shallow, intermediate
and deep layers with a smart optimization relay across them. For Ls shallow layers, a progressively
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Figure 2: Overview of our SliderQuant based on a simple adaptive sliding quantization concept. The
base component, inter-layer sliding quantization, incorporates three types of sliding window designs
along shallow, intermediate and deep layers of a pre-trained LLM, which are tailored for addressing
the varying layer sensitivity to quantization. The other component, intra-layer sliding quantization,
is applied within each window of inter-layer sliding quantization, by which all layers in each window
are jointly quantized in an incremental manner. For SlidingQuant, the quantized overlaps between
two successive sliding windows/stages are re-quantized in the current window/stage.

expanded sliding window (PESW) is designed, which starts from quantizing the first layer with the
window size of 1, and then gradually increases the window size by 1 per step until including all shal-
low layers, taking the first layer as the anchor layer. With PESW, the first layer is always involved in
the quantization process with every expanded sliding window, building dense local to global syner-
gies to ease the quantization of shallow layers. Reversely, a progressively contracted sliding window
(PCSW) is designed for Ld deep layers, which starts from quantizing all deep layers, and then grad-
ually decreases the window size by 1 per step until to only include the last layer. With PCSW, the
last layer is always used as the anchor layer, and it is involved in the quantization process with every
contracted sliding window, building dense global to local synergies to ease the quantization of deep
layers. For Li intermediate layers, we adopt a fixed-size sliding window {s = 2, i = 1} (FSSW),
which starts by having one layer overlap with shallow layers and ends by having one layer over-
lap with deep layers. Sequentially applying these three types of sliding window designs establishes
the desired optimization relay across all layers of any pre-trained LLM, making inter-layer sliding
quantization component well leverage our identified empirical properties about the varying layer
sensitivity to quantization. According to the ablative experiments, we set Ls = Ld = 4 as default
for an accuracy-efficiency trade-off.

Intra-Layer Sliding Quantization. To exploit our identified empirical properties further, another
complementary component, intra-layer sliding quantization, is presented. Specifically, it extends the
progressively expanded sliding design to each window of inter-layer sliding quantization component,
where its s layers parallelly apply the progressively expanded sliding by a ratio γ along weight and
activation dimensions. As a result, the joint quantization of all s layers is completed incrementally
in N = 1/γ sliding stages. We set γ = 0.5, N = 2 as default, as illustrated in the right part of
Figure 2. Coupling these two components in this way leads to a neat formulation of SliderQuant.

Learnable Parameters and Quantizer. SliderQuant builds a new sequential quantization frame-
work by a flexible schedule of multiple sliding window designs, enabling dense synergies among
shallow/intermediate/deep layers and a smart quantization relay across them. Next, we describe how
SliderQuant quantizes weights and activations at each layer for a sliding window. It is well known
that effectively removing outliers in weights and activations at each layer of a pre-trained LLM is
important to reduce quantization errors. Prior works (Xiao et al., 2023; Shao et al., 2024; Liu et al.,
2024b; Ding et al., 2025) popularly use channel scaling (CS) (Meller et al., 2019) and low-rank
adaptation (LoRA) (Hu et al., 2022; Dettmers et al., 2023) to handle this issue. Inspired by them,
we simply combine CS and LoRA in our method. Let Wi ∈ Rn×m be the weight matrix of the ith

layer in a sliding window, and let Xi ∈ Rk×n be its input feature corresponding to a small set of c
task-agnostic calibration samples (c = 128 as default). Then, the quantization process is defined as

X̃i = Xi ⊘ αi, W̃i = Wi ⊙ αi +AiBi, Xi+1 = quantizer(X̃i) · quantizer(W̃i), (2)

where αi ∈ Rn denotes a learnable channel-wise scaling vector to scale Xi and reversely scale
Wi, Ai ∈ Rn×r and Bi ∈ Rr×m ( we set r = 4 in experiments) are two low-rank matrices to
get a refined weight matrix W̃i ∈ Rn×m for quantization, ⊘ and ⊙ denote element-wise division
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and multiplication operations, respectively. Regarding the choice of quantizer, we use a uniform
quantizer for both weights and activations, for simplicity and fair performance comparisons with
existing post-training quantization methods. We put its definition in the Appendix B.1.

4 EXPERIMENTS

Models. We select widely used Llama (Touvron et al., 2023a), Llama2 (Touvron et al., 2023b),
Llama3 (Dubey et al., 2024) and Qwen2.5 (Yang et al., 2024) families for experiments. To further
explore the potential of SliderQuant, we evaluate it on more advanced LLMs, including a Mixture
of Experts (MoE) model Qwen3-30B-A3B (Yang et al., 2025) and the recently popular DeepSeek-
R1 (Guo et al., 2025) distilled models with chain-of-thought capabilities.

Evaluations. For most models (including the Llama series, Qwen2.5, and Qwen3), following the
popular settings in post-training quantization, we evaluate their two fundamental capabilities: basic
language generation and commonsense reasoning. For language generation, we report perplexity
on WikiText2 (Merity et al., 2017) and C4 (Raffel et al., 2020). For commonsense reasoning, we
report zero-shot accuracy on 6 widely adopted benchmarks: PIQA (Bisk et al., 2020), ARC (Clark
et al., 2018), HellaSwag (HS) (Zellers et al., 2019), Winogrande (WG) (Sakaguchi et al., 2021),
BoolQ (Clark et al., 2019), and MMLU (Hendrycks et al., 2020). For the DeepSeek-R1 distilled
models, tailored for complex reasoning, we evaluate their performance on challenging mathematical
reasoning (MATH-500 (Hendrycks et al., 2021), AIME-2024 (Jia, 2024), and GSM8K (Cobbe et al.,
2021)) and code generation benchmarks (HumanEval+ and MBPP+ (Liu et al., 2023)). To ensure fair
and reproducible results, we adopt standard evaluation frameworks: LM Evaluation Harness (Gao
et al., 2024) for commonsense reasoning, OpenCompass (Contributors, 2023) for mathematical rea-
soning, and EvalPlus (Liu et al., 2023) for code generation.

Counterpart Methods. Recent PTQ methods introduce architectural modifications, some of which
are not absorable at inference. For a fair comparison, we categorize the PTQ methods into two
distinct groups based on whether they introduce extra inference-time costs. Notably, as a flexible
quantization framework, SliderQuant maintains compatibility with both paradigms. For quantization
without extra inference-time costs, our experiments cover both weight-only and weight-activation
quantization: for weight-only quantization, we compare SliderQuant with round-to-nearest quanti-
zation (RTN), GPTQ (Frantar et al., 2023), AWQ (Lin et al., 2024b), and QUIP (Chee et al., 2024);
for weight-activation quantization, we compare SliderQuant with RTN, SmoothQuant (Xiao et al.,
2023), OmniQuant (Shao et al., 2024), AffineQuant (Ma et al., 2024b), and CBQ (Ding et al., 2025).
For quantization with extra inference-time costs, we implement a variant of SliderQuant named
SliderQuant+ for a fair comparison, which additionally incorporates rotation transformations. We
compare it with QLLM (Liu et al., 2024b), Atom (Zhao et al., 2024), DuQuant (Lin et al., 2024a),
QuaRot (Ashkboos et al., 2024b), SpinQuant (Liu et al., 2025), and FlatQuant (Sun et al., 2025).
Implementation details are provided in the Appendix B.

4.1 MAIN RESULTS

Quantization without Extra Inference-time Cost. We first report the results for quantization meth-
ods without extra inference-time costs. As shown in Table 1, SliderQuant consistently achieves
lower perplexity on WikiText2 and C4 than the existing methods across a broad range of quantiza-
tion settings, model families and model sizes. Under the extremely low-bit configuration of W4A4,
SliderQuant achieves more prominent performance. These results demonstrate the robustness and
effectiveness of SliderQuant in preserving generation quality even under aggressive quantization. In
Table 2, we provide the comparison results on 6 commonsense QA benchmarks. We can observe that
SliderQuant consistently surpasses the existing methods. These results demonstrate the effectiveness
of SliderQuant in preserving various language capabilities of LLMs under low-bit quantization.

Quantization with Extra Inference-time Costs. The comparison results of quantization methods
with extra inference-time costs are shown in Table 3. Comparatively, SliderQuant+ achieves the best
results on average across different models and benchmarks. While SliderQuant demonstrates strong
quantization capabilities, incorporating rotation transformations further enhances its effectiveness,
enabling it to handle more precision-sensitive scenarios. Combining the results in Table 1, Table 2
and Table 3, we demonstrate the generalizability of our sliding quantization framework, which con-
sistently achieves superior performance compared to the state-of-the-art quantization methods with
or without extra inference-time costs. Experimental details are provided in the Appendix C.
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Table 1: Results comparison of different quantization methods without extra inference-time costs
on the language generation tasks. The metric is perplexity.

#Bits Method Llama2-7B Llama2-13B Llama2-70B Llama3-8B Qwen2.5-7B Qwen2.5-14B
Wiki ↓ C4 ↓ Wiki ↓ C4 ↓ Wiki ↓ C4 ↓ Wiki ↓ C4 ↓ Wiki ↓ C4 ↓ Wiki ↓ C4 ↓

W16A16 - 5.47 6.97 4.88 6.46 3.33 5.54 6.13 8.93 7.73 11.55 5.30 9.11

W4A16

RTN 6.11 7.71 5.20 6.83 3.67 5.79 8.29 11.85 10.39 14.83 6.78 10.35
AWQ 6.15 7.68 5.12 6.74 3.60 5.70 8.09 11.23 8.54 12.78 6.43 9.89
GPTQ 5.83 7.37 5.13 6.70 3.58 5.67 8.01 11.34 8.64 12.98 6.45 10.01

OmniQuant 5.74 7.35 5.02 6.65 3.47 5.65 7.28 10.59 8.23 12.25 5.94 9.67
CBQ 5.67 7.23 5.02 6.67 3.46 5.64 6.93 10.27 7.92 11.77 5.83 9.54

SliderQuant 5.61 7.19 5.00 6.54 3.41 5.60 6.79 9.94 7.81 11.59 5.80 9.53

W2A16

RTN 3.8e4 4.8e4 5.6e4 7.2e4 2.0e4 2.4e4 2.4e6 2.5e6 6.9e4 6.9e4 6.0e6 4.4e6
AWQ 2.2e5 1.7e5 1.2e5 9.4e4 9.1e1 5.1e1 5.6e5 3.1e5 1.5e2 2.7e2 1.4e3 2.7e3
GPTQ 7.7e3 NAN 2.1e3 3.2e2 77.95 48.82 7.8e5 9.7e5 1.2e2 3.1e2 1.2e3 1.3e3
QUIP 55.00 - 13.75 - 6.96 - 1.2e3 - - - - -

OmniQuant 37.37 90.64 17.21 26.76 7.81 12.28 2.8e5 3.9e5 56.45 89.13 67.84 89.56
CBQ 12.10 18.91 9.32 21.93 7.23 11.34 91.83 404.31 18.65 37.10 13.65 25.55

SliderQuant 9.59 13.83 7.71 11.21 6.53 9.59 27.59 56.98 17.15 31.08 12.68 21.91

W4A4

RTN 5.3e2 5.4e2 5.8e2 5.3e2 8.9e4 9.9e4 2.3e2 2.0e2 3.6e5 3.7e5 4.0e3 3.0e3
SmoothQuant 83.12 77.27 46.62 43.19 33.40 43.28 2.0e2 1.5e2 1.3e2 2.9e2 1.3e2 1.4e2
OmniQuant 14.26 18.02 12.30 14.55 11.54 13.72 1.5e2 1.4e2 93.73 2.9e2 34.70 61.75
AffineQuant 12.69 15.76 11.45 13.97 - - 2.1e3 3.5e3 - - - -

CBQ 12.73 14.45 8.48 11.71 7.56 11.04 35.97 32.64 35.00 72.09 18.20 27.96
SliderQuant 8.34 11.10 7.62 10.26 6.87 9.67 15.47 21.74 13.81 21.52 11.00 16.60

Table 2: Results comparison of different quantization methods without extra inference-time costs
on the zero-shot commonsense reasoning tasks. The metric is accuracy (%).

Model #Bits Method PIQA ↑ ARC-e ↑ ARC-c ↑ HS ↑ WG ↑ BoolQ ↑ MMLU ↑ Avg ↑

Llama2-13B

W16A16 - 80.41 77.40 49.15 79.37 72.14 80.55 52.77 70.26
W4A4 SmoothQuant 61.10 44.87 27.47 41.03 50.67 58.50 21.14 43.54
W4A4 OmniQuant 69.21 57.37 34.56 61.95 56.91 65.44 23.56 52.71
W4A4 CBQ 71.00 61.57 35.84 65.15 57.93 66.39 24.78 54.67
W4A4 SliderQuant 71.65 62.88 37.80 66.02 60.77 71.22 27.04 56.77

Qwen2.5-14B

W16A16 - 82.10 79.59 58.87 82.95 75.61 85.26 77.58 77.42
W4A4 SmoothQuant 54.57 35.14 24.66 35.29 51.46 56.45 24.90 40.35
W4A4 OmniQuant 59.45 48.56 30.16 61.42 54.23 58.34 27.68 48.55
W4A4 CBQ 67.52 60.86 36.18 60.12 58.09 60.15 31.61 53.50
W4A4 SliderQuant 71.16 66.96 40.96 63.38 62.51 64.25 43.50 58.96

Table 3: Results comparison of different quantization methods with extra inference-time costs. Slid-
erQuant+ denotes SliderQuant using rotation transformations.

Model #Bits Methods Wikitext2 ↓ C4 ↓ PIQA ↑ ARC-e ↑ ARC-c ↑ HS ↑ WG ↑ Avg ↑

Llama2-7B

W16A16 - 5.47 6.97 78.84 74.62 46.42 75.90 69.46 69.05
W4A4 QLLM 11.75 13.26 67.68 44.40 30.89 58.45 56.59 51.60
W4A4 Atom 6.96 9.12 69.75 47.35 34.22 63.21 56.51 54.21
W4A4 DuQuant 6.08 7.79 75.68 50.00 37.46 69.74 63.93 59.36
W4A4 QuaRot 6.10 8.69 76.77 69.87 40.87 72.16 63.77 64.69
W4A4 SpinQuant 5.96 8.28 76.17 69.28 41.72 72.90 66.06 65.23
W4A4 FlatQuant 5.79 7.79 77.26 72.05 43.26 73.64 69.53 67.15
W4A4 SliderQuant+ 5.71 7.68 77.97 73.15 43.35 73.71 69.74 67.58

Llama2-13B

W16A16 - 4.88 5.46 80.41 77.40 49.15 79.37 72.14 71.69
W4A4 QLLM 9.09 11.13 70.46 48.48 34.39 62.80 55.41 54.31
W4A4 Atom 6.96 9.12 71.16 50.89 37.88 67.51 58.40 57.17
W4A4 DuQuant 5.33 7.02 77.26 56.23 42.15 73.68 65.43 62.95
W4A4 QuaRot 6.10 8.67 77.69 69.95 42.83 73.54 67.88 66.38
W4A4 SpinQuant 5.44 8.11 78.40 72.43 43.69 75.52 68.90 67.79
W4A4 FlatQuant 5.12 7.09 79.38 76.64 48.04 77.59 70.24 70.38
W4A4 SliderQuant+ 5.07 7.04 79.96 77.27 48.95 77.96 71.98 71.22

Llama3-8B

W16A16 - 6.13 8.93 80.79 77.69 53.41 79.13 72.77 72.76
W4A4 Atom 22.14 31.83 62.95 49.45 30.12 53.75 56.04 50.46
W4A4 DuQuant 8.06 11.29 76.22 70.41 43.69 73.87 67.80 66.40
W4A4 QuaRot 8.16 13.38 75.14 68.01 43.34 72.94 65.82 65.05
W4A4 SpinQuant 7.39 12.19 77.37 74.20 47.27 74.55 68.51 68.38
W4A4 FlatQuant 6.98 11.13 79.16 75.80 50.00 76.80 72.69 70.89
W4A4 SliderQuant+ 6.87 11.04 79.22 77.53 50.60 77.31 72.82 71.50

Qwen2.5-7B-
Instruct

W16A16 - 8.36 14.37 80.20 75.80 51.37 79.57 69.93 71.37
W4A4 FlatQuant 8.46 13.94 76.93 77.69 51.71 78.42 69.53 70.86
W4A4 SliderQuant+ 8.00 13.38 79.56 79.05 52.27 78.66 69.88 71.88
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Table 4: Exploration of applying SliderQuant to the Mixture of Experts (MoE) model Qwen3-30B-
A3B. We apply OmniQuant to the model using the public code for a comparative evaluation.

#Bits Methods Wikitext2 ↓ C4 ↓ PIQA ↑ ARC-e ↑ ARC-c ↑ HS ↑ WG ↑ BoolQ ↑ MMLU ↑ Avg ↑

W16A16 - 8.71 12.08 80.14 79.25 56.23 77.66 69.93 88.56 77.74 75.64

W4A16 OmniQuant 9.25 12.54 79.43 77.23 52.22 76.36 69.46 87.68 76.21 74.08
W4A16 SliderQuant 9.04 12.47 79.87 77.44 55.20 76.75 70.96 87.92 76.83 75.00

W3A16 OmniQuant 10.27 13.52 79.00 76.73 52.73 74.77 67.25 86.94 73.63 73.01
W3A16 SliderQuant 9.92 13.32 80.20 79.00 54.61 74.80 70.48 87.61 74.63 74.48

W2A16 OmniQuant 33.25 27.12 70.78 54.97 34.04 56.59 54.46 69.63 32.67 53.31
W2A16 SliderQuant 23.84 21.60 72.36 67.51 40.53 60.79 62.04 77.61 47.19 61.15

Table 5: Exploration of applying SliderQuant to the DeepSeek-R1 distilled models on the challeng-
ing mathematical reasoning and code generation tasks that require complex reasoning. We apply
OmniQuant to the models using the public code for a comparative evaluation.

Model #Bits Method Mathematical Reasoning(pass@1) Code Generation(pass@1) Avg ↑MATH-500 ↑ AIME-2024 ↑ GSM8K ↑ HumanEval+ ↑ MBPP+ ↑

DeepSeek-R1-Distill-Qwen-14B
W16A16 - 95.00 73.33 91.50 73.17 61.11 78.82
W2A16 OmniQuant 0.00 0.00 2.20 0.00 0.00 0.44
W2A16 SliderQuant 29.40 10.00 54.28 12.80 21.16 23.53

DeepSeek-R1-Distill-Qwen-14B W4A16 OmniQuant 91.60 50.00 90.29 70.12 55.03 71.41
W4A16 SliderQuant 94.60 70.00 91.35 72.56 60.32 77.77

DeepSeek-R1-Distill-Qwen-32B
W16A16 - 94.60 76.67 93.02 81.71 69.84 83.17
W2A16 OmniQuant 13.40 0.00 26.83 0.00 0.00 8.05
W2A16 SliderQuant 58.60 16.67 73.69 12.80 21.16 34.59

DeepSeek-R1-Distill-Qwen-32B W4A16 OmniQuant 93.00 56.66 92.64 75.00 65.61 76.58
W4A16 SliderQuant 94.40 76.67 92.94 80.49 69.05 82.71

Extension to Mixture of Experts Architectures. As shown in Table 4, when extending SliderQuant
to the advanced MoE architectures, we can observe similar performance improvement trends. The
results further validate the generalizability of our SliderQuant.

Challenging Math and Code Tasks with Reasoning Language Models. Most existing PTQ works
are limited to evaluating LLMs on basic language generation and commonsense reasoning tasks.
However, for real-world applications, it is also crucial to assess their complex reasoning abilities
on more challenging tasks. In the experiments, we apply our SliderQuant to the state-of-the-art
DeepSeek-R1 distilled models, exploring its performance on challenging mathematical reasoning
and code generation benchmarks. The results are shown in Table 5. Under W4A16, SliderQuant
remains near-lossless relative to FP16 across both 14B and 32B models, while consistently outper-
forming OmniQuant. Under the more aggressive W2A16, SliderQuant achieves substantially higher
accuracy than prior methods across all benchmarks and model scales. These results indicate that
SliderQuant preserves reasoning fidelity at 4-bit and remains robust even at 2-bit.

4.2 ABLATION STUDIES

To have a better understanding of our proposed SliderQuant, we further conduct a lot of ablative
experiments under both weight-only quantization and weight-activation quantization with Llama2-
7B. In the ablations, we use the fixed-size sliding quantization {s = 2, i = 1} as the baseline.

Overall Design. We first conduct experiments to study the two core components of SliderQuant,
inter-layer sliding quantization (Inter-S) and intra-layer sliding quantization (Intra-S). The results
are shown in Table 6. Recall that compared to the baseline fixed-size sliding quantization, Inter-S
additionally introduces a progressively expanded sliding window (PESW) for shallow layers and a
progressively contracted sliding window (PCSW) for deep layers. We can find that both PESW and
PCSW significantly improve the performance, demonstrating the importance to consider the varying
layer sensitivity to quantization of pre-trained LLMs. By extending the progressively expanded
sliding design within each window, Intra-S further enhances the performance. Coupling Inter-S and
Intra-S leads to the best results, confirming the effectiveness of SliderQuant’s multi-level design.

Effect of Ls and Ld in Inter-layer Sliding Quantization. After validating the effectiveness of
Inter-S and Intra-S, we next study the effect of different settings for them independently. In Table 7,
we provide results of Inter-S with different Ls and Ld, namely the number of shallow layers and
deep layers in our design. For simplicity, we always keep Ls and Ld the same in the experiments.
As Ls and Ld gradually increase from 2 to 6, the model performance steadily improves. While it also
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Table 6: Effect of inter-layer sliding quantization
(Inter-S) and intra-layer sliding quantization (Intra-S).

Inter-S Intra-S W4A4 W2A16
PESW PCSW Wikitext2 ↓ C4 ↓ Wikitext2 ↓ C4 ↓

12.73 14.45 12.10 18.91
! 10.34 13.46 10.71 16.10

! 10.30 13.78 10.67 16.76
! 9.84 13.31 10.92 17.31

! ! 9.13 11.78 10.53 15.15
! ! ! 8.34 11.10 9.59 13.83

Table 7: Ablation of inter-layer sliding
quantization with different Ls and Ld.

Ls Ld
W4A4 W2A16

Wikitext2 ↓ C4 ↓ Wikitext2 ↓ C4 ↓
2 2 10.23 13.24 11.25 17.36
3 3 9.66 12.87 10.83 16.94
4 4 9.13 11.78 10.53 15.15
5 5 8.98 11.72 10.50 14.96
6 6 8.94 11.67 10.43 14.75

Table 8: Ablation of intra-layer sliding quan-
tization with different γ. Note (N = 1/γ).

Ratio #Stage W4A4 W2A16
γ N Wikitext2 ↓ C4 ↓ Wikitext2 ↓ C4 ↓

1.0 1 12.73 14.45 12.10 18.91
0.5 2 10.34 13.46 10.71 16.10

0.33 3 10.56 13.30 10.67 15.87
0.25 4 11.32 14.10 10.83 16.45

Table 9: Ablation of fixed-size sliding quantiza-
tion with larger s.

Method s Ls&Ld
W4A4 W2A16

Wikitext2 ↓ C4 ↓ Wikitext2 ↓ C4 ↓

Baseline
2 - 12.73 14.45 12.10 18.91
3 - 11.18 13.94 11.48 17.23
4 - 11.13 13.52 11.34 16.55

Inter-S 2 4 9.13 11.78 10.53 15.15

leads to larger memory usage and computation cost during quantization accordingly. Considering
the trade-off between quantization performance and efficiency, we set Ls = Ld = 4 as default, as
further scaling beyond this point provides only marginal improvements.

Effect of γ in Intra-layer Sliding Quantization. In the experiments, we evaluate the performance
of Intra-S with different settings of γ. Under the sliding ratio of γ, all layers in each window of
Inter-S are parallelly quantized along the weight/activation dimension incrementally, which is fully
quantized in N = 1/γ stages. As shown in Table 8, Intra-S with N > 1 always achieves better
performance than the baseline (N = 1). Among the different settings, we set γ = 0.5, N = 2 as
default, considering the performance and simplicity.

Effect of s in Fixed-size Sliding Quantization. To mitigate the performance differences potentially
caused by window size, we increase the fixed window size s in the baseline. As shown in Table 9,
the performance of the baseline improves as s increases from 2 to 4. Nevertheless, a substantial
performance gap still remains compared to Inter-S which uses the same window size of 4 only in
shallow and deep layers. This highlights the limitation of fixed-size sliding quantization, where a
uniform strategy overlooks the varying quantization sensitivity across layers. These results further
validate the necessity of our adaptive sliding window designs.

Table 10: Ablation study of channel
scaling (CS) and LoRA.

#Bits Methods CS LoRA Wikitext2 ↓ C4 ↓

W4A4

Baseline
! 20.41 29.67

! 12.73 14.45
! ! 13.92 18.44

SliderQuant
! 9.18 12.21

! 12.95 17.27
! ! 8.34 11.10

Channel Scaling and LoRA. Table 10 presents the ef-
fects of Channel Scaling (CS) and LoRA under W4A4
quantization. We observe that neither component alone
achieves the best performance. Regardless of whether
applied to the baseline or our SliderQuant, using both
CS and LoRA together consistently yields better results
than using either one individually. This demonstrates the
complementary nature of the two techniques under our
proposed sliding quantzation framework, well suppress-
ing outliers in weights and activations at each layer.

Additional Experiments and Analyses. We include further implementation details and more ex-
perimental results in the Appendix, covering the following aspects: (1) the analysis of SliderQuant’s
quantization efficiency; (2) the ablation studies on the number of calibration samples and the group-
size quantization; (3) extended evaluation across diverse model families and quantization settings;
(4) design details of SliderQuant with rotation transformations; (5) other results and visualizations.

5 CONCLUSION

In this paper, we propose SliderQuant, a new post-training quantization framework that explicitly
accounts for the varying layer sensitivity to quantization of large language models. By coupling
inter-layer and intra-layer sliding quantization components, SliderQuant reduces quantization errors
across layers. Extensive experiments across multiple model families, quantization settings (e.g.,
W2A16, W4A4), and benchmarks demonstrate the effectiveness and generalizability of our method.
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APPENDIX

• Section A: Datasets used in experiments.

• Section B: Implementation details of SliderQuant.

• Section C: Implementation details of SliderQuant with rotation transformations.

• Section D: Quantization efficiency of SliderQuant.

• Section E: More ablation studies.

• Section F: More results across diverse LLM families and quantization settings.

• Section G: Visualizations of the quantization impact of different layers to model accuracy.

• Section H: Visualizations of weights and activations in SliderQuant.

A DATASETS USED IN EXPERIMENTS

WikiText2 (Merity et al., 2017) is a popular language modeling benchmark consisting of over 2
million tokens from verified Wikipedia articles.

C4 (Raffel et al., 2020)(Colossal Clean Crawled Corpus) is a large-scale dataset primarily used for
language modeling tasks, comprising 156 billion clean tokens. It is sourced from cleaned web pages,
originally from Common Crawl.

PIQA (Bisk et al., 2020) contains 16,000 training and 3,000 validation samples. It focuses on
physical reasoning through multiple-choice questions, where models select the most appropriate
solution from two options, with exactly one correct answer.

ARC (Clark et al., 2018) is a dataset of 7,787 genuine grade-school level, multiple-choice science
questions, assembled to encourage research in advanced question-answering. The dataset is parti-
tioned into a Challenge Set and an Easy Set, where the former contains only questions answered
incorrectly by both a retrieval-based algorithm and a word co-occurrence algorithm.

HellaSwag (Zellers et al., 2019) contains 70,000 training and 10,000 validation samples. It focuses
on commonsense reasoning by predicting the most plausible sentence continuation, sourced from
crowdsourced captions and activity descriptions.

Winograde (Sakaguchi et al., 2021) is a collection of 44,000 problems, which is formulated as a
fill-in-a-blank task with binary options. The goal is to choose the right option for a given sentence
which requires commonsense reasoning.

BooIQ (Clark et al., 2019) is a dataset comprising 15,942 naturally occurring yes/no questions
paired with Wikipedia passages. Each example consists of a question, a passage, and a binary
answer, aiming to evaluate reading comprehension and entailment-like reasoning.

MMLU (Hendrycks et al., 2020) is a benchmark designed to evaluate the multitask accuracy of lan-
guage models across 57 diverse subjects, including elementary mathematics, U.S. history, computer
science, law, and more. The dataset consists of multiple-choice questions and is intended to assess
models’ world knowledge and problem-solving abilities in zero-shot and few-shot settings.

MATH-500 (Hendrycks et al., 2021) comprises 500 challenging competition-level mathematics
problems sampled from the MATH dataset. These problems span various topics such as algebra,
geometry, number theory, and probability, and are designed to test a model’s ability to perform
complex mathematical reasoning and generate step-by-step solutions.

AIME-2024 (Jia, 2024) includes 30 problems from the 2024 American Invitational Mathematics
Examination (AIME), a prestigious high school mathematics competition. The dataset serves as
a benchmark for evaluating models’ capabilities in solving advanced mathematical problems that
require deep understanding and creative problem-solving skills.

GSM8K (Cobbe et al., 2021) is a dataset of 8,792 high-quality, linguistically diverse grade school
math word problems created by human problem writers. The dataset is segmented into 7,473 train-
ing problems and 1,319 test problems, each requiring multi-step reasoning and basic arithmetic
operations to solve.
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HumanEval+ (Liu et al., 2023) is an extension of the HumanEval dataset, consisting of 164 original
programming problems designed to assess the functional correctness of code generated by language
models. Each problem includes a function signature, a docstring specifying the intended function-
ality, and multiple test cases for evaluation.

MBPP+ (Liu et al., 2023) is an augmented version of the Mostly Basic Programming Problems
(MBPP) dataset, comprising approximately 378 crowd-sourced Python programming tasks. Each
task includes a natural language description, a reference solution, and three test cases, aiming to
evaluate models’ abilities in basic programming and problem-solving.

B IMPLEMENTATION DETAILS OF SLIDERQUANT

B.1 QUANTIZATION DETAILS

We adopt uniform quantization for both weights and activations to ensure simplicity and fair compar-
ison with other post-training quantization methods. Specifically, we apply per-channel quantization
for weights and per-token quantization for activations, without employing group-size quantization,
which may improve accuracy at the cost of slower runtime. All weights and intermediate activations
are quantized into low-bit format, except for the Softmax output probability vectors, which are kept
in FP16 for numerical stability. Formally, for a general tensor Z, the quantization is defined as:

quantizer(Z) = clamp
(⌊

Z

α

⌉
− β, 0, 2b − 1

)
, α =

Zmax − Zmin

2b − 1
, β =

⌊
Zmin

α

⌉
, (A)

where clamp(x,Qmin, Qmax) clips x to the interval [Qmin, Qmax]; ⌊x⌉ denotes rounding to the
nearest integer; b is the bit-width; and Zmin,Zmax are the minimum and maximum values of Z,
respectively.

B.2 CHANNEL-WISE SCALING

Recall that, in our SliderQuant, we adopt popular used channel scaling and low-rank adaptation
(LoRA) to effectively remove outliers in weights and activations at each layer of a pre-trained LLM.
For the channel scaling, we simply follow the implementation of OmniQuant (Shao et al., 2024).
For the Llama (Touvron et al., 2023a) and Llama2 (Touvron et al., 2023b) families, we introduce
learnable scaling factors for the Qproj , Kproj , Vproj , Oproj , Upproj , and Downproj operators. For
the Llama3 (Dubey et al., 2024) and Qwen2.5 (Yang et al., 2024) families, due to the presence of
Group Query Attention, we align the dimensions of the Query and Key by replicating the scaling fac-
tor. All scaling factors are initialized to 1 and absorbed into the adjacent weights after quantization,
introducing no additional inference overhead.

B.3 LOW-RANK ADAPTATION

Table A: The detailed hyper-parameter set-
tings of SliderQuant.

Configuration Setting

Calibration set WikiText2
Number of calibration samples 128
Tokens per sample 2048

Ls, Ld 4, 4
s, i 2, 1
γ 0.5
Rank of LoRA (r) 4

Batch size 3
Optimizer AdamW
Epochs (W2A16 | others) 60 | 20
Learning rate of scaling factor 0.001
Learning rate of LoRA 0.0001
Learning rate schedule linear decay to zero

For every LLM tested in our experiments, we ap-
ply LoRA to all the linear layers to reduce quantiza-
tion loss through learnable weight adjustments. The
rank of LoRA is set to 4 (i.e., r=4), which introduces
significantly fewer learnable parameters compared to
full parameter fine-tuning. After quantization, the ad-
ditional learnable parameters introduced by LoRA are
absorbed into the model weights, resulting in no extra
computational overhead during inference.

B.4 HYPER-PARAMETER SETTINGS

For inter-layer sliding quantization, we set both the
number of shallow layers Ls and deep layers Ld to 4
as default. For the remaining intermediate layers, we
adopt a fixed-size sliding window with s = 2 and i = 1. For intra-layer sliding quantization, we set
the sliding ratio γ to 0.5. All the hyper-parameters are provided in Table A.
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B.5 QUANTIZATION HARDWARE AND DEPLOYMENT ACCELERATION

Post-training quantization experiments for models up to 32B parameters are performed on a single
NVIDIA RTX A6000 (48GB) GPU, while larger models such as the 65B and 70B variants require
two A6000 GPUs. Since the A6000 serves as our primary experimental platform, its deployment
results are reported in Table B. To provide a broader evaluation of hardware efficiency, we addition-
ally benchmark the quantized models on other GPUs, including a consumer-grade NVIDIA RTX
4090 (24GB) and a data-center NVIDIA A100 (40GB), with results summarized in Tables C and D.

Importantly, our method does not rely on customized quantization kernels. All deployment tests are
conducted with the widely adopted llama.cpp framework using a batch size of 1, a prompt length
of 512 tokens, and a generation length of 128 tokens. While specialized implementations such as
GPTQ (Frantar et al., 2023) or AWQ (Lin et al., 2024b) kernels may yield higher acceleration ratios,
our results demonstrate that the proposed method can be directly integrated into mainstream frame-
works without additional engineering efforts, ensuring practical applicability and fair comparability
across hardware platforms.

Table B: Inference efficiency of quantized models on one NVIDIA RTX A6000 using llama.cpp.
W Memory: weight storage; R Memory: peak runtime memory; Tokens/s: generated tokens per
second.

#Bits Llama2-7B Llama2-13B Llama2-70B
W Memory R Memory Tokens/s W Memory R Memory Tokens/s W Memory R Memory Tokens/s

FP16 12.55 GB 12.67 GB 45.89 24.24 GB 24.34 GB 24.71 128.48 GB OOM -
W4A16 3.59 GB 3.91 GB 116.56 6.91 GB 7.64 GB 68.66 36.55 GB 36.81 GB 15.42
W3A16 2.41 GB 3.00 GB 125.66 4.62 GB 4.99 GB 74.15 24.76 GB 25.04 GB 17.90
W2A16 1.73 GB 2.34 GB 135.80 3.29 GB 3.68 GB 80.21 17.03 GB 17.62 GB 19.62

Table C: Inference efficiency of quantized models on one NVIDIA RTX 4090 using llama.cpp.
W Memory: weight storage; R Memory: peak runtime memory; Tokens/s: generated tokens per
second.

#Bits Llama2-7B Llama2-13B Llama2-70B
W Memory R Memory Tokens/s W Memory R Memory Tokens/s W Memory R Memory Tokens/s

FP16 12.55 GB 13.24 GB 62.22 24.24 GB OOM - 128.48 GB OOM -
W4A16 3.59 GB 4.26 GB 156.09 6.91 GB 7.50 GB 92.99 36.55 GB OOM -
W3A16 2.41 GB 3.18 GB 188.06 4.62 GB 5.32 GB 117.20 24.76 GB OOM -
W2A16 1.73 GB 2.42 GB 226.73 3.29 GB 3.71 GB 143.51 17.03 GB 17.80 GB 38.67

Table D: Inference efficiency of quantized models on one NVIDIA A100-40GB using llama.cpp.
W Memory: weight storage; R Memory: peak runtime memory; Tokens/s: generated tokens per
second.

#Bits Llama2-7B Llama2-13B Llama2-70B
W Memory R Memory Tokens/s W Memory R Memory Tokens/s W Memory R Memory Tokens/s

FP16 12.55 GB 12.71 GB 81.79 24.24 GB 24.41 GB 44.73 128.48 GB OOM -
W4A16 3.59 GB 3.98 GB 138.14 6.91 GB 7.85 GB 81.23 36.55 GB 36.9 GB 20.16
W3A16 2.41 GB 3.12 GB 133.79 4.62 GB 5.14 GB 79.64 24.76 GB 25.13 GB 18.96
W2A16 1.73 GB 2.32 GB 146.35 3.29 GB 3.85 GB 87.33 17.03 GB 18.01 GB 21.19

C IMPLEMENTATION DETAILS OF SLIDERQUANT WITH ROTATION
TRANSFORMATIONS

Recall that in the Experiment section of the main paper, we apply our quantization framework Slid-
erQuant with and without extra inference-time costs. In the default settings, all the additional pa-
rameters introduced by SliderQuant during quantization are merged into the original weights at
inference. To further demonstrate the versatility of our approach, we also design a variant named
SliderQuant+ that incorporates rotation transformations, corresponding to the results shown in Ta-
ble 3 of the main paper. Our implementation is consistent with the Quarot (Ashkboos et al., 2024b)
codebase1. The detailed design is illustrated in Figure A. The non-mergeable Hadamard transfor-
mations are added after query projection (Qproj), key projection (Kproj) and before the output
projection Oproj in the multi-head self-attention module. In the feed-forward network (FFN), the
transformations are added before the down-projection (Downproj).

1https://github.com/spcl/QuaRot
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Figure A: Structural illustrations on additional rotation transformations added in SliderQuant+.

D QUANTIZATION EFFICIENCY OF SLIDERQUANT

Table E: The quantization efficiency of
SliderQuant in terms of GPU hours. Ex-
periments are conducted with Llama2-
7B under W4A4 quantization on a
NVIDIA RTX A6000. The metric is
perplexity.

#Epoch Wikitext2 ↓ C4 ↓ Time Cost (h)

10 8.92 11.59 3.24
20 8.34 11.10 6.14
30 8.30 11.05 9.22
40 8.28 11.04 12.81

To evaluate the quantization efficiency of SliderQuant,
we measure its perplexity performance under different
quantization time costs. As shown in Table E, Slid-
erQuant achieves remarkably low perplexity after only
10 epochs. We adopt 20 epochs as the default setting
to strike a balance between time overhead and perfor-
mance. Figure B further illustrates the detailed relation-
ship between quantization time and perplexity, demon-
strating that our method converges rapidly. OmniQuant
achieves 14.26|18.02 on WikiText2|C4 with the training
time of 4.75 hours. Comparatively, with the training time
less than 1 hour, SliderQuant achieves significantly better
performance on both benchmarks (9.5|12.29 on WikiText2|C4). The results demonstrate the high
quantization efficiency of SliderQuant. Even under extremely limited time budgets, the language
models quantized with SliderQuant still maintains good performance. Extending the quantization
duration can further improve performance.

(0.74, 9.59)

(4.75, 14.26)

(6.14, 8.34)

Faster 642%

Reduce 32.7% PPL

(a) WikiText2.

(0.74, 12.29)

(4.75, 18.02)

(6.14, 11.10)

Faster 642%

Reduce 31.8% PPL

(b) C4.

Figure B: The perplexity of SliderQuant on Llama2-7B under W4A4 quantization with different
quantization time cost. Experiments were conducted on a NVIDIA RTX A6000.

E MORE ABLATION STUDIES

The Number of Calibration Samples. To ensure a fair comparison with prior methods, we use the
calibration set with 128 samples as default. Here, we study the effect of the number of calibration
samples to SliderQuant. The results are shown in Table F. Notably, even with only 32 samples, Slid-
erQuant achieves the perplexity of 9.39|11.69 on Wikitext2|C4, demonstrating strong performance
with a much smaller number of calibration samples. As the number of samples increases, perfor-
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mance gradually improves, reaching the perplexity of 8.34|11.10 on Wikitext2|C4 with 128 samples.
Further increasing the number of calibration samples leads to consistent performance improvement.
These results highlight the efficiency and robustness of SliderQuant, which maintains competitive
performance even under a small number of calibration samples.

SliderQuant with Group-wise Quantization. To ensure inference efficiency, we use channel-wise
quantization for SliderQuant in the default settings. In Table G, we provide the results of SliderQuant
with group-wise quantization. Compared to channel-wise quantization, group-wise quantization
leads to better performance but increased parameter storage and slower inference speed, due to
the need to maintain more quantization parameters. We can find that the performance gradually
improves as the group size decreases, demonstrating a trade-off between performance and efficiency.
When inference cost is not a limiting factor, applying finer-grained group-wise quantization within
the SliderQuant framework can lead to even better performance, showcasing its flexibility and strong
quantization capability.

Table F: Effect of the number of calibration sam-
ples. We apply SliderQuant on Llama2-7B under
W4A4 quantization.

#Samples Wikitext2 ↓ C4 ↓ Time Cost (h)

32 9.38 11.69 1.87 h
64 8.87 11.45 3.68 h

128 8.34 11.10 6.14 h
256 8.30 11.01 11.76 h
512 8.26 10.93 23.16 h

Table G: Ablation of SliderQuant with
group-size quantization. We apply Slid-
erQuant on Llama2-7B under W2A16 quan-
tization.

Group Size Wikitext2 ↓ C4 ↓

32 8.20 10.90
64 8.78 11.45

128 9.15 12.30
256 9.23 13.11

channel-wise 9.59 13.83

F MORE RESULTS ACROSS DIVERSE LLM FAMILIES AND QUANTIZATION
SETTINGS

About the Results for Counterpart Methods. To demonstrate the effectiveness of SliderQuant,
we compare it with other counterpart post-training quantization methods (e.g., AWQ, GPTQ, Om-
niQuant). Here, we clarify the details about our reported results for the methods. For perplexity
on WikiText2 and C4, we adopt the evaluation results of Llama and Llama2 models as reported
in the respective papers of the counterpart methods. For models and settings not covered in prior
work—such as Llama3, Qwen2.5, and certain quantization configurations (e.g., W2A16)—we eval-
uate the results using public code and train the models to the best of our ability. For downstream
tasks, we follow a prioritized strategy: reported results in the original papers, followed by evaluation
using official checkpoints, and finally, reproduction via open-source code when necessary.

Table H: Results comparison of different quantization methods without extra inference-time costs
on Llama model family for the language generation tasks. The metric is perplexity.

#Bits Method Llama-7B Llama-13B Llama-65B
Wiki ↓ C4 ↓ Wiki ↓ C4 ↓ Wiki ↓ C4 ↓

W16A16 - 5.68 7.08 5.09 6.61 3.53 5.62

W4A16

RTN 6.43 7.93 5.55 6.98 3.87 5.85
AWQ 6.08 7.52 5.34 6.98 3.76 5.77
GPTQ 6.13 7.43 5.40 6.84 3.83 5.80

OmniQuant 5.86 7.34 5.21 6.76 3.71 5.73
CBQ 5.86 7.33 5.22 6.77 3.68 5.72

SliderQuant 5.81 7.26 5.19 6.73 3.65 5.70

W2A16

RTN 1.1e5 1.3e5 6.8e4 5.6e4 2.2e4 2.2e4
AWQ 2.6e5 1.9e5 2.8e5 2.3e5 75.43 56.34
GPTQ 2.1e3 690 5.5e3 2.5e3 55.91 40.58

OmniQuant 15.47 24.89 13.21 18.31 7.58 10.77
CBQ 9.65 13.45 7.96 11.66 6.56 9.34

SliderQuant 9.00 12.91 7.51 10.43 5.95 8.36

W4A4

RTN 2.7e2 4.0e2 2.4e3 1.8e3 3.7e4 8.9e3
SmoothQuant 25.25 32.32 40.05 47.18 2.8e2 2.4e2
OmniQuant 11.26 14.51 10.87 13.78 9.17 11.28

CBQ 10.39 13.41 9.69 12.55 7.23 9.45
SliderQuant 8.01 10.58 7.22 9.52 6.20 8.38
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The Results on Llama Model Family. In the main paper, we report results on the Llama2, Llama3,
Qwen2.5 model families. Here, we further provide results on the first version of Llama family,
including Llama-7B, Llama-13B and Llama-65B, evaluated on both language generation and zero-
shot commonsense reasoning tasks. As shown in Tables H and I, SliderQuant consistently achieves
the best performance under various quantization settings, outperforming existing methods such as
RTN, AWQ (Lin et al., 2024b), GPTQ (Frantar et al., 2023), SmoothQuant (Xiao et al., 2023),
OmniQuant (Shao et al., 2024) and CBQ (Ding et al., 2025). Notably, in challenging low-bit con-
figurations like W4A4 and W2A16, SliderQuant maintains strong generation quality and reasoning
accuracy, demonstrating its robustness and precision-preserving capability.

Table I: Results comparison of different quantization methods without extra inference-time costs on
Llama model family for the zero-shot commonsense reasoning tasks. The metric is accuracy (%).

Model #Bits Method PIQA ↑ ARC-e ↑ ARC-c ↑ HS ↑ WG ↑ BoolQ ↑ Avg ↑

Llama-7B

W16A16 - 79.43 73.15 45.05 76.16 70.24 75.17 69.87
W4A4 SmoothQuant 49.80 30.40 25.80 27.40 48.00 49.10 38.42
W4A4 OmniQuant 66.15 45.20 31.14 56.44 53.43 63.51 52.65
W4A4 CBQ 70.51 55.81 31.74 60.03 57.93 64.85 56.81
W4A4 SliderQuant 71.93 59.05 34.13 63.26 60.30 66.27 59.16

Llama-13B

W16A16 - 80.41 74.71 47.95 79.08 73.09 77.92 72.19
W4A4 SmoothQuant 61.04 39.18 30.80 52.29 51.06 61.80 49.36
W4A4 OmniQuant 69.69 47.39 33.10 58.96 55.80 62.84 54.63
W4A4 CBQ 71.00 61.57 35.84 65.15 57.93 66.39 58.48
W4A4 SliderQuant 75.19 62.79 36.26 68.49 64.01 67.43 62.36

Llama-65B

W16A16 - 82.37 79.76 55.38 84.13 76.95 84.92 77.25
W4A4 SmoothQuant 62.24 46.93 27.82 41.09 51.38 46.91 46.06
W4A4 OmniQuant 74.54 65.61 40.61 69.30 59.35 70.24 63.28
W4A4 CBQ 76.01 68.45 42.56 73.45 62.89 71.23 65.76
W4A4 SliderQuant 76.77 70.92 44.88 75.65 64.48 72.39 67.51

More Results with Weight-Activation Quantization. In the main paper, we provide the results
of Llama2-13B and Qwen2.5-14B with weight-activation quantization on zero-shot commonsense
reasoning tasks. Here, we provide the additional results of other four models with different scales,
including Llama2-7B, Llama2-70B, Qwen2.5-7B and Qwen2.5-32B. As shown in Table J, our Slid-
erQuant consistently outperforms existing methods such as SmoothQuant, OmniQuant and CBQ
across all tested models and tasks under W4A4 quantization. Even for smaller models like Llama2-
7B and Qwen2.5-7B, which are generally more sensitive to quantization, SliderQuant achieves the
best performance on average. For instance, on Llama2-7B, it reaches the average accuracy of
59.30%, notably higher than CBQ (56.26%) and OmniQuant (54.95%). Similarly, for the larger-
scale Llama2-70B, our method reaches 65.24%, outperforming CBQ (62.70%) and OmniQuant
(59.93%).

Table J: Results comparison of different quantization methods without extra inference-time costs
on the zero-shot commonsense reasoning tasks under weight-activation quantization. The metric is
accuracy (%).

Model #Bits Method PIQA ↑ ARC-e ↑ ARC-c ↑ HS ↑ WG ↑ BoolQ ↑ Avg ↑

Llama2-7B

W16A16 - 78.84 74.62 46.42 75.90 69.46 78.01 70.54
W4A4 SmoothQuant 60.88 39.77 27.13 41.32 51.54 51.07 45.29
W4A4 OmniQuant 68.44 54.17 31.91 55.95 55.56 63.67 54.95
W4A4 CBQ 70.18 56.40 33.45 60.46 55.09 61.96 56.26
W4A4 SliderQuant 71.38 59.64 32.94 62.33 61.72 67.77 59.30

Llama2-70B

W16A16 - 82.64 80.47 57.34 83.32 78.14 84.10 77.67
W4A4 SmoothQuant 61.37 46.21 31.23 52.65 50.91 57.28 49.94
W4A4 OmniQuant 71.71 59.55 37.20 66.63 58.17 66.30 59.93
W4A4 CBQ 73.24 62.45 37.30 69.84 61.23 72.13 62.70
W4A4 SliderQuant 75.79 64.14 37.71 73.02 65.75 75.02 65.24

Qwen2.5-7B

W16A16 - 79.71 76.05 49.57 78.13 71.27 84.71 73.24
W4A4 SmoothQuant 50.44 25.97 26.02 25.92 53.20 38.81 36.73
W4A4 OmniQuant 53.32 33.84 24.40 33.75 52.80 38.78 39.48
W4A4 CBQ 62.57 48.99 31.06 47.31 54.54 53.67 49.69
W4A4 SliderQuant 66.92 59.30 33.62 55.06 59.43 62.54 56.15

Qwen2.5-32B

W16A16 - 82.26 78.03 55.63 84.07 75.45 87.43 77.15
W4A4 SmoothQuant 61.59 48.15 32.34 49.91 52.01 50.55 49.09
W4A4 OmniQuant 71.16 61.24 39.93 65.48 59.27 65.26 60.39
W4A4 CBQ 71.44 63.47 36.86 59.41 63.93 69.63 60.79
W4A4 SliderQuant 72.09 68.10 40.70 62.12 63.30 70.14 62.74
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More Results with Weight-Only Quantization. In the main paper, we provide the results with
weight-only quantization on language generation tasks. In Table K, we further provide the results
of SliderQuant with weight-only quantization on zero-shot commonsense reasoning tasks, show-
casing the performance of SliderQuant under W4A16 and W2A16 quantization settings across five
representative models selected from the Llama and Qwen model families. As shown in Table K,
SliderQuant achieves nearly lossless performance under W4A16, with accuracies closely matching
the full-precision (W16A16) counterparts. For example, on Qwen2.5-14B, SliderQuant in W4A16
achieves the average accuracy of 76.74%, compared to 77.40% for the FP16 counterpart. Under the
more aggressive W2A16 setting, performance degradation becomes more noticeable but remains
within an acceptable range.

Table K: Zero-shot commonsense reasoning results under weight-only quantization of SliderQuant.
The evaluation metric is accuracy (%).

Model #Bits Method PIQA ↑ ARC-e ↑ ARC-c ↑ HS ↑ WG ↑ BoolQ ↑ Avg ↑

Llama2-7B
W16A16 - 78.84 74.62 46.42 75.90 69.46 78.01 70.54
W4A16 SliderQuant 78.67 71.55 42.49 74.77 69.14 74.89 68.59
W2A16 SliderQuant 70.78 57.79 31.06 57.15 60.14 66.12 57.17

Llama2-13B
W16A16 - 80.41 77.40 49.15 79.37 72.14 80.55 73.17
W4A16 SliderQuant 80.41 76.73 48.55 78.30 72.14 78.10 72.37
W2A16 SliderQuant 73.56 67.47 37.54 64.75 63.22 70.67 62.87

Qwen2.5-7B
W16A16 - 79.71 76.05 49.57 78.13 71.27 84.71 73.24
W4A16 SliderQuant 79.22 75.47 49.20 76.97 71.27 83.15 72.55
W2A16 SliderQuant 68.50 60.31 34.56 53.02 59.91 65.05 56.89

Qwen2.5-14B
W16A16 - 82.10 79.59 58.87 82.95 75.61 85.26 77.40
W4A16 SliderQuant 81.23 79.12 58.43 81.65 75.03 84.95 76.74
W2A16 SliderQuant 72.09 68.10 40.70 62.12 63.30 70.14 62.74

Qwen2.5-32B
W16A16 - 82.26 81.03 58.45 84.13 77.61 87.49 78.50
W4A16 SliderQuant 81.88 80.39 57.59 83.17 77.27 86.74 77.84
W2A16 SliderQuant 74.59 72.01 46.42 65.12 66.30 56.85 63.55

As an additional complement to the results in the main paper, the comprehensive experiments across
different model families (Llama, Llama2, Llama3, Qwen2.5), model scales (7B, 8B, 13B, 14B,
32B, 65B, 70B), quantization setting (W4A4,W2A16,W4A16), and benchmarks(language genera-
tion and zero-shot commonsense reasoning) further highlight the stable and superior performance
of SliderQuant.

G VISUALIZATIONS OF THE QUANTIZATION IMPACT OF DIFFERENT LAYERS
TO MODEL ACCURACY

To further validate our empirical observation that different layers in LLMs exhibit varying sensitivity
to quantization, we provide additional visualizations on Llama3-8B, Qwen2.5-7B, and Qwen2.5-
32B, as shown in Figure C. Consistent with the observations discussed in the main paper (illustrated
in Figure 1), these results reveal several important trends. First, for all tested LLMs, intermediate
layers tend to be less sensitive to quantization, incurring smaller accuracy degradation compared to
shallow and deep layers. This confirms that shallow and deep layers are more difficult to quantize
and require special attention. Second, the first and last layers exhibit the highest quantization sensi-
tivity, leading to the most significant increases in perplexity when they are quantized. This highlights
their critical role in maintaining model fidelity. Third, as more layers are quantized sequentially from
shallow to deep, the cumulative quantization error increases gradually, further demonstrating the
compounding effect of poor quantization in sensitive layers. Among all methods, SliderQuant con-
sistently achieves the lowest perplexity in both the single-layer and cumulative-layer quantization
settings. This is because it explicitly focuses on reducing quantization errors in the more vulnerable
shallow and deep layers, effectively controlling overall errors propagation. These additional visual-
izations provide further empirical evidence for layer-wise differences in quantization sensitivity, and
reinforce the design rationale of SliderQuant. They demonstrate the necessity of quantization-aware
strategies that account for such sensitivity variation, especially when targeting low-bit quantization.
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Figure C: Illustrations on the quantization impact of different layers to model accuracy: (1) quantiz-
ing a single layer (the first row) and (2) quantizing the first l layers (the second row) of Llama3-8B,
Qwen2.5-7B and Qwen2.5-32B. Here, we select three representative layer-wise, block-wise and
multi-block-wise quantization methods, SmoothQuant, OmniQuant and CBQ, and examine them in
4-bit weight-activation (W4A4) quantization on WikiText2.

H VISUALIZATIONS OF WEIGHTS AND ACTIVATIONS IN SLIDERQUANT

To better understand how SliderQuant improves the quantization process, we visualize the numeri-
cal ranges of both activations and weights before and after applying it. Specifically, we compute the
range as the difference between the maximum and minimum values—per channel for weights and
per token for activations. Large value ranges are known to complicate quantization, especially under
low-bit settings, as they increase the risk of information loss. Therefore, reducing these ranges can
significantly ease quantization and improve accuracy. Taking Llama2-7B under the W4A4 quanti-
zation setting as an example, we examine the value ranges after merging the learnable parameters
from OmniQuant and SliderQuant into the original weights, without actually applying quantization.
This allows us to isolate the effect of these methods on the intrinsic distribution of the weights and
activations, offering a clearer view of the quantization difficulty induced by each approach.

As shown in Figures D to F, SliderQuant consistently reduces the channel-wise weight ranges across
shallow, middle, and deep layers, clearly outperforming OmniQuant. Similarly, as shown in Fig-
ures G to R, the token-wise activation ranges after applying SliderQuant are significantly smaller
than those in the original model and OmniQuant across a wide range of representative samples and
layers.

By simultaneously compressing the value ranges of both activations and weights across different
model depths and inputs, SliderQuant reduces quantization difficulty and enables effective low-bit
quantization with minimal performance degradation. This dual-range suppression is a key factor
behind SliderQuant’s robustness and near-lossless performance in challenging low-bit regimes.
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Figure D: Visualization of channel-wise weight ranges (max–min) in the 1st layer of Llama2-7B
under W4A4 quantization.
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Figure E: Visualization of channel-wise weight ranges (max–min) in the 18th layer of Llama2-7B
under W4A4 quantization.
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Figure F: Visualization of channel-wise weight ranges (max–min) in the 31st layer of Llama2-7B
under W4A4 quantization.
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Figure G: Visualization of token-wise activation ranges (max–min) in the 1st layer of Llama2-7B
for the first sample of 4 samples randomly selected from Wikitext2 under W4A4 quantization.
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Figure H: Visualization of token-wise activation ranges (max–min) in the 1st layer of Llama2-7B
for the second sample of 4 samples randomly selected from Wikitext2 under W4A4 quantization.
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Figure I: Visualization of token-wise activation ranges (max–min) in the 1st layer of Llama2-7B for
the third sample of 4 samples randomly selected from Wikitext2 under W4A4 quantization.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Qproj Kproj Vproj

Oproj Upproj Gateproj

Figure J: Visualization of token-wise activation ranges (max–min) in the 1st layer of Llama2-7B for
the fourth sample of 4 samples randomly selected from Wikitext2 under W4A4 quantization.
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Figure K: Visualization of token-wise activation ranges (max–min) in the 18th layer of Llama2-7B
for the first sample of 4 samples randomly selected from Wikitext2 under W4A4 quantization.
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Figure L: Visualization of token-wise activation ranges (max–min) in the 18th layer of Llama2-7B
for the second sample of 4 samples randomly selected from Wikitext2 under W4A4 quantization.
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Figure M: Visualization of token-wise activation ranges (max–min) in the 18th layer of Llama2-7B
for the third sample of 4 samples randomly selected from Wikitext2 under W4A4 quantization.
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Figure N: Visualization of token-wise activation ranges (max–min) in the 18th layer of Llama2-7B
for the fourth sample of 4 samples randomly selected from Wikitext2 under W4A4 quantization.
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Figure O: Visualization of token-wise activation ranges (max–min) in the 31st layer of Llama2-7B
for the first sample of 4 samples randomly selected from Wikitext2 under W4A4 quantization.
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Figure P: Visualization of token-wise activation ranges (max–min) in the 31st layer of Llama2-7B
for the second sample of 4 samples randomly selected from Wikitext2 under W4A4 quantization.
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Figure Q: Visualization of token-wise activation ranges (max–min) in the 31st layer of Llama2-7B
for the third sample of 4 samples randomly selected from Wikitext2 under W4A4 quantization.
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Figure R: Visualization of token-wise activation ranges (max–min) in the 31st layer of Llama2-7B
for the fourth sample of 4 samples randomly selected from Wikitext2 under W4A4 quantization.
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