
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SLIDERQUANT: ACCURATE POST-TRAINING QUANTI-
ZATION FOR LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we address post-training quantization (PTQ) for large language mod-
els (LLMs) from an overlooked perspective: given a pre-trained high-precision
LLM, the predominant sequential quantization framework treats different layers
equally, but this may be not optimal in challenging bit-width settings. We em-
pirically study the quantization impact of different layers on model accuracy, and
observe that: (1) shallow/deep layers are usually more sensitive to quantization
than intermediate layers; (2) among shallow/deep layers, the most sensitive one is
the first/last layer, which exhibits significantly larger quantization error than oth-
ers. These empirical observations imply that the quantization design for different
layers of LLMs is required on multiple levels instead of a single level shared to all
layers. Motivated by this, we propose a new PTQ framework termed Sliding-layer
Quantization (SliderQuant) that relies on a simple adaptive sliding quantization
concept facilitated by few learnable parameters. The base component of Slid-
erQuant is called inter-layer sliding quantization, which incorporates three types
of novel sliding window designs tailored for addressing the varying quantization
sensitivity of shallow, intermediate and deep layers. The other component is called
intra-layer sliding quantization that leverages an incremental strategy to quantize
each window. As a result, SliderQuant has a strong ability to reduce quantization
errors across layers. Extensive experiments on basic language generation, zero-
shot commonsense reasoning and challenging math and code tasks with various
LLMs, including Llama/Llama2/Llama3/Qwen2.5 model families, DeepSeek-R1
distilled models and large MoE models, show that our method outperforms exist-
ing PTQ methods (including the latest PTQ methods using rotation transforma-
tions) for both weight-only quantization and weight-activation quantization under
diverse bit width settings. Code will be made publicly available.

1 INTRODUCTION

Transformer-based large language models (LLMs) (Vaswani et al., 2017; Devlin et al., 2019; Brown
et al., 2020; Achiam et al., 2023; Touvron et al., 2023b; Anil et al., 2023; Liu et al., 2024a; Jaech
et al., 2024; Guo et al., 2025) have demonstrated extraordinary performance on a wide range of
natural language processing tasks. However, deploying them in real-world scenarios poses a great
challenge due to their huge model sizes. Post-training quantization (PTQ) is a practically appealing
way to reduce memory and computation demands of LLMs at inference. It approximates pre-trained
high-precision models with low-precision replacements conditioned on a small number of calibra-
tion samples, without the need of the expensive retraining pipeline used in quantization-aware train-
ing (Zafrir et al., 2019; Ma et al., 2024a; Xu et al., 2024). Because of this, PTQ research has gained
increasing attention in the LLM community.

Existing PTQ methods for LLMs generally use a sequential quantization framework: splitting a pre-
trained LLM into the same-sized disjoint parts, and then quantizing them from the first to the last part
separately. Early seminal works, such as LLM.int8() (Dettmers et al., 2022), ZeroQuant (Yao et al.,
2022), GPTQ (Frantar et al., 2023) and SmoothQuant (Xiao et al., 2023), assume that different
layers of a pre-trained LLM are independent to each other, and use the layer-wise quantization.
This simple framework has been popularly adopted by many subsequent works (Lin et al., 2024b;
Ashkboos et al., 2024b; Lin et al., 2024a; Dettmers et al., 2024; Duanmu et al., 2024). Instead,
OmniQuant (Shao et al., 2024) and FlatQuant (Sun et al., 2025) employ the block-wise quantization
in which layers within each attention block are quantized simultaneously. To explore longer-distance

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Illustrations on the quantization impact of different layers to model accuracy: (1) quantiz-
ing a single layer (the first row) and (2) quantizing the first l layers (the second row) of Llama2-7B,
Llama2-13B and Qwen2.5-14B. Here, we select three representative layer-wise, block-wise and
multi-block-wise quantization methods, SmoothQuant, OmniQuant and CBQ, and examine them
in 4-bit weight-activation (W4A4) quantization on WikiText2. In the Appendix, Figure C provides
more illustrations on Llama3-8B, Qwen2.5-7B and Qwen2.5-32B, showing similar observations.

dependencies than the block-wise quantization, QLLM (Liu et al., 2024b) and CBQ (Ding et al.,
2025) utilize the multi-block-wise quantization based on a fixed-size sliding window, resembling
the insights of prior works (Li et al., 2021; Zheng et al., 2022) tailored for quantizing convolutional
neural networks in computer vision. These methods have significantly advanced the research on
post-training quantization for LLMs. However, in formulation, they typically treat different layers
of any pre-trained LLM equally, no matter using the layer-wise or block-wise or multi-block-wise
quantization. Such an assumption seems fairly reasonable under moderate quantization settings,
e.g., 8-bit weight, as the total quantization error tends to be small. However, we conjecture it may
be not optimal under challenging quantization settings, e.g., 4-bit weight-activation.

For the sequential quantization framework described above, some previous works (Nagel et al.,
2020; Li et al., 2021; Frantar et al., 2023; Shao et al., 2024; Ding et al., 2025) have established
a solid theoretical foundation based on second-order Taylor expansion to get a better approxima-
tion solution for post-training quantization. This paper moves one step further: we revisit the pre-
dominant sequential quantization framework via questioning whether different layers of currently
prevailing LLMs have similar quantization impacts on model accuracy. To explore this question,
we select three representative layer-wise, block-wise and multi-block-wise quantization methods,
SmoothQuant, OmniQuant and CBQ, and examine them on a lot of popular LLMs in the challeng-
ing 4-bit weight-activation quantization regime. Of particular interest, we have observed several
properties. Firstly, for each of our tested LLMs, intermediate layers usually have smaller quantiza-
tion impacts on model accuracy compared to shallow/deep layers. This implies that shallow/deep
layers are more sensitive to quantization than intermediate layers which are relatively easy to quan-
tize. Secondly, among shallow/deep layers, the first/last layer has the largest quantization impact on
model accuracy, exhibiting significantly larger quantization error than others. This implies that the
first and last layers are greatly important in the quantization process, as they are responsible for the
very basic feature extraction and the final feature abstraction. Thirdly, as more layers are sequen-
tially quantized, the quantization impact on model accuracy will be magnified gradually. However,
SmoothQuant, OmniQuant and CBQ show unsatisfactory abilities to suppress this issue, suffer-
ing from the underlying premise that all layers are treated equally in their layer-wise, block-wise
and multi-block-wise quantization frameworks. Figure 1 illustrates these properties on Llama2-7B,
Llama2-13B (Touvron et al., 2023b) and Qwen2.5-14B (Yang et al., 2024).

These empirical properties highlight two ingredients that are essential to formulate an improved
sequential quantization framework: (1) the concentration of quantization process is required on
shallow and deep layers, particularly the first and last layers; (2) the quantization synergy of succes-
sive layers is required to reduce quantization errors across layers. Driven by the importance of these
two ingredients, we present a new sequential quantization framework, Sliding-layer Quantization
(SliderQuant) shown in Figure 2, which relies on a simple adaptive sliding quantization concept. In
principle, by adopting a sliding window, the layers of a pre-trained LLM are sequentially divided

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

into overlapping windows with the same size first, and then the quantization is performed window by
window facilitated by few learnable quantization parameters. The overlaps of consecutive windows
establish a basic quantization synergy path to reduce quantization errors across layers. However,
simply using a fixed-size sliding window (Duanmu et al., 2024; Ding et al., 2025) still has a large
gap to endow SliderQuant with the desired two ingredients, as shallow, intermediate and deep lay-
ers will be quantized with the same window size and moving interval per step. We fill this gap
by presenting two novel sliding quantization components. Our base component, inter-layer sliding
quantization, incorporates three types of sliding window designs tailored for adaptively quantizing
shallow, intermediate and deep layers with a smart optimization relay across them. Specifically, it
first allocates a progressively expanded sliding window along shallow layers, a fixed-size sliding
window along intermediate layers and a progressively contracted sliding window along deep lay-
ers, and then performs the sliding quantization progressively. With three types of sliding window
designs, our inter-layer sliding quantization component can leverage the aforementioned empirical
properties about the varying layer sensitivity to quantization. To exploit these empirical properties
further, we present another complementary component called intra-layer sliding quantization. It
extends the progressively expanded sliding design within each window of inter-layer sliding quan-
tization component, by which all layers in each window are jointly quantized in an incremental
manner. Coupling these two components in this way forms a neat implementation of SliderQuant.

Overall, SliderQuant is a flexible PTQ framework which can be used for both weight-only and
weight-activation quantization. Our experiment results show that SliderQuant outperforms exist-
ing PTQ works across a broad range of quantization settings (W4A16, W3A16, W2A16, W4A4),
model families (Llama, Llama2, Llama3, Qwen2.5, Qwen3) and model sizes (7B, 8B, 13B, 14B,
32B, 65B, 70B) on 2 basic language generation and 6 commonsense reasoning benchmarks. Incor-
porating advanced techniques (e.g., rotation transformations) into SliderQuant further improves its
performance. In addition, we validate the effectiveness of our SliderQuant on the advanced MoE
model Qwen3-30B-A3B. Notably, we also apply SliderQuant to the recently popular DeepSeek-
R1 (Guo et al., 2025) distilled models with strong chain-of-thought reasoning abilities, achieving
near-lossless accuracy under 4-bit weight-only quantization on the challenging math and code tasks.

2 RELATED WORK

Many PTQ works focus on weight-only quantization. Early works, such as Q-BERT (Shen et al.,
2020) and GOBO (Zadeh et al., 2020), use a mixed-precision decomposition scheme in which the
weight outliers (i.e., a small fraction of weights causing large quantization errors) are retained in
high-precision format while the other weights are quantized into low-precision format. They con-
sider small language models like BERT. GPTQ (Frantar et al., 2023) formulates an efficient weight-
only quantization approach using approximate second-order Hessian matrices. Compared to the
popular round-to-nearest (RTN) quantization method (Dettmers et al., 2022), GPTQ shows much
better performance when quantizing weights to 3-bit/4-bit. QuIP (Chee et al., 2024) introduces
an incoherence-driven scheme to enhance the quantization process of GPTQ, especially for the 2-
bit quantization of weights, and an improved variant is further presented in (Tseng et al., 2024).
SpQR (Dettmers et al., 2024) and AWQ (Lin et al., 2024b) extend the mixed-precision decom-
position scheme through designing more effective strategies to identify weight outliers, achieving
superior performance to GPTQ. To avoid the inefficiency of the mixed-precision implementation
on hardware systems (Cai et al., 2020), AWQ searches channel-wise factors to scale down weight
outliers, enabling full-weight quantization. Some works (Shen et al., 2020; Tang et al., 2023; Park
et al., 2024; Kim et al., 2024) try to advance the PTQ research from other aspects. Another PTQ
research line is dedicated to 1-bit weight quantization which is beyond the focus of this paper.

Compared to weight-only quantization, weight-activation quantization can bring more signifi-
cant reduction ratios in both compute and storage costs at inference, but it is more difficult.
LLM.int8() (Dettmers et al., 2022), a pioneering work for weight-activation quantization, uses a
mixed-precision scheme that quantizes all weights and most of activations into INT8 format, but
isolates activation outliers (i.e., a small fraction of activations that have large magnitudes than the
others) into FP16 format. To suppress activation outliers, Wei et al. (2022) develops a strategy that
employs the non-scaling layer normalization and the token-wise clipping, making activations to be
more friendly for 8-bit quantization. Unlike LLM.int8() using the vanilla vector-wise quantization
with RTN, ZeroQuant (Yao et al., 2022) applies a fine-grained INT-8 quantization scheme con-
sisting of group-wise quantization for weights and token-wise quantization for activations. Based

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

on a linear equivalent transformation, SmoothQuant (Xiao et al., 2023) uses per-channel smooth-
ing factors to scale down activation outliers and scale up the corresponding weights, mitigating the
quantization difficulty from activations to weights which are easier to quantize. SmoothQuant offline
calculates channel-wise smoothing factors over a randomly sampled calibration set, and is tailored
for 8-bit weight-activation quantization. Instead, OmniQuant (Shao et al., 2024) dynamically learns
activation-smoothing factors and weight-clipping thresholds, and considers more diverse bit-width
settings down to 4-bit. QUIK (Ashkboos et al., 2024a) addresses 4-bit weight-activation quanti-
zation by extending the mixed-precision scheme. QLLM (Liu et al., 2024b) formulates a channel
disassembly and channel assembly scheme facilitated by the low-rank adaptation (Hu et al., 2022)
to suppress outliers in some channels. However, this scheme modifies LLM architectures, and thus
introduces extra inference-time cost. QuaRot (Ashkboos et al., 2024b) uses random rotation trans-
formations to remove outliers from the hidden state. Some subsequent works improve QuaRot by
making rotation transformations learnable (Liu et al., 2025; Sun et al., 2025) or combining rotation
and permutation transformations (Lin et al., 2024a). Similar to QLLM, these rotation-based meth-
ods also introduce extra computation cost at inference, as rotation transformations added to some
layers are not absorbable due to non-linear operations.

3 METHOD

In this section, we describe the formulation of our SliderQuant and detail its implementation.

3.1 BASIC CONCEPT: FIXED-SIZE SLIDING QUANTIZATION

Given a pre-trained high-precision LLM having L layers, we start with the vanilla sliding quanti-
zation (Duanmu et al., 2024; Ding et al., 2025). It uses a fixed-size sliding window {s, i} moving
along the layer direction of the given model and performs the sequential quantization in a window-
wise manner, where s denotes the window size, i denotes the moving interval per step. The overlap
between two consecutive windows is s− i. Let W = {W1, ...Ws} be the pre-trained weight matrix
set for s layers in the current window and let X be its input feature corresponding to a small set of c
task-agnostic calibration samples. Then, for weight-only quantization, the optimization objective is
defined as

argmin
Ŵ

||F(W,X),F(Ŵ,X)||22, (1)

where F(·, ·) denotes the output feature of the current window, and Ŵ = {Ŵ1, ...Ŵs} denotes
the low-precision weight matrix set needs to be determined. For weight-activation quantization,
the low-precision input feature X̂ is obtained from the quantization of X beforehand, and then its
optimization objective can be defined by simply replacing F(Ŵ,X) in Eq. 1 by F(Ŵ, X̂).

According to the above definition, when the window size s is one layer or one attention block or
multiple attention blocks and the moving interval per step i is equal to the window size s (i.e., there is
no overlap between two consecutive windows), we will get layer-wise, block-wise and multi-block-
wise quantization frameworks popularly used in existing PTQ works (Yao et al., 2022; Frantar et al.,
2023; Xiao et al., 2023; Shao et al., 2024; Liu et al., 2024b). That is, they are special cases of fixed-
sized sliding quantization. For sliding PTQ methods including ours, a larger window size leads to
increased memory cost but enjoys much better accuracy (see Table 1) compared to layer-wise PTQ
methods like GPTQ (the most efficient PTQ method tailored for weight-only quantization).

3.2 SLIDERQUANT

Recall that our empirical observations underlie two ingredients that are crucial to improve the se-
quential quantization framework. Firstly, the concentration of quantization process is required on
shallow and deep layers, particularly the first and last layers, as they are more sensitive to quantiza-
tion than intermediate layers. Secondly, the quantization synergy of successive layers is required to
reduce quantization errors across layers. For fixed-size sliding quantization (we use it as the baseline
sliding quantization design in our ablations), the existence of an overlap s− i ≥ 1 between any two
consecutive windows builds a basic synergy path to reduce quantization errors across layers. How-
ever, when using a fixed-size sliding window, all layers of any pre-trained LLM will be quantized
with the same window size and moving interval per step. That is, shallow, intermediate and deep
layers are still treated equally to a large extent, leading to a large gap to have the desired design. We
present SliderQuant to fill this gap via designing a more adaptive sliding quantization framework,
which consists of two novel sliding quantization components, as shown in Figure 2.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

progressively

contracted sliding
fixed-size sliding

progressively

expanded sliding

Intra-layer sliding quantizationInter-layer sliding quantization

… …

shallow intermediate deep

sliding window

layer

quantization

order

any quantizing window

Quantized Quantizing Unquantized

… …

quantized group

1 2.60 5.3

Stage 1

Weights/Activations

quantized group

1 30 5

Stage 2

shared shared

Figure 2: Overview of our SliderQuant relying on a simple adaptive sliding quantization concept.
The base component, inter-layer sliding quantization, has three sliding window designs along shal-
low, intermediate and deep layers of a given FP16 LLM, which are tailored for addressing their vary-
ing layer sensitivity to quantization. To establish a smooth sliding quantization relay from shallow to
intermediate layers then from intermediate to deep layers, we set one overlapped layer between shal-
low and intermediate layers and one overlapped layer between intermediate and deep layers. This
also makes each intermediate layer have an even quantization frequency. The other component,
intra-layer sliding quantization, is applied within the current window of inter-layer sliding quantiza-
tion, by which all layers in the current window are jointly quantized in an incremental manner.

Inter-Layer Sliding Quantization. Our base component, inter-layer sliding quantization, incorpo-
rates three types of sliding window designs tailored for adaptively quantizing shallow, intermediate
and deep layers with a smart optimization relay across them. For Ls shallow layers, a progressively
expanded sliding window (PESW) is designed, which starts from quantizing the first layer with the
window size of 1, and then gradually increases the window size by 1 per step until including all shal-
low layers, taking the first layer as the anchor layer. With PESW, the first layer is always involved in
the quantization process with every expanded sliding window, building dense local to global syner-
gies to ease the quantization of shallow layers. Reversely, a progressively contracted sliding window
(PCSW) is designed for Ld deep layers, which starts from quantizing all deep layers, and then grad-
ually decreases the window size by 1 per step until to only include the last layer. With PCSW, the
last layer is always used as the anchor layer, and it is involved in the quantization process with every
contracted sliding window, building dense global to local synergies to ease the quantization of deep
layers. For Li intermediate layers, we adopt a fixed-size sliding window {s = 2, i = 1} (FSSW)
and an even optimization frequency across layers. Specifically, we set one overlapped layer between
shallow and intermediate layers, and also set one overlapped layer between intermediate and deep
layers. Alternatively, when the window size of fixed-size sliding quantization at intermediate layers
is larger than 2 (i.e., s > 2), we can easily ensure an even optimization frequency by changing the
number of overlapped layers between intermediate layers and shallow/deep layers, e.g., 2 overlapped
layers when s = 3. Sequentially applying these three types of sliding window designs establishes
the desired optimization relay across all layers of any pre-trained LLM, making inter-layer sliding
quantization component well leverage our identified empirical properties about the varying layer
sensitivity to quantization. According to the ablative experiments, we set Ls = 4, Ld = 4 as default
for an accuracy-efficiency trade-off.

Intra-Layer Sliding Quantization. To exploit our identified empirical properties further, another
complementary component, intra-layer sliding quantization, is presented. This component is applied
into the current sliding window of inter-layer sliding quantization. Specifically, it extends the pro-
gressively expanded sliding design to each window of inter-layer sliding quantization component,
where its s layers parallelly apply the progressively expanded sliding by a ratio γ along weight and
activation dimensions. As a result, the joint quantization of all s layers is completed incrementally
in N = 1/γ sliding stages. We set γ = 0.5, N = 2 as default, as illustrated in the right part of Fig-
ure 2. In the first stage, the first half of weight/activation matrices in the current window of inter-layer
sliding quantization is quantized jointly. In the second stage, the whole of weight/activation matri-
ces (including the first half) in the current window of inter-layer sliding quantization is quantized
jointly. As a result, intra-layer sliding quantization builds a local to global parameter synergy across
layers within the current sliding window of inter-layer sliding quantization to suppress quantization
error. Coupling these two components in this way also leads to a neat formulation of SliderQuant.

Learnable Parameters and Quantizer. SliderQuant builds a new sequential quantization frame-
work by a flexible schedule of multiple sliding window designs, enabling dense synergies among

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

shallow/intermediate/deep layers and a smart quantization relay across them. Next, we describe how
SliderQuant quantizes weights and activations at each layer for a sliding window. It is well known
that effectively removing outliers in weights and activations at each layer of a pre-trained LLM is
important to reduce quantization errors. Prior works (Xiao et al., 2023; Shao et al., 2024; Liu et al.,
2024b; Ding et al., 2025) popularly use channel scaling (CS) (Meller et al., 2019) and low-rank
adaptation (LoRA) (Hu et al., 2022; Dettmers et al., 2023) to handle this issue. Inspired by them,
we simply combine CS and LoRA in our method. Let Wi ∈ Rn×m be the weight matrix of the ith

layer in a sliding window, and let Xi ∈ Rk×n be its input feature corresponding to a small set of c
task-agnostic calibration samples (c = 128 as default). Then, the quantization process is defined as

X̃i = Xi ⊘ αi, W̃i = Wi ⊙ αi +AiBi, Xi+1 = quantizer(X̃i) · quantizer(W̃i), (2)
where αi ∈ Rn denotes a learnable channel-wise scaling vector to scale Xi and reversely scale Wi,
Ai ∈ Rn×r and Bi ∈ Rr×m (we set r = 4 in experiments) are two low-rank matrices to get a re-
fined weight matrix W̃i ∈ Rn×m for quantization, ⊘ and ⊙ denote element-wise division and multi-
plication operations, respectively. With the refined weight matrices W̃ and input X̃ defined by Eq. 2,
the corresponding quantized weight matrices Ŵ = quantizer(W̃) and input X̂ = quantizer(X̃) are
obtained to minimize the mean square error defined in Eq. 1. In implementation, we use a uniform
quantizer for both weights and activations, for simplicity and fair performance comparisons with
existing post-training quantization methods. We put its definition in the Appendix B.1.

4 EXPERIMENTS

Models. We select widely used Llama (Touvron et al., 2023a), Llama2 (Touvron et al., 2023b),
Llama3 (Dubey et al., 2024) and Qwen2.5 (Yang et al., 2024) families for experiments. To further
explore the potential of SliderQuant, we evaluate it on more advanced LLMs, including a Mixture
of Experts (MoE) model Qwen3-30B-A3B (Yang et al., 2025) and the recently popular DeepSeek-
R1 (Guo et al., 2025) distilled models with chain-of-thought capabilities.

Evaluations. For most models (including the Llama series, Qwen2.5, and Qwen3), following the
popular settings in post-training quantization, we evaluate their two fundamental capabilities: basic
language generation and commonsense reasoning. For language generation, we report perplexity
on WikiText2 (Merity et al., 2017) and C4 (Raffel et al., 2020). For commonsense reasoning, we
report zero-shot accuracy on 6 widely adopted benchmarks: PIQA (Bisk et al., 2020), ARC (Clark
et al., 2018), HellaSwag (HS) (Zellers et al., 2019), Winogrande (WG) (Sakaguchi et al., 2021),
BoolQ (Clark et al., 2019), and MMLU (Hendrycks et al., 2020). For the DeepSeek-R1 distilled
models, tailored for complex reasoning, we evaluate their performance on challenging mathematical
reasoning (MATH-500 (Hendrycks et al., 2021), AIME-2024 (Jia, 2024), and GSM8K (Cobbe et al.,
2021)) and code generation benchmarks (HumanEval+ and MBPP+ (Liu et al., 2023)). To ensure fair
and reproducible results, we adopt standard evaluations: LM Evaluation Harness (Gao et al., 2024)
for commonsense reasoning, OpenCompass (Contributors, 2023) for mathematical reasoning, and
EvalPlus (Liu et al., 2023) for code generation.

Counterpart Methods. Recent PTQ methods introduce architectural modifications, some of which
are not absorable at inference. For a fair comparison, we categorize the PTQ methods into two
distinct groups based on whether they introduce extra inference-time costs. Notably, as a flexible
quantization framework, SliderQuant maintains compatibility with both paradigms. For quantization
without extra inference-time costs, our experiments cover both weight-only and weight-activation
quantization: for weight-only quantization, we compare SliderQuant with round-to-nearest quanti-
zation (RTN), GPTQ (Frantar et al., 2023), AWQ (Lin et al., 2024b), and QuIP (Chee et al., 2024);
for weight-activation quantization, we compare SliderQuant with RTN, SmoothQuant (Xiao et al.,
2023), OmniQuant (Shao et al., 2024), AffineQuant (Ma et al., 2024b), and CBQ (Ding et al., 2025).
For quantization with extra inference-time costs, we implement a variant of SliderQuant named
SliderQuant+ for a fair comparison, which additionally incorporates rotation transformations. We
compare it with QLLM (Liu et al., 2024b), Atom (Zhao et al., 2024), DuQuant (Lin et al., 2024a),
QuaRot (Ashkboos et al., 2024b), SpinQuant (Liu et al., 2025), and FlatQuant (Sun et al., 2025).
Implementation details are provided in the Appendix B.

4.1 MAIN RESULTS

Quantization without Extra Inference-time Cost. We first report the results for quantization meth-
ods without extra inference-time costs. As shown in Table 1, SliderQuant consistently achieves

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Results comparison of different quantization methods without extra inference-time costs
on the language generation tasks. The metric is perplexity.

#Bits Method Llama2-7B Llama2-13B Llama2-70B Llama3-8B Qwen2.5-7B Qwen2.5-14B
Wiki ↓ C4 ↓ Wiki ↓ C4 ↓ Wiki ↓ C4 ↓ Wiki ↓ C4 ↓ Wiki ↓ C4 ↓ Wiki ↓ C4 ↓

W16A16 - 5.47 6.97 4.88 6.46 3.33 5.54 6.13 8.93 7.73 11.55 5.30 9.11

W4A16

RTN 6.11 7.71 5.20 6.83 3.67 5.79 8.29 11.85 10.39 14.83 6.78 10.35
AWQ 6.15 7.68 5.12 6.74 3.60 5.70 8.09 11.23 8.54 12.78 6.43 9.89
GPTQ 5.83 7.37 5.13 6.70 3.58 5.67 8.01 11.34 8.64 12.98 6.45 10.01

OmniQuant 5.74 7.35 5.02 6.65 3.47 5.65 7.28 10.59 8.23 12.25 5.94 9.67
CBQ 5.67 7.23 5.02 6.67 3.46 5.64 6.93 10.27 7.92 11.77 5.83 9.54

SliderQuant 5.61 7.19 5.00 6.54 3.41 5.60 6.79 9.94 7.81 11.59 5.80 9.53

W2A16

RTN 3.8e4 4.8e4 5.6e4 7.2e4 2.0e4 2.4e4 2.4e6 2.5e6 6.9e4 6.9e4 6.0e6 4.4e6
AWQ 2.2e5 1.7e5 1.2e5 9.4e4 9.1e1 5.1e1 5.6e5 3.1e5 1.5e2 2.7e2 1.4e3 2.7e3
GPTQ 7.7e3 NAN 2.1e3 3.2e2 77.95 48.82 7.8e5 9.7e5 1.2e2 3.1e2 1.2e3 1.3e3
QuIP 55.00 - 13.75 - 6.96 - 1.2e3 - - - - -

OmniQuant 37.37 90.64 17.21 26.76 7.81 12.28 2.8e5 3.9e5 56.45 89.13 67.84 89.56
CBQ 12.10 18.91 9.32 21.93 7.23 11.34 91.83 404.31 18.65 37.10 13.65 25.55

SliderQuant 9.59 13.83 7.71 11.21 6.53 9.59 27.59 56.98 17.15 31.08 12.68 21.91

W4A4

RTN 5.3e2 5.4e2 5.8e2 5.3e2 8.9e4 9.9e4 2.3e2 2.0e2 3.6e5 3.7e5 4.0e3 3.0e3
SmoothQuant 83.12 77.27 46.62 43.19 33.40 43.28 2.0e2 1.5e2 1.3e2 2.9e2 1.3e2 1.4e2
OmniQuant 14.26 18.02 12.30 14.55 11.54 13.72 1.5e2 1.4e2 93.73 2.9e2 34.70 61.75
AffineQuant 12.69 15.76 11.45 13.97 - - 2.1e3 3.5e3 - - - -

CBQ 12.73 14.45 8.48 11.71 7.56 11.04 35.97 32.64 35.00 72.09 18.20 27.96
SliderQuant 8.34 11.10 7.62 10.26 6.87 9.67 15.47 21.74 13.81 21.52 11.00 16.60

Table 2: Results comparison of different quantization methods without extra inference-time costs
on the zero-shot commonsense reasoning tasks. The metric is accuracy (%).

Model #Bits Method PIQA ↑ ARC-e ↑ ARC-c ↑ HS ↑ WG ↑ BoolQ ↑ MMLU ↑ Avg ↑

Llama2-13B

W16A16 - 80.41 77.40 49.15 79.37 72.14 80.55 52.77 70.26
W4A4 SmoothQuant 61.10 44.87 27.47 41.03 50.67 58.50 21.14 43.54
W4A4 OmniQuant 69.21 57.37 34.56 61.95 56.91 65.44 23.56 52.71
W4A4 CBQ 71.00 61.57 35.84 65.15 57.93 66.39 24.78 54.67
W4A4 SliderQuant 71.65 62.88 37.80 66.02 60.77 71.22 27.04 56.77

Qwen2.5-14B

W16A16 - 82.10 79.59 58.87 82.95 75.61 85.26 77.58 77.42
W4A4 SmoothQuant 54.57 35.14 24.66 35.29 51.46 56.45 24.90 40.35
W4A4 OmniQuant 59.45 48.56 30.16 61.42 54.23 58.34 27.68 48.55
W4A4 CBQ 67.52 60.86 36.18 60.12 58.09 60.15 31.61 53.50
W4A4 SliderQuant 71.16 66.96 40.96 63.38 62.51 64.25 43.50 58.96

lower perplexity on WikiText2 and C4 than the existing methods across a broad range of quantiza-
tion settings, model families and model sizes. Under the extremely low-bit configuration of W4A4,
SliderQuant achieves more prominent performance. These results demonstrate the robustness and
effectiveness of SliderQuant in preserving generation quality even under aggressive quantization. In
Table 2, we provide the comparison results on 6 commonsense QA benchmarks. We can observe that
SliderQuant consistently surpasses the existing methods. These results demonstrate the effectiveness
of SliderQuant in preserving various language capabilities of LLMs under low-bit quantization.

Quantization with Extra Inference-time Costs. The comparison results of quantization methods
with extra inference-time costs are shown in Table 3. Comparatively, SliderQuant+ achieves the best
results on average across different models and benchmarks. While SliderQuant demonstrates strong
quantization capabilities, incorporating rotation transformations further enhances its effectiveness,
enabling it to handle more precision-sensitive scenarios. Combining the results in Table 1, Table 2
and Table 3, we demonstrate the generalizability of our sliding quantization framework, which con-
sistently achieves superior performance compared to the state-of-the-art quantization methods with
or without extra inference-time costs. Experimental details are provided in the Appendix C.

Extension to Mixture of Experts Architectures. As shown in Table 4, when extending SliderQuant
to the advanced MoE architectures, we can observe similar performance improvement trends. The
results further validate the generalizability of our SliderQuant.

Challenging Math and Code Tasks with Reasoning Language Models. Most existing PTQ works
are limited to evaluating LLMs on basic language generation and commonsense reasoning tasks.
However, for real-world applications, it is also crucial to assess their complex reasoning abilities
on more challenging tasks. In the experiments, we apply our SliderQuant to the state-of-the-art
DeepSeek-R1 distilled models, exploring its performance on challenging mathematical reasoning

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Results comparison of different quantization methods with extra inference-time costs. Slid-
erQuant+ denotes SliderQuant using rotation transformations.

Model #Bits Methods WikiText2 ↓ C4 ↓ PIQA ↑ ARC-e ↑ ARC-c ↑ HS ↑ WG ↑ Avg ↑

Llama2-7B

W16A16 - 5.47 6.97 78.84 74.62 46.42 75.90 69.46 69.05
W4A4 QLLM 11.75 13.26 67.68 44.40 30.89 58.45 56.59 51.60
W4A4 Atom 6.96 9.12 69.75 47.35 34.22 63.21 56.51 54.21
W4A4 DuQuant 6.08 7.79 75.68 50.00 37.46 69.74 63.93 59.36
W4A4 QuaRot 6.10 8.69 76.77 69.87 40.87 72.16 63.77 64.69
W4A4 SpinQuant 5.96 8.28 76.17 69.28 41.72 72.90 66.06 65.23
W4A4 FlatQuant 5.79 7.79 77.26 72.05 43.26 73.64 69.53 67.15
W4A4 SliderQuant+ 5.71 7.68 77.97 73.15 43.35 73.71 69.74 67.58

Llama2-13B

W16A16 - 4.88 5.46 80.41 77.40 49.15 79.37 72.14 71.69
W4A4 QLLM 9.09 11.13 70.46 48.48 34.39 62.80 55.41 54.31
W4A4 Atom 6.96 9.12 71.16 50.89 37.88 67.51 58.40 57.17
W4A4 DuQuant 5.33 7.02 77.26 56.23 42.15 73.68 65.43 62.95
W4A4 QuaRot 6.10 8.67 77.69 69.95 42.83 73.54 67.88 66.38
W4A4 SpinQuant 5.44 8.11 78.40 72.43 43.69 75.52 68.90 67.79
W4A4 FlatQuant 5.12 7.09 79.38 76.64 48.04 77.59 70.24 70.38
W4A4 SliderQuant+ 5.07 6.95 79.96 77.27 48.95 77.96 71.98 71.22

Llama-2-70B

W16A16 - 3.32 5.71 82.70 81.02 57.17 83.81 77.98 76.54
W4A4 QuaRot 3.79 6.12 81.83 79.76 55.46 81.58 76.09 74.94
W4A4 SpinQuant 3.70 6.07 82.37 79.04 55.38 82.57 78.22 75.52
W4A4 FlatQuant 3.55 5.91 82.75 80.30 56.14 83.01 77.90 76.02
W4A4 SliderQuant+ 3.50 5.87 82.75 81.23 56.57 83.12 77.93 76.32

Llama3-8B

W16A16 - 6.13 8.93 80.79 77.69 53.41 79.13 72.77 72.76
W4A4 Atom 22.14 31.83 62.95 49.45 30.12 53.75 56.04 50.46
W4A4 DuQuant 8.06 11.29 76.22 70.41 43.69 73.87 67.80 66.40
W4A4 QuaRot 8.16 13.38 75.14 68.01 43.34 72.94 65.82 65.05
W4A4 SpinQuant 7.39 12.19 77.37 74.20 47.27 74.55 68.51 68.38
W4A4 FlatQuant 6.98 11.13 79.16 75.80 50.00 76.80 72.69 70.89
W4A4 SliderQuant+ 6.87 11.04 79.22 77.53 50.60 77.31 72.82 71.50

Qwen2.5-7B-
Instruct

W16A16 - 8.36 14.37 80.20 75.80 51.37 79.57 69.93 71.37
W4A4 FlatQuant 8.46 13.94 76.93 77.69 51.71 78.42 69.53 70.86
W4A4 SliderQuant+ 8.00 13.38 79.56 79.05 52.27 78.66 69.88 71.88

Table 4: Exploration of applying SliderQuant to the Mixture of Experts (MoE) model Qwen3-30B-
A3B. We apply OmniQuant to the model using the public code for a comparative evaluation.

#Bits Methods WikiText2 ↓ C4 ↓ PIQA ↑ ARC-e ↑ ARC-c ↑ HS ↑ WG ↑ BoolQ ↑ MMLU ↑ Avg ↑

W16A16 - 8.71 12.08 80.14 79.25 56.23 77.66 69.93 88.56 77.74 75.64

W4A16 OmniQuant 9.25 12.54 79.43 77.23 52.22 76.36 69.46 87.68 76.21 74.08
W4A16 SliderQuant 9.04 12.47 79.87 77.44 55.20 76.75 70.96 87.92 76.83 75.00

W3A16 OmniQuant 10.27 13.52 79.00 76.73 52.73 74.77 67.25 86.94 73.63 73.01
W3A16 SliderQuant 9.92 13.32 80.20 79.00 54.61 74.80 70.48 87.61 74.63 74.48

W2A16 OmniQuant 33.25 27.12 70.78 54.97 34.04 56.59 54.46 69.63 32.67 53.31
W2A16 SliderQuant 23.84 21.60 72.36 67.51 40.53 60.79 62.04 77.61 47.19 61.15

W4A4 OmniQuant 52.43 41.98 67.41 55.64 33.28 52.34 52.09 64.86 25.17 50.11
W4A4 SliderQuant 15.49 17.77 75.52 70.79 46.67 68.82 63.14 82.26 60.80 66.86

Table 5: Exploration of applying SliderQuant to the DeepSeek-R1 distilled models on the challeng-
ing mathematical reasoning and code generation tasks that require complex reasoning.

Model #Bits Method Mathematical Reasoning(pass@1) Code Generation(pass@1) Avg ↑MATH-500 ↑ AIME-2024 ↑ GSM8K ↑ HumanEval+ ↑ MBPP+ ↑

DeepSeek-R1-Distill-Qwen-14B
W16A16 - 95.00 73.33 91.50 73.17 61.11 78.82
W2A16 OmniQuant 0.00 0.00 2.20 0.00 0.00 0.44
W2A16 SliderQuant 29.40 10.00 54.28 12.80 21.16 25.53

DeepSeek-R1-Distill-Qwen-14B W4A16 OmniQuant 91.60 50.00 90.29 70.12 55.03 71.41
W4A16 SliderQuant 94.60 70.00 91.35 72.56 60.32 77.77

DeepSeek-R1-Distill-Qwen-32B
W16A16 - 94.60 76.67 93.02 81.71 69.84 83.17
W2A16 OmniQuant 13.40 0.00 26.83 0.00 0.00 8.05
W2A16 SliderQuant 58.60 16.67 73.69 12.80 21.16 36.59

DeepSeek-R1-Distill-Qwen-32B W4A16 OmniQuant 93.00 56.66 92.64 75.00 65.61 76.58
W4A16 SliderQuant 94.40 76.67 92.94 80.49 69.05 82.71

and code generation benchmarks. The results are shown in Table 5. Under W4A16, SliderQuant
remains near-lossless relative to FP16 across both 14B and 32B models, while consistently outper-
forming OmniQuant. Under the more aggressive W2A16, SliderQuant achieves substantially higher
accuracy than prior methods across all benchmarks and model scales. These results indicate that
SliderQuant preserves reasoning fidelity at 4-bit and remains robust even at 2-bit.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 6: Results comparison of SliderQuant with mixed-precision quantization methods on Llama2-
13B. In the table, (1) for LLM-MQ/QUIK, 0.5% in FP16 or 5% in FP16 indicates the ratio of weight
or weight-activation outliers at each layer stored in FP16; (2) for 2.1-bit weight quantization by Slid-
erQuant, we simply use 4-bit quantization to the first and last layers while quantizing all other layers
to 2-bit, and SliderQuant+ denotes our best version of SliderQuant using rotation transformations.

#Bits Method WikiText2 ↓ PIQA ↑ ARC-e ↑ HS ↑ WG ↑ Avg ↑

W16A16 - 4.88 80.41 77.40 79.37 72.14 77.33

W4A16 (0.5% in FP16) LLM-MQ 8.03 79.49 58.50 76.31 69.30 70.90
W4A16 SliderQuant 5.00 80.41 76.73 78.30 72.14 76.90

W3.4A16 (0.5% in FP16) LLM-MQ 8.61 79.49 58.12 74.77 69.61 70.50
W3A16 SliderQuant 5.27 79.11 74.16 76.78 69.76 74.95

W2.2A16 (0.5% in FP16) LLM-MQ 10.80 76.77 55.26 70.83 67.09 67.49
W2.1A16 SliderQuant 7.64 77.21 62.58 71.05 67.51 69.59

W2A16 (0.5% in FP16) LLM-MQ 12.17 75.84 54.29 68.32 65.51 65.99
W2A16 SliderQuant 7.71 73.56 67.47 64.75 63.22 67.25
W2A16 (0.5% in FP16) SliderQuant 7.64 76.13 67.51 69.25 66.12 69.75

W4.9A4 (5% in FP16) QUIK 5.28 79.22 74.92 78.36 71.90 76.10
W4A4 SliderQuant+ 5.07 79.96 77.27 77.96 71.98 76.79

Table 7: Results comparison of SliderQuant with mixed-precision quantization method SpQR on
Llama-7B and Llama-13B.

Model #Bits Method WikiText2 ↓ C4 ↓ PIQA ↑ ARC-e ↑ ARC-c ↑ HS ↑ WG ↑ Avg ↑

Llama-7B
W16A16 - 5.68 7.08 79.43 73.15 45.05 76.16 70.24 68.81

W3.45A16 SpQR 5.87 7.28 78.13 65.87 38.05 55.27 67.48 60.96
W3A16 SliderQuant 5.82 7.13 77.42 69.70 40.36 71.74 67.96 65.44

Llama-13B
W16A16 - 5.09 5.62 80.41 74.71 47.95 79.08 73.09 71.05

W3.45A16 SpQR 5.22 6.72 78.73 73.27 42.75 58.22 68.90 64.37
W3A16 SliderQuant 5.21 6.78 79.33 73.15 45.73 76.19 70.72 69.02

Comparison with Mixed-Precision Methods. In Table 6 and Table 7, we compare SliderQuant
with state-of-the-art mixed-precision quantization methods including LLM-MQ (Li et al., 2023) and
SpQR (Dettmers et al., 2024) for weight-only quantization, and QUIK for weight-activation quanti-
zation. Across all settings, SliderQuant consistently achieves higher accuracy, even under lower bit
widths. Notably, SliderQuant surpasses LLM-MQ and QUIK configured with higher bit widths pre-
serving a fixed portion of FP16 outliers, and also yields clear gains over SpQR. These results show
that our sliding-layer mechanism is also superior to existing mixed-precision quantization schemes.

4.2 ABLATION STUDIES

To have a better understanding of our proposed SliderQuant, we further conduct a lot of ablative
experiments under both weight-only quantization and weight-activation quantization with Llama2-
7B. In the ablations, we use the fixed-size sliding quantization {s = 2, i = 1} as the baseline.

Overall Design. We first conduct experiments to study the two core components of SliderQuant,
inter-layer sliding quantization (Inter-S) and intra-layer sliding quantization (Intra-S). The results
are shown in Table 8. Recall that compared to the baseline fixed-size sliding quantization, Inter-S
additionally introduces a progressively expanded sliding window (PESW) for shallow layers and a
progressively contracted sliding window (PCSW) for deep layers. We can find that both PESW and
PCSW significantly improve the performance, demonstrating the importance to consider the varying
layer sensitivity to quantization of pre-trained LLMs. By extending the progressively expanded
sliding design within each window, Intra-S further enhances the performance. Coupling Inter-S and
Intra-S leads to the best results, confirming the effectiveness of SliderQuant’s multi-level design.

Effect of Ls and Ld in Inter-layer Sliding Quantization. After validating the effectiveness of
Inter-S and Intra-S, we next study the effect of different settings for them independently. In Table 9,
we provide results of Inter-S with different Ls and Ld, namely the number of shallow layers and
deep layers in our design. For simplicity, we always keep Ls and Ld the same in the experiments.
As Ls and Ld gradually increase from 2 to 6, the model performance steadily improves. While it also
leads to larger memory usage and computation cost during quantization accordingly. Considering
the trade-off between quantization performance and efficiency, we set Ls = Ld = 4 as default, as
further scaling beyond this point provides only marginal improvements.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 8: Effect of inter-layer sliding quantization
(Inter-S) and intra-layer sliding quantization (Intra-S).

Inter-S Intra-S W4A4 W2A16
PESW PCSW WikiText2 ↓ C4 ↓ WikiText2 ↓ C4 ↓

12.73 14.45 12.10 18.91
! 10.34 13.46 10.71 16.10

! 10.30 13.78 10.67 16.76
! 9.84 13.31 10.92 17.31

! ! 9.13 11.78 10.53 15.15
! ! ! 8.34 11.10 9.59 13.83

Table 9: Ablation of inter-layer sliding
quantization with different Ls and Ld.

Ls Ld
W4A4 W2A16

WikiText2 ↓ C4 ↓ WikiText2 ↓ C4 ↓
2 2 10.23 13.24 11.25 17.36
3 3 9.66 12.87 10.83 16.94
4 4 9.13 11.78 10.53 15.15
5 5 8.98 11.72 10.50 14.96
6 6 8.94 11.67 10.43 14.75

Table 10: Ablation of intra-layer sliding quan-
tization with different γ. Note (N = 1/γ).

Ratio #Stage W4A4 W2A16
γ N WikiText2 ↓ C4 ↓ WikiText2 ↓ C4 ↓

1.0 1 12.73 14.45 12.10 18.91
0.5 2 10.34 13.46 10.71 16.10
0.33 3 10.56 13.30 10.67 15.87
0.25 4 11.32 14.10 10.83 16.45

Table 11: Ablation of fixed-size sliding quantiza-
tion with larger s.

Method s Ls&Ld
W4A4 W2A16

WikiText2 ↓ C4 ↓ WikiText2 ↓ C4 ↓

Baseline
2 - 12.73 14.45 12.10 18.91
3 - 11.18 13.94 11.48 17.23
4 - 11.13 13.52 11.34 16.55

Inter-S 2 4 9.13 11.78 10.53 15.15

Effect of γ in Intra-layer Sliding Quantization. In the experiments, we evaluate the performance
of Intra-S with different settings of γ. Under the sliding ratio of γ, all layers in each window of
Inter-S are parallelly quantized along the weight/activation dimension incrementally, which is fully
quantized in N = 1/γ stages. As shown in Table 10, Intra-S with N > 1 always achieves better
performance than the baseline (N = 1). Among the different settings, we set γ = 0.5, N = 2 as
default, considering the performance and simplicity.

Effect of s in Fixed-size Sliding Quantization. To mitigate the performance differences potentially
caused by window size, we increase the fixed window size s in the baseline. As shown in Table 11,
the performance of the baseline improves as s increases from 2 to 4. Nevertheless, a substantial
performance gap still remains compared to Inter-S which uses the same window size of 4 only in
shallow and deep layers. This highlights the limitation of fixed-size sliding quantization, where a
uniform strategy overlooks the varying quantization sensitivity across layers. These results further
validate the necessity of our adaptive sliding window designs.

Table 12: Ablation study of channel
scaling (CS) and LoRA.

#Bits Methods CS LoRA WikiText2 ↓ C4 ↓

W4A4

Baseline
! 20.41 29.67

! 12.73 14.45
! ! 13.92 18.44

SliderQuant
! 9.18 12.21

! 12.95 17.27
! ! 8.34 11.10

Channel Scaling and LoRA. Table 12 presents the ef-
fects of Channel Scaling (CS) and LoRA under W4A4
quantization. We observe that neither component alone
achieves the best performance. Regardless of whether
applied to the baseline or our SliderQuant, using both
CS and LoRA together consistently yields better results
than using either one individually. This demonstrates the
complementary nature of the two techniques under our
proposed sliding quantzation framework, well suppress-
ing outliers in weights and activations at each layer.

Additional Experiments and Analyses. We include further implementation details and more ex-
perimental results in the Appendix, covering the following aspects: (1) the analysis of SliderQuant’s
quantization efficiency; (2) the ablation studies on the number of calibration samples and the group-
size quantization; (3) extended evaluation across diverse model families and quantization settings;
(4) design details of SliderQuant with rotation transformations; (5) other results and visualizations;
(6) other experiments and discussions conducted for the rebuttal (highlighted in blue).

5 CONCLUSION

In this paper, we propose SliderQuant, a new post-training quantization framework that explicitly
accounts for the varying layer sensitivity to quantization of large language models. By coupling
inter-layer and intra-layer sliding quantization components, SliderQuant reduces quantization errors
across layers. Extensive experiments across multiple model families, quantization settings (e.g.,
W2A16, W4A4), and benchmarks demonstrate the effectiveness and generalizability of our method.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: A family of highly
capable multimodal models. arXiv preprint arXiv.2312.11805, 2023.

Saleh Ashkboos, Ilia Markov, Elias Frantar, Tingxuan Zhong, Xincheng Wang, Jie Ren, Torsten
Hoefler, and Dan Alistarh. Towards end-to-end 4-bit inference on generative large language mod-
els. In EMNLP, 2024a.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, Martin Jaggi, Dan Alistarh,
Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in rotated llms. In
NeurIPS, 2024b.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In AAAI, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In NeurIPS, 2020.

Yaohui Cai, Zhewei Yao, Zhen Dong, Amir Gholami, Michael W Mahoney, and Kurt Keutzer.
Zeroq: A novel zero shot quantization framework. In CVPR, 2020.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. Quip: 2-bit quantization
of large language models with guarantees. In NeurIPS, 2024.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In NAACL,
2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

OpenCompass Contributors. Opencompass: A universal evaluation platform for foundation models.
https://github.com/open-compass/opencompass, 2023.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm.int8(): 8-bit matrix multi-
plication for transformers at scale. In NeurIPS, 2022.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. In NeurIPS, 2023.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashk-
boos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized repre-
sentation for near-lossless llm weight compression. In ICLR, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In NAACL-HLT, 2019.

Xin Ding, Xiaoyu Liu, Zhijun Tu, Yun Zhang, Wei Li, Jie Hu, Hanting Chen, Yehui Tang, Zhiwei
Xiong, Baoqun Yin, et al. Cbq: Cross-block quantization for large language models. In ICLR,
2025.

11

https://github.com/open-compass/opencompass

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Haojie Duanmu, Zhihang Yuan, Xiuhong Li, Jiangfei Duan, Xingcheng Zhang, and Dahua Lin.
Skvq: Sliding-window key and value cache quantization for large language models. In COLM,
2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. In ICLR, 2023.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for
few-shot language model evaluation, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. In ICLR, 2022.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv
preprint arXiv:2412.16720, 2024.

Maxwell Jia. Aime 2024 dataset. https://huggingface.co/datasets/Maxwell-Jia/
AIME_2024, 2024.

Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael W
Mahoney, and Kurt Keutzer. Squeezellm: Dense-and-sparse quantization. In ICML, 2024.

Shiyao Li, Xuefei Ning, Ke Hong, Tengxuan Liu, Luning Wang, Xiuhong Li, Kai Zhong, Guohao
Dai, Huazhong Yang, and Yu Wang. Llm-mq: Mixed-precision quantization for efficient llm
deployment. In NeurIPS Workshop, 2023.

Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang, and
Shi Gu. Brecq: Pushing the limit of post-training quantization by block reconstruction. In ICLR,
2021.

Haokun Lin, Haobo Xu, Yichen Wu, Jingzhi Cui, Yingtao Zhang, Linzhan Mou, Linqi Song, Zhenan
Sun, and Ying Wei. Duquant: Distributing outliers via dual transformation makes stronger quan-
tized llms. In NeurIPS, 2024a.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
llm compression and acceleration. In MLSys, 2024b.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

12

https://huggingface.co/datasets/Maxwell-Jia/AIME_2024
https://huggingface.co/datasets/Maxwell-Jia/AIME_2024

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for code generation. In
NeurIPS, 2023.

Jing Liu, Ruihao Gong, Xiuying Wei, Zhiwei Dong, Jianfei Cai, and Bohan Zhuang. Qllm: Accurate
and efficient low-bitwidth quantization for large language models. In ICLR, 2024b.

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Krish-
namoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant: Llm quantiza-
tion with learned rotations. In ICLR, 2025.

Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang, Wenhui Wang, Shaohan Huang, Li Dong,
Ruiping Wang, Jilong Xue, and Furu Wei. The era of 1-bit llms: All large language models are in
1.58 bits. arXiv preprint arXiv:2402.17764, 2024a.

Yuexiao Ma, Huixia Li, Xiawu Zheng, Feng Ling, Xuefeng Xiao, Rui Wang, Shilei Wen, Fei Chao,
and Rongrong Ji. Affinequant: Affine transformation quantization for large language models. In
ICLR, 2024b.

Eldad Meller, Alexander Finkelstein, Uri Almog, and Mark Grobman. Same, same but different:
Recovering neural network quantization error through weight factorization. In ICML, 2019.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In ICLR, 2017.

Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up
or down? adaptive rounding for post-training quantization. In ICML, 2020.

Gunho Park, Baeseong Park, Minsub Kim, Sungjae Lee, Jeonghoon Kim, Beomseok Kwon, Se Jung
Kwon, Byeongwook Kim, Youngjoo Lee, and Dongsoo Lee. Lut-gemm: Quantized matrix multi-
plication based on luts for efficient inference in large-scale generative language models. In ICLR,
2024.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. JMLR, 2020.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 2021.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for
large language models. In ICLR, 2024.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami, Michael W Mahoney,
and Kurt Keutzer. Q-bert: Hessian based ultra low precision quantization of bert. In AAAI, 2020.

Yuxuan Sun, Ruikang Liu, Haoli Bai, Han Bao, Kang Zhao, Yuening Li, Jiaxin Hu, Xianzhi Yu,
Lu Hou, Chun Yuan, et al. Flatquant: Flatness matters for llm quantization. In ICML, 2025.

Hanlin Tang, Yifu Sun, Decheng Wu, Kai Liu, Jianchen Zhu, and Zhanhui Kang. Easyquant: An
efficient data-free quantization algorithm for llms. In EMNLP, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#: Even
better llm quantization with hadamard incoherence and lattice codebooks. In ICML, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, 2017.

Xiuying Wei, Yunchen Zhang, Xiangguo Zhang, Ruihao Gong, Shanghang Zhang, Qi Zhang, Feng-
wei Yu, and Xianglong Liu. Outlier suppression: Pushing the limit of low-bit transformer lan-
guage models. In NeurIPS, 2022.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In ICML, 2023.

Yuzhuang Xu, Xu Han, Zonghan Yang, Shuo Wang, Qingfu Zhu, Zhiyuan Liu, Weidong Liu, and
Wanxiang Che. Onebit: Towards extremely low-bit large language models. In NeurIPS, 2024.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong He.
Zeroquant: Efficient and affordable post-training quantization for large-scale transformers. In
NeurIPS, 2022.

Ali Hadi Zadeh, Isak Edo, Omar Mohamed Awad, and Andreas Moshovos. Gobo: Quantizing
attention-based nlp models for low latency and energy efficient inference. In MICRO, 2020.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat. Q8bert: Quantized 8bit bert. In
EMC2-NeurIPS, 2019.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In ACL, 2019.

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn Chen, Size Zheng, Luis Ceze, Arvind
Krishnamurthy, Tianqi Chen, and Baris Kasikci. Atom: Low-bit quantization for efficient and
accurate llm serving. In MLSys, 2024.

DanDan Zheng, Yuanliu Liu, Liang Li, et al. Leveraging inter-layer dependency for post-training
quantization. In NeurIPS, 2022.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDIX

• Section A: Datasets used in experiments.

• Section B: Implementation details of SliderQuant.

• Section C: Implementation details of SliderQuant with rotation transformations.

• Section D: Quantization efficiency of SliderQuant.

• Section E: More ablation studies.

• Section F: More results across diverse LLM families and quantization settings.

• Section H: Visualizations of the quantization impact of different layers to model accuracy.

• Section I: Visualizations of weights and activations in SliderQuant.

A DATASETS USED IN EXPERIMENTS

WikiText2 (Merity et al., 2017) is a popular language modeling benchmark consisting of over 2
million tokens from verified Wikipedia articles.

C4 (Raffel et al., 2020)(Colossal Clean Crawled Corpus) is a large-scale dataset primarily used for
language modeling tasks, comprising 156 billion clean tokens. It is sourced from cleaned web pages,
originally from Common Crawl.

PIQA (Bisk et al., 2020) contains 16,000 training and 3,000 validation samples. It focuses on
physical reasoning through multiple-choice questions, where models select the most appropriate
solution from two options, with exactly one correct answer.

ARC (Clark et al., 2018) is a dataset of 7,787 genuine grade-school level, multiple-choice science
questions, assembled to encourage research in advanced question-answering. The dataset is parti-
tioned into a Challenge Set and an Easy Set, where the former contains only questions answered
incorrectly by both a retrieval-based algorithm and a word co-occurrence algorithm.

HellaSwag (Zellers et al., 2019) contains 70,000 training and 10,000 validation samples. It focuses
on commonsense reasoning by predicting the most plausible sentence continuation, sourced from
crowdsourced captions and activity descriptions.

Winograde (Sakaguchi et al., 2021) is a collection of 44,000 problems, which is formulated as a
fill-in-a-blank task with binary options. The goal is to choose the right option for a given sentence
which requires commonsense reasoning.

BooIQ (Clark et al., 2019) is a dataset comprising 15,942 naturally occurring yes/no questions
paired with Wikipedia passages. Each example consists of a question, a passage, and a binary
answer, aiming to evaluate reading comprehension and entailment-like reasoning.

MMLU (Hendrycks et al., 2020) is a benchmark designed to evaluate the multitask accuracy of lan-
guage models across 57 diverse subjects, including elementary mathematics, U.S. history, computer
science, law, and more. The dataset consists of multiple-choice questions and is intended to assess
models’ world knowledge and problem-solving abilities in zero-shot and few-shot settings.

MATH-500 (Hendrycks et al., 2021) comprises 500 challenging competition-level mathematics
problems sampled from the MATH dataset. These problems span various topics such as algebra,
geometry, number theory, and probability, and are designed to test a model’s ability to perform
complex mathematical reasoning and generate step-by-step solutions.

AIME-2024 (Jia, 2024) includes 30 problems from the 2024 American Invitational Mathematics
Examination (AIME), a prestigious high school mathematics competition. The dataset serves as
a benchmark for evaluating models’ capabilities in solving advanced mathematical problems that
require deep understanding and creative problem-solving skills.

GSM8K (Cobbe et al., 2021) is a dataset of 8,792 high-quality, linguistically diverse grade school
math word problems created by human problem writers. The dataset is segmented into 7,473 train-
ing problems and 1,319 test problems, each requiring multi-step reasoning and basic arithmetic
operations to solve.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

HumanEval+ (Liu et al., 2023) is an extension of the HumanEval dataset, consisting of 164 original
programming problems designed to assess the functional correctness of code generated by language
models. Each problem includes a function signature, a docstring specifying the intended function-
ality, and multiple test cases for evaluation.

MBPP+ (Liu et al., 2023) is an augmented version of the Mostly Basic Programming Problems
(MBPP) dataset, comprising approximately 378 crowd-sourced Python programming tasks. Each
task includes a natural language description, a reference solution, and three test cases, aiming to
evaluate models’ abilities in basic programming and problem-solving.

B IMPLEMENTATION DETAILS OF SLIDERQUANT

B.1 QUANTIZATION DETAILS

We adopt uniform quantization for both weights and activations to ensure simplicity and fair compar-
ison with other post-training quantization methods. Specifically, we apply per-channel quantization
for weights and per-token quantization for activations, without employing group-size quantization,
which may improve accuracy at the cost of slower runtime. All weights and intermediate activations
are quantized into low-bit format, except for the Softmax output probability vectors, which are kept
in FP16 for numerical stability. Formally, for a general tensor Z, the quantization is defined as:

quantizer(Z) = clamp
(⌊

Z

α

⌉
− β, 0, 2b − 1

)
, α =

Zmax − Zmin

2b − 1
, β =

⌊
Zmin

α

⌉
, (A)

where clamp(x,Qmin, Qmax) clips x to the interval [Qmin, Qmax]; ⌊x⌉ denotes rounding to the
nearest integer; b is the bit-width; and Zmin,Zmax are the minimum and maximum values of Z,
respectively.

B.2 CHANNEL-WISE SCALING

Recall that, in our SliderQuant, we adopt popular used channel scaling and low-rank adaptation
(LoRA) to effectively remove outliers in weights and activations at each layer of a pre-trained LLM.
For the channel scaling, we simply follow the implementation of OmniQuant (Shao et al., 2024).
For the Llama (Touvron et al., 2023a) and Llama2 (Touvron et al., 2023b) families, we introduce
learnable scaling factors for the Qproj , Kproj , Vproj , Oproj , Upproj , and Downproj operators. For
the Llama3 (Dubey et al., 2024) and Qwen2.5 (Yang et al., 2024) families, due to the presence of
Group Query Attention, we align the dimensions of the Query and Key by replicating the scaling fac-
tor. All scaling factors are initialized to 1 and absorbed into the adjacent weights after quantization,
introducing no additional inference overhead.

B.3 LOW-RANK ADAPTATION

Table A: The detailed hyper-parameter set-
tings of SliderQuant.

Configuration Setting

Calibration set WikiText2
Number of calibration samples 128
Tokens per sample 2048

Ls, Ld 4, 4
s, i 2, 1
γ 0.5
Rank of LoRA (r) 4

Batch size 3 | 1
Optimizer AdamW
Epochs (W2A16 | others) 60 | 20
Learning rate of scaling factor 0.001
Learning rate of LoRA 0.0001
Learning rate schedule linear decay to zero

For every LLM tested in our experiments, we ap-
ply LoRA to all the linear layers to reduce quantiza-
tion loss through learnable weight adjustments. The
rank of LoRA is set to 4 (i.e., r=4), which introduces
significantly fewer learnable parameters compared to
full parameter fine-tuning. After quantization, the ad-
ditional learnable parameters introduced by LoRA are
absorbed into the model weights, resulting in no extra
computational overhead during inference.

B.4 HYPER-PARAMETER SETTINGS

For inter-layer sliding quantization, we set both the
number of shallow layers Ls and deep layers Ld to
4 as default. For the remaining intermediate layers,
we adopt a fixed-size sliding window with s = 2 and
i = 1. For intra-layer sliding quantization, we set the
sliding ratio γ to 0.5. All the hyper-parameters are
provided in Table A.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B.5 QUANTIZATION HARDWARE AND DEPLOYMENT ACCELERATION

Post-training quantization experiments for models up to 32B parameters are performed on a single
NVIDIA RTX A6000 (48GB) GPU, while larger models such as the 65B and 70B variants require
two A6000 GPUs. Since the A6000 serves as our primary experimental platform, its deployment
results are reported in Table B. To provide a broader evaluation of hardware efficiency, we addition-
ally benchmark the quantized models on other GPUs, including a consumer-grade NVIDIA RTX
4090 (24GB) and a data-center NVIDIA A100 (40GB), with results summarized in Tables C and D.

Importantly, our method does not rely on customized quantization kernels. All deployment tests are
conducted with the widely adopted llama.cpp framework using a batch size of 1, a prompt length
of 512 tokens, and a generation length of 128 tokens. While specialized implementations such as
GPTQ (Frantar et al., 2023) or AWQ (Lin et al., 2024b) kernels may yield higher acceleration ratios,
our results demonstrate that the proposed method can be directly integrated into mainstream frame-
works without additional engineering efforts, ensuring practical applicability and fair comparability
across hardware platforms.

Table B: Inference efficiency of quantized models on one NVIDIA RTX A6000 using llama.cpp.
W Memory: weight storage; R Memory: peak runtime memory; Tokens/s: generated tokens per
second.

#Bits Llama2-7B Llama2-13B Llama2-70B
W Memory R Memory Tokens/s W Memory R Memory Tokens/s W Memory R Memory Tokens/s

FP16 12.55 GB 12.67 GB 45.89 24.24 GB 24.34 GB 24.71 128.48 GB OOM -
W4A16 3.59 GB 3.91 GB 116.56 6.91 GB 7.64 GB 68.66 36.55 GB 36.81 GB 15.42
W3A16 2.41 GB 3.00 GB 125.66 4.62 GB 4.99 GB 74.15 24.76 GB 25.04 GB 17.90
W2A16 1.73 GB 2.34 GB 135.80 3.29 GB 3.68 GB 80.21 17.03 GB 17.62 GB 19.62

Table C: Inference efficiency of quantized models on one NVIDIA RTX 4090 using llama.cpp.
W Memory: weight storage; R Memory: peak runtime memory; Tokens/s: generated tokens per
second.

#Bits Llama2-7B Llama2-13B Llama2-70B
W Memory R Memory Tokens/s W Memory R Memory Tokens/s W Memory R Memory Tokens/s

FP16 12.55 GB 13.24 GB 62.22 24.24 GB OOM - 128.48 GB OOM -
W4A16 3.59 GB 4.26 GB 156.09 6.91 GB 7.50 GB 92.99 36.55 GB OOM -
W3A16 2.41 GB 3.18 GB 188.06 4.62 GB 5.32 GB 117.20 24.76 GB OOM -
W2A16 1.73 GB 2.42 GB 226.73 3.29 GB 3.71 GB 143.51 17.03 GB 17.80 GB 38.67

Table D: Inference efficiency of quantized models on one NVIDIA A100-40GB using llama.cpp.
W Memory: weight storage; R Memory: peak runtime memory; Tokens/s: generated tokens per
second.

#Bits Llama2-7B Llama2-13B Llama2-70B
W Memory R Memory Tokens/s W Memory R Memory Tokens/s W Memory R Memory Tokens/s

FP16 12.55 GB 12.71 GB 81.79 24.24 GB 24.41 GB 44.73 128.48 GB OOM -
W4A16 3.59 GB 3.98 GB 138.14 6.91 GB 7.85 GB 81.23 36.55 GB 36.9 GB 20.16
W3A16 2.41 GB 3.12 GB 133.79 4.62 GB 5.14 GB 79.64 24.76 GB 25.13 GB 18.96
W2A16 1.73 GB 2.32 GB 146.35 3.29 GB 3.85 GB 87.33 17.03 GB 18.01 GB 21.19

C IMPLEMENTATION DETAILS OF SLIDERQUANT WITH ROTATION
TRANSFORMATIONS

Recall that in the Experiment section of the main paper, we apply our quantization framework Slid-
erQuant with and without extra inference-time costs. In the default settings, all the additional pa-
rameters introduced by SliderQuant during quantization are merged into the original weights at
inference. To further demonstrate the versatility of our approach, we also design a variant named
SliderQuant+ that incorporates rotation transformations, corresponding to the results shown in Ta-
ble 3 of the main paper. Our implementation is consistent with the Quarot (Ashkboos et al., 2024b)
codebase1. The detailed design is illustrated in Figure A. The non-mergeable Hadamard transfor-
mations are added after query projection (Qproj), key projection (Kproj) and before the output
projection Oproj in the multi-head self-attention module. In the feed-forward network (FFN), the
transformations are added before the down-projection (Downproj).

1https://github.com/spcl/QuaRot

17

https://github.com/spcl/QuaRot

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

𝑄𝑇𝑊𝑞

𝑄𝑇𝑊𝑘

𝑄𝑇𝑊𝑣

𝑄𝑇𝑊𝑜𝑄

𝑄𝑇𝑊𝑢𝑝

𝑄𝑇𝑊𝑑𝑜𝑤𝑛𝑄

@

@ *

𝑄

𝑠𝑜𝑓𝑡𝑚𝑎𝑥

𝑄𝑇𝑊𝑔𝑎𝑡𝑒

𝑄
𝑄 𝑄

𝑊 Original Model Operator 𝑄 Additional Rotation Operator Intermediate Activation

Multi-Head Self-Attention FFN

Figure A: Structural illustrations on additional rotation transformations added in SliderQuant+.

D QUANTIZATION EFFICIENCY OF SLIDERQUANT

Table E: The quantization efficiency of
SliderQuant in terms of GPU hours. Ex-
periments are conducted with Llama2-
7B under W4A4 quantization on a sin-
gle NVIDIA RTX A6000. The metric is
perplexity.

#Epoch Wikitext2 ↓ C4 ↓ Time Cost (h)

10 8.92 11.59 3.24
20 8.34 11.10 6.14
30 8.30 11.05 9.22
40 8.28 11.04 12.81

To evaluate the quantization efficiency of SliderQuant,
we measure its perplexity performance under different
quantization time costs. As shown in Table E, Slid-
erQuant achieves remarkably low perplexity after only
10 epochs. We adopt 20 epochs as the default setting
to strike a balance between time overhead and perfor-
mance. Figure B further illustrates the detailed relation-
ship between quantization time and perplexity, demon-
strating that our method converges rapidly. OmniQuant
achieves 14.26|18.02 on WikiText2|C4 with the training
time of 4.75 hours. Comparatively, with the training time
less than 1 hour, SliderQuant achieves significantly better
performance on both benchmarks (9.5|12.29 on WikiText2|C4). The results demonstrate the high
quantization efficiency of SliderQuant. Even under extremely limited time budgets, the language
models quantized with SliderQuant still maintains good performance. Extending the quantization
duration can further improve performance.

(0.74, 9.59)

(4.75, 14.26)

(6.14, 8.34)

Faster 642%

Reduce 32.7% PPL

(a) WikiText2.

(0.74, 12.29)

(4.75, 18.02)

(6.14, 11.10)

Faster 642%

Reduce 31.8% PPL

(b) C4.

Figure B: The perplexity of SliderQuant on Llama2-7B under W4A4 quantization with different
quantization time cost. Experiments were conducted on a single NVIDIA RTX A6000.

E MORE ABLATION STUDIES

The Number of Calibration Samples. To ensure a fair comparison with prior methods, we use the
calibration set with 128 samples as default. Here, we study the effect of the number of calibration
samples to SliderQuant. The results are shown in Table F. Notably, even with only 32 samples, Slid-
erQuant achieves the perplexity of 9.39|11.69 on Wikitext2|C4, demonstrating strong performance
with a much smaller number of calibration samples. As the number of samples increases, perfor-

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

mance gradually improves, reaching the perplexity of 8.34|11.10 on Wikitext2|C4 with 128 samples.
Further increasing the number of calibration samples leads to consistent performance improvement.
These results highlight the efficiency and robustness of SliderQuant, which maintains competitive
performance even under a small number of calibration samples.

SliderQuant with Group-wise Quantization. To ensure inference efficiency, we use channel-wise
quantization for SliderQuant in the default settings. In Table G, we provide the results of SliderQuant
with group-wise quantization. Compared to channel-wise quantization, group-wise quantization
leads to better performance but increased parameter storage and slower inference speed, due to
the need to maintain more quantization parameters. We can find that the performance gradually
improves as the group size decreases, demonstrating a trade-off between performance and efficiency.
When inference cost is not a limiting factor, applying finer-grained group-wise quantization within
the SliderQuant framework can lead to even better performance, showcasing its flexibility and strong
quantization capability.

Table F: Effect of the number of calibration sam-
ples. We apply SliderQuant on Llama2-7B under
W4A4 quantization.

#Samples Wikitext2 ↓ C4 ↓ Time Cost (h)

32 9.38 11.69 1.87 h
64 8.87 11.45 3.68 h

128 8.34 11.10 6.14 h
256 8.30 11.01 11.76 h
512 8.26 10.93 23.16 h

Table G: Ablation of SliderQuant with
group-size quantization. We apply Slid-
erQuant on Llama2-7B under W2A16 quan-
tization.

Group Size Wikitext2 ↓ C4 ↓

32 8.20 10.90
64 8.78 11.45

128 9.15 12.30
256 9.23 13.11

channel-wise 9.59 13.83

F MORE RESULTS ACROSS DIVERSE LLM FAMILIES AND QUANTIZATION
SETTINGS

About the Results for Counterpart Methods. To demonstrate the effectiveness of SliderQuant,
we compare it with other counterpart post-training quantization methods (e.g., AWQ, GPTQ, Om-
niQuant). Here, we clarify the details about our reported results for the methods. For perplexity
on WikiText2 and C4, we adopt the evaluation results of Llama and Llama2 models as reported
in the respective papers of the counterpart methods. For models and settings not covered in prior
work—such as Llama3, Qwen2.5, and certain quantization configurations (e.g., W2A16)—we eval-
uate the results using public code and train the models to the best of our ability. For downstream
tasks, we follow a prioritized strategy: reported results in the original papers, followed by evaluation
using official checkpoints, and finally, reproduction via open-source code when necessary.

Table H: Results comparison of different quantization methods without extra inference-time costs
on Llama model family for the language generation tasks. The metric is perplexity.

#Bits Method Llama-7B Llama-13B Llama-65B
Wiki ↓ C4 ↓ Wiki ↓ C4 ↓ Wiki ↓ C4 ↓

W16A16 - 5.68 7.08 5.09 6.61 3.53 5.62

W4A16

RTN 6.43 7.93 5.55 6.98 3.87 5.85
AWQ 6.08 7.52 5.34 6.98 3.76 5.77
GPTQ 6.13 7.43 5.40 6.84 3.83 5.80

OmniQuant 5.86 7.34 5.21 6.76 3.71 5.73
CBQ 5.86 7.33 5.22 6.77 3.68 5.72

SliderQuant 5.81 7.26 5.19 6.73 3.65 5.70

W2A16

RTN 1.1e5 1.3e5 6.8e4 5.6e4 2.2e4 2.2e4
AWQ 2.6e5 1.9e5 2.8e5 2.3e5 75.43 56.34
GPTQ 2.1e3 690 5.5e3 2.5e3 55.91 40.58

OmniQuant 15.47 24.89 13.21 18.31 7.58 10.77
CBQ 9.65 13.45 7.96 11.66 6.56 9.34

SliderQuant 9.00 12.91 7.51 10.43 5.95 8.36

W4A4

RTN 2.7e2 4.0e2 2.4e3 1.8e3 3.7e4 8.9e3
SmoothQuant 25.25 32.32 40.05 47.18 2.8e2 2.4e2
OmniQuant 11.26 14.51 10.87 13.78 9.17 11.28

CBQ 10.39 13.41 9.69 12.55 7.23 9.45
SliderQuant 8.01 10.58 7.22 9.52 6.20 8.38

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

The Results on Llama Model Family. In the main paper, we report results on the Llama2, Llama3,
Qwen2.5 model families. Here, we further provide results on the first version of Llama family,
including Llama-7B, Llama-13B and Llama-65B, evaluated on both language generation and zero-
shot commonsense reasoning tasks. As shown in Tables H and I, SliderQuant consistently achieves
the best performance under various quantization settings, outperforming existing methods such as
RTN, AWQ (Lin et al., 2024b), GPTQ (Frantar et al., 2023), SmoothQuant (Xiao et al., 2023),
OmniQuant (Shao et al., 2024) and CBQ (Ding et al., 2025). Notably, in challenging low-bit con-
figurations like W4A4 and W2A16, SliderQuant maintains strong generation quality and reasoning
accuracy, demonstrating its robustness and precision-preserving capability.

Table I: Results comparison of different quantization methods without extra inference-time costs on
Llama model family for the zero-shot commonsense reasoning tasks. The metric is accuracy (%).

Model #Bits Method PIQA ↑ ARC-e ↑ ARC-c ↑ HS ↑ WG ↑ BoolQ ↑ Avg ↑

Llama-7B

W16A16 - 79.43 73.15 45.05 76.16 70.24 75.17 69.87
W4A4 SmoothQuant 49.80 30.40 25.80 27.40 48.00 49.10 38.42
W4A4 OmniQuant 66.15 45.20 31.14 56.44 53.43 63.51 52.65
W4A4 CBQ 70.51 55.81 31.74 60.03 57.93 64.85 56.81
W4A4 SliderQuant 71.93 59.05 34.13 63.26 60.30 66.27 59.16

Llama-13B

W16A16 - 80.41 74.71 47.95 79.08 73.09 77.92 72.19
W4A4 SmoothQuant 61.04 39.18 30.80 52.29 51.06 61.80 49.36
W4A4 OmniQuant 69.69 47.39 33.10 58.96 55.80 62.84 54.63
W4A4 CBQ 71.00 61.57 35.84 65.15 57.93 66.39 58.48
W4A4 SliderQuant 75.19 62.79 36.26 68.49 64.01 67.43 62.36

Llama-65B

W16A16 - 82.37 79.76 55.38 84.13 76.95 84.92 77.25
W4A4 SmoothQuant 62.24 46.93 27.82 41.09 51.38 46.91 46.06
W4A4 OmniQuant 74.54 65.61 40.61 69.30 59.35 70.24 63.28
W4A4 CBQ 76.01 68.45 42.56 73.45 62.89 71.23 65.76
W4A4 SliderQuant 76.77 70.92 44.88 75.65 64.48 72.39 67.51

More Results with Weight-Activation Quantization. In the main paper, we provide the results
of Llama2-13B and Qwen2.5-14B with weight-activation quantization on zero-shot commonsense
reasoning tasks. Here, we provide the additional results of other four models with different scales,
including Llama2-7B, Llama2-70B, Qwen2.5-7B and Qwen2.5-32B. As shown in Table J, our Slid-
erQuant consistently outperforms existing methods such as SmoothQuant, OmniQuant and CBQ
across all tested models and tasks under W4A4 quantization. Even for smaller models like Llama2-
7B and Qwen2.5-7B, which are generally more sensitive to quantization, SliderQuant achieves the
best performance on average. For instance, on Llama2-7B, it reaches the average accuracy of
59.30%, notably higher than CBQ (56.26%) and OmniQuant (54.95%). Similarly, for the larger-
scale Llama2-70B, our method reaches 65.24%, outperforming CBQ (62.70%) and OmniQuant
(59.93%).

Table J: Results comparison of different quantization methods without extra inference-time costs
on the zero-shot commonsense reasoning tasks under weight-activation quantization. The metric is
accuracy (%).

Model #Bits Method PIQA ↑ ARC-e ↑ ARC-c ↑ HS ↑ WG ↑ BoolQ ↑ Avg ↑

Llama2-7B

W16A16 - 78.84 74.62 46.42 75.90 69.46 78.01 70.54
W4A4 SmoothQuant 60.88 39.77 27.13 41.32 51.54 51.07 45.29
W4A4 OmniQuant 68.44 54.17 31.91 55.95 55.56 63.67 54.95
W4A4 CBQ 70.18 56.40 33.45 60.46 55.09 61.96 56.26
W4A4 SliderQuant 71.38 59.64 32.94 62.33 61.72 67.77 59.30

Llama2-70B

W16A16 - 82.64 80.47 57.34 83.32 78.14 84.10 77.67
W4A4 SmoothQuant 61.37 46.21 31.23 52.65 50.91 57.28 49.94
W4A4 OmniQuant 71.71 59.55 37.20 66.63 58.17 66.30 59.93
W4A4 CBQ 73.24 62.45 37.30 69.84 61.23 72.13 62.70
W4A4 SliderQuant 75.79 64.14 37.71 73.02 65.75 75.02 65.24

Qwen2.5-7B

W16A16 - 79.71 76.05 49.57 78.13 71.27 84.71 73.24
W4A4 SmoothQuant 50.44 25.97 26.02 25.92 53.20 38.81 36.73
W4A4 OmniQuant 53.32 33.84 24.40 33.75 52.80 38.78 39.48
W4A4 CBQ 62.57 48.99 31.06 47.31 54.54 53.67 49.69
W4A4 SliderQuant 66.92 59.30 33.62 55.06 59.43 62.54 56.15

Qwen2.5-32B

W16A16 - 82.26 78.03 55.63 84.07 75.45 87.43 77.15
W4A4 SmoothQuant 61.59 48.15 32.34 49.91 52.01 50.55 49.09
W4A4 OmniQuant 71.16 61.24 39.93 65.48 59.27 65.26 60.39
W4A4 CBQ 71.44 63.47 36.86 59.41 63.93 69.63 60.79
W4A4 SliderQuant 72.09 68.10 40.70 62.12 63.30 70.14 62.74

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

More Results with Weight-Only Quantization. In the main paper, we provide the results with
weight-only quantization on language generation tasks. In Table K, we further provide the results
of SliderQuant with weight-only quantization on zero-shot commonsense reasoning tasks, show-
casing the performance of SliderQuant under W4A16 and W2A16 quantization settings across
five representative models selected from the Llama and Qwen model families. We can see that
SliderQuant achieves nearly lossless performance under W4A16, with accuracies closely matching
the full-precision (W16A16) counterparts. For example, on Qwen2.5-14B, SliderQuant in W4A16
achieves the average accuracy of 76.74%, compared to 77.40% for the FP16 counterpart. Under the
more aggressive W2A16 setting, performance degradation becomes more noticeable but remains
within an acceptable range.

Table K: Zero-shot commonsense reasoning results under weight-only quantization of SliderQuant.
The evaluation metric is accuracy (%).

Model #Bits Method PIQA ↑ ARC-e ↑ ARC-c ↑ HS ↑ WG ↑ BoolQ ↑ Avg ↑

Llama2-7B
W16A16 - 78.84 74.62 46.42 75.90 69.46 78.01 70.54
W4A16 SliderQuant 78.67 71.55 42.49 74.77 69.14 74.89 68.59
W2A16 SliderQuant 70.78 57.79 31.06 57.15 60.14 66.12 57.17

Llama2-13B
W16A16 - 80.41 77.40 49.15 79.37 72.14 80.55 73.17
W4A16 SliderQuant 80.41 76.73 48.55 78.30 72.14 78.10 72.37
W2A16 SliderQuant 73.56 67.47 37.54 64.75 63.22 70.67 62.87

Qwen2.5-7B
W16A16 - 79.71 76.05 49.57 78.13 71.27 84.71 73.24
W4A16 SliderQuant 79.22 75.47 49.20 76.97 71.27 83.15 72.55
W2A16 SliderQuant 68.50 60.31 34.56 53.02 59.91 65.05 56.89

Qwen2.5-14B
W16A16 - 82.10 79.59 58.87 82.95 75.61 85.26 77.40
W4A16 SliderQuant 81.23 79.12 58.43 81.65 75.03 84.95 76.74
W2A16 SliderQuant 72.09 68.10 40.70 62.12 63.30 70.14 62.74

Qwen2.5-32B
W16A16 - 82.26 81.03 58.45 84.13 77.61 87.49 78.50
W4A16 SliderQuant 81.88 80.39 57.59 83.17 77.27 86.74 77.84
W2A16 SliderQuant 74.59 72.01 46.42 65.12 66.30 56.85 63.55

As an additional complement to the results in the main paper, the comprehensive experiments across
different model families (Llama, Llama2, Llama3, Qwen2.5), model scales (7B, 8B, 13B, 14B,
32B, 65B, 70B), quantization setting (W4A4,W2A16,W4A16), and benchmarks(language genera-
tion and zero-shot commonsense reasoning) further highlight the stable and superior performance
of SliderQuant.

G MORE EXPERIMENTS AND DISCUSSIONS FOR THE REBUTTAL

In this section, we provide more experiments and discussions conducted for the rebuttal.

G.1 STUDY ON FOUR SLIDING WINDOW SCHEDULE KNOBS

Our SliderQuant has four schedule knobs including a progressively expanded sliding window
(PESW) for Ls shallow layers, a fixed-size sliding window withe the size of s for Li intermediate
layers and a progressively contracted sliding window (PCSW) for Ld deep layers used in inter-layer
sliding quantization (Inter-S), and an incremental quantization ratio γ for intra-layer sliding quan-
tization (Intra-S) within each window of Inter-S. In the Subsection E of the main paper, we used
Llama2-7B to study their choices from the perspectives of their individual roles and combined roles,
and chose Ls = 4, s = 2, Ld = 4, γ = 0.5 as the default setting of our SliderQuant applied to all
different LLMs tested in our paper, for a simple implementation. Indeed, this default setting is not
optimal even for Llama2-7B, let alone other LLMs. To better compare their choices, we addition-
ally conducted multiple sets of ablative experiments with larger and recently released Qwen2.5-14B
under W4A4 quantization. Detailed results are summarized in the below Table L, Table M, Table N
and Table O, from which we can see that our SliderQuant: (1) with our default setting, four sched-
ule knobs are complementary to each other (see Table L); (2) for each individual knob, its default
setting is usually not the best for both Llama2-7B and Qwen2.5-14B (see Table M and Table N);
(3) combining it with PESW and PCSW is significantly better than merely using fixed-size slid-
ing quantization to all layers, both on Llama2-7B and Qwen2.5-14B (see Table O). Although our
SliderQuant with the default setting already achieves superior results to existing PTQ methods,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table L: Ablation of inter-layer sliding quanti-
zation (Inter-S) and intra-layer sliding quanti-
zation (Intra-S) on Qwen2.5-14B under W4A4
quantization.

Inter-S Intra-S Wikitext2 ↓ C4 ↓PESW PCSW
17.41 25.20

! 16.01 23.71

! 15.42 20.71
! 14.08 21.48

! ! 12.99 18.40
! ! ! 11.00 16.60

Table M: Ablation of inter-layer sliding quan-
tization with different choices of Ls and Ld on
Qwen2.5-14B under W4A4 quantization.

Ls Ld Wikitext2 ↓ C4 ↓
2 2 14.95 20.30
3 3 13.83 19.07
4 4 12.99 18.40
5 5 12.45 18.12
6 6 12.22 18.01

Table N: Ablation of intra-layer sliding quanti-
zation with different choices of γ on Qwen2.5-
14B under W4A4 quantization.

Ratio γ #Stage N Wikitext2 ↓ C4 ↓

1.0 1 17.41 25.20
0.5 2 16.01 23.71

0.33 3 15.67 23.03
0.25 4 16.07 22.71

Table O: Ablation of fixed-size sliding quanti-
zation with different choices of window size s
on Qwen2.5-14B under W4A4 quantization.

Method s Ls&Ld Wikitext2 ↓ C4 ↓

Baseline
2 - 17.41 25.20
3 - 15.94 24.15
4 - 14.75 21.41

Inter-S 2 4 12.99 18.40

these ablations indicate that there is still room to get improved quantization performance by choosing
better settings of these four schedule knobs for different LLMs. Underlined entries indicate our
default hyperparameter settings and their corresponding experimental results.

G.2 ADAPTIVE SLIDING-WINDOW QUANTIZATION vs REPEATED OPTIMIZATION

In our SliderQuant, the first and the last layers are used as the anchor layer when quantizing shallow
and deep layers, which means that they are quantized more times than the other layers. Naturally, a
critical question is whether performance gain comes more from repeated optimization or our adap-
tive sliding quantization. To explore this question, we conducted an ablation to compare the roles
of the sliding-window quantization design and the repeated optimization (quantization of all layers
in each window by multiple times) on Llama2-7B and Qwen2.5-14B under W4A4 quantization.
Detailed results are summarized in the below Table P, from which we can see that, on both Llama2-
7B and Qwen2.5-14B: (1) for fixed-size sliding quantization with the window size of s = 2 or
s = 4 applied to all model layers, performing multiple times of quantization of all layers in each
window can improve the quantization performance, but the gain against its corresponding single
time baseline is marginal (< 1 perplexity); (2) comparatively, retaining a fixed-size sliding window
s = 2 for intermediate layers, by introducing a progressively expanded sliding window (PESW) for
Ls = 4 shallow layers, a progressively contracted sliding window (PCSW) for Ld = 4 deep layers,
our SliderQuant with this default setting achieves significant perplexity reductions (1.54 to 3.60 for
Llama2-7B and 1.23 to 4.42 for Qwen2.5-14B on Wikitext2, with similar reductions observed on
C4) over all fixed-sized sliding quantization baselines and its repeated variants. These experimen-
tal results indicate that our adaptive sliding quantization contributes significantly more to the final
improvement of quantization performance compared to merely applying fixed-size sliding window
to all layers of FP16 LLMs (even with repeated optimization), which well echoes the importance of
our empirical observations and method’s motivation.

Table P: Ablation of comparing SliderQuant with repeated fixed-size sliding quantization on
Llama2-7B under W4A4 quantization. The repeated baseline applies quantization to all layers in
each window multiple times with window size s. Left: Llama2-7B. Right: Qwen2.5-14B.

s Ls&Ld # Repetitions Wikitext2 C4

2 - 1 12.73 14.45
2 - 2 12.58 14.23
2 - 3 12.41 14.15
2 - 4 12.11 14.08

4 - 1 11.13 13.52
4 - 2 10.94 13.39
4 - 3 10.79 13.25
4 - 4 10.67 13.12

2 4 1 9.13 11.78

s Ls&Ld # Repetitions Wikitext2 C4

2 - 1 17.41 25.20
2 - 2 17.23 25.12
2 - 3 17.01 24.97
2 - 4 16.91 24.81

4 - 1 14.75 21.41
4 - 2 14.54 20.93
4 - 3 14.35 20.71
4 - 4 14.21 20.65

2 4 1 12.99 18.40

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

G.3 TRAINING TIME COST AND MEMORY OVERHEAD

We also conducted an ablation to compare the training time and the memory overhead of our Slid-
erQuant (including our default version and a fast version), the fixed-size sliding quantization base-
line (CBQ, which is closely related to our SliderQuant) and OmniQuant on both Llama2-7B and
Qwen2.5-14B under W4A4 quantization. In the experiments, we always use the same number of
calibration samples (128), the same batch size (1) and the same number of training epochs (20) for
all methods unless otherwise stated. Note GPTQ is known as an efficient PTQ method but is tailored
to weight-only quantization and is less related to our method, so it is not compared here. Detailed
results are summarized in the below Table Q, from which we can see that, on both Llama2-7B and
Qwen2.5-14B under W4A4 quantization: (1) in terms of training time, our SliderQuant (with the de-
fault setting of Ls = 4, s = 2, Ld = 4, γ = 0.5) is 1.08× to 1.55× slower than OmniQuant and the
fixed-sized sliding quantization (CBQ) with the window size s = 2, but is faster than the fixed-sized
sliding quantization with the window size of s = 4 or s = 3, and our SliderQuant-Fast (the only
change is the number of training epochs is 10 instead of 20) is the fastest (1.21× to 1.78× faster
than OmniQuant and the fixed-sized sliding quantization (CBQ) with the window size s = 2) and
achieves slightly worse quantization results compared to SliderQuant; (2) in terms of memory over-
head, our SliderQuant (with the default setting of Ls = 4, s = 2, Ld = 4, γ = 0.5), SliderQuant-
Fast and the fixed-sized sliding quantization (CBQ) with the window size of s = 4 have the same
memory usage, which is around 2× compared to the memory usage by the fixed-sized sliding quan-
tization (CBQ) with the window size of s = 2 and OmniQuant; (3) in terms of model accuracy, both
SliderQuant (with the default setting of Ls = 4, s = 2, Ld = 4, γ = 0.5) and SliderQuant-Fast
always achieve significantly better perplexity than other counterpart methods, showing perplexity
reductions ranging from 2.21 to 23.70 on Wikitext-2 and 1.93 to 41.15 on C4. Furthermore, Fig-
ure B in this Appendix presents a comprehensive view of SliderQuant’s performance-efficiency
trade-offs across different training time configurations. These results demonstrate that SliderQuant
can achieve even greater training efficiency, showcasing up to 6.42× speedup compared to Omni-
Quant on Llama2-7B while maintaining better perplexity on both datasets. Summarily, these results
show that the training cost of SliderQuant is decent, which guarantees the practicality of our method
to quantize different LLMs, also thanks to its simplicity.

Table Q: Comparison of the training time and the memory overhead of our SliderQuant, fixed-
size sliding quantization baseline and OmniQuant on Llama2-7B and Qwen2.5-14B under W4A4
quantization. All experiments are conducted on a single NVIDIA A6000-48G GPU, and we set the
number of calibration samples to 128 (a popular choice in the quantization community), the batch
size to 1, and the number of training epochs to 20 for all methods except our SliderQuant-Fast with
10 training epochs. Best results are bolded.

Model Method Wikitext2 ↓ C4 ↓ Training Time Memory Overhead
(GPU Hours) (GB)

Llama2-7B

OmniQuant 14.26 18.02 4.75 15.04
Fixed-sized sliding (s=2, CBQ) 12.73 14.45 5.66 16.24
Fixed-sized sliding (s=3, CBQ) 11.18 13.94 7.65 23.02
Fixed-sized sliding (s=4, CBQ) 11.13 13.52 9.16 29.80
SliderQuant-Fast 8.92 11.59 3.24 29.80
SliderQuant 8.34 11.10 6.14 29.80

Qwen2.5-14B

OmniQuant 34.70 61.75 7.38 22.12
Fixed-sized sliding (s=2, CBQ) 17.41 25.20 10.83 21.12
Fixed-sized sliding (s=3, CBQ) 15.94 24.15 13.56 30.23
Fixed-sized sliding (s=4, CBQ) 14.75 21.41 15.36 43.71
SliderQuant-Fast 12.19 17.53 6.08 43.71
SliderQuant 11.00 16.60 11.43 43.71

G.4 DATA-EFFICIENCY AND CALIBRATION ROBUSTNESS

In the below Table R, we provide an ablation to study the performance of our SliderQuant under
a smaller number of calibration samples 32, 64 and a larger number of calibration samples 256,
besides the default number of calibration samples 128, and we compare our results with the reported
results in the original papers of OmniQuant and DuQuant (a top rotation-based PTQ method). We
can see that: (1) when using a smaller or larger number of calibration samples, our SliderQuant and
SliderQuant+ (using rotation transformations) achieve significantly better results than OmniQuant

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table R: Comparison of calibration data efficiency under W4A4 quantization. Left: Llama-7B, com-
paring SliderQuant and OmniQuant with different numbers of calibration samples. Right: Llama2-
7B, comparing SliderQuant+ (SliderQuant with rotation) and DuQuant with different numbers of
calibration samples. Underlines denote the default configuration; bold indicates the best results.

#Samples Method Wikitext2 C4

32 OmniQuant 11.48 14.80
32 SliderQuant 8.71 11.19

64 OmniQuant 11.40 14.57
64 SliderQuant 8.30 11.13

128 OmniQuant 11.23 14.61
128 SliderQuant 8.01 10.58

256 OmniQuant 11.41 14.90
256 SliderQuant 8.49 11.26

#Samples Method Wikitext2 C4

32 DuQuant 6.31 7.99
32 SliderQuant+ 5.83 7.85

64 DuQuant 6.29 7.88
64 SliderQuant+ 5.81 7.83

128 DuQuant 6.28 7.90
128 SliderQuant+ 5.71 7.68

256 DuQuant 6.23 7.88
256 SliderQuant+ 5.64 7.53

and also better results than DuQuant (using learnable rotation transformations) consistently; (2)
intriguingly, even with 32 calibration samples, our SliderQuant and SliderQuant+ show superior
performance than OmniQuant and DuQuant with 256 calibration samples, respectively.

H VISUALIZATIONS OF THE QUANTIZATION IMPACT OF DIFFERENT LAYERS
TO MODEL ACCURACY

Figure C: Illustrations on the quantization impact of different layers to model accuracy: (1) quantiz-
ing a single layer (the first row) and (2) quantizing the first l layers (the second row) of Llama3-8B,
Qwen2.5-7B and Qwen2.5-32B. Here, we select three representative layer-wise, block-wise and
multi-block-wise quantization methods, SmoothQuant, OmniQuant and CBQ, and examine them in
4-bit weight-activation (W4A4) quantization on WikiText2.

To further validate our empirical observation that different layers in LLMs exhibit varying sensitivity
to quantization, we provide additional visualizations on Llama3-8B, Qwen2.5-7B, and Qwen2.5-
32B, as shown in Figure C. Consistent with the observations discussed in the main paper (illustrated
in Figure 1), these results reveal several important trends. First, for all tested LLMs, intermediate
layers tend to be less sensitive to quantization, incurring smaller accuracy degradation compared to
shallow and deep layers. This confirms that shallow and deep layers are more difficult to quantize
and require special attention. Second, the first and last layers exhibit the highest quantization sensi-
tivity, leading to the most significant increases in perplexity when they are quantized. This highlights
their critical role in maintaining model fidelity. Third, as more layers are quantized sequentially from
shallow to deep, the cumulative quantization error increases gradually, further demonstrating the
compounding effect of poor quantization in sensitive layers. Among all methods, SliderQuant con-
sistently achieves the lowest perplexity in both the single-layer and cumulative-layer quantization
settings. This is because it explicitly focuses on reducing quantization errors in the more vulnerable

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

shallow and deep layers, effectively controlling overall errors propagation. These additional visual-
izations provide further empirical evidence for layer-wise differences in quantization sensitivity, and
reinforce the design rationale of SliderQuant. They demonstrate the necessity of quantization-aware
strategies that account for such sensitivity variation, especially when targeting low-bit quantization.

I VISUALIZATIONS OF WEIGHTS AND ACTIVATIONS IN SLIDERQUANT

To better understand how SliderQuant improves the quantization process, we visualize the numeri-
cal ranges of both activations and weights before and after applying it. Specifically, we compute the
range as the difference between the maximum and minimum values—per channel for weights and
per token for activations. Large value ranges are known to complicate quantization, especially under
low-bit settings, as they increase the risk of information loss. Therefore, reducing these ranges can
significantly ease quantization and improve accuracy. Taking Llama2-7B under the W4A4 quantiza-
tion setting as an example, we examine the value ranges after merging the learnable parameters from
OmniQuant and SliderQuant into the original weights, without actually applying quantization. This
allows us to isolate the effect of these methods on the intrinsic distribution of the weights and acti-
vations, offering a clearer view of the quantization difficulty induced by each approach. As shown
in Figures D to F, SliderQuant consistently reduces the channel-wise weight ranges across shallow,
middle, and deep layers, clearly outperforming OmniQuant. Similarly, as shown in Figures G to R,
the token-wise activation ranges after applying SliderQuant are significantly smaller than those in
the original model and OmniQuant across a wide range of representative samples and layers. By
simultaneously compressing the value ranges of both activations and weights across different model
depths and inputs, SliderQuant reduces quantization difficulty and enables effective low-bit quanti-
zation with minimal performance degradation. This dual-range suppression is a key factor behind
SliderQuant’s robustness and near-lossless performance in challenging low-bit regimes.

Qproj Kproj Vproj

Oproj Upproj Gateproj

Figure D: Visualization of channel-wise weight ranges (max–min) in the 1st layer of Llama2-7B
under W4A4 quantization.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Qproj Kproj Vproj

Oproj Upproj Gateproj

Figure E: Visualization of channel-wise weight ranges (max–min) in the 18th layer of Llama2-7B
under W4A4 quantization.

Qproj Kproj Vproj

Oproj Upproj Gateproj

Figure F: Visualization of channel-wise weight ranges (max–min) in the 31st layer of Llama2-7B
under W4A4 quantization.

Qproj Kproj Vproj

Oproj Upproj Gateproj

Figure G: Visualization of token-wise activation ranges (max–min) in the 1st layer of Llama2-7B
for the first sample of 4 samples randomly selected from Wikitext2 under W4A4 quantization.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Qproj Kproj Vproj

Oproj Upproj Gateproj

Figure H: Visualization of token-wise activation ranges (max–min) in the 1st layer of Llama2-7B
for the second sample of 4 samples randomly selected from Wikitext2 under W4A4 quantization.

Qproj Kproj Vproj

Oproj Upproj Gateproj

Figure I: Visualization of token-wise activation ranges (max–min) in the 1st layer of Llama2-7B for
the third sample of 4 samples randomly selected from Wikitext2 under W4A4 quantization.

Qproj Kproj Vproj

Oproj Upproj Gateproj

Figure J: Visualization of token-wise activation ranges (max–min) in the 1st layer of Llama2-7B for
the fourth sample of 4 samples randomly selected from Wikitext2 under W4A4 quantization.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Qproj Kproj Vproj

Oproj Upproj Gateproj

Figure K: Visualization of token-wise activation ranges (max–min) in the 18th layer of Llama2-7B
for the first sample of 4 samples randomly selected from Wikitext2 under W4A4 quantization.

Qproj Kproj Vproj

Oproj Upproj Gateproj

Figure L: Visualization of token-wise activation ranges (max–min) in the 18th layer of Llama2-7B
for the second sample of 4 samples randomly selected from Wikitext2 under W4A4 quantization.

Qproj Kproj Vproj

Oproj Upproj Gateproj

Figure M: Visualization of token-wise activation ranges (max–min) in the 18th layer of Llama2-7B
for the third sample of 4 samples randomly selected from Wikitext2 under W4A4 quantization.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Qproj Kproj Vproj

Oproj Upproj Gateproj

Figure N: Visualization of token-wise activation ranges (max–min) in the 18th layer of Llama2-7B
for the fourth sample of 4 samples randomly selected from Wikitext2 under W4A4 quantization.

Qproj Kproj Vproj

Oproj Upproj Gateproj

Figure O: Visualization of token-wise activation ranges (max–min) in the 31st layer of Llama2-7B
for the first sample of 4 samples randomly selected from Wikitext2 under W4A4 quantization.

Qproj Kproj Vproj

Oproj Upproj Gateproj

Figure P: Visualization of token-wise activation ranges (max–min) in the 31st layer of Llama2-7B
for the second sample of 4 samples randomly selected from Wikitext2 under W4A4 quantization.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Qproj Kproj Vproj

Oproj Upproj Gateproj

Figure Q: Visualization of token-wise activation ranges (max–min) in the 31st layer of Llama2-7B
for the third sample of 4 samples randomly selected from Wikitext2 under W4A4 quantization.

Qproj Kproj Vproj

Oproj Upproj Gateproj

Figure R: Visualization of token-wise activation ranges (max–min) in the 31st layer of Llama2-7B
for the fourth sample of 4 samples randomly selected from Wikitext2 under W4A4 quantization.

30

	Introduction
	Related Work
	Method
	Basic Concept: Fixed-size Sliding Quantization
	SliderQuant

	Experiments
	Main Results
	Ablation Studies

	Conclusion
	Datasets Used in Experiments
	Implementation Details of SliderQuant
	Quantization Details
	Channel-wise Scaling
	Low-rank Adaptation
	Hyper-parameter Settings
	Quantization Hardware and Deployment Acceleration

	Implementation Details of SliderQuant with Rotation Transformations
	Quantization Efficiency of SliderQuant
	More Ablation Studies
	More Results across Diverse LLM Families and Quantization Settings
	More Experiments and Discussions for the Rebuttal
	Study on Four Sliding Window Schedule Knobs
	Adaptive Sliding-Window Quantization vs Repeated Optimization
	Training Time Cost and Memory Overhead
	Data-Efficiency and Calibration Robustness

	Visualizations of the Quantization Impact of Different Layers to Model Accuracy
	Visualizations of Weights and Activations in SliderQuant

